1
|
Chen L, Luo D, Xiao H, Zeng Z, Luo H, Gao S, Tang X, Huang Z, Zeng Y. Mycoplasma genitalium protein of adhesion inhibits human urethral epithelial cells apoptosis via CypA/PI3K/AKT/mTOR-dependent autophagy. Front Microbiol 2025; 16:1570659. [PMID: 40207157 PMCID: PMC11979137 DOI: 10.3389/fmicb.2025.1570659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Background Mycoplasma genitalium, a prokaryotic microorganism, is a known pathogen of sexually transmitted infections. Previously, we identified cyclophilin A (CypA) as the membrane receptor on human urethral epithelial cells (SV-HUC-1) that binds to the M. genitalium protein of adhesion (MgPa) and demonstrated that recombinant MgPa (rMgPa) inhibits apoptosis via CypA-mediated regulation of the PI3K/AKT/NF-κB pathway. Given the established interplay between autophagy and apoptosis, this study aims to investigate whether rMgPa inhibits apoptosis in SV-HUC-1 cells by modulating CypA/PI3K/AKT/mTOR-dependent autophagy. Methods In this work, after SV-HUC-1 cells were stimulated with rMgPa, autophagy was detected using Western blotting, immunofluorescence and transmission electron microscopy, respectively. Western blotting and Annexin V/PI assays were used to determine the signaling pathway involved in rMgPa- inhibited apoptosis via inducing autophagy. Results rMgPa upregulated the autophagy-related proteins ATG7 and LC3B while downregulating P62 expression in SV-HUC-1 cells. Transmission electron microscopy showed the presence of intracellular autophagosomes, and indirect immunofluorescence confirmed the enhanced expression of LC3B, indicating that rMgPa induces autophagy. Silencing of CypA significantly attenuated rMgPa-induced autophagy, highlighting the essential role of CypA in this process. Furthermore, rMgPa was found to regulate the PI3K/AKT/mTOR pathway via CypA, thereby promoting autophagy. Western blot analysis and Annexin V/PI assays confirmed that rMgPa-induced autophagy inhibits apoptosis in urothelial cells through a CypA-dependent mechanism. Conclusion This study demonstrates that rMgPa suppresses apoptosis in SV-HUC-1 cells by inducing autophagy via CypA-mediated modulation of the PI3K/AKT/mTOR pathway, which elucidates a novel survival strategy employed by M. genitalium within host cells and provides valuable insights for potential therapeutic interventions targeting M. genitalium infections.
Collapse
Affiliation(s)
- Li Chen
- Basic Medical School, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Dan Luo
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Hua Xiao
- Basic Medical School, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Zhuo Zeng
- Basic Medical School, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Haodang Luo
- Basic Medical School, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Siqi Gao
- Basic Medical School, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Xiaoqian Tang
- Basic Medical School, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Zhijia Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yanhua Zeng
- Basic Medical School, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| |
Collapse
|
2
|
Guo ZQ, Gu SY, Tian ZH, Du BY. A comprehensive review of Mycoplasma pneumoniae infection in chronic lung diseases: recent advances in understanding asthma, COPD, and bronchiectasis. Front Med (Lausanne) 2024; 11:1437731. [PMID: 39386750 PMCID: PMC11461384 DOI: 10.3389/fmed.2024.1437731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
This review summarizes the research progress over the past 30 years on the relationship between Mycoplasma pneumoniae infection and chronic respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and bronchiectasis. Mycoplasma pneumoniae is a common cause of community-acquired pneumonia, particularly in children and young adults. Key findings from recent studies indicate that M. pneumoniae infection is associated with a higher risk of asthma exacerbations and may contribute to the development of bronchiectasis in susceptible individuals. Additionally, emerging evidence suggests that M. pneumoniae-induced immune dysregulation plays a crucial role in the pathogenesis of chronic lung diseases. This review aims to summarize the current understanding of the potential links between M. pneumoniae pneumonia and various chronic respiratory conditions, including asthma, chronic obstructive pulmonary disease (COPD), and bronchiectasis. We discuss the epidemiological data, pathogenic mechanisms, clinical manifestations, and long-term consequences of M. pneumoniae-related respiratory illnesses. Additionally, we highlight the challenges in diagnosis and treatment, as well as future research directions in this field.
Collapse
Affiliation(s)
- Zai-qiang Guo
- Department of Science and Education, Beijing Fengtai Hospital of Integrated Traditional Chinese and Modern Medicine, Beijing, China
| | - Shun-yi Gu
- Department of Internal Medicine, Beijing Tongzhou District Integrated Traditional Chinese and Modern Medicine, Beijing, China
| | - Zhi-hua Tian
- Department of Science and Education, Beijing Daxing District Hospital of Integrated Traditional Chinese and Modern Medicine, Beijing, China
| | - Bo-ying Du
- Pediatrics, Shijiazhuang Second Hospital, Shijiazhuang, China
| |
Collapse
|
3
|
Xiu F, Li X, Liu L, Xi Y, Yi X, Li Y, You X. Mycoplasma invasion into host cells: An integrated model of infection strategy. Mol Microbiol 2024; 121:814-830. [PMID: 38293733 DOI: 10.1111/mmi.15232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Mycoplasma belong to the genus Mollicutes and are notable for their small genome sizes (500-1300 kb) and limited biosynthetic capabilities. They exhibit pathogenicity by invading various cell types to survive as intracellular pathogens. Adhesion is a crucial prerequisite for successful invasion and is orchestrated by the interplay between mycoplasma surface adhesins and specific receptors on the host cell membrane. Invasion relies heavily on clathrin- and caveolae-mediated internalization, accompanied by multiple activated kinases, cytoskeletal rearrangement, and a myriad of morphological alterations, such as membrane invagination, nuclear hypertrophy and aggregation, cytoplasmic edema, and vacuolization. Once mycoplasma successfully invade host cells, they establish resilient sanctuaries in vesicles, cytoplasm, perinuclear regions, and the nucleus, wherein specific environmental conditions favor long-term survival. Although lysosomal degradation and autophagy can eliminate most invading mycoplasmas, some viable bacteria can be released into the extracellular environment via exocytosis, a crucial factor in the prolonging infection persistence. This review explores the intricate mechanisms by which mycoplasma invades host cells and perpetuates their elusive survival, with the aim of highlighting the challenge of eradicating this enigmatic bacterium.
Collapse
Affiliation(s)
- Feichen Xiu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinru Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu Liu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Yixuan Xi
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinchao Yi
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoxing You
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
4
|
Jeyachandran D, Murshed M, Haglund L, Cerruti M. A Bioglass-Poly(lactic-co-glycolic Acid) Scaffold@Fibrin Hydrogel Construct to Support Endochondral Bone Formation. Adv Healthc Mater 2023; 12:e2300211. [PMID: 37462089 PMCID: PMC11468889 DOI: 10.1002/adhm.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Bone tissue engineering using stem cells to build bone directly on a scaffold matrix often fails due to lack of oxygen at the injury site. This may be avoided by following the endochondral ossification route; herein, a cartilage template is promoted first, which can survive hypoxic environments, followed by its hypertrophy and ossification. However, hypertrophy is so far only achieved using biological factors. This work introduces a Bioglass-Poly(lactic-co-glycolic acid@fibrin (Bg-PLGA@fibrin) construct where a fibrin hydrogel infiltrates and encapsulates a porous Bg-PLGA. The hypothesis is that mesenchymal stem cells (MSCs) loaded in the fibrin gel and induced into chondrogenesis degrade the gel and become hypertrophic upon reaching the stiffer, bioactive Bg-PLGA core, without external induction factors. Results show that Bg-PLGA@fibrin induces hypertrophy, as well as matrix mineralization and osteogenesis; it also promotes a change in morphology of the MSCs at the gel/scaffold interface, possibly a sign of osteoblast-like differentiation of hypertrophic chondrocytes. Thus, the Bg-PLGA@fibrin construct can sequentially support the different phases of endochondral ossification purely based on material cues. This may facilitate clinical translation by decreasing in-vitro cell culture time pre-implantation and the complexity associated with the use of external induction factors.
Collapse
Affiliation(s)
| | - Monzur Murshed
- Faculty of DentistryDepartment of Medicineand Shriners Hospital for ChildrenMcGill UniversityMontrealQuebecH4A 0A9Canada
| | - Lisbet Haglund
- Experimental SurgeryMcGill UniversityMontrealH3G 2M1Canada
| | - Marta Cerruti
- Department of Mining and Materials EngineeringMcGill UniversityMontrealH3A 0C1Canada
| |
Collapse
|
5
|
Luo D, Luo H, Yan X, Lei A, He J, Liao Y, Peng K, Li X, Ye Y, Chen L, Zeng Z, Xiao H, Zeng Y. Mycoplasma genitalium Protein of Adhesion Suppresses T Cell Activation via CypA-CaN-NFAT Pathway. Microbiol Spectr 2023; 11:e0450322. [PMID: 37074201 PMCID: PMC10269615 DOI: 10.1128/spectrum.04503-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/21/2023] [Indexed: 04/20/2023] Open
Abstract
Mycoplasma genitalium is a prokaryotic microorganism that causes urogenital tract infections. M. genitalium protein of adhesion (MgPa) was essential for M. genitalium attachment and subsequent invasion into host cells. Our prior research confirmed that Cyclophilin A (CypA) was the binding receptor for MgPa and MgPa-CypA interaction can lead to the production of inflammatory cytokines. In this study, we revealed that the recombinant MgPa (rMgPa) could inhibit the CaN-NFAT signaling pathway to reduce the level of IFN-γ, IL-2, CD25, and CD69 in Jurkat cells by binding to the CypA receptor. Moreover, rMgPa inhibited the expressions of IFN-γ, IL-2, CD25, and CD69 in primary mouse T cells. Likewise, the expressions of these T cells activation-related molecules in CypA-siRNA-transfected cells and CypA-/- mouse primary T cell was strengthened by rMgPa. These findings showed that rMgPa suppressed T cell activation by downregulating the CypA-CaN-NFAT pathway, and as a result, acted as an immunosuppressive agent. IMPORTANCE Mycoplasma genitalium is a sexually transmitted bacterium that can co-infect with other infections and causes nongonococcal urethritis in males, cervicitis, pelvic inflammatory disease, premature birth, and ectopic pregnancy in women. The adhesion protein of M. genitalium (MgPa) is the primary virulence factor in the complicated pathogenicity of M. genitalium. This research proved that MgPa could interact with host cell Cyclophilin A (CypA) and prevent T cell activation by inhibiting Calcineurin (CaN) phosphorylation and NFAT nuclear translocation, which clarified the immunosuppression mechanism of M. genitalium to host T cells. Therefore, this study can provide a new idea that CypA can be used for a therapeutic or prophylactic target for M. genitalium infection.
Collapse
Affiliation(s)
- Dan Luo
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
- Department of Clinical Laboratory, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Haodang Luo
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
- Department of Clinical Laboratory, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoliang Yan
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Aihua Lei
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Jun He
- Department of Clinical Laboratory, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yating Liao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Kailan Peng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Xia Li
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Youyuan Ye
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Li Chen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Zhuo Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Hua Xiao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, China
| |
Collapse
|
6
|
Zhang X, Bi L, Gentekaki E, Zhao J, Shen P, Zhang Q. Culture-Independent Single-Cell PacBio Sequencing Reveals Epibiotic Variovorax and Nucleus Associated Mycoplasma in the Microbiome of the Marine Benthic Protist Geleia sp. YT (Ciliophora, Karyorelictea). Microorganisms 2023; 11:1500. [PMID: 37375002 DOI: 10.3390/microorganisms11061500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Microbes in marine sediments constitute up to five-sixths of the planet's total biomass, but their diversity is little explored, especially for those forming associations with unicellular protists. Heterotrophic ciliates are among the most dominant and diversified marine benthic protists and comprise hotspot niches of bacterial colonization. To date, studies using culture-independent single-cell approaches to explore microbiomes of marine benthic ciliates in nature are almost absent, even for the most ubiquitous species. Here, we characterize the major bacterial groups associated with a representative marine benthic ciliate, Geleia sp. YT, collected directly from the coastal zone of Yantai, China. PacBio sequencing of the nearly full-length 16Sr RNA genes was performed on single cells of Geleia. Fluorescence in situ hybridization (FISH) analysis with genus-specific probes was further applied to locate the dominant bacterial groups. We identified a Variovorax-like bacterium as the major epibiotic symbiont residing in the kineties of the ciliate host. We provide evidence of a nucleus-associated bacterium related to the human pathogen Mycoplasma, which appeared prevalently in the local populations of Geleia sp. YT for 4 months. The most abundant bacterial taxa associated with Geleia sp. YT likely represent its core microbiome, hinting at the important roles of the ciliate-bacteria consortium in the marine benthos. Overall, this work has contributed to the knowledge of the diversity of life in the enigmatic marine benthic ciliate and its symbioses.
Collapse
Affiliation(s)
- Xiaoxin Zhang
- School of Ocean, Yantai University, Yantai 264003, China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Luping Bi
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Gut Microbiome Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jianmin Zhao
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Pingping Shen
- School of Ocean, Yantai University, Yantai 264003, China
| | - Qianqian Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
7
|
The trehalose glycolipid C18Brar promotes antibody and T-cell immune responses to Mannheimia haemolytica and Mycoplasma ovipneumoniae whole cell antigens in sheep. PLoS One 2023; 18:e0278853. [PMID: 36656850 PMCID: PMC9851559 DOI: 10.1371/journal.pone.0278853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/23/2022] [Indexed: 01/20/2023] Open
Abstract
Bronchopneumonia is a common respiratory disease in livestock. Mannheimia haemolytica is considered the main causative pathogen leading to lung damage in sheep, with Mycoplasma ovipneumoniae and ParaInfluenza virus type 3, combined with adverse physical and physiological stress, being predisposing factors. A balance of humoral and cellular immunity is thought to be important for protection against developing respiratory disease. In the current study, we compared the ability of the trehalose glycolipid adjuvant C18Brar (C18-alkylated brartemicin analogue) and three commercially available adjuvant systems i.e., Quil-A, Emulsigen-D, and a combination of Quil-A and aluminium hydroxide gel, to stimulate antibody and cellular immune responses to antigens from inactivated whole cells of M. haemolytica and M. ovipneumoniae in sheep. C18Brar and Emulsigen-D induced the strongest antigen-specific antibody responses to both M. haemolytica and M. ovipneumoniae, while C18Brar and Quil-A promoted the strongest antigen-specific IL-17A responses. The expression of genes with known immune functions was determined in antigen-stimulated blood cultures using Nanostring nCounter technology. The expression levels of CD40, IL22, TGFB1, and IL2RA were upregulated in antigen-stimulated blood cultures from animals vaccinated with C18Brar, which is consistent with T-cell activation. Collectively, the results demonstrate that C18Brar can promote both antibody and cellular responses, notably Th17 immune responses in a ruminant species.
Collapse
|
8
|
Abstract
Neonatal infections are responsible for 20% of neonatal deaths yearly. In this review, we focused on the origins of the commoner neonatal infections, and we define the role of obstetricians. Regarding group B Streptococcus, a key measure for the prevention of neonatal infection is the vaginal-rectal culture screening at term pregnancy. Intravenous penicillin is the first-line prophylaxis at the start of labor, with intravenous ampicillin as an alternative. First-generation cephalosporins or clindamycin are recommended in case of penicillin allergy. Concerning urinary tract infections (UTIs), guidelines recommend complete urinalysis and urine culture in the first trimester of pregnancy for the screening of asymptomatic bacteriuria. For lower UTIs, guidelines recommend nitrofurantoin as first-choice antibiotic. Amoxicillin or cefalexin are second-line antibiotics. For upper UTIs, guidelines recommend cephalexin per os as first line. Candida spp. colonization affects 20% of pregnant women; however, congenital fetal candidosis and Candida amnionitis are rare. First-line treatment in case of symptomatic vaginitis during pregnancy or asymptomatic colonization during the third trimester is vaginal clotrimazole. Fluconazole is not approved in pregnancy, especially during the first trimester. Genital mycoplasmas colonization during pregnancy is usually asymptomatic and associated with bacterial vaginosis. Colonization is related to neonatal respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), pneumonia, chorioamnionitis, and sepsis. Macrolides are the first-line treatment along with lactobacillus supplementation. In cases of preterm premature rupture of membranes or preterm labor, ceftriaxone, clarithromycin, and metronidazole are required to prevent intra-amniotic infection. Intra-amniotic infection affects 1 to 5% of deliveries at term and one-third of preterm ones and is associated with perinatal death, early-onset neonatal sepsis, RDS, BPD, pneumonia, meningitis, and prematurity-related diseases. Guidelines recommend a combination of ampicillin and gentamicin, and in case of caesarean section, an additional dose of clindamycin or metronidazole is required. In conclusion, obstetricians should be aware that the treatment of maternal infection during pregnancy can prevent potentially lethal infections in the newborn. KEY POINTS: · Part of neonatal infections starts from maternal infections that must be treated during pregnancy.. · Streptococcus group B and asymptomatic bacteriuria should be investigated in pregnancy and treated.. · Mycoplasma and ureaplasma vaginal colonization during pregnancy is related to negative neonatal outcomes..
Collapse
|
9
|
Yueyue W, Feichen X, Yixuan X, Lu L, Yiwen C, Xiaoxing Y. Pathogenicity and virulence of Mycoplasma genitalium: Unraveling Ariadne's Thread. Virulence 2022; 13:1161-1183. [PMID: 35791283 PMCID: PMC9262362 DOI: 10.1080/21505594.2022.2095741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycoplasma genitalium, a pathogen from class Mollicutes, has been linked to sexually transmitted diseases and sparked widespread concern. To adapt to its environment, M. genitalium has evolved specific adhesins and motility mechanisms that allow it to adhere to and invade various eukaryotic cells, thereby causing severe damage to the cells. Even though traditional exotoxins have not been identified, secreted nucleases or membrane lipoproteins have been shown to cause cell death and inflammatory injury in M. genitalium infection. However, as both innate and adaptive immune responses are important for controlling infection, the immune responses that develop upon infection do not necessarily eliminate the organism completely. Antigenic variation, detoxifying enzymes, immunoglobulins, neutrophil extracellular trap-degrading enzymes, cell invasion, and biofilm formation are important factors that help the pathogen overcome the host defence and cause chronic infections in susceptible individuals. Furthermore, M. genitalium can increase the susceptibility to several sexually transmitted pathogens, which significantly complicates the persistence and chronicity of M. genitalium infection. This review aimed to discuss the virulence factors of M. genitalium to shed light on its complex pathogenicity and pathogenesis of the infection.
Collapse
Affiliation(s)
- Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiu Feichen
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xi Yixuan
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Liu Lu
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
10
|
Sun H, Li S, Wang T, Chen Z. Mycoplasma Pneumoniae Infection and Persistent Wheezing in Young Children: A Retrospective Case-Control Study. Front Pediatr 2022; 10:811086. [PMID: 35321015 PMCID: PMC8935056 DOI: 10.3389/fped.2022.811086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/11/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND To investigate the clinical characteristics of children with persistent wheezing (PW) with Mycoplasma pneumoniae (MP) DNA in bronchoalveolar lavage fluid (BALF). METHODS This retrospective case-control study included consecutive admitted children under 3 years of age who were diagnosed with PW and had MP DNA detected in BALF. Patients with mycoplasma pneumoniae pneumonia (MPP) and foreign-body aspiration (FBA) were enrolled as controls. The clinical characteristics of the groups were compared. RESULTS During the study period, there were 89 patients diagnosed with PW without structural anomalies of the conductive airways, and 30 of these patients (33.7%, 30/89) with MP DNA detected in the BALF were selected as the study group. We included 44 patients with MPP and 44 patients with FBA as controls. Patients with MPP were older and had a higher occurrence of fever and C-reactive protein (CRP) than patients with PW (all P < 0.001). The median MP DNA copy number in patients with MPP was higher than that of patients with PW (P = 0.004). The median level of MP IgG in patients with PW was lower than that of patients with MPP and higher than that of patients with FBA (all P < 0.001). MP DNA copy number positively correlated with age (r = 0.392, P = 0.001) and CRP (r = 0.235, P = 0.048). CONCLUSIONS Our study reveals that MP was highly detected in the BALF of PW patients. In addition, young patients with a low load of MP infection showed lower amounts of antibody, and a weak inflammatory response might be associated with PW.
Collapse
Affiliation(s)
- Huiming Sun
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Shuxiang Li
- Department of Nuclear Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Ting Wang
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Arabatzis M, Velegraki A. Evidence for the presence of a human saprophytic oral bacterium, Mycoplasma faucium, in the skin lesions of a psoriatic patient. J Cutan Pathol 2021; 49:463-467. [PMID: 34877696 DOI: 10.1111/cup.14182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/14/2021] [Accepted: 11/28/2021] [Indexed: 11/25/2022]
Abstract
Psoriasis is currently regarded a mixed autoimmune and autoinflammatory disease. This report describes for the first time the detection of a saprophytic, human oral Tenericutes species, Mycoplasma faucium, in the skin lesions of a patient presenting initially guttate and later plaque psoriasis. An unusual finding in standard histopathology investigation consisted of round and oval thinly stained or unstained, possibly intracellular structures, apparently directly pressing on keratinocyte nuclei of the psoriatic stratum spinosum. In ultrastructural study, wall-less bacteria were present intracellularly in the keratinocytes, mainly of the psoriatic stratum spinosum, and extracellularly in the upper dermis of the psoriatic lesions. M. faucium was consistently detected and identified in the psoriatic skin by general Tenericutes polymerase chain reaction and sequencing in two biopsies performed 31 months apart. This case raises new questions concerning the pathogenesis of psoriasis and its accepted autoimmune/autoinflammatory nature.
Collapse
Affiliation(s)
- Michael Arabatzis
- First Department of Dermatology-Venereology, Medical School, Aristotle University, Thessaloniki, Greece
| | - Aristea Velegraki
- Mycology Research Laboratory and UOA/HCPF Culture Collection, Microbiology Department, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Mycology Laboratory, BIOIATRIKI S.A., Athens, Greece
| |
Collapse
|
12
|
Mycoplasma genitalium Protein of Adhesion Promotes the Early Proliferation of Human Urothelial Cells by Interacting with RPL35. Pathogens 2021; 10:pathogens10111449. [PMID: 34832605 PMCID: PMC8621731 DOI: 10.3390/pathogens10111449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
Mycoplasma genitalium is a newly recognized pathogen associated with sexually transmitted diseases (STDs). MgPa, the adhesion protein of Mycoplasma genitalium, is the main adhesin and the key factor for M. genitalium interacting with host cells. Currently, the long-term survival mechanism of M. genitalium in the host is not clear. In this study, a T7 phage-displayed human urothelial cell (SV-HUC-1) cDNA library was constructed, and the interaction of MgPa was screened from this library using the recombinant MgPa (rMgPa) as a target molecule. We verified that 60S ribosomal protein L35 (RPL35) can interact with MgPa using far-Western blot and co-localization analysis. According to the results of tandem mass tag (TMT) labeling and proteome quantitative analysis, there were altogether 407 differentially expressed proteins between the pcDNA3.1(+)/MgPa-transfected cells and non-transfected cells, of which there were 6 downregulated proteins and 401 upregulated proteins. The results of qRT-PCR demonstrated that interaction between rMgPa and RPL35 could promote the expressions of EIF2, SRP68, SERBP1, RPL35A, EGF, and TGF-β. 3-(4,5)-Dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide bromide (MTT) assays corroborated that the interaction between rMgPa and RPL35 could promote SV-HUC-1 cell proliferation. Therefore, our findings indicated that the interaction between rMgPa and RPL35 can enhance the expressions of transcription-initiation and translation-related proteins and thus promote cell proliferation. This study elucidates a new biological function of MgPa and can explain this new mechanism of M. genitalium in the host.
Collapse
|
13
|
Ramos EI, Das K, Harrison AL, Garcia A, Gadad SS, Dhandayuthapani S. Mycoplasma genitalium and M. pneumoniae Regulate a Distinct Set of Protein-Coding Genes in Epithelial Cells. Front Immunol 2021; 12:738431. [PMID: 34707609 PMCID: PMC8544821 DOI: 10.3389/fimmu.2021.738431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Mycoplasma genitalium and M. pneumoniae are two significant mycoplasmas that infect the urogenital and respiratory tracts of humans. Despite distinct tissue tropisms, they both have similar pathogenic mechanisms and infect/invade epithelial cells in the respective regions and persist within these cells. However, the pathogenic mechanisms of these species in terms of bacterium-host interactions are poorly understood. To gain insights on this, we infected HeLa cells independently with M. genitalium and M. pneumoniae and assessed gene expression by whole transcriptome sequencing (RNA-seq) approach. The results revealed that HeLa cells respond to M. genitalium and M. pneumoniae differently by regulating various protein-coding genes. Though there is a significant overlap between the genes regulated by these species, many of the differentially expressed genes were specific to each species. KEGG pathway and signaling network analyses revealed that the genes specific to M. genitalium are more related to cellular processes. In contrast, the genes specific to M. pneumoniae infection are correlated with immune response and inflammation, possibly suggesting that M. pneumoniae has some inherent ability to modulate host immune pathways.
Collapse
Affiliation(s)
- Enrique I. Ramos
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Kishore Das
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Alana L. Harrison
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
| | - Anissa Garcia
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, United States
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX, United States
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| |
Collapse
|
14
|
Pereyre S, Tardy F. Integrating the Human and Animal Sides of Mycoplasmas Resistance to Antimicrobials. Antibiotics (Basel) 2021; 10:1216. [PMID: 34680797 PMCID: PMC8532757 DOI: 10.3390/antibiotics10101216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/17/2023] Open
Abstract
Mycoplasma infections are frequent in humans, as well as in a broad range of animals. However, antimicrobial treatment options are limited, partly due to the lack of a cell wall in these peculiar bacteria. Both veterinary and human medicines are facing increasing resistance prevalence for the most commonly used drugs, despite different usage practices. To date, very few reviews have integrated knowledge on resistance to antimicrobials in humans and animals, the latest dating back to 2014. To fill this gap, we examined, in parallel, antimicrobial usage, resistance mechanisms and either phenotype or genotype-based methods for antimicrobial susceptibility testing, as well as epidemiology of resistance of the most clinically relevant human and animal mycoplasma species. This review unveiled common features and differences that need to be taken into consideration in a "One Health" perspective. Lastly, two examples of critical cases of multiple drug resistance are highlighted, namely, the human M. genitalium and the animal M. bovis species, both of which can lead to the threat of untreatable infections.
Collapse
Affiliation(s)
- Sabine Pereyre
- USC EA 3671, Mycoplasmal and Chlamydial Infections in Humans, Univ. Bordeaux, INRAE, F-33000 Bordeaux, France
- Bacteriology Department, National Reference Center for Bacterial Sexually Transmitted Infections, CHU Bordeaux, F-33000 Bordeaux, France
| | - Florence Tardy
- UMR Mycoplasmoses Animales, Anses, VetAgro Sup, Université de Lyon, F-69007 Lyon, France
| |
Collapse
|
15
|
Abstract
Mycoplasma hyopneumoniae: is the etiological agent of porcine enzootic pneumonia (EP), a disease that impacts the swine industry worldwide. Pathogen-induced damage, as well as the elicited host-response, contribute to disease. Here, we provide an overview of EP epidemiology, control and prevention, and a more in-depth review of M. hyopneumoniae pathogenicity determinants, highlighting some molecular mechanisms of pathogen-host interactions relevant for pathogenesis. Based on recent functional, immunological, and comparative “omics” results, we discuss the roles of many known or putative M. hyopneumoniae virulence factors, along with host molecules involved in EP. Moreover, the known molecular bases of pathogenicity mechanisms, including M. hyopneumoniae adhesion to host respiratory epithelium, protein secretion, cell damage, host microbicidal response and its modulation, and maintenance of M. hyopneumoniae homeostasis during infection are described. Recent findings regarding M. hyopneumoniae pathogenicity determinants also contribute to the development of novel diagnostic tests, vaccines, and treatments for EP.
Collapse
Affiliation(s)
- Fernanda M A Leal Zimmer
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande Do Sul (UFRGS) , Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS , Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS , Porto Alegre, Brazil
| |
Collapse
|
16
|
Kong FYS, Horner P, Unemo M, Hocking JS. Pharmacokinetic considerations regarding the treatment of bacterial sexually transmitted infections with azithromycin: a review. J Antimicrob Chemother 2021; 74:1157-1166. [PMID: 30649333 DOI: 10.1093/jac/dky548] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rates of bacterial sexually transmitted infections (STIs) continue to rise, demanding treatments to be highly effective. However, curing infections faces significant challenges due to antimicrobial resistance in Neisseria gonorrhoeae and Mycoplasma genitalium and especially treating STIs at extragenital sites, particularly rectal chlamydia and oropharyngeal gonorrhoea. As no new antimicrobials are entering the market, clinicians must optimize the currently available treatments, but robust data are lacking on how the properties or pharmacokinetics of antimicrobials can be used to inform STI treatment regimens to improve treatment outcomes. This paper provides a detailed overview of the published pharmacokinetics of antimicrobials used to treat STIs and how factors related to the drug (tissue distribution, protein binding and t½), human (pH, inflammation, site of infection, drug side effects and sexual practices) and organism (organism load and antimicrobial resistance) can affect treatment outcomes. As azithromycin is commonly used to treat chlamydia, gonorrhoea and M. genitalium infections, and its pharmacokinetics are well studied, it is the main focus of this review. Suggestions are also provided on possible dosing regimens when using extended and/or higher doses of azithromycin, which appropriately balance efficacy and side effects. The paper also emphasizes the limitations of currently published pharmacokinetic studies including oropharyngeal gonococcal infections, where very limited data exist around ceftriaxone pharmacokinetics and its use in combination with azithromycin. In future, the different anatomical sites of infections may require alternative therapeutic approaches.
Collapse
Affiliation(s)
- Fabian Yuh Shiong Kong
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Patrick Horner
- Population Health Sciences, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK.,National Institute for Health Research Health Protection Research Unit in Evaluation of Interventions, University of Bristol, Bristol, UK
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and Other STIs, National Reference Laboratory for Sexually Transmitted Infections, Department of Laboratory Medicine, Microbiology, Örebro University, Örebro, Sweden
| | - Jane S Hocking
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
17
|
Santos Junior MN, de Macêdo Neres NS, Campos GB, Bastos BL, Timenetsky J, Marques LM. A Review of Ureaplasma diversum: A Representative of the Mollicute Class Associated With Reproductive and Respiratory Disorders in Cattle. Front Vet Sci 2021; 8:572171. [PMID: 33681318 PMCID: PMC7930009 DOI: 10.3389/fvets.2021.572171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
The Mollicutes class encompasses wall-less microbes with a reduced genome. They may infect plants, insects, humans, and animals including those on farms and in livestock. Ureaplasma diversum is a mollicute associated with decreased reproduction mainly in the conception rate in cattle, as well as weight loss and decreased quality in milk production. Therefore, U. diversum infection contributes to important economic losses, mainly in large cattle-producing countries such as the United States, China, Brazil, and India. The characteristics of Mollicutes, virulence, and pathogenic variations make it difficult to control their infections. Genomic analysis, prevalence studies, and immunomodulation assays help better understand the pathogenesis of bovine ureaplasma. Here we present the main features of transmission, virulence, immune response, and pathogenesis of U. diversum in bovines.
Collapse
Affiliation(s)
- Manoel Neres Santos Junior
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Nayara Silva de Macêdo Neres
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Guilherme Barreto Campos
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Bruno Lopes Bastos
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Jorge Timenetsky
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lucas Miranda Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Galgowski C, Pavanelo Frare S, Rau M, Debiase Alberton M, Althoff S, Guedes A, Mendes de Cordova CM. Mollicute Anti-Adhesive and Growth Inhibition Properties of the Methanolic Extract of Propolis from the Brazilian Native Bee Melipona quadrifasciata. Chem Biodivers 2020; 18:e2000711. [PMID: 33200537 DOI: 10.1002/cbdv.202000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/13/2020] [Indexed: 11/07/2022]
Abstract
Hydroalcoholic propolis extracts from the bee species Melipona quadrifasciata have been shown to possess antimicrobial activity against different mollicute strains, but a methanolic extract (ME) could contain an increased diversity of nonpolar bioactive components with a potentially higher antimicrobial activity. The ME obtained by maceration of the propolis sample was fractionated with solvents of different polarities and then, purified by silica gel column chromatography through biomonitoring of its antimicrobial activity against mollicute strains. Analysis by gas chromatography-mass spectrometry (GC/MS) enabled the identification of compounds using the NIST library. Minimum inhibitory concentrations (MICs) of the samples were determined by broth microdilution. Anti-adhesive assays were performed with Mycoplasma pneumoniae cells. The hexane (MIC=62.5 mg/L) and dichloromethane (MIC=125 mg/L) fractions presented the most promising results against M. pneumoniae. They were fractionated into 74 subfractions, and even the best ones did not show better results (MIC>250 mg/L) than their original fractions, likely due to the loss of terpene compounds that seem to act in synergy. The dichloromethane subfraction FD4 was highlighted in the anti-adhesive assay with an inhibitory activity of 21.6 %. A synergistic effect of the nonpolar compounds in M. quadrifasciata propolis may be responsible for its antibacterial activity, but several purified components can improve its anti-adhesive properties.
Collapse
Affiliation(s)
- Caroline Galgowski
- Graduation Program in Chemistry, University of Blumenau, Rua Antonio da Veiga 140, 89030-903, Blumenau, SC, Brazil
| | - Sara Pavanelo Frare
- School of Biomedical Sciences, University of Blumenau, Rua São Paulo 2171, Campus 3, 89030-001, Blumenau, SC, Brazil
| | - Martinho Rau
- Graduation Program in Chemistry, University of Blumenau, Rua Antonio da Veiga 140, 89030-903, Blumenau, SC, Brazil.,Department of Chemistry, University of Blumenau, Rua Antonio da Veiga 140, 89030-903, Blumenau, SC, Brazil
| | - Michele Debiase Alberton
- Graduation Program in Chemistry, University of Blumenau, Rua Antonio da Veiga 140, 89030-903, Blumenau, SC, Brazil.,Department of Pharmaceutical Sciences, University of Blumenau, Rua São Paulo 2171, Campus 3, 89030-001, Blumenau, SC, Brazil
| | - Sérgio Althoff
- Department of Natural Sciences, University of Blumenau, Rua Antonio da Veiga 140, 89030-903, Blumenau, SC, Brazil
| | - Alessandro Guedes
- Department of Pharmaceutical Sciences, University of Blumenau, Rua São Paulo 2171, Campus 3, 89030-001, Blumenau, SC, Brazil
| | - Caio Mauricio Mendes de Cordova
- Graduation Program in Chemistry, University of Blumenau, Rua Antonio da Veiga 140, 89030-903, Blumenau, SC, Brazil.,Department of Pharmaceutical Sciences, University of Blumenau, Rua São Paulo 2171, Campus 3, 89030-001, Blumenau, SC, Brazil
| |
Collapse
|
19
|
Ashour DS, Othman AA. Parasite-bacteria interrelationship. Parasitol Res 2020; 119:3145-3164. [PMID: 32748037 DOI: 10.1007/s00436-020-06804-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Parasites and bacteria have co-evolved with humankind, and they interact all the time in a myriad of ways. For example, some bacterial infections result from parasite-dwelling bacteria as in the case of Salmonella infection during schistosomiasis. Other bacteria synergize with parasites in the evolution of human disease as in the case of the interplay between Wolbachia endosymbiont bacteria and filarial nematodes as well as the interaction between Gram-negative bacteria and Schistosoma haematobium in the pathogenesis of urinary bladder cancer. Moreover, secondary bacterial infections may complicate several parasitic diseases such as visceral leishmaniasis and malaria, due to immunosuppression of the host during parasitic infections. Also, bacteria may colonize the parasitic lesions; for example, hydatid cysts and skin lesions of ectoparasites. Remarkably, some parasitic helminths and arthropods exhibit antibacterial activity usually by the release of specific antimicrobial products. Lastly, some parasite-bacteria interactions are induced as when using probiotic bacteria to modulate the outcome of a variety of parasitic infections. In sum, parasite-bacteria interactions involve intricate processes that never cease to intrigue the researchers. However, understanding and exploiting these interactions could have prophylactic and curative potential for infections by both types of pathogens.
Collapse
Affiliation(s)
- Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
20
|
Blötz C, Singh N, Dumke R, Stülke J. Characterization of an Immunoglobulin Binding Protein (IbpM) From Mycoplasma pneumoniae. Front Microbiol 2020; 11:685. [PMID: 32373096 PMCID: PMC7176901 DOI: 10.3389/fmicb.2020.00685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/24/2020] [Indexed: 01/30/2023] Open
Abstract
Bacteria evolved many ways to invade, colonize and survive in the host tissue. Such complex infection strategies of other bacteria are not present in the cell-wall less Mycoplasmas. Due to their strongly reduced genomes, these bacteria have only a minimal metabolism. Mycoplasma pneumoniae is a pathogenic bacterium using its virulence repertoire very efficiently, infecting the human lung. M. pneumoniae can cause a variety of conditions including fever, inflammation, atypical pneumoniae, and even death. Due to its strongly reduced metabolism, M. pneumoniae is dependent on nutrients from the host and aims to persist as long as possible, resulting in chronic diseases. Mycoplasmas evolved strategies to subvert the host immune system which involve proteins fending off immunoglobulins (Igs). In this study, we investigated the role of MPN400 as the putative factor responsible for Ig-binding and host immune evasion. MPN400 is a cell-surface localized protein which binds strongly to human IgG, IgA, and IgM. We therefore named the protein MPN400 immunoglobulin binding protein of Mycoplasma (IbpM). A strain devoid of IbpM is slightly compromised in cytotoxicity. Taken together, our study indicates that M. pneumoniae uses a refined mechanism for immune evasion.
Collapse
Affiliation(s)
- Cedric Blötz
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Neil Singh
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Roger Dumke
- Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, Technical University Dresden, Dresden, Germany
| | - Jörg Stülke
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Meyer Sauteur PM, de Groot RCA, Estevão SC, Hoogenboezem T, de Bruijn ACJM, Sluijter M, de Bruijn MJW, De Kleer IM, van Haperen R, van den Brand JMA, Bogaert D, Fraaij PLA, Vink C, Hendriks RW, Samsom JN, Unger WWJ, van Rossum AMC. The Role of B Cells in Carriage and Clearance of Mycoplasma pneumoniae From the Respiratory Tract of Mice. J Infect Dis 2019; 217:298-309. [PMID: 29099932 DOI: 10.1093/infdis/jix559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
Background Carriage of Mycoplasma pneumoniae (Mp) in the nasopharynx is considered a prerequisite for pulmonary infection. It is interesting to note that Mp carriage is also detected after infection. Although B cells are known to be involved in pulmonary Mp clearance, their role in Mp carriage is unknown. Methods In this study, we show in a mouse model that Mp persists in the nose after pulmonary infection, similar to humans. Results Infection of mice enhanced Mp-specific immunoglobulin (Ig) M and IgG levels in serum and bronchoalveolar lavage fluid. However, nasal washes only contained elevated Mp-specific IgA. These differences in Ig compartmentalization correlated with differences in Mp-specific B cell responses between nose- and lung-draining lymphoid tissues. Moreover, transferred Mp-specific serum Igs had no effect on nasal carriage in B cell-deficient μMT mice, whereas this enabled μMT mice to clear pulmonary Mp infection. Conclusions We report the first evidence that humoral immunity is limited in clearing Mp from the upper respiratory tract.
Collapse
Affiliation(s)
- Patrick M Meyer Sauteur
- Laboratory of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands.,Division of Infectious Diseases and Hospital Epidemiology, Children's Research Center, University Children's Hospital Zurich, Switzerland
| | - Ruben C A de Groot
- Laboratory of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Silvia C Estevão
- Laboratory of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Theo Hoogenboezem
- Laboratory of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Adrianus C J M de Bruijn
- Laboratory of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marcel Sluijter
- Laboratory of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Ismé M De Kleer
- Department of Pulmonary Medicine, University Medical Center, Rotterdam, The Netherlands
| | - Rien van Haperen
- Department of Cell Biology and Genetics, University Medical Center, Rotterdam, The Netherlands
| | | | - Debby Bogaert
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children Hospital, University Medical Center, Utrecht, The Netherlands
| | - Pieter L A Fraaij
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Viroscience, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Cornelis Vink
- Laboratory of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands.,Erasmus University College, Erasmus University, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, University Medical Center, Rotterdam, The Netherlands
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Wendy W J Unger
- Laboratory of Pediatrics, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Annemarie M C van Rossum
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Santos-Junior MN, Rezende IS, Souza CLS, Barbosa MS, Campos GB, Brito LF, Queiroz ÉC, Barbosa EN, Teixeira MM, Da Silva LO, Silva LSC, Nascimento FS, Da Silva TL, Martens AA, Siqueira AFP, Assumpção MEOD, Machado-Santelli GM, Bastos BL, Guimarães AMS, Timenetsky J, Marques LM. Ureaplasma diversum and Its Membrane-Associated Lipoproteins Activate Inflammatory Genes Through the NF-κB Pathway via Toll-Like Receptor 4. Front Microbiol 2018; 9:1538. [PMID: 30050519 PMCID: PMC6052353 DOI: 10.3389/fmicb.2018.01538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/20/2018] [Indexed: 01/15/2023] Open
Abstract
Objectives:Ureaplasma diversum is a pathogen of cows that may cause intense inflammatory responses in the reproductive tract and interfere with bovine reproduction. The aims of this study were to evaluate the immune response of bovine blastocysts and macrophages to U. diversum infection and to evaluate the invasion capacity of this microorganism in bovine blastocysts. Methods: Viable and heat-inactivated U. diversum strains ATCC 49782 and CI-GOTA and their extracted membrane lipoproteins were inoculated in macrophages in the presence or absence of signaling blockers of Toll-Like Receptor (TLR) 4, TLR2/4, and Nuclear Factor KB (NF-κB). In addition, the same viable U. diversum strains were used to infect bovine blastocysts. RNA was extracted from infected and lipoprotein-exposed macrophages and infected blastocysts and assayed by qPCR to evaluate the expression of Interleukin 1 beta (IL-1β), Tumor Necrosis Factor Alpha (TNF-α), TLR2 and TLR4 genes. U. diversum internalization in blastocysts was followed by confocal microscopy. Results: Both Ureaplasma strains and different concentrations of extracted lipoproteins induced a higher gene expression of IL-1β, TNF-α, TLR2, and TLR4 in macrophages (p < 0.05) when compared to non-infected cells. The used blockers inhibited the expression of IL-1β and TNF-α in all treatments. Moreover, U. diversum was able to internalize within blastocysts and induce a higher gene expression of IL-1b and TNF- α when compared to non-infected blastocysts (p < 0.05). Conclusion: The obtained results strongly suggest that U. diversum and its lipoproteins interact with TLR4 in a signaling pathway acting via NF-kB signaling to stimulate the inflammatory response. This is the first study to evaluate the in vitro immunological response of macrophages and bovine blastocysts against U. diversum. These results may contribute to a better understanding of the immunomodulatory activity and pathogenicity of this infectious agent.
Collapse
Affiliation(s)
- Manoel N Santos-Junior
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil.,Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Izadora S Rezende
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Clarissa L S Souza
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Maysa S Barbosa
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Guilherme B Campos
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil.,Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Laís F Brito
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Éllunny C Queiroz
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Elaine N Barbosa
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Mariana M Teixeira
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Letícia O Da Silva
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Lucas S C Silva
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Flávia S Nascimento
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Tassyo L Da Silva
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Adam A Martens
- Department of Cellular Biology and Development, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriano F P Siqueira
- Department of Animal Reproduction, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Mayra E O D'Avila Assumpção
- Department of Animal Reproduction, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Glaucia M Machado-Santelli
- Department of Cellular Biology and Development, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruno L Bastos
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Ana M S Guimarães
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jorge Timenetsky
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lucas M Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil.,Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil.,Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Nikas I, Hapfelmeier A, Mollenhauer M, Angermeier D, Bettstetter M, Götz R, Schmidmayr M, Seifert-Klauss V, Muckenhuber A, Schenck U, Weirich G. Integrated morphologic and molecular analysis of Trichomonas vaginalis, Mycoplasma hominis, and human papillomavirus using cytologic smear preparations. Parasitol Res 2018; 117:1443-1451. [PMID: 29549429 DOI: 10.1007/s00436-018-5829-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Abstract
Pathogenic microbes may colonize the female genital tract via sexual transmission and cause health issues like inflammation or malignancy, summarized as sexually transmitted disease (STD). A major representative of such pathogens is Trichomonas vaginalis (T.v.), whose role in the etiology of cervical cancer remains elusive. Traditional morphologic screening of cervical smears is able to detect T.v., although its identification may be complicated by look-alikes such as degenerated granulocytes and basal cells. In addition, the parasite's endosymbiont Mycoplasma hominis (M.h.) cannot be detected in the Pap test. This investigation was aimed at designing a PCR-based method to detect specific pathogenic germs by using cervical cytology slides to overcome morphologic uncertainty and increase diagnostic accuracy. To test our molecular screening method on T.v., M.h., and HPV in archival smears, we elaborated a multiplex PCR approach based on microdissection. This assay was applied to a minute quantity of starting material which harbored or was suspected to harbor T.v.; the resulting isolated DNA was used for subsequent molecular analyses of T.v., M.h., and HPV. We clarified the diagnosis of genital T.v. infection in 88 and 1.8% of morphologically suspicious and T.v.-negative cases, respectively. We also revealed a tendency of M.h. co-infection in high-risk HPV cases. In conclusion, a microdissection-based approach to detect pathogenic microbes such as T.v., HPV, and M.h. is a molecular tool easy to implement and may help to better understand the interactivity of these germs with respect to pathogenesis.
Collapse
Affiliation(s)
- I Nikas
- Institute of Pathology, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany.,School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - A Hapfelmeier
- Institute of Medical Informatics, Statistics and Epidemiology, Technische Universität München, Munich, Germany
| | - M Mollenhauer
- Institute of Pathology, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - D Angermeier
- Institute of Pathology, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | | | - R Götz
- Institute of Pathology, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - M Schmidmayr
- Frauenklinik und Poliklinik, Technische Universität München, Munich, Germany
| | - V Seifert-Klauss
- Frauenklinik und Poliklinik, Technische Universität München, Munich, Germany
| | - A Muckenhuber
- Institute of Pathology, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany
| | - U Schenck
- Institute of Pathology, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany.,MVZ Gynäkologie & Pathologie, Munich, Germany
| | - Gregor Weirich
- Institute of Pathology, Technische Universität München, Trogerstraße 18, 81675, Munich, Germany.
| |
Collapse
|
24
|
Prince OA, Krunkosky TM, Sheppard ES, Krause DC. Modelling persistent Mycoplasma pneumoniae infection of human airway epithelium. Cell Microbiol 2017; 20. [PMID: 29155483 DOI: 10.1111/cmi.12810] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022]
Abstract
Mycoplasma pneumoniae is a human respiratory tract pathogen causing acute and chronic airway disease states that can include long-term carriage and extrapulmonary spread. The mechanisms of persistence and migration beyond the conducting airways, however, remain poorly understood. We previously described an acute exposure model using normal human bronchial epithelium (NHBE) in air-liquid interface culture, showing that M. pneumoniae gliding motility is essential for initial colonisation and subsequent spread, including localisation to epithelial cell junctions. We extended those observations here, characterizing M. pneumoniae infection of NHBE for up to 4 weeks. Colonisation of the apical surface was followed by pericellular invasion of the basolateral compartment and migration across the underlying transwell membrane. Despite fluctuations in transepithelial electrical resistance and increased NHBE cell desquamation, barrier function remained largely intact. Desquamation was accompanied by epithelial remodelling that included cytoskeletal reorganisation and development of deep furrows in the epithelium. Finally, M. pneumoniae strains S1 and M129 differed with respect to invasion and histopathology, consistent with contrasting virulence in experimentally infected mice. In summary, this study reports pericellular invasion, NHBE cytoskeletal reorganisation, and tissue remodelling with persistent infection in a human airway epithelium model, providing clear insight into the likely route for extrapulmonary spread.
Collapse
Affiliation(s)
- Oliver A Prince
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Thomas M Krunkosky
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, USA
| | | | - Duncan C Krause
- Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
25
|
Weitzman CL, Sandmeier FC, Tracy CR. Prevalence and Diversity of the Upper Respiratory Pathogen Mycoplasma agassizii in Mojave Desert Tortoises (Gopherus agassizii). HERPETOLOGICA 2017. [DOI: 10.1655/herpetologica-d-16-00079.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Chava L. Weitzman
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV 89557, USA
| | | | - C. Richard Tracy
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
26
|
An SC, Yang DH, Luo CF, Chen X, Liu GT, Weng Y, Liu JZ, Shang Y, Wang RQ, Gao ZC. A preliminary study on the potential of Mycoplasma pneumoniae to induce dyskaryotic change in respiratory epithelium in adult community-acquired pneumonia. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2016; 21:81. [PMID: 28163727 PMCID: PMC5244644 DOI: 10.4103/1735-1995.192497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/06/2016] [Accepted: 06/20/2016] [Indexed: 11/30/2022]
Abstract
Background: This study aimed to explore the cellular morphology of respiratory epithelium in Mycoplasma pneumonia (MpP) patients. Materials and Methods: The cast-off cell morphological findings from bronchoscopic brushings in MpP and community-acquired pneumonia (CAP) caused by typical pathogens were reviewed. Results: Compared with the CAP group, cellular dysplasia in respiratory tract epithelial brushings was significantly greater in MpP patients (P = 0.033). Conclusion: Unique biological characteristics and mechanisms of pathogenesis of Mycoplasma pneumoniae (Mp) may result in dyskaryotic changes in respiratory epithelium in adult MpP.
Collapse
Affiliation(s)
- Shu-Chang An
- Department of Respiratory Medicine, First Hospital of Tsinghua University, Beijing, China
| | - Dong-Hong Yang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Chao-Feng Luo
- Department of Radiology, First Hospital of Tsinghua University, Beijing, China
| | - Xin Chen
- Department of Pathology, First Hospital of Tsinghua University, Beijing, China
| | - Guo-Tian Liu
- Department of Respiratory Medicine, First Hospital of Tsinghua University, Beijing, China
| | - Yan Weng
- Department of Pathology, First Hospital of Tsinghua University, Beijing, China
| | - Jing-Zhe Liu
- Department of Radiology, First Hospital of Tsinghua University, Beijing, China
| | - Ying Shang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Rui-Qin Wang
- Department of Respiratory Medicine, First Hospital of Tsinghua University, Beijing, China
| | - Zhan-Cheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
27
|
MYCOPLASMA PNEUMONIA-ASSOCIATED CHOROIDAL NEOVASCULARIZATION-BEVACIZUMAB INTRAVITREAL INJECTION AND LASER TREATMENT. Retin Cases Brief Rep 2016; 12:63-67. [PMID: 27648584 DOI: 10.1097/icb.0000000000000415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To report a rare case of bilateral subretinal granulomas with choroidal neovascularization after Mycoplasma pneumoniae atypical pneumonia. METHODS Presentation of a 7-year-old girl, who showed bilateral atypical subretinal granulomas with choroidal neovascularization. Visual acuity was 20/20 oculus dexter and 20/200 oculus sinister. Evaluation revealed a systemic Mycoplasma pneumoniae infection with pulmonary involvement. Successful ocular treatment was performed by intravitreal injection of Bevacizumab and laser photocoagulation. RESULTS Visual acuity was unchanged 36 months after treatment. No further subretinal lesions were seen oculus uterque. CONCLUSION To the best of their knowledge and according to literature this patient report is the first one of subretinal granuloma formation after pneumonia due to mycoplasma infection. Since Mycoplasma pneumoniae is a common pathogen, especially in children and young adults, it should be considered in the differential diagnosis of any febrile illness accompanied by ocular signs.
Collapse
|
28
|
Molla Kazemiha V, Bonakdar S, Amanzadeh A, Azari S, Memarnejadian A, Shahbazi S, Shokrgozar MA, Mahdian R. Real-time PCR assay is superior to other methods for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Cytotechnology 2016; 68:1063-80. [PMID: 25742733 PMCID: PMC4960155 DOI: 10.1007/s10616-015-9862-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/14/2015] [Indexed: 01/01/2023] Open
Abstract
Mycoplasmas are the most important contaminants of cell cultures throughout the world. They are considered as a major problem in biological studies and biopharmaceutical economic issues. In this study, our aim was to find the best standard technique as a rapid method with high sensitivity, specificity and accuracy for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Thirty cell lines suspected to mycoplasma contamination were evaluated by five different techniques including microbial culture, indirect DNA DAPI staining, enzymatic mycoalert(®) assay, conventional PCR and real-time PCR. Five mycoplasma-contaminated cell lines were assigned as positive controls and five mycoplasma-free cell lines as negative controls. The enzymatic method was performed using the mycoalert(®) mycoplasma detection kit. Real-time PCR technique was conducted by PromoKine diagnostic kits. In the conventional PCR method, mycoplasma genus-specific primers were designed to analyze the sequences based on a fixed and common region on 16S ribosomal RNA with PCR product size of 425 bp. Mycoplasma contamination was observed in 60, 56.66, 53.33, 46.66 and 33.33 % of 30 different cell cultures by real-time PCR, PCR, enzymatic mycoalert(®), indirect DNA DAPI staining and microbial culture methods, respectively. The analysis of the results of the different methods showed that the real-time PCR assay was superior the other methods with the sensitivity, specificity, accuracy, predictive value of positive and negative results of 100 %. These values were 94.44, 100, 96.77, 100 and 92.85 % for the conventional PCR method, respectively. Therefore, this study showed that real-time PCR and PCR assays based on the common sequences in the 16S ribosomal RNA are reliable methods with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products.
Collapse
Affiliation(s)
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Shahram Azari
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | | | - Shirin Shahbazi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Reza Mahdian
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
29
|
Singh P, Seth A. Mycoplasma pneumoniae–A tale of 50 years. Indian Pediatr 2016; 53:147-8. [DOI: 10.1007/s13312-016-0810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Iverson-Cabral SL, Wood GE, Totten PA. Analysis of the Mycoplasma genitalium MgpB Adhesin to Predict Membrane Topology, Investigate Antibody Accessibility, Characterize Amino Acid Diversity, and Identify Functional and Immunogenic Epitopes. PLoS One 2015; 10:e0138244. [PMID: 26381903 PMCID: PMC4575044 DOI: 10.1371/journal.pone.0138244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/27/2015] [Indexed: 12/23/2022] Open
Abstract
Mycoplasma genitalium is a sexually transmitted pathogen and is associated with reproductive tract disease that can be chronic in nature despite the induction of a strong antibody response. Persistent infection exacerbates the likelihood of transmission, increases the risk of ascension to the upper tract, and suggests that M. genitalium may possess immune evasion mechanism(s). Antibodies from infected patients predominantly target the MgpB adhesin, which is encoded by a gene that recombines with homologous donor sequences, thereby generating sequence variation within and among strains. We have previously characterized mgpB heterogeneity over the course of persistent infection and have correlated the induction of variant-specific antibodies with the loss of that particular variant from the infected host. In the current study, we examined the membrane topology, antibody accessibility, distribution of amino acid diversity, and the location of functional and antigenic epitopes within the MgpB adhesin. Our results indicate that MgpB contains a single transmembrane domain, that the majority of the protein is surface exposed and antibody accessible, and that the attachment domain is located within the extracellular C-terminus. Not unexpectedly, amino acid diversity was concentrated within and around the three previously defined variable regions (B, EF, and G) of MgpB; while nonsynonymous mutations were twice as frequent as synonymous mutations in regions B and G, region EF had equal numbers of nonsynonymous and synonymous mutations. Interestingly, antibodies produced during persistent infection reacted predominantly with the conserved C-terminus and variable region B. In contrast, infection-induced antibodies reacted poorly with the N-terminus, variable regions EF and G, and intervening conserved regions despite the presence of predicted B cell epitopes. Overall, this study provides an important foundation to define how different segments of the MgpB adhesin contribute to functionality, variability, and immunogenicity during persistent M. genitalium infection.
Collapse
Affiliation(s)
- Stefanie L. Iverson-Cabral
- Department of Medicine, Division of Infectious Diseases, University of Washington, Seattle, WA, United States of America
| | - Gwendolyn E. Wood
- Department of Medicine, Division of Infectious Diseases, University of Washington, Seattle, WA, United States of America
| | - Patricia A. Totten
- Department of Medicine, Division of Infectious Diseases, University of Washington, Seattle, WA, United States of America
- Department of Global Health, Pathobiology Interdisciplinary Program, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
31
|
Jensen JS, Bradshaw C. Management of Mycoplasma genitalium infections - can we hit a moving target? BMC Infect Dis 2015; 15:343. [PMID: 26286546 PMCID: PMC4545773 DOI: 10.1186/s12879-015-1041-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/20/2015] [Indexed: 11/10/2022] Open
Abstract
Mycoplasma genitalium is an etiological agent of sexually transmitted infections, but due to its fastidious growth requirements, only a few M. genitalium strains are available for determination of the activity of currently used and new antimicrobial agents. Recent clinical trials have demonstrated that treatment with azithromycin has decreasing efficacy due to an increasing prevalence of macrolide resistance, which is likely to be attributed to the widespread use of 1 g single dose azithromycin. Second line treatment with moxifloxacin is similarly under pressure from emerging resistance. The era of single dose monotherapy for uncomplicated STIs such as M. genitalium and N. gonorrhoeae, while convenient for patients and physicians, has been associated with escalating resistance and treatment failure and is now drawing to a close. There is a critical need for trials of combinations of existing registered drugs and new antimicrobial compounds, implementation of diagnostic testing combined with molecular detection of resistance, and antimicrobial surveillance.
Collapse
Affiliation(s)
- Jørgen Skov Jensen
- Microbiology and Infection Control, Sexually Transmitted Bacterial Infections, Research and Development, Statens Serum Institut, Artillerivej 5, Copenhagen, DK-2300, Denmark.
| | - Catriona Bradshaw
- Central Clinical School. Monash University, Melbourne, VIC, Australia. .,Melbourne Sexual Health Centre, The Alfred Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
32
|
Xiao L, Ptacek T, Osborne JD, Crabb DM, Simmons WL, Lefkowitz EJ, Waites KB, Atkinson TP, Dybvig K. Comparative genome analysis of Mycoplasma pneumoniae. BMC Genomics 2015; 16:610. [PMID: 26275904 PMCID: PMC4537597 DOI: 10.1186/s12864-015-1801-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/29/2015] [Indexed: 12/30/2022] Open
Abstract
Background Mycoplasma pneumoniae is a common pathogen that causes upper and lower respiratory tract infections in people of all ages, responsible for up to 40 % of community-acquired pneumonias. It also causes a wide array of extrapulmonary infections and autoimmune phenomena. Phylogenetic studies of the organism have been generally restricted to specific genes or regions of the genome, because whole genome sequencing has been completed for only 4 strains. To better understand the physiology and pathogenicity of this important human pathogen, we performed comparative genomic analysis of 15 strains of M. pneumoniae that were isolated between the 1940s to 2009 from respiratory specimens and cerebrospinal fluid originating from the USA, China and England. Results Illumina MiSeq whole genome sequencing was performed on the 15 strains and all genome sequences were completed. Results from the comparative genomic analysis indicate that although about 1500 SNP and indel variants exist between type1 and type 2 strains, there is an overall high degree of sequence similarity among the strains (>99 % identical to each other). Within the two subtypes, conservation of most genes, including the CARDS toxin gene and arginine deiminase genes, was observed. The major variation occurs in the P1 and ORF6 genes associated with the adhesin complex. Multiple hsdS genes (encodes S subunit of type I restriction enzyme) with variable tandem repeat copy numbers were found in all 15 genomes. Conclusions These data indicate that despite conclusions drawn from 16S rRNA sequences suggesting rapid evolution, the M. pneumoniae genome is extraordinarily stable over time and geographic distance across the globe with a striking lack of evidence of horizontal gene transfer. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1801-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Xiao
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Travis Ptacek
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Center for Clinical and Translational Science, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - John D Osborne
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Center for Clinical and Translational Science, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Donna M Crabb
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Warren L Simmons
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Elliot J Lefkowitz
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Center for Clinical and Translational Science, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Ken B Waites
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - T Prescott Atkinson
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Kevin Dybvig
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
33
|
Abbott RD, Kaplan DL. Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol 2015; 33:401-7. [PMID: 25937289 DOI: 10.1016/j.tibtech.2015.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 02/05/2023]
Abstract
This review examines important robust methods for sustained, steady-state, in vitro culture. To achieve 'physiologically relevant' tissues in vitro additional complexity must be introduced to provide suitable transport, cell signaling, and matrix support for cells in 3D environments to achieve stable readouts of tissue function. Most tissue engineering systems draw conclusions on tissue functions such as responses to toxins, nutrition, or drugs based on short-term outcomes with in vitro cultures (2-14 days). However, short-term cultures limit insight with physiological relevance because the cells and tissues have not reached a steady-state.
Collapse
Affiliation(s)
- Rosalyn D Abbott
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
34
|
Siddiqui H, Lagesen K, Nederbragt AJ, Eri LM, Jeansson SL, Jakobsen KS. Pathogens in Urine from a Female Patient with Overactive Bladder Syndrome Detected by Culture-independent High Throughput Sequencing: A Case Report. Open Microbiol J 2014; 8:148-53. [PMID: 25685246 PMCID: PMC4323767 DOI: 10.2174/1874285801408010148] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/29/2014] [Accepted: 12/01/2014] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Overactive bladder syndrome (OAB) is described as urgency, with or without urgency incontinence. A range of medical conditions shares the symptoms of OAB, however the diagnosis is contingent on the exclusion of urinary tract infection (UTI). Knowing that urine dipstick and routine culture of bacteria can miss UTI diagnosis caused by low-count bacteriuria or "difficult-to-culture" pathogens, we examined a case of OAB with a culture-independent approach. CASE PRESENTATION A 61-year-old Norwegian female with a long history of urinary symptoms and a diagnosis of OAB was selected as a suitable subject for a culture-independent 16S rDNA analysis on the patient´s urine. The patient's medical records showed no history of recurrent UTI, however, when the urine specimen was sent to routine culture at the time of study it showed a significant bacteriuria caused by a single bacterium, and the patient was prescribed antibiotics. The 16S rDNA analysis revealed not one, but many different bacteria, including a considerable amount of fastidious bacteria, indicating a polymicrobial state. One year later, the subject was still experiencing severe symptoms, and a follow-up analysis was performed. This time the urine-culture was negative, however, the 16S rDNA profile was quite similar to that of the first sample, again displaying a complex bacterial profile. CONCLUSION The use of 16S rDNA pyrosequencing and sequence analysis to uncover "difficult-to-culture" bacteria should be considered when examining patients with chronic urinary symptoms. These methods may contribute to further elucidation of the etiology of overactive bladder syndrome and other urinary syndromes.
Collapse
Affiliation(s)
- Huma Siddiqui
- University of Oslo, Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - Karin Lagesen
- University of Oslo, Oslo University Hospital, Norwegian Sequencing Centre and Department of Medical Genetics, 0407 Oslo, Norway
| | - Alexander J Nederbragt
- University of Oslo, Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| | - Lars M Eri
- University of Oslo, Oslo University Hospital HF Aker-Oslo and Faculty of Medicine, Urological Clinic, P.O. Box 4956 Nydalen 0424 Oslo, Norway
| | - Stig L Jeansson
- University of Oslo, Oslo University Hospital HF Aker-Oslo and Faculty of Medicine, Division of Medicine, ME/CFS-Center, P.O. Box 4956 Nydalen 0424 Oslo, Norway
| | - Kjetill S Jakobsen
- University of Oslo, Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
35
|
Chlamydia trachomatis and Genital Mycoplasmas: Pathogens with an Impact on Human Reproductive Health. J Pathog 2014; 2014:183167. [PMID: 25614838 PMCID: PMC4295611 DOI: 10.1155/2014/183167] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022] Open
Abstract
The most prevalent, curable sexually important diseases are those caused by Chlamydia trachomatis (C. trachomatis) and genital mycoplasmas. An important characteristic of these infections is their ability to cause long-term sequels in upper genital tract, thus potentially affecting the reproductive health in both sexes. Pelvic inflammatory disease (PID), tubal factor infertility (TFI), and ectopic pregnancy (EP) are well documented complications of C. trachomatis infection in women. The role of genital mycoplasmas in development of PID, TFI, and EP requires further evaluation, but growing evidence supports a significant role for these in the pathogenesis of chorioamnionitis, premature membrane rupture, and preterm labor in pregnant woman. Both C. trachomatis and genital mycoplasmas can affect the quality of sperm and possibly influence the fertility of men. For the purpose of this paper, basic, epidemiologic, clinical, therapeutic, and public health issue of these infections were reviewed and discussed, focusing on their impact on human reproductive health.
Collapse
|
36
|
Xue D, Ma Y, Li M, Li Y, Luo H, Liu X, Wang Y. Mycoplasma ovipneumoniae induces inflammatory response in sheep airway epithelial cells via a MyD88-dependent TLR signaling pathway. Vet Immunol Immunopathol 2014; 163:57-66. [PMID: 25440083 DOI: 10.1016/j.vetimm.2014.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 11/30/2022]
Abstract
Mycoplasma ovipneumoniae (M. ovipneumoniae) is a bacterium that specifically infects sheep and goat and causes ovine infectious pleuropneumonia. In an effort to understand the pathogen-host interaction between the M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory response using a primary air-liquid interface (ALI) epithelial culture model generated from bronchial epithelial cells of Ningxia Tan sheep (Ovis aries). The ALI culture of sheep bronchial epithelial cells showed a fully differentiated epithelium comprising distinct epithelial types, including the basal, ciliated and goblet cells. Exposure of ALI cultures to M. ovipneumoniae led to increased expression of Toll-like receptors (TLRs), and components of the myeloid differentiation factor 88 (MyD88)-dependent TLR signaling pathway, including the MyD88, TNF receptor-associated factor 6 (TRAF6), IL-1 receptor-associated kinases (IRAKs) and nuclear factor-kappa B (NF-κB), as well as subsequent pro-inflammatory cytokines in the epithelial cells. Of interest, infection with M. ovipneumoniae failed to induce the expression of TANK-binding kinase 1 (TBK1), TRAF3 and interferon regulatory factor 3 (IRF3), key components of the MyD88-independent signaling pathway. These results suggest that the MyD88-dependent TLR pathway may play a crucial role in sheep airway epithelial cells in response to M. ovipneumoniae infection, which also indicate that the ALI culture system may be a reliable model for investigating pathogen-host interactions between M. ovipneumoniae and airway epithelial cells.
Collapse
Affiliation(s)
- Di Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yan Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yanan Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Haixia Luo
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
37
|
Abstract
The pathogenetic mechanisms leading to asthma are likely to be diverse, influenced by multiple genetic polymorphisms as well as elements of the environment. Recent data on the microbiome of the airway have revealed intriguing differences between the number and diversity of microbial populations in healthy persons and asthmatics. There is convincing evidence that early viral infections, particularly with human rhinovirus and respiratory syncytial virus, are often associated with the development of chronic asthma and with exacerbations. Recent studies suggest that two unrelated types of atypical bacteria, Mycoplasma pneumoniae (Mpn) and Chlamydia pneumoniae, are present in the airways of a substantial proportion of the population, bringing up the possibility that the persistent presence of the organism may contribute to the asthmatic phenotype in a subset of patients. This review will examine the current data regarding a possible role for infection in chronic asthma with a particular focus on atypical bacterial infections.
Collapse
Affiliation(s)
- T Prescott Atkinson
- Children's of Alabama CPP M220, 1601 4th Ave South, Birmingham, AL, 35233, USA,
| |
Collapse
|
38
|
Lamoth F, Greub G. Fastidious intracellular bacteria as causal agents of community-acquired pneumonia. Expert Rev Anti Infect Ther 2014; 8:775-90. [DOI: 10.1586/eri.10.52] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Functional characterization of osmotically inducible protein C (MG_427) from Mycoplasma genitalium. J Bacteriol 2013; 196:1012-9. [PMID: 24363346 DOI: 10.1128/jb.00954-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mycoplasma genitalium is the smallest self-replicating bacterium and an important human pathogen responsible for a range of urogenital infections and pathologies. Due to its limited genome size, many genes conserved in other bacteria are missing in M. genitalium. Genes encoding catalase and superoxide dismutase are absent, and how this pathogen overcomes oxidative stress remains poorly understood. In this study, we characterized MG_427, a homolog of the conserved osmC, which encodes hydroperoxide peroxidase, shown to protect bacteria against oxidative stress. We found that recombinant MG_427 protein reduced organic and inorganic peroxide substrates. Also, we showed that a deletion mutant of MG_427 was highly sensitive to killing by tert-butyl hydroperoxide and H2O2 compared to the sensitivity of the wild type. Further, the fully complemented mutant strain reversed its oxidative sensitivity. Examination of the expression pattern of MG_427 during osmotic shock, oxidative stress, and other stress conditions revealed its lack of induction, distinguishing MG_427 from other previously characterized osmC genes.
Collapse
|
40
|
Natural history of Mycoplasma genitalium infection in a cohort of female sex workers in Kampala, Uganda. Sex Transm Dis 2013; 40:422-7. [PMID: 23588134 DOI: 10.1097/olq.0b013e31828bfccf] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND There have been few studies of the natural history of Mycoplasma genitalium in women. We investigated patterns of clearance and recurrence of untreated M. genitalium infection in a cohort of female sex workers in Uganda. METHODS Women diagnosed as having M. genitalium infection at enrollment were retested for the infection at 3-month intervals. Clearance of infection was defined as testing negative after having a previous positive result: persistence was defined as testing positive after a preceding positive test result, and recurrence as testing positive after a preceding negative test result. Adjusted hazard ratios for M. genitalium clearance were estimated using Cox proportional hazards regression. RESULTS Among 119 participants infected with M. genitalium at enrollment (prevalence, 14%), 55% had spontaneously cleared the infection within 3 months; 83%, within 6; and 93%, within 12 months. The overall clearance rate was 25.7/100 person-years (pyr; 95% confidence interval, 21.4-31.0). HIV-positive women cleared M. genitalium infection more slowly than did HIV-negative women (20.6/100 pyr vs. 31.3/100 pyr, P = 0.03). The clearance rate was slower among HIV-positive women with CD4 counts less than 350/mL than among those with higher CD4 counts (9.88/100 pyr vs. 29.5/100 pyr, P <; 0.001). After clearing the infection, M. genitalium infection recurred in 39% women. CONCLUSIONS M. genitalium is likely to persist and recur in the female genital tract. Because of the urogenital tract morbidity caused by the infection and the observed association with HIV acquisition, further research is needed to define screening modalities, especially in populations at high risk for HIV, and to optimize effective and affordable treatment options.
Collapse
|
41
|
McGowin CL, Radtke AL, Abraham K, Martin DH, Herbst-Kralovetz M. Mycoplasma genitalium infection activates cellular host defense and inflammation pathways in a 3-dimensional human endocervical epithelial cell model. J Infect Dis 2013; 207:1857-68. [PMID: 23493725 DOI: 10.1093/infdis/jit101] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Because Mycoplasma genitalium is a prevalent and emerging cause of sexually transmitted infections, understanding the mechanisms by which M. genitalium elicits mucosal inflammation is an essential component to managing lower and upper reproductive tract disease syndromes in women. METHODS We used a rotating wall vessel bioreactor system to create 3-dimensional (3-D) epithelial cell aggregates to model and assess endocervical infection by M. genitalium. RESULTS Attachment of M. genitalium to the host cell's apical surface was observed directly and confirmed using immunoelectron microscopy. Bacterial replication was observed from 0 to 72 hours after inoculation, during which time host cells underwent ultrastructural changes, including reduction of microvilli, and marked increases in secretory vesicle formation. Using genome-wide transcriptional profiling, we identified a host defense and inflammation signature activated by M. genitalium during acute infection (48 hours after inoculation) that included cytokine and chemokine activity and secretion of factors for antimicrobial defense. Multiplex bead-based protein assays confirmed secretion of proinflammatory cytokines, several of which are involved in leukocyte recruitment and hypothesized to enhance susceptibility to human immunodeficiency type 1 infection. CONCLUSIONS These findings provide insight into key molecules and pathways involved in innate recognition of M. genitalium and the response to acute infection in the human endocervix.
Collapse
Affiliation(s)
- Chris L McGowin
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112-2822, USA.
| | | | | | | | | |
Collapse
|
42
|
Wood PR, Hill VL, Burks ML, Peters JI, Singh H, Kannan TR, Vale S, Cagle MP, Principe MFR, Baseman JB, Brooks EG. Mycoplasma pneumoniae in children with acute and refractory asthma. Ann Allergy Asthma Immunol 2013; 110:328-334.e1. [PMID: 23622002 DOI: 10.1016/j.anai.2013.01.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND The presence of Mycoplasma pneumoniae has been associated with worsening asthma in children. Sensitive assays have been developed to detect M pneumoniae-derived community-acquired respiratory distress syndrome (CARDS) toxin. OBJECTIVES To identify the frequency and persistence of M pneumoniae detection in respiratory secretions of children with and without asthma and to evaluate antibody responses to M pneumoniae and the impact of M pneumoniae on biological markers, asthma control, and quality of life. METHODS We enrolled 143 pediatric patients (53 patients with acute asthma, 26 patients with refractory asthma, and 64 healthy controls; age range, 5-17 years) during a 20-month period with 2 to 5 follow-up visits. We detected M pneumoniae using CARDS toxin antigen capture and polymerase chain reaction and P1 adhesin polymerase chain reaction. Immune responses to M pneumoniae were determined by IgG and IgM levels directed against CARDS toxin and P1 adhesin. pH was measured in exhaled breath condensates, and asthma control and quality of life were assessed using the Asthma Control Test and Pediatric Asthma Quality of Life Questionnaire. RESULTS M pneumoniae was detected in 64% of patients with acute asthma, 65% with refractory asthma, and 56% of healthy controls. Children with asthma had lower antibody levels to M pneumoniae compared with healthy controls. Exhaled breath condensate pHs and asthma control and quality of life scores were lower in M pneumoniae-positive patients with asthma. CONCLUSION The results suggest that M pneumoniae detection is common in children, M pneumoniae detection is associated with worsening asthma, and children with asthma may have poor humoral immune responses to M pneumoniae.
Collapse
Affiliation(s)
- Pamela R Wood
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Martinez MA, Das K, Saikolappan S, Materon LA, Dhandayuthapani S. A serine/threonine phosphatase encoded by MG_207 of Mycoplasma genitalium is critical for its virulence. BMC Microbiol 2013; 13:44. [PMID: 23432936 PMCID: PMC3639085 DOI: 10.1186/1471-2180-13-44] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/19/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Bacterial signal transduction systems like two component system (TCS) and Serine/Threonine kinase (STK) and Serine/Threonine phosphatase (STP) play important roles in the virulence and pathogenesis of bacterial pathogens. Mycoplasma genitalium, a mollicute that causes the urogenital diseases urethritis and cervicitis in men and women, respectively, is a pathogen which lacks TCS but possesses STK/STP. In this study, we investigated the biochemical and virulence properties of an STP protein encoded by the gene MG_207 of this species. RESULTS We overexpressed MG207 in Escherichia coli overexpression system as a recombinant His10MG207 protein and purified it with affinity chromatography. This recombinant protein readily hydrolyzed the substrate p-nitrophenyl phosphate (pNPP) in a dose-dependent manner. Additional studies using synthetic peptides as substrates revealed that the recombinant protein was able to hydrolyze the threonine phosphate. Further, a transposon insertion mutant strain of M. genitalium (TIM207) that lacks the protein MG207 showed differentially phosphorylated proteins when compared to the wild type G37 strain. Mass spectrometry revealed that some of the key proteins differentially phosphorylated in TIM207 strain were putative cytoskeletal protein encoded by the gene MG_328 and pyruvate dehydrogenase E1 α chain encoded by the gene MG_274. In addition, TIM207 was noticed to be less cytotoxic to HeLa cells and this correlated with the production of less hydrogen peroxide by this strain. This strain was also less efficient in inducing the differentiation of THP-1 cell line as compared to wild type M. genitalium. CONCLUSIONS The results of the study suggest that MG207 is an important signaling protein of M. genitalium and its presence may be crucial for the virulence of this species.
Collapse
Affiliation(s)
- Mario A Martinez
- Regional Academic Health Center and Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, TX 78541, USA
| | | | | | | | | |
Collapse
|
44
|
Waites KB, Xiao L, Paralanov V, Viscardi RM, Glass JI. Molecular methods for the detection of Mycoplasma and ureaplasma infections in humans: a paper from the 2011 William Beaumont Hospital Symposium on molecular pathology. J Mol Diagn 2012; 14:437-50. [PMID: 22819362 PMCID: PMC3427874 DOI: 10.1016/j.jmoldx.2012.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 06/12/2012] [Accepted: 06/22/2012] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma and Ureaplasma species are well-known human pathogens responsible for a broad array of inflammatory conditions involving the respiratory and urogenital tracts of neonates, children, and adults. Greater attention is being given to these organisms in diagnostic microbiology, largely as a result of improved methods for their laboratory detection, made possible by powerful molecular-based techniques that can be used for primary detection in clinical specimens. For slow-growing species, such as Mycoplasma pneumoniae and Mycoplasma genitalium, molecular-based detection is the only practical means for rapid microbiological diagnosis. Most molecular-based methods used for detection and characterization of conventional bacteria have been applied to these organisms. A complete genome sequence is available for one or more strains of all of the important human pathogens in the Mycoplasma and Ureaplasma genera. Information gained from genome analyses and improvements in efficiency of DNA sequencing are expected to significantly advance the field of molecular detection and genotyping during the next few years. This review provides a summary and critical review of methods suitable for detection and characterization of mycoplasmas and ureaplasmas of humans, with emphasis on molecular genotypic techniques.
Collapse
Affiliation(s)
- Ken B Waites
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35226, USA.
| | | | | | | | | |
Collapse
|
45
|
Persistent Mycoplasma genitalium infection of human endocervical epithelial cells elicits chronic inflammatory cytokine secretion. Infect Immun 2012; 80:3842-9. [PMID: 22907815 DOI: 10.1128/iai.00819-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with Mycoplasma genitalium has been associated with male and female urogenital disease syndromes, including urethritis, cervicitis, pelvic inflammatory disease (PID), and tubal factor infertility. Basic investigations of mucosal cytotoxicity, microbial persistence, and host immune responses are imperative to understanding these inflammatory urogenital syndromes, particularly in females, considering the potential severity of upper tract infections. Here, we report that M. genitalium can establish long-term infection of human endocervical epithelial cells that results in chronic inflammatory cytokine secretion and increased responsiveness to secondary Toll-like receptor (TLR) stimulation. Using a novel quantitative PCR assay, M. genitalium was shown to replicate from 0 to 80 days postinoculation (p.i.), during which at most time points the median ratio of M. genitalium organisms to host cells was ≤10, indicating that low organism burdens are capable of eliciting chronic inflammation in endocervical epithelial cells. This observation is consistent with clinical findings in women. Persistently secreted cytokines predominately consisted of potent chemotactic and/or activating factors for phagocytes, including interleukin-8 (IL-8), monocyte chemotactic protein 1 (MCP-1), and macrophage inflammatory protein 1β (MIP-1β). Despite persistent cytokine elaboration, no host cell cytotoxicity was observed except with superphysiologic loads of M. genitalium, suggesting that persistent infection occurs with minimal direct damage to the epithelium. However, it is hypothesized that chronic chemokine secretion with leukocyte trafficking to the epithelium could lead to significant inflammatory sequelae. Therefore, persistent M. genitalium infection could have important consequences for acquisition and/or pathogenesis of other sexually transmitted infections (STIs) and perhaps explain the positive associations between this organism and human immunodeficiency virus (HIV) shedding.
Collapse
|
46
|
Fraga J, Rodríguez N, Fernández C, Mondeja B, Sariego I, Fernández-Calienes A, Rojas L. Mycoplasma hominis in Cuban Trichomonas vaginalis isolates: association with parasite genetic polymorphism. Exp Parasitol 2012; 131:393-8. [PMID: 22584035 DOI: 10.1016/j.exppara.2012.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/17/2012] [Accepted: 05/01/2012] [Indexed: 11/16/2022]
Abstract
Trichomonas vaginalis can be naturally infected with intracellular Mycoplasma hominis. This bacterial infection may have implications for trichomonal virulence and disease pathogenesis. The objective of the study was to report the presence of M. hominis in Cuban T. vaginalis isolates and to describe the association between the phenotype M. hominis infected with RAPD genetic polymorphism of T. vaginalis. The Random Amplified Polymorphic DNA (RAPD) technique was used to determine genetic differences among 40 isolates of T. vaginalis using a panel of 30 random primers and these genetic data were correlated with the infection of isolates with M. hominis. The trees drawn based on RAPD data showed no relations with metronidazole susceptibility and significantly association with the presence of M. hominis (P=0.043), which demonstrates the existence of concordance between the genetic relatedness and the presence of M. hominis in T. vaginalis isolates. This result could point to a predisposition of T. vaginalis for the bacterial enters and/or survival.
Collapse
Affiliation(s)
- Jorge Fraga
- Departamento de Parasitología, Instituto de Medicina Tropical Pedro Kourí, Autopista Novia del Mediodía km 6½, Marianao 13, La Habana, Cuba.
| | | | | | | | | | | | | |
Collapse
|
47
|
Das K, De la Garza G, Maffi S, Saikolappan S, Dhandayuthapani S. Methionine sulfoxide reductase A (MsrA) deficient Mycoplasma genitalium shows decreased interactions with host cells. PLoS One 2012; 7:e36247. [PMID: 22558404 PMCID: PMC3340341 DOI: 10.1371/journal.pone.0036247] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/29/2012] [Indexed: 02/02/2023] Open
Abstract
Mycoplasma genitalium is an important sexually transmitted pathogen that affects both men and women. In genital-mucosal tissues, it initiates colonization of epithelial cells by attaching itself to host cells via several identified bacterial ligands and host cell surface receptors. We have previously shown that a mutant form of M. genitalium lacking methionine sulfoxide reductase A (MsrA), an antioxidant enzyme which converts oxidized methionine (Met(O)) into methionine (Met), shows decreased viability in infected animals. To gain more insights into the mechanisms by which MsrA controls M. genitalium virulence, we compared the wild-type M. genitalium strain (G37) with an msrA mutant (MS5) strain for their ability to interact with target cervical epithelial cell lines (HeLa and C33A) and THP-1 monocytic cells. Infection of epithelial cell lines with both strains revealed that MS5 was less cytotoxic to HeLa and C33A cell lines than the G37 strain. Also, the MS5 strain was more susceptible to phagocytosis by THP-1 cells than wild type strain (G37). Further, MS5 was less able to induce aggregation and differentiation in THP-1 cells than the wild type strain, as determined by carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling of the cells, followed by counting of cells attached to the culture dish using image analysis. Finally, MS5 was observed to induce less proinflammatory cytokine TNF-α by THP-1 cells than wild type G37 strain. These results indicate that MsrA affects the virulence properties of M. genitalium by modulating its interaction with host cells.
Collapse
Affiliation(s)
- Kishore Das
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Georgina De la Garza
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Shivani Maffi
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Sankaralingam Saikolappan
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Subramanian Dhandayuthapani
- Regional Academic Health Center, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| |
Collapse
|
48
|
Shu HW, Liu TT, Chan HI, Liu YM, Wu KM, Shu HY, Tsai SF, Hsiao KJ, Hu WS, Ng WV. Complexity of the Mycoplasma fermentans M64 genome and metabolic essentiality and diversity among mycoplasmas. PLoS One 2012; 7:e32940. [PMID: 22509252 PMCID: PMC3317919 DOI: 10.1371/journal.pone.0032940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/02/2012] [Indexed: 11/30/2022] Open
Abstract
Recently, the genomes of two Mycoplasma fermentans strains, namely M64 and JER, have been completely sequenced. Gross comparison indicated that the genome of M64 is significantly bigger than the other strain and the difference is mainly contributed by the repetitive sequences including seven families of simple and complex transposable elements ranging from 973 to 23,778 bps. Analysis of these repeats resulted in the identification of a new distinct family of Integrative Conjugal Elements of M. fermentans, designated as ICEF-III. Using the concept of “reaction connectivity”, the metabolic capabilities in M. fermentans manifested by the complete and partial connected biomodules were revealed. A comparison of the reported M. pulmonis, M. arthritidis, M. genitalium, B. subtilis, and E. coli essential genes and the genes predicted from the M64 genome indicated that more than 73% of the Mycoplasmas essential genes are preserved in M. fermentans. Further examination of the highly and partly connected reactions by a novel combinatorial phylogenetic tree, metabolic network, and essential gene analysis indicated that some of the pathways (e.g. purine and pyrimidine metabolisms) with partial connected reactions may be important for the conversions of intermediate metabolites. Taken together, in light of systems and network analyses, the diversity among the Mycoplasma species was manifested on the variations of their limited metabolic abilities during evolution.
Collapse
Affiliation(s)
- Hung-Wei Shu
- Laboratory Science in Medicine, Department of Biotechnology, Institute of Biotechnology in Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Tze-Tze Liu
- Genome Research Center, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Huang-I Chan
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Yen-Ming Liu
- Institute of Genome Sciences, Department of Life Sciences, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Keh-Ming Wu
- Genome Research Center, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Hung-Yu Shu
- Genome Research Center, National Yang Ming University, Taipei, Taiwan, Republic of China
| | - Shih-Feng Tsai
- Genome Research Center, National Yang Ming University, Taipei, Taiwan, Republic of China
- Institute of Genome Sciences, Department of Life Sciences, National Yang Ming University, Taipei, Taiwan, Republic of China
- Division of Molecular and Genome Medicine, National Health Research Institute, Zhunan Town, Miaoli County, Taiwan, Republic of China
| | - Kwang-Jen Hsiao
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China
| | - Wensi S. Hu
- Laboratory Science in Medicine, Department of Biotechnology, Institute of Biotechnology in Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
- * E-mail: (WSH); (WVN)
| | - Wailap Victor Ng
- Laboratory Science in Medicine, Department of Biotechnology, Institute of Biotechnology in Medicine, National Yang Ming University, Taipei, Taiwan, Republic of China
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, Taiwan, Republic of China
- * E-mail: (WSH); (WVN)
| |
Collapse
|
49
|
Waites KB. What's new in diagnostic testing and treatment approaches for Mycoplasma pneumoniae infections in children? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 719:47-57. [PMID: 22125034 DOI: 10.1007/978-1-4614-0204-6_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ken B Waites
- Department of Pathology, University of Alabama, Birmingham, Alabama, USA.
| |
Collapse
|
50
|
Vandepitte J, Muller E, Bukenya J, Nakubulwa S, Kyakuwa N, Buvé A, Weiss H, Hayes R, Grosskurth H. Prevalence and correlates of Mycoplasma genitalium infection among female sex workers in Kampala, Uganda. J Infect Dis 2011; 205:289-96. [PMID: 22102734 DOI: 10.1093/infdis/jir733] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The importance of Mycoplasma genitalium in human immunodeficiency virus (HIV)-burdened sub-Saharan Africa is relatively unknown. We assessed the prevalence and explored determinants of this emerging sexually transmitted infection (STI) in high-risk women in Uganda. METHODS Endocervical swabs from 1025 female sex workers in Kampala were tested for Mycoplasma genitalium using a commercial Real-TM polymerase chain reaction assay. Factors associated with prevalent Mycoplasma genitalium, including sociodemographics, reproductive history, risk behavior, and HIV and other STIs, were examined using multivariable logistic regression. RESULTS The prevalence of Mycoplasma genitalium was 14% and higher in HIV-positive women than in HIV-negative women (adjusted odds ratio [OR], 1.64; 95% confidence interval [CI], 1.12-2.41). Mycoplasma genitalium infection was less prevalent in older women (adjusted OR, 0.61; 95% CI, .41-.90 for women ages 25-34 years vs <25 years; adjusted OR, 0.32; 95% CI, .15-.71 for women ≥ 35 years vs those <25 years) and in those who had been pregnant but never had a live birth (adjusted OR, 2.25; 95% CI, 1.04-4.88). Mycoplasma genitalium was associated with Neisseria gonorrhoeae (adjusted OR, 1.84; 95% CI, 1.13-2.98) and with Candida infection (adjusted OR, 0.41; 95% CI, .18-.91), and there was some evidence of association with Trichomonas vaginalis (adjusted OR, 1.56; 95% CI, 1.00-2.44). CONCLUSIONS The relatively high prevalence of Mycoplasma genitalium and its association with prevalent HIV urgently calls for further research to explore the potential role this emerging STI plays in the acquisition and transmission of HIV infection.
Collapse
|