1
|
Six A, Bellais S, Bouaboud A, Fouet A, Gabriel C, Tazi A, Dramsi S, Trieu-Cuot P, Poyart C. Srr2, a multifaceted adhesin expressed by ST-17 hypervirulent Group B Streptococcus involved in binding to both fibrinogen and plasminogen. Mol Microbiol 2015; 97:1209-22. [PMID: 26094503 DOI: 10.1111/mmi.13097] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2015] [Indexed: 11/30/2022]
Abstract
The Group B Streptococcus (GBS) 'hypervirulent' ST-17 clone is strongly associated with invasive neonatal meningitis. Comparative genome analyses revealed that the serine-rich repeat (Srr) glycoprotein Srr2 is a cell wall-anchored protein specific for ST-17 strains, the non-ST-17 isolates expressing Srr1. Here, we unravel the binding capacity of GBS Srr proteins to relevant components of the host fibrinolysis pathway. We demonstrate that: (i) Srr2 binds plasminogen and plasmin whereas Srr1 does not; (ii) the ability of ST-17 strains to bind fibrinogen reflects a high level surface display of Srr2 combined with a higher affinity of Srr2 than Srr1 to bind this ligand; and (iii) Srr2 binding to host plasma proteins results in the formation of bacterial aggregates that are efficiently endocytosed by phagocytes. Importantly, we show that Srr2 increased bacterial survival to phagocytic killing and bacterial persistence in a murine model of meningitis. We conclude that Srr2 is a multifaceted adhesin used by the ST-17 clone to hijack ligands of the host coagulation system, thereby contributing to bacterial dissemination and invasiveness, and ultimately to meningitis.
Collapse
Affiliation(s)
- Anne Six
- INSERM U 1016, Institut Cochin, team 'Barriers and Pathogens', Paris, F-75014, France.,CNRS UMR 8104, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, F-75014, France.,DHU 'Risques et grossesse', Assistance Publique Hôpitaux de Paris, Paris, France
| | - Samuel Bellais
- INSERM U 1016, Institut Cochin, team 'Barriers and Pathogens', Paris, F-75014, France.,CNRS UMR 8104, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, F-75014, France.,DHU 'Risques et grossesse', Assistance Publique Hôpitaux de Paris, Paris, France
| | - Abdelouhab Bouaboud
- INSERM U 1016, Institut Cochin, team 'Barriers and Pathogens', Paris, F-75014, France.,CNRS UMR 8104, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, F-75014, France.,DHU 'Risques et grossesse', Assistance Publique Hôpitaux de Paris, Paris, France
| | - Agnès Fouet
- INSERM U 1016, Institut Cochin, team 'Barriers and Pathogens', Paris, F-75014, France.,CNRS UMR 8104, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, F-75014, France.,DHU 'Risques et grossesse', Assistance Publique Hôpitaux de Paris, Paris, France.,Centre National de Référence des Streptocoques, Paris, F-75014, France
| | - Christelle Gabriel
- INSERM U 1016, Institut Cochin, team 'Barriers and Pathogens', Paris, F-75014, France.,CNRS UMR 8104, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, F-75014, France.,DHU 'Risques et grossesse', Assistance Publique Hôpitaux de Paris, Paris, France
| | - Asmaa Tazi
- INSERM U 1016, Institut Cochin, team 'Barriers and Pathogens', Paris, F-75014, France.,CNRS UMR 8104, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, F-75014, France.,DHU 'Risques et grossesse', Assistance Publique Hôpitaux de Paris, Paris, France.,Centre National de Référence des Streptocoques, Paris, F-75014, France.,Hôpitaux Universitaires Paris Centre Cochin-Hôtel Dieu-Broca, Assistance Publique Hôpitaux de Paris, Paris, F-75014, France
| | - Shaynoor Dramsi
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, Paris, F-74016, France.,CNRS ERL3526, Paris, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, Paris, F-74016, France.,CNRS ERL3526, Paris, France
| | - Claire Poyart
- INSERM U 1016, Institut Cochin, team 'Barriers and Pathogens', Paris, F-75014, France.,CNRS UMR 8104, Paris, F-75014, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, F-75014, France.,DHU 'Risques et grossesse', Assistance Publique Hôpitaux de Paris, Paris, France.,Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, Paris, F-74016, France.,CNRS ERL3526, Paris, France.,Centre National de Référence des Streptocoques, Paris, F-75014, France.,Hôpitaux Universitaires Paris Centre Cochin-Hôtel Dieu-Broca, Assistance Publique Hôpitaux de Paris, Paris, F-75014, France
| |
Collapse
|
2
|
Correia M, Snabe T, Thiagarajan V, Petersen SB, Campos SRR, Baptista AM, Neves-Petersen MT. Photonic activation of plasminogen induced by low dose UVB. PLoS One 2015; 10:e0116737. [PMID: 25635856 PMCID: PMC4312030 DOI: 10.1371/journal.pone.0116737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/12/2014] [Indexed: 11/18/2022] Open
Abstract
Activation of plasminogen to its active form plasmin is essential for several key mechanisms, including the dissolution of blood clots. Activation occurs naturally via enzymatic proteolysis. We report that activation can be achieved with 280 nm light. A 2.6 fold increase in proteolytic activity was observed after 10 min illumination of human plasminogen. Irradiance levels used are in the same order of magnitude of the UVB solar irradiance. Activation is correlated with light induced disruption of disulphide bridges upon UVB excitation of the aromatic residues and with the formation of photochemical products, e.g. dityrosine and N-formylkynurenine. Most of the protein fold is maintained after 10 min illumination since no major changes are observed in the near-UV CD spectrum. Far-UV CD shows loss of secondary structure after illumination (33.4% signal loss at 206 nm). Thermal unfolding CD studies show that plasminogen retains a native like cooperative transition at ~70 ºC after UV-illumination. We propose that UVB activation of plasminogen occurs upon photo-cleavage of a functional allosteric disulphide bond, Cys737-Cys765, located in the catalytic domain and in van der Waals contact with Trp761 (4.3 Å). Such proximity makes its disruption very likely, which may occur upon electron transfer from excited Trp761. Reduction of Cys737-Cys765 will result in likely conformational changes in the catalytic site. Molecular dynamics simulations reveal that reduction of Cys737-Cys765 in plasminogen leads to an increase of the fluctuations of loop 760–765, the S1-entrance frame located close to the active site. These fluctuations affect the range of solvent exposure of the catalytic triad, particularly of Asp646 and Ser74, which acquire an exposure profile similar to the values in plasmin. The presented photonic mechanism of plasminogen activation has the potential to be used in clinical applications, possibly together with other enzymatic treatments for the elimination of blood clots.
Collapse
Affiliation(s)
- Manuel Correia
- Department of Physics and Nanotechnology, Aalborg University, Aalborg, Denmark
| | - Torben Snabe
- Department of Physics and Nanotechnology, Aalborg University, Aalborg, Denmark
| | - Viruthachalam Thiagarajan
- BioPhotonics Group, Department of Nanomedicine, International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
- School of Chemistry, Bharathidasan University, Tiruchirappalli, India
| | - Steffen Bjørn Petersen
- BioPhotonics Group, Department of Nanomedicine, International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- The Institute for Lasers, Photonics and Biophotonics; University at Buffalo, The State University of New York, New York, United States of America
| | - Sara R. R. Campos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António M. Baptista
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria Teresa Neves-Petersen
- BioPhotonics Group, Department of Nanomedicine, International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
- * E-mail:
| |
Collapse
|
3
|
Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014. [PMID: 24696436 DOI: 10.1128/cmr.00101-13)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
|
4
|
Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML, Nizet V. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014; 27:264-301. [PMID: 24696436 PMCID: PMC3993104 DOI: 10.1128/cmr.00101-13] [Citation(s) in RCA: 609] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
Affiliation(s)
- Mark J. Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Timothy C. Barnett
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Jason D. McArthur
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jason N. Cole
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Anna Henningham
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - K. S. Sriprakash
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Martina L. Sanderson-Smith
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
5
|
Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. J Biomed Biotechnol 2012; 2012:482096. [PMID: 23118509 PMCID: PMC3477821 DOI: 10.1155/2012/482096] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/24/2012] [Accepted: 08/13/2012] [Indexed: 01/06/2023] Open
Abstract
In order for invasive pathogens to migrate beyond the site of infection, host physiological barriers such as the extracellular matrix, the basement membrane, and encapsulating fibrin network must be degraded. To circumvent these impediments, proteolytic enzymes facilitate the dissemination of the microorganism. Recruitment of host proteases to the bacterial surface represents a particularly effective mechanism for enhancing invasiveness. Plasmin is a broad spectrum serine protease that degrades fibrin, extracellular matrices, and connective tissue. A large number of pathogens express plasminogen receptors which immobilize plasmin(ogen) on the bacterial surface. Surface-bound plasminogen is then activated by plasminogen activators to plasmin through limited proteolysis thus triggering the development of a proteolytic surface on the bacteria and eventually assisting the spread of bacteria. The host hemostatic system plays an important role in systemic infection. The interplay between hemostatic processes such as coagulation and fibrinolysis and the inflammatory response constitutes essential components of host defense and bacterial invasion. The goal of this paper is to highlight mechanisms whereby pathogenic bacteria, by engaging surface receptors, utilize and exploit the host plasminogen and fibrinolytic system for the successful dissemination within the host.
Collapse
|
6
|
Sun H. Exploration of the host haemostatic system by group A streptococcus: implications in searching for novel antimicrobial therapies. J Thromb Haemost 2011; 9 Suppl 1:189-94. [PMID: 21781255 PMCID: PMC3151011 DOI: 10.1111/j.1538-7836.2011.04316.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The haemostatic system is heavily involved in the host response to infection. A number of host haemostatic factors, notably plasminogen and fibrinogen have been reported to bind and interact with various bacterial proteins. This review summarises the roles of host haemostatic factors such as plasminogen, factor V and fibrinogen in host defence against group A streptococcus infection and discusses the potential of targeting the host haemostatic system for therapeutic intervention against infectious diseases.
Collapse
Affiliation(s)
- H Sun
- Department of Internal Medicine, University of Missouri Hospital and Clinics, Columbia, MO, USA.
| |
Collapse
|
7
|
Cork AJ, Jergic S, Hammerschmidt S, Kobe B, Pancholi V, Benesch JLP, Robinson CV, Dixon NE, Aquilina JA, Walker MJ. Defining the structural basis of human plasminogen binding by streptococcal surface enolase. J Biol Chem 2009; 284:17129-17137. [PMID: 19363026 DOI: 10.1074/jbc.m109.004317] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flesh-eating bacterium group A Streptococcus (GAS) binds and activates human plasminogen, promoting invasive disease. Streptococcal surface enolase (SEN), a glycolytic pathway enzyme, is an identified plasminogen receptor of GAS. Here we used mass spectrometry (MS) to confirm that GAS SEN is octameric, thereby validating in silico modeling based on the crystal structure of Streptococcus pneumoniae alpha-enolase. Site-directed mutagenesis of surface-located lysine residues (SEN(K252 + 255A), SEN(K304A), SEN(K334A), SEN(K344E), SEN(K435L), and SEN(Delta434-435)) was used to examine their roles in maintaining structural integrity, enzymatic function, and plasminogen binding. Structural integrity of the GAS SEN octamer was retained for all mutants except SEN(K344E), as determined by circular dichroism spectroscopy and MS. However, ion mobility MS revealed distinct differences in the stability of several mutant octamers in comparison with wild type. Enzymatic analysis indicated that SEN(K344E) had lost alpha-enolase activity, which was also reduced in SEN(K334A) and SEN(Delta434-435). Surface plasmon resonance demonstrated that the capacity to bind human plasminogen was abolished in SEN(K252 + 255A), SEN(K435L), and SEN(Delta434-435). The lysine residues at positions 252, 255, 434, and 435 therefore play a concerted role in plasminogen acquisition. This study demonstrates the ability of combining in silico structural modeling with ion mobility-MS validation for undertaking functional studies on complex protein structures.
Collapse
Affiliation(s)
- Amanda J Cork
- From the School of Biological Sciences, Wollongong NSW 2522, Australia
| | - Slobodan Jergic
- School of Chemistry, University of Wollongong, Wollongong NSW 2522, Australia
| | - Sven Hammerschmidt
- Department of Genetics of Microorganisms, Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt University of Greifswald, Greifswald D-17487, Germany
| | - Bostjan Kobe
- School of Molecular and Microbial Sciences and Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | - Vijay Pancholi
- Department of Pathology, Ohio State University, Columbus, Ohio 43210
| | - Justin L P Benesch
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Carol V Robinson
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Nicholas E Dixon
- School of Chemistry, University of Wollongong, Wollongong NSW 2522, Australia
| | - J Andrew Aquilina
- From the School of Biological Sciences, Wollongong NSW 2522, Australia
| | - Mark J Walker
- From the School of Biological Sciences, Wollongong NSW 2522, Australia.
| |
Collapse
|
8
|
McArthur JD, McKay FC, Ramachandran V, Shyam P, Cork AJ, Sanderson‐Smith ML, Cole JN, Ringdahl U, Sjöbring U, Ranson M, Walker MJ. Allelic variants of streptokinase fromStreptococcus pyogenesdisplay functional differences in plasminogen activation. FASEB J 2008; 22:3146-53. [DOI: 10.1096/fj.08-109348] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jason D. McArthur
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Fiona C. McKay
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | | | - Priya Shyam
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Amanda J. Cork
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | | | - Jason N. Cole
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Ulrika Ringdahl
- Department of Laboratory Medicine, Section for Microbiology, Immunology and GlycobiologyLund University Lund Sweden
| | - Ulf Sjöbring
- Department of Laboratory Medicine, Section for Microbiology, Immunology and GlycobiologyLund University Lund Sweden
| | - Marie Ranson
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| | - Mark J. Walker
- School of Biological SciencesUniversity of Wollongong Wollongong Australia
| |
Collapse
|
9
|
Magalhães V, Veiga-Malta I, Almeida MR, Baptista M, Ribeiro A, Trieu-Cuot P, Ferreira P. Interaction with human plasminogen system turns on proteolytic activity in Streptococcus agalactiae and enhances its virulence in a mouse model. Microbes Infect 2007; 9:1276-84. [PMID: 17890121 DOI: 10.1016/j.micinf.2007.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 04/24/2007] [Accepted: 06/01/2007] [Indexed: 11/24/2022]
Abstract
Interactions of several microbial pathogens with the plasminogen system increase their invasive potential. In this study, we show that Streptococcus agalactiae binds human plasminogen which can be subsequently activated to plasmin, thus generating a proteolytic bacterium. S. agalactiae binds plasminogen via the direct pathway, using plasminogen receptors, and via the indirect pathway through fibrinogen receptors. The glyceraldehyde-3-phosphate dehydrogenase is one of the S. agalactiae proteins that bind plasminogen. Presence of exogenous activators such as uPA and tPA are required to activate bound plasminogen. Results from competitive inhibition assays indicate that binding is partially mediated through the lysine binding sites of plasminogen. Following plasminogen binding and activation, S. agalactiae is able to degrade in vitro fibronectin, one of the host extracellular matrix proteins. Moreover, incubation of S. agalactiae with either plasminogen alone, or plasminogen plus fibrinogen, in the presence of tPA enhanced its virulence in C57BL/6 mice, suggesting that acquisition of plasmin-like activity by the bacteria increase their invasiveness.
Collapse
Affiliation(s)
- Vanessa Magalhães
- ICBAS- Instituto de Ciências Biomédicas de Abel Salazar, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
10
|
Hess JL, Boyle MDP. Fibrinogen fragment D is necessary and sufficient to anchor a surface plasminogen-activating complex in Streptococcus pyogenes. Proteomics 2006; 6:375-8. [PMID: 16287173 DOI: 10.1002/pmic.200500189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, the importance of different domains of the fibrinogen molecule in the binding and assembly of a surface plasminogen (plgn) activator has been analyzed. This was achieved using SELDI technology that enabled dissociation of bound fragments from intact bacteria and accurate distinction between fibrinogen fragments based on their molecular mass. These studies indicate that Streptococcus pyogenes binds directly to human fibrinogen fragment D but not fragment E. The predominant surface proteins binding to fragment D were associated with the mrp gene product. Surface-associated fibrinogen fragment D was capable of anchoring a functional surface plgn activator complex. Taken together, these data indicated that fragment D of fibrinogen is necessary and sufficient to anchor a plgn activator complex on the surface of Streptococcus pyogenes.
Collapse
Affiliation(s)
- Jennifer L Hess
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | | |
Collapse
|
11
|
Walker MJ, McArthur JD, McKay F, Ranson M. Is plasminogen deployed as a Streptococcus pyogenes virulence factor? Trends Microbiol 2005; 13:308-13. [PMID: 15936195 DOI: 10.1016/j.tim.2005.05.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 04/22/2005] [Accepted: 05/16/2005] [Indexed: 11/24/2022]
Abstract
Streptococcus pyogenes (group A streptococcus) causes human skin and throat infections as well as highly invasive diseases including necrotizing fasciitis. Group A streptococcal infections and invasive disease have made a resurgence in developed countries during the past two decades. S. pyogenes use multiple pathways for the acquisition and activation of human plasminogen, securing potent proteolytic activity on the bacterial cell surface. Recent experimental evidence using a humanized transgenic mouse model suggests a crucial role for human plasminogen in the dissemination of S. pyogenes in vivo.
Collapse
Affiliation(s)
- Mark J Walker
- School of Biological Sciences, University of Wollongong, NSW, 2522 Australia.
| | | | | | | |
Collapse
|
12
|
Rezcallah MS, Boyle MDP, Sledjeski DD. Mouse skin passage of Streptococcus pyogenes results in increased streptokinase expression and activity. MICROBIOLOGY-SGM 2004; 150:365-371. [PMID: 14766914 DOI: 10.1099/mic.0.26826-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The plasminogen activator streptokinase has been proposed to be a key component of a complex mechanism that promotes skin invasion by Streptococcus pyogenes. This study was designed to compare ska gene message and protein levels in wild-type M1 serotype isolate 1881 and a more invasive variant recovered from the spleen of a lethally infected mouse. M1 isolates selected for invasiveness demonstrated enhanced levels of active plasminogen activator activity in culture. This effect was due to a combination of increased expression of the ska gene and decreased expression of the speB gene. The speB gene product, SpeB, was found to efficiently degrade streptokinase in vitro.
Collapse
Affiliation(s)
- Myrna S Rezcallah
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Michael D P Boyle
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| | - Darren D Sledjeski
- Department of Microbiology and Immunology, Medical College of Ohio, 3055 Arlington Avenue, Toledo, OH 43614-5806, USA
| |
Collapse
|
13
|
McKay FC, McArthur JD, Sanderson-Smith ML, Gardam S, Currie BJ, Sriprakash KS, Fagan PK, Towers RJ, Batzloff MR, Chhatwal GS, Ranson M, Walker MJ. Plasminogen binding by group A streptococcal isolates from a region of hyperendemicity for streptococcal skin infection and a high incidence of invasive infection. Infect Immun 2004; 72:364-70. [PMID: 14688117 PMCID: PMC343955 DOI: 10.1128/iai.72.1.364-370.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reports of resurgence in invasive group A streptococcal (GAS) infections come mainly from affluent populations with infrequent exposure to GAS. In the Northern Territory (NT) of Australia, high incidence of invasive GAS disease is secondary to endemic skin infection, serotype M1 clones are rare in invasive infection, the diversity and level of exposure to GAS strains are high, and no particular strains dominate. Expression of a plasminogen-binding GAS M-like protein (PAM) has been associated with skin infection in isolates elsewhere (D. Bessen, C. M. Sotir, T. M. Readdy, and S. K. Hollingshead, J. Infect. Dis. 173:896-900, 1996), and subversion of the host plasminogen system by GAS is thought to contribute to invasion in animal models. Here, we describe the relationship between plasminogen-binding capacity of GAS isolates, PAM genotype, and invasive capacity in 29 GAS isolates belonging to 25 distinct strains from the NT. In the presence of fibrinogen and streptokinase, invasive isolates bound more plasminogen than isolates from uncomplicated infections (P < or = 0.004). Only PAM-positive isolates bound substantial levels of plasminogen by a fibrinogen-streptokinase-independent pathway (direct binding). Despite considerable amino acid sequence variation within the A1 repeat region of PAM where the plasminogen-binding domain maps, the critical lysine residue was conserved.
Collapse
Affiliation(s)
- Fiona C McKay
- Department of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Derbise A, Song YP, Parikh S, Fischetti VA, Pancholi V. Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect Immun 2004; 72:94-105. [PMID: 14688086 PMCID: PMC343989 DOI: 10.1128/iai.72.1.94-105.2004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 09/22/2003] [Indexed: 11/20/2022] Open
Abstract
Streptococcal surface enolase (SEN) is a major plasminogen-binding protein of group A streptococci. Our earlier biochemical studies have suggested that the region responsible for this property is likely located at the C-terminal end of the SEN molecule. In the present study, the gene encoding SEN was cloned from group A streptococci M6 isolate D471. A series of mutations in the sen gene corresponding to the C-terminal region (428KSFYNLKK435) of the SEN molecule were created by either deleting one or more terminal lysine residues or replacing them with leucine. All purified recombinant SEN proteins with altered C-terminal ends were found to be enzymatically active and were analyzed for their Glu- and Lys-plasminogen-binding activities. Wild-type SEN bound to Lys-plasminogen with almost three times more affinity than to Glu-plasminogen. However, the recombinant mutant SEN proteins with a deletion of Lys434-435 or with K435L and K434-435L replacements showed a significant decrease in Glu- and Lys-plasminogen-binding activities. Accordingly, a streptococcal mutant expressing SEN-K434-435L showed a significant decrease in Glu- and Lys-plasminogen-binding activities. Biochemical and functional analyses of the isogenic mutant strain revealed a significant decrease in its abilities to cleave a chromogenic tripeptide substrate, acquire plasminogen from human plasma, and penetrate the extracellular matrix. Together, these data indicate that the last two C-terminal lysine residues of surface-exposed SEN contribute significantly to the plasminogen-binding activity of intact group A streptococci and hence to their ability to exploit host properties to their own advantage in tissue invasion.
Collapse
Affiliation(s)
- Anne Derbise
- Laboratory of Bacterial Pathogenesis, Public Health Research Institute, International Center for Public Health, Newark, New Jersey 07103-3535, USA
| | | | | | | | | |
Collapse
|
15
|
D'Costa SS, Romer TG, Boyle MD. Analysis of expression of a cytosolic enzyme on the surface of Streptococcus pyogenes. Biochem Biophys Res Commun 2000; 278:826-32. [PMID: 11095992 DOI: 10.1006/bbrc.2000.3884] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The normally cytosolic glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase, (GAPDH) has been reported to be expressed on the surface of Streptococcus pyogenes, group A, where it can act as a plasmin binding protein (Plr), and potentially a signaling molecule. In studies of wild-type and isogenic mutants, an association between surface expression of antigenic GAPDH/Plr and M and M-related fibrinogen-binding proteins was identified. Inactivation of the mga gene, whose product controls expression of M and M-related proteins also influenced expression of surface GAPDH/Plr. Revertants or pseudorevertants of mga mutants led to concomitant re-expression of surface GAPDH/Plr and M and M-related proteins. Using surface enhanced laser desorption ionization (SELDI) mass spectroscopy, a physical association between GAPDH/Plr and streptococcal fibrinogen-binding proteins was demonstrated. These studies support the hypothesis that surface M and M-related proteins are involved in anchoring GAPDH/Plr on the surface of group A streptococci.
Collapse
Affiliation(s)
- S S D'Costa
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio, USA
| | | | | |
Collapse
|
16
|
Abstract
Group A streptococci are model extracellular gram-positive pathogens responsible for pharyngitis, impetigo, rheumatic fever, and acute glomerulonephritis. A resurgence of invasive streptococcal diseases and rheumatic fever has appeared in outbreaks over the past 10 years, with a predominant M1 serotype as well as others identified with the outbreaks. emm (M protein) gene sequencing has changed serotyping, and new virulence genes and new virulence regulatory networks have been defined. The emm gene superfamily has expanded to include antiphagocytic molecules and immunoglobulin-binding proteins with common structural features. At least nine superantigens have been characterized, all of which may contribute to toxic streptococcal syndrome. An emerging theme is the dichotomy between skin and throat strains in their epidemiology and genetic makeup. Eleven adhesins have been reported, and surface plasmin-binding proteins have been defined. The strong resistance of the group A streptococcus to phagocytosis is related to factor H and fibrinogen binding by M protein and to disarming complement component C5a by the C5a peptidase. Molecular mimicry appears to play a role in autoimmune mechanisms involved in rheumatic fever, while nephritis strain-associated proteins may lead to immune-mediated acute glomerulonephritis. Vaccine strategies have focused on recombinant M protein and C5a peptidase vaccines, and mucosal vaccine delivery systems are under investigation.
Collapse
Affiliation(s)
- M W Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
17
|
Abstract
Although the roles of plasminogen and plasmin in mediating blood clot dissolution are well known, the availability of mice deficient for components of the fibrinolytic system has allowed direct approaches to be made toward elucidating the role of these proteins in other diverse physiological and pathophysiological processes. A number of these studies have identified plasminogen as playing an important role in inflammation and other cell migratory processes. With the identification of receptors for plasminogen on a number of pathogens, and the ability to activate plasminogen through either endogenous production of plasminogen activators or utilization of host activators, mice deficient for components of the fibrinolytic system offer a unique approach toward further elucidating the importance of this system in pathogen infection and dissemination.
Collapse
Affiliation(s)
- V A Ploplis
- W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
18
|
Travis J, Potempa J. Bacterial proteinases as targets for the development of second-generation antibiotics. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:35-50. [PMID: 10708847 DOI: 10.1016/s0167-4838(99)00278-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The emergence of bacterial pathogen resistance to common antibiotics strongly supports the necessity to develop alternative mechanisms for combating drug-resistant forms of these infective organisms. Currently, few pharmaceutical companies have attempted to investigate the possibility of interrupting metabolic pathways other than those that are known to be involved in cell wall biosynthesis. In this review, we describe multiple, novel roles for bacterial proteinases during infection using, as a specific example, the enzymes from the organism Porphyromonas gingivalis, a periodontopathogen, which is known to be involved in the development and progression of periodontal disease. In this manner, we are able to justify the concept of developing synthetic inhibitors against members of this class of enzymes as potential second-generation antibiotics. Such compounds could not only prove valuable in retarding the growth and proliferation of bacterial pathogens but also lead to the use of this class of inhibitors against invasion by other infective organisms.
Collapse
Affiliation(s)
- J Travis
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
19
|
Coleman JL, Benach JL. Use of the plasminogen activation system by microorganisms. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1999; 134:567-76. [PMID: 10595783 DOI: 10.1016/s0022-2143(99)90095-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The use of host-derived PAS components by invasive bacteria is an increasingly recognized mechanism for acquisition of extracellular proteolytic activity. This overview summarizes the pertinent contributions to this field and is divided into three parts: (1) the PAS, (2) the interaction of bacteria that produce their own plasminogen activators with the host's PAS, and (3) the interaction of bacteria that do not produce their own plasminogen activators but use plasminogen activators supplied by the host. The significance of these mechanisms in relation to the invasive potentials of the various organisms is discussed.
Collapse
Affiliation(s)
- J L Coleman
- State of New York Department of Health, State University of New York at Stony Brook, 11794-8692, USA
| | | |
Collapse
|
20
|
Nilsen SL, Prorok M, Castellino FJ. Enhancement through mutagenesis of the binding of the isolated kringle 2 domain of human plasminogen to omega-amino acid ligands and to an internal sequence of a Streptococcal surface protein. J Biol Chem 1999; 274:22380-6. [PMID: 10428809 DOI: 10.1074/jbc.274.32.22380] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the background of the recombinant K2 module of human plasminogen (K2(Pg)), a triple mutant, K2(Pg)[C4G/E56D/L72Y], was generated and expressed in Pichia pastoris cells in yields exceeding 100 mg/liter. The binding affinities of a series of lysine analogs, viz. 4-aminobutyric acid, 5-aminopentanoic acid, epsilon-aminocaproic acid, 7-aminoheptanoic acid, and t-4-aminomethylcyclohexane-1-carboxylic acid, to this mutant were measured and showed up to a 15-fold tighter interaction, as compared with wild-type K2(Pg) (K2(Pg)[C4G]). The variant, K2(Pg)[C4G/E56D], afforded up to a 4-fold increase in the binding affinity to these same ligands, whereas the K2(Pg)[C4G/L72Y] mutant decreased the same affinities up to 5-fold, as compared with K2(Pg)[C4G]. The thermal stability of K2(Pg)[C4G/E56D/L72Y] was increased by approximately 13 degrees C, as compared with K2(Pg)[C4G]. The functional consequence of up-regulating the lysine binding property of K2(Pg) was explored, as reflected by its ability to interact with an internal sequence of a plasminogen-binding protein (PAM) on the surface of group A streptococci. A 30-mer peptide of PAM, containing its K2(Pg)-specific binding region, was synthesized, and its binding to each mutant of K2(Pg) was assessed. Only a slight enhancement in peptide binding was observed for K2(Pg)[C4G/E56D], compared with K2(Pg)[C4G] (K(d) = 460 nM). A 5-fold decrease in binding affinity was observed for K2(Pg)[C4G/L72Y] (K(d) = 2200 nM). However, a 12-fold enhancement in binding to this peptide was observed for K2(Pg)[C4G/E56D/L72Y] (K(d) = 37 nM). Results of these PAM peptide binding studies parallel results of omega-amino acid binding to these K2(Pg) mutants, indicating that the high affinity PAM binding by plasminogen, mediated exclusively through K2(Pg), occurs through its lysine-binding site. This conclusion is supported by the 100-fold decrease in PAM peptide binding to K2(Pg)[C4G/E56D/L72Y] in the presence of 50 mM 6-aminohexanoic acid. Finally, a thermodynamic analysis of PAM peptide binding to each of these mutants reveals that the positions Asp(56) and Tyr(72) in the K2(Pg)[C4G/E56D/L72Y] mutant are synergistically coupled in terms of their contribution to the enhancement of PAM peptide binding.
Collapse
Affiliation(s)
- S L Nilsen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|