1
|
Morales-Saldaña S, Hipp AL, Valencia-Ávalos S, Hahn M, González-Elizondo MS, Gernandt DS, Pham KK, Oyama K, González-Rodríguez A. Divergence and reticulation in the Mexican white oaks: ecological and phylogenomic evidence on species limits and phylogenetic networks in the Quercus laeta complex (Fagaceae). ANNALS OF BOTANY 2024; 133:1007-1024. [PMID: 38428030 PMCID: PMC11089265 DOI: 10.1093/aob/mcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND AND AIMS Introgressive hybridization poses a challenge to taxonomic and phylogenetic understanding of taxa, particularly when there are high numbers of co-occurring, intercrossable species. The genus Quercus exemplifies this situation. Oaks are highly diverse in sympatry and cross freely, creating syngameons of interfertile species. Although a well-resolved, dated phylogeny is available for the American oak clade, evolutionary relationships within many of the more recently derived clades remain to be defined, particularly for the young and exceptionally diverse Mexican white oak clade. Here, we adopted an approach bridging micro- and macroevolutionary scales to resolve evolutionary relationships in a rapidly diversifying clade endemic to Mexico. METHODS Ecological data and sequences of 155 low-copy nuclear genes were used to identify distinct lineages within the Quercus laeta complex. Concatenated and coalescent approaches were used to assess the phylogenetic placement of these lineages relative to the Mexican white oak clade. Phylogenetic network methods were applied to evaluate the timing and genomic significance of recent or historical introgression among lineages. KEY RESULTS The Q. laeta complex comprises six well-supported lineages, each restricted geographically and with mostly divergent climatic niches. Species trees corroborated that the different lineages are more closely related to other species of Mexican white oaks than to each other, suggesting that this complex is polyphyletic. Phylogenetic networks estimated events of ancient introgression that involved the ancestors of three present-day Q. laeta lineages. CONCLUSIONS The Q. laeta complex is a morphologically and ecologically related group of species rather than a clade. Currently, oak phylogenetics is at a turning point, at which it is necessary to integrate phylogenetics and ecology in broad regional samples to figure out species boundaries. Our study illuminates one of the more complicated of the Mexican white oak groups and lays groundwork for further taxonomic study.
Collapse
Affiliation(s)
- Saddan Morales-Saldaña
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Andrew L Hipp
- The Morton Arboretum, Lisle, IL 60532-1293, USA
- The Field Museum, Chicago, IL 60605, USA
| | - Susana Valencia-Ávalos
- Herbario de la Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | | | | | - David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex‐Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| |
Collapse
|
2
|
Wang W, Zhang X, Garcia S, Leitch AR, Kovařík A. Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between? Heredity (Edinb) 2023; 131:179-188. [PMID: 37402824 PMCID: PMC10462631 DOI: 10.1038/s41437-023-00634-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
The classical model of concerted evolution states that hundreds to thousands of ribosomal DNA (rDNA) units undergo homogenization, making the multiple copies of the individual units more uniform across the genome than would be expected given mutation frequencies and gene redundancy. While the universality of this over 50-year-old model has been confirmed in a range of organisms, advanced high throughput sequencing techniques have also revealed that rDNA homogenization in many organisms is partial and, in rare cases, even apparently failing. The potential underpinning processes leading to unexpected intragenomic variation have been discussed in a number of studies, but a comprehensive understanding remains to be determined. In this work, we summarize information on variation or polymorphisms in rDNAs across a wide range of taxa amongst animals, fungi, plants, and protists. We discuss the definition and description of concerted evolution and describe whether incomplete concerted evolution of rDNAs predominantly affects coding or non-coding regions of rDNA units and if it leads to the formation of pseudogenes or not. We also discuss the factors contributing to rDNA variation, such as interspecific hybridization, meiotic cycles, rDNA expression status, genome size, and the activity of effector genes involved in genetic recombination, epigenetic modifications, and DNA editing. Finally, we argue that a combination of approaches is needed to target genetic and epigenetic phenomena influencing incomplete concerted evolution, to give a comprehensive understanding of the evolution and functional consequences of intragenomic variation in rDNA.
Collapse
Affiliation(s)
- Wencai Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xianzhi Zhang
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Sònia Garcia
- Institut Botànic de Barcelona, IBB (CSIC - Ajuntament de Barcelona), Barcelona, Spain
| | - Andrew R Leitch
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61200, Czech Republic.
| |
Collapse
|
3
|
Lack of ITS sequence homogenization in Erysimum species (Brassicaceae) with different ploidy levels. Sci Rep 2022; 12:16907. [PMID: 36207443 PMCID: PMC9546898 DOI: 10.1038/s41598-022-20194-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
The internal transcribed spacers (ITS) exhibit concerted evolution by the fast homogenization of these sequences at the intragenomic level. However, the rate and extension of this process are unclear and might be conditioned by the number and divergence of the different ITS copies. In some cases, such as hybrid species and polyploids, ITS sequence homogenization appears incomplete, resulting in multiple haplotypes within the same organism. Here, we studied the dynamics of concerted evolution in 85 individuals of seven plant species of the genus Erysimum (Brassicaceae) with multiple ploidy levels. We estimated the rate of concerted evolution and the degree of sequence homogenization separately for ITS1 and ITS2 and whether these varied with ploidy. Our results showed incomplete sequence homogenization, especially for polyploid samples, indicating a lack of concerted evolution in these taxa. Homogenization was usually higher in ITS2 than in ITS1, suggesting that concerted evolution operates more efficiently on the former. Furthermore, the hybrid origin of several species appears to contribute to the maintenance of high haplotype diversity, regardless of the level of ploidy. These findings indicate that sequence homogenization of ITS is a dynamic and complex process that might result in varying intra- and inter-genomic diversity levels.
Collapse
|
4
|
Zhang J, Chi X, Zhong J, Fernie A, Alseekh S, Huang L, Qian D. Extensive nrDNA ITS polymorphism in Lycium: Non-concerted evolution and the identification of pseudogenes. FRONTIERS IN PLANT SCIENCE 2022; 13:984579. [PMID: 36092433 PMCID: PMC9453804 DOI: 10.3389/fpls.2022.984579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/01/2022] [Indexed: 06/01/2023]
Abstract
The internal transcribed spacer (ITS) is one of the most extensively sequenced molecular markers in plant systematics due to its generally concerted evolution. While non-concerted evolution has been found in some plant taxa, such information is missing in Lycium. Molecular studies of six species and two variants of the genus Lycium revealed high levels of intra- and inter-individual polymorphism in the ITS, indicating non-concerted evolution. All genomic DNA ITS paralogues were identified as putative pseudogenes or functional paralogues through a series of comparisons of sequence features, including length and substitution variation, GC content, secondary structure stability, and the presence of conserved motifs in the 5.8S gene, and the rate of evolution. Approximately, 60% of ITS pseudogenes could be easily detected. Based on phylogenetic analysis, all pseudogenes were highly distinct from their corresponding functional copies, tended to evolve neutrally, and clustered randomly together in the evolutionary tree. The results probably suggest that this ITS non-concerted evolution is related to the recent divergence between tandem repeats within the Lycium genome and hybridization between species. Our study complements those of pseudogenes in plant taxa and provides a theoretical basis for the phylogeny and genetic origin of the genus Lycium while having important implications for the use of ITS molecular markers for phylogenetic reconstruction.
Collapse
Affiliation(s)
- Jiao Zhang
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiulian Chi
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juying Zhong
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Qian
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Sharma D, Denmat SHL, Matzke NJ, Hannan K, Hannan RD, O'Sullivan JM, Ganley ARD. A new method for determining ribosomal DNA copy number shows differences between Saccharomyces cerevisiae populations. Genomics 2022; 114:110430. [PMID: 35830947 DOI: 10.1016/j.ygeno.2022.110430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Ribosomal DNA genes (rDNA) encode the major ribosomal RNAs and in eukaryotes typically form tandem repeat arrays. Species have characteristic rDNA copy numbers, but there is substantial intra-species variation in copy number that results from frequent rDNA recombination. Copy number differences can have phenotypic consequences, however difficulties in quantifying copy number mean we lack a comprehensive understanding of how copy number evolves and the consequences. Here we present a genomic sequence read approach to estimate rDNA copy number based on modal coverage to help overcome limitations with existing mean coverage-based approaches. We validated our method using Saccharomyces cerevisiae strains with known rDNA copy numbers. Application of our pipeline to a global sample of S. cerevisiae isolates showed that different populations have different rDNA copy numbers. Our results demonstrate the utility of the modal coverage method, and highlight the high level of rDNA copy number variation within and between populations.
Collapse
Affiliation(s)
- Diksha Sharma
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sylvie Hermann-Le Denmat
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Ecole Normale Supérieure, PSL Research University, F-75005 Paris, France
| | - Nicholas J Matzke
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Katherine Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ACT 2601, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross D Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ACT 2601, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | - Justin M O'Sullivan
- Liggins Institute, University of Auckland, Auckland, New Zealand; Maurice Wilkins Center, University of Auckland, New Zealand; MRC Lifecourse Unit, University of Southampton, United Kingdom; Brain Research New Zealand, The University of Auckland, Auckland, New Zealand
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Yang J, Fu W, Xu H, Song Z, Zhang W, Yang J, Wang Y. An Empirical Analysis Rejects the Hybrid Speciation Hypothesis of a Crucial Kiwifruit Species, Despite Genomic Evidence of Frequent Interspecific Gene Flow in the Genus. Front Genet 2020; 10:1250. [PMID: 32117405 PMCID: PMC7011101 DOI: 10.3389/fgene.2019.01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/13/2019] [Indexed: 11/13/2022] Open
Abstract
Hybrid speciation is an important way to generate species diversity. In general, however, interspecific hybridization is easily confused with the formation of hybrid species. Using the genomic resequencing data of the kiwifruit genus (Actinidia), at least ten species were documented recently as homoploid hybrid species, and thus a two-layer mode of species diversification has been proposed. As a crucial piece of evidence, Actinidia fulvicoma was identified as a hybrid derivative of Actinidia eriantha × Actinidia cylindrica, representing a rare case of hybrid species in kiwifruit that won the competition of ecological niches with one of its putative parental species, A. cylindrica. However, the hypothesized hybrid origin of A. fulvicoma is inconsistent with our specimen observations. Here, we present multiple lines of evidence to reject the hybrid speciation hypothesis for this species, despite genomic evidence for frequent interspecific gene flow. We collected the samples of A. fulvicoma in type locality and neighboring regions to contrast them with type specimen, and sequenced nuclear ribosomal DNA ITS, chloroplast trnL-trnF and mitochondrial nad2-i3, as well as four single-copy nuclear genes explored from kiwifruit genomes, to infer phylogenetic relationships among A. fulvicoma, its putative parental species, and their relatives. Our data definitely reveal that A. fulvicoma occupies an independent backbone lineage and it is not a hybrid. This study suggests that correct evolutionary applications on extensive surveys of the putative hybrid and its possible parents with strict criteria are necessary in the documentation of hybrid speciation to advance our understanding of the genomic basis of hybrid species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuguo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Xuan Y, Wu Y, Li P, Liu R, Luo Y, Yuan J, Xiang Z, He N. Molecular phylogeny of mulberries reconstructed from ITS and two cpDNA sequences. PeerJ 2019; 7:e8158. [PMID: 31844573 PMCID: PMC6911693 DOI: 10.7717/peerj.8158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background Species in the genus Morus (Moraceae) are deciduous woody plants of great economic importance. The classification and phylogenetic relationships of Morus, especially the abundant mulberry resources in China, is still undetermined. Internal transcribed spacer (ITS) regions are among the most widely used molecular markers in phylogenetic analyses of angiosperms. However, according to the previous phylogenetic analyses of ITS sequences, most of the mulberry accessions collected in China were grouped into the largest clade lacking for phylogenetic resolution. Compared with functional ITS sequences, ITS pseudogenes show higher sequence diversity, so they can provide useful phylogenetic information. Methods We sequenced the ITS regions and the chloroplast DNA regions TrnL-TrnF and TrnT-TrnL from 33 mulberry accessions, and performed phylogenetic analyses to explore the evolution of mulberry. Results We found ITS pseudogenes in 11 mulberry accessions. In the phylogenetic tree constructed from ITS sequences, clade B was separated into short-type sequence clades (clades 1 and 2), and a long-type sequence clade (clade 3). Pseudogene sequences were separately clustered into two pseudogroups, designated as pseudogroup 1 and pseudogroup 2. The phylogenetic tree generated from cpDNA sequences also separated clade B into two clades. Conclusions Two species were separated in clade B. The existence of three connection patterns and incongruent distribution patterns between the phylogenetic trees generated from cpDNA and ITS sequences suggested that the ITS pseudogene sequences connect with genetic information from the female progenitor. Hybridization has played important roles in the evolution of mulberry, resulting in low resolution of the phylogenetic analysis based on ITS sequences. An evolutionary pattern illustrating the evolution history of mulberry is proposed. These findings have significance for the conservation of local mulberry resources. Polyploidy, hybridization, and concerted evolution have all played the roles in the evolution of ITS sequences in mulberry. This study will expand our understanding of mulberry evolution.
Collapse
Affiliation(s)
- Yahui Xuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ruiling Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yiwei Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jianglian Yuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Pang X, Liu H, Wu S, Yuan Y, Li H, Dong J, Liu Z, An C, Su Z, Li B. Species Identification of Oaks ( Quercus L., Fagaceae) from Gene to Genome. Int J Mol Sci 2019; 20:ijms20235940. [PMID: 31779118 PMCID: PMC6928813 DOI: 10.3390/ijms20235940] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 11/30/2022] Open
Abstract
Species identification of oaks (Quercus) is always a challenge because many species exhibit variable phenotypes that overlap with other species. Oaks are notorious for interspecific hybridization and introgression, and complex speciation patterns involving incomplete lineage sorting. Therefore, accurately identifying Quercus species barcodes has been unsuccessful. In this study, we used chloroplast genome sequence data to identify molecular markers for oak species identification. Using next generation sequencing methods, we sequenced 14 chloroplast genomes of Quercus species in this study and added 10 additional chloroplast genome sequences from GenBank to develop a DNA barcode for oaks. Chloroplast genome sequence divergence was low. We identified four mutation hotspots as candidate Quercus DNA barcodes; two intergenic regions (matK-trnK-rps16 and trnR-atpA) were located in the large single copy region, and two coding regions (ndhF and ycf1b) were located in the small single copy region. The standard plant DNA barcode (rbcL and matK) had lower variability than that of the newly identified markers. Our data provide complete chloroplast genome sequences that improve the phylogenetic resolution and species level discrimination of Quercus. This study demonstrates that the complete chloroplast genome can substantially increase species discriminatory power and resolve phylogenetic relationships in plants.
Collapse
Affiliation(s)
- Xinbo Pang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
- Administration Bureau of Hongyashan State Owned Forest Farm in Yixian County, Yixian 074200, China; (H.L.); (S.W.); (Y.Y.); (H.L.); (J.D.); (Z.L.); (C.A.); (Z.S.)
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Hongshan Liu
- Administration Bureau of Hongyashan State Owned Forest Farm in Yixian County, Yixian 074200, China; (H.L.); (S.W.); (Y.Y.); (H.L.); (J.D.); (Z.L.); (C.A.); (Z.S.)
| | - Suran Wu
- Administration Bureau of Hongyashan State Owned Forest Farm in Yixian County, Yixian 074200, China; (H.L.); (S.W.); (Y.Y.); (H.L.); (J.D.); (Z.L.); (C.A.); (Z.S.)
| | - Yangchen Yuan
- Administration Bureau of Hongyashan State Owned Forest Farm in Yixian County, Yixian 074200, China; (H.L.); (S.W.); (Y.Y.); (H.L.); (J.D.); (Z.L.); (C.A.); (Z.S.)
| | - Haijun Li
- Administration Bureau of Hongyashan State Owned Forest Farm in Yixian County, Yixian 074200, China; (H.L.); (S.W.); (Y.Y.); (H.L.); (J.D.); (Z.L.); (C.A.); (Z.S.)
| | - Junsheng Dong
- Administration Bureau of Hongyashan State Owned Forest Farm in Yixian County, Yixian 074200, China; (H.L.); (S.W.); (Y.Y.); (H.L.); (J.D.); (Z.L.); (C.A.); (Z.S.)
| | - Zhaohua Liu
- Administration Bureau of Hongyashan State Owned Forest Farm in Yixian County, Yixian 074200, China; (H.L.); (S.W.); (Y.Y.); (H.L.); (J.D.); (Z.L.); (C.A.); (Z.S.)
| | - Chuanzhi An
- Administration Bureau of Hongyashan State Owned Forest Farm in Yixian County, Yixian 074200, China; (H.L.); (S.W.); (Y.Y.); (H.L.); (J.D.); (Z.L.); (C.A.); (Z.S.)
| | - Zhihai Su
- Administration Bureau of Hongyashan State Owned Forest Farm in Yixian County, Yixian 074200, China; (H.L.); (S.W.); (Y.Y.); (H.L.); (J.D.); (Z.L.); (C.A.); (Z.S.)
| | - Bin Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
- Administration Bureau of Hongyashan State Owned Forest Farm in Yixian County, Yixian 074200, China; (H.L.); (S.W.); (Y.Y.); (H.L.); (J.D.); (Z.L.); (C.A.); (Z.S.)
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence:
| |
Collapse
|
9
|
Vázquez ML. Molecular evolution of the internal transcribed spacers in red oaks (Quercus sect. Lobatae). Comput Biol Chem 2019; 83:107117. [PMID: 31581032 DOI: 10.1016/j.compbiolchem.2019.107117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
Abstract
Previous studies of the Internal Transcribed Spacers of the nuclear ribosomal DNA (ITS) in sections Quercus (white oaks), Protobalanus (intermediate or golden cup oaks), Cerris (Cerris oaks), and Ilex (Ilex oaks) suggest that ITS regions undergo full concerted evolution in oaks; however, ITS evolution patterns in red oaks (section Lobatae) are unknown due to scant representation in published work. To determine whether full concerted evolution occurs in red oaks, the purpose of this study was to examine ITS sequences from 40 red oak species. The results show incomplete concerted evolution and the presence of three ITS ribotypes of lengths 505, 609, 601 bp, hereafter referred to as ITS-S (small), I ITS-M (medium), and ITS-L (large), respectively. Thirty species had only one ribotype (ITS-M), nine species had two ribotypes (different combinations of ITS-L, ITS-M, and ITS-S), and only one species had all three ribotypes. Furthermore, examination of these three ribotypes showed that only ITS-M is putatively functional and ITS-L and ITS-S are pseudogenes. Bayesian analysis strongly supported (100%) two pseudogenes clades but provided weak support for the monophyly of a putative functional clade (ITS-M); moreover, within the "functional" clade, species relationships were uncertain and, in most cases, sequences from the same species failed to group together. The results of the current study suggest that ITS may not be appropriate for phylogeny reconstruction of red oaks due to low levels of interspecific variation and incomplete concerted evolution.
Collapse
Affiliation(s)
- M Lucía Vázquez
- Biology Department, University of Illinois Springfield, One University Plaza, Springfield, IL, 62794-9243, USA.
| |
Collapse
|
10
|
Fagan-Jeffries EP, Cooper SJB, Bradford TM, Austin AD. Intragenomic internal transcribed spacer 2 variation in a genus of parasitoid wasps (Hymenoptera: Braconidae): implications for accurate species delimitation and phylogenetic analysis. INSECT MOLECULAR BIOLOGY 2019; 28:485-498. [PMID: 30632223 DOI: 10.1111/imb.12564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A recent DNA barcoding study of Australian microgastrines (Hymenoptera: Braconidae) sought to use next-generation sequencing of the cytochrome c oxidase subunit 1 (COI) barcoding gene region, the wingless (WG) gene and the internal transcribed spacer 2 (ITS2) to delimit molecular species in a highly diverse group of parasitic wasps. Large intragenomic distances between ITS2 variants, often larger than the average interspecific variation, caused difficulties in using ITS2 for species delimitation in both threshold and tree-based approaches, and the gene was not included in the reported results of the previous DNA barcoding study. We here report on the intragenomic, and the intra- and interspecies, variation in ITS2in the microgastrine genus Diolcogasterto further investigate the value of ITS2as a marker for species delimitation and phylogenetics of the Microgastrinae. Distinctive intragenomic variant patterns were found in different species of Diolcogaster, with some species possessing a single major variant, and others possessing many divergent variants. Characterizing intragenomic variation of ITS2is critical as it is a widely used marker in hymenopteran phylogenetics and species delimitation, and large intragenomic distances such as those found in this study may obscure phylogenetic signal.
Collapse
Affiliation(s)
- E P Fagan-Jeffries
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - S J B Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, University of Adelaide, Adelaide, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, Australia
| | - T M Bradford
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, University of Adelaide, Adelaide, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, Australia
| | - A D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
11
|
Castillo-Mendoza E, Salinas-Sánchez D, Valencia-Cuevas L, Zamilpa A, Tovar-Sánchez E. Natural hybridisation among Quercus glabrescens, Q. rugosa and Q. obtusata (Fagaceae): Microsatellites and secondary metabolites markers. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:110-121. [PMID: 30117248 DOI: 10.1111/plb.12899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Natural hybridisation has significant ecological, genetic and evolutionary consequences altering morphological and chemical characters of individuals. Quercus glabrescens, Q. rugosa and Q. obtusata are white oak species well separated by their morphological characters when they occur in allopatry in Mexican temperate forests. However, in sympatry, individuals with atypical morphology have been observed, suggesting hybridisation events. In this study, we determined, with microsatellites and secondary metabolites, if interspecific gene flow occurs when these three oak species coexist in sympatry. In total, 180 individuals belonging to seven populations [three allopatric (one for each parental species) and four sympatric sites] were analysed. Allopatric populations represent well-defined genetic groups and the sympatric populations showed genetic evidence of hybridisation between Q. glabrescens × Q. rugosa and Q. glabrescens × Q. obtusata. The hybridisation percentage varied between sites and combination of involved species. We registered the presence of unique flavonoid compounds for Q. glabrescens (caffeic acid and flavonol 2), Q. rugosa (flavonol 5) and Q. obtusata (flavonol 1). Three compounds (quercetin rhamnoside, flavonol 3 and alkyl coumarate) were expressed in all taxa. Finally, the hybrid genotypes identified in this study (Q. glabrescens × Q. rugosa and Q. glabrescens × Q. obtusata) showed specific chemical profiles, resulting from a combination of those of their parental species. These results show that hybridisation events between these oak species alter chemical expression of secondary metabolites, creating a mosaic of resources and conditions that provide the substrate for different combinations of foliar-associated species such as herbivores, endophytic fungi or epiphyte plants.
Collapse
Affiliation(s)
- E Castillo-Mendoza
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, CdMx, México
- Laboratorio de Marcadores Moleculares, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - D Salinas-Sánchez
- Laboratorio de Fitoquímica, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - L Valencia-Cuevas
- Laboratorio de Marcadores Moleculares, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - A Zamilpa
- Centro de Investigación Biomédica del Sur (CIBIS-IMSS), Xochitepec, Morelos, México
| | - E Tovar-Sánchez
- Laboratorio de Marcadores Moleculares, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
12
|
Remarkable sequence polymorphisms in 18S rDNA of Pleuronichthys cornutus (Pleuronectiformes: Pleuronectidae). Gene 2018; 677:251-258. [DOI: 10.1016/j.gene.2018.07.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/15/2018] [Accepted: 07/19/2018] [Indexed: 11/22/2022]
|
13
|
Yan M, Xiong Y, Liu R, Deng M, Song J. The Application and Limitation of Universal Chloroplast Markers in Discriminating East Asian Evergreen Oaks. FRONTIERS IN PLANT SCIENCE 2018; 9:569. [PMID: 29868047 PMCID: PMC5952231 DOI: 10.3389/fpls.2018.00569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/11/2018] [Indexed: 05/10/2023]
Abstract
The East Asian subtropics mostly occupied by evergreen broad-leaved forests (EBLFs), is one of the global diversity centers for evergreen oaks. Evergreen oaks are keystone canopy trees in EBLFs with important ecosystem function and crucial significance for regional biodiversity conservation. However, the species composition and diversity of Asian evergreen oaks are poorly understood. Here, we test whether the four chloroplast markers atpI-atpH, matK, psbA-trnH, and ycf1, can discriminate the two evergreen oak sections in Asia - Cyclobalanopsis and Ilex. Two hundred and seventy-two individuals representing 57 species were scanned and 17 species from other oaks sections were included for phylogenetic reconstruction. The genetic diversity of the Quercus sections was also compared. Overall, we found that universal chloroplast DNA (cpDNA) barcoding markers could resolve two clades in Quercus, i.e., subgenus Cerris (Old World Clade) and subgenus Quercus (New World Clade). The chloroplast markers distinguished the main sections, with few exceptions. Each cpDNA region showed no barcoding gap and none of them provided good resolution at the species level. The best species resolution (27.78%) was obtained when three or four markers were combined and analyzed using BLAST. The high conservation of the cpDNA and complicated evolutionary patterns, due to incomplete lineage sorting, interspecific hybridization and introgressions may hinder the ability of cpDNA markers to discriminate different species. When comparing diversification pattern across Quercus sections (Cyclobalanopsis, Ilex, Cerris, Quercus, and Protobalanus), we found that section Ilex was the most genetically diverse, and section Cyclobalanopsis was lower genetically diverse. This diversification pattern may have resulted from the interplay of the Eurasia Cenozoic tectonic movements, climate changes and different niches of their ancestral lineages.
Collapse
Affiliation(s)
- Mengxiao Yan
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Yanshi Xiong
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Ruibin Liu
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Min Deng
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Jiaojiao Song
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| |
Collapse
|
14
|
Schuster TM, Setaro SD, Tibbits JFG, Batty EL, Fowler RM, McLay TGB, Wilcox S, Ades PK, Bayly MJ. Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae). PLoS One 2018; 13:e0195034. [PMID: 29668710 PMCID: PMC5905893 DOI: 10.1371/journal.pone.0195034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/15/2018] [Indexed: 11/19/2022] Open
Abstract
Previous molecular phylogenetic analyses have resolved the Australian bloodwood eucalypt genus Corymbia (~100 species) as either monophyletic or paraphyletic with respect to Angophora (9-10 species). Here we assess relationships of Corymbia and Angophora using a large dataset of chloroplast DNA sequences (121,016 base pairs; from 90 accessions representing 55 Corymbia and 8 Angophora species, plus 33 accessions of related genera), skimmed from high throughput sequencing of genomic DNA, and compare results with new analyses of nuclear ITS sequences (119 accessions) from previous studies. Maximum likelihood and maximum parsimony analyses of cpDNA resolve well supported trees with most nodes having >95% bootstrap support. These trees strongly reject monophyly of Corymbia, its two subgenera (Corymbia and Blakella), most taxonomic sections (Abbreviatae, Maculatae, Naviculares, Septentrionales), and several species. ITS trees weakly indicate paraphyly of Corymbia (bootstrap support <50% for maximum likelihood, and 71% for parsimony), but are highly incongruent with the cpDNA analyses, in that they support monophyly of both subgenera and some taxonomic sections of Corymbia. The striking incongruence between cpDNA trees and both morphological taxonomy and ITS trees is attributed largely to chloroplast introgression between taxa, because of geographic sharing of chloroplast clades across taxonomic groups. Such introgression has been widely inferred in studies of the related genus Eucalyptus. This is the first report of its likely prevalence in Corymbia and Angophora, but this is consistent with previous morphological inferences of hybridisation between species. Our findings (based on continent-wide sampling) highlight a need for more focussed studies to assess the extent of hybridisation and introgression in the evolutionary history of these genera, and that critical testing of the classification of Corymbia and Angophora requires additional sequence data from nuclear genomes.
Collapse
Affiliation(s)
- Tanja M. Schuster
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- National Herbarium of Victoria, Royal Botanic Gardens Victoria, Birdwood Avenue, South Yarra, VIC, Australia
- * E-mail:
| | - Sabrina D. Setaro
- Department of Biology, Wake Forest University, Winston-Salem, NC,United States of America
| | - Josquin F. G. Tibbits
- Department of Economic Development, Jobs, Transport and Resources, AgriBiosciences Centre, La Trobe University, Bundoora, VIC, Australia
| | - Erin L. Batty
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Rachael M. Fowler
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Todd G. B. McLay
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Stephen Wilcox
- Genomics Hub, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, Australia
| | - Peter K. Ades
- School of Ecosystem and Forest Sciences, The University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Michael J. Bayly
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
15
|
Kumar V, Dickey AM, Seal DR, Shatters RG, Osborne LS, McKenzie CL. Unexpected High Intragenomic Variation in Two of Three Major Pest Thrips Species Does Not Affect Ribosomal Internal Transcribed Spacer 2 (ITS2) Utility for Thrips Identification. Int J Mol Sci 2017; 18:ijms18102100. [PMID: 28984819 PMCID: PMC5666782 DOI: 10.3390/ijms18102100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 11/16/2022] Open
Abstract
The mitochondrial cytochrome oxidase I gene (mtCO1) and the ribosomal internal transcribed spacer 2 region (ITS2) are among the most widely used molecular markers for insect taxonomic characterization. Three economically important species of thrips, Scirtothripsdorsalis, Thripspalmi, and Frankliniellaoccidentalis were selected to examine the extent of intragenomic variation within these two marker regions in the family Thripidae, and determine if this variation would affect the utility of markers in thrips molecular diagnostics. For each species, intragenomic (within individual) variation and intergenomic (among individuals) variation was assessed by cloning and sequencing PCR-amplified copies. Intergenomic variation was generally higher than intragenomic variation except in cases where intergenomic variation was very low, as in mtCO1 from S.dorsalis and F.occidentalis. Intragenomic variation was detected in both markers in all three of the thrips species, however, 2-3 times more intragenomic variation was observed for ITS2 than mtCO1 in both S.dorsalis and T.palmi. Furthermore, levels of intragenomic variation were low for both of the genes in F.occidentalis. In all of the three thrips species, no sex-based clustering of haplotypes was observed in either marker. Unexpected high intragenomic variation in ITS2 for two of three thrips species did not interfere with thrips diagnostics. However, caution should be taken in applying ITS2 to certain studies of S.dorsalis and T.palmi when high levels of intragenomic variation could be problematic or confounding. In such studies, mtCO1 may be a preferable marker. Possible reasons for discrepancies in intragenomic variation among genomic regions are discussed.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Entomology and Nematology, Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA; (A.M.D.); (L.S.O.)
- U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945, USA; (R.G.S.); (C.L.M.)
- Department of Entomology and Nematology, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA;
- Correspondence: ; Tel.: +1-772-462-5978
| | - Aaron M. Dickey
- Department of Entomology and Nematology, Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA; (A.M.D.); (L.S.O.)
- U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945, USA; (R.G.S.); (C.L.M.)
- Present Address: U.S. Meat Animal Research Center, USDA-ARS, Clay Center, NE 68933, USA
| | - Dakshina R. Seal
- Department of Entomology and Nematology, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA;
| | - Robert G. Shatters
- U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945, USA; (R.G.S.); (C.L.M.)
| | - Lance S. Osborne
- Department of Entomology and Nematology, Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA; (A.M.D.); (L.S.O.)
| | - Cindy L. McKenzie
- U.S. Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL 34945, USA; (R.G.S.); (C.L.M.)
| |
Collapse
|
16
|
Abstract
The nuclear ribosomal DNA (rDNA) is considered as a paradigm of concerted evolution. Components of the rDNA tandem repeats (45S) are widely used in phylogenetic studies of different organisms and the internal transcribed spacer (ITS) region was recently selected as a fungal DNA bar code. However, rRNA pseudogenes, as one kind of escape from concerted evolution, were reported in a wide range of organisms, especially in plants and animals. Moreover, large numbers of 5S rRNA pseudogenes were identified in several filamentous ascomycetes. To study whether rDNA evolves in a strict concerted manner and test whether rRNA pseudogenes exist in more species of ascomycetes, intragenomic rDNA polymorphisms were analyzed using whole genome sequences. Divergent rDNA paralogs were found to coexist within a single genome in seven filamentous ascomycetes examined. A great number of paralogs were identified as pseudogenes according to the mutation and secondary structure analyses. Phylogenetic analyses of the three rRNA coding regions of the 45S rDNA repeats, i.e., 18S, 5.8S, and 28S, revealed an interspecies clustering pattern of those different rDNA paralogs. The identified rRNA pseudogenic sequences were validated using specific primers designed. Mutation analyses revealed that the repeat-induced point (RIP) mutation was probably responsible for the formation of those rRNA pseudogenes.
Collapse
|
17
|
Against all odds: reconstructing the evolutionary history of Scrophularia (Scrophulariaceae) despite high levels of incongruence and reticulate evolution. ORG DIVERS EVOL 2017. [DOI: 10.1007/s13127-016-0316-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Xu B, Zeng XM, Gao XF, Jin DP, Zhang LB. ITS non-concerted evolution and rampant hybridization in the legume genus Lespedeza (Fabaceae). Sci Rep 2017; 7:40057. [PMID: 28051161 PMCID: PMC5209741 DOI: 10.1038/srep40057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/30/2016] [Indexed: 12/27/2022] Open
Abstract
The internal transcribed spacer (ITS) as one part of nuclear ribosomal DNA is one of the most extensively sequenced molecular markers in plant systematics. The ITS repeats generally exhibit high-level within-individual homogeneity, while relatively small-scale polymorphism of ITS copies within individuals has often been reported in literature. Here, we identified large-scale polymorphism of ITS copies within individuals in the legume genus Lespedeza (Fabaceae). Divergent paralogs of ITS sequences, including putative pseudogenes, recombinants, and multiple functional ITS copies were sometimes detected in the same individual. Thirty-seven ITS pseudogenes could be easily detected according to nucleotide changes in conserved 5.8S motives, the significantly lower GC contents in at least one of three regions, and the lost ability of 5.8S rDNA sequence to fold into a conserved secondary structure. The distribution patterns of the putative functional clones were highly different between the traditionally recognized two subgenera, suggesting different rates of concerted evolution in two subgenera which could be attributable to their different extents/frequencies of hybridization, confirmed by our analysis of the single-copy nuclear gene PGK. These findings have significant implications in using ITS marker for reconstructing phylogeny and studying hybridization.
Collapse
MESH Headings
- Base Composition
- Cluster Analysis
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Evolution, Molecular
- Lespedeza/classification
- Lespedeza/genetics
- Nucleic Acid Hybridization
- Phylogeny
- Polymorphism, Genetic
- RNA, Ribosomal, 5.8S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Bo Xu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China
| | - Xiao-Mao Zeng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China
| | - Xin-Fen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China
| | - Dong-Pil Jin
- Department of Biological Sciences, Inha University, Incheon 402-751, Republic of Korea
| | - Li-Bing Zhang
- Missouri Botanical Garden, P.O. Box 299, St. Louis, Missouri 63166, USA
| |
Collapse
|
19
|
Gomes C, Rodrigues-Filho LF, Sodré D, Neckel-Oliveira S, Gordo M, Gallati U, Sequeira F, Vallinoto M. Concerted evolution in the mitochondrial control region of the Amazon small-bodied frog Pseudopaludicola canga (Anura, Leiuperidae). Mitochondrial DNA A DNA Mapp Seq Anal 2016; 27:4270-4273. [PMID: 27206788 DOI: 10.3109/19401736.2015.1060477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study presents evidence of concerted evolution in the mitochondrial control region of the frog Pseudopaludicola canga. Four repeat units of 88 bp (as well as a fifth, incomplete unit) were observed in the 5' domain, with the duplicated segments of the same specimen being more related to one another than to the equivalent regions in other specimens, as a result of concerted evolution. We highlight that drawing conclusions from phylogeographical analysis using the control region containing VNTRs must be interpreted with caution, because it violated a basic assumption of phylogeny, since the regions cannot be treated as independent characters.
Collapse
Affiliation(s)
- Camila Gomes
- a Laboratório de Evolução , Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará , Bragança Campus, Bragança-PA , Brazil
| | - Luis Fernando Rodrigues-Filho
- a Laboratório de Evolução , Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará , Bragança Campus, Bragança-PA , Brazil
| | - Davidson Sodré
- a Laboratório de Evolução , Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará , Bragança Campus, Bragança-PA , Brazil
| | - Selvino Neckel-Oliveira
- b Departamento de Ecologia e Zoologia , Centro de Ciências Biológicas, Universidade Federal de Santa Catarina , Florianópolis, SC , Brazil
| | - Marcelo Gordo
- c Departamento de Biologia , Instituto de Ciências Biológicas, Universidade Federal do Amazonas , Manaus , AM , Brazil
| | - Ulisses Gallati
- d Coordenação de Zoologia, Museu Paraense Emilio Goeldi , Belém, PA , Brazil , and
| | - Fernando Sequeira
- e CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão , Universidade do Porto, Vairão , Portugal
| | - Marcelo Vallinoto
- a Laboratório de Evolução , Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará , Bragança Campus, Bragança-PA , Brazil.,e CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão , Universidade do Porto, Vairão , Portugal
| |
Collapse
|
20
|
Mitochondrial introgression and complex biogeographic history of the genus Picea. Mol Phylogenet Evol 2015; 93:63-76. [DOI: 10.1016/j.ympev.2015.07.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 07/18/2015] [Accepted: 07/25/2015] [Indexed: 11/18/2022]
|
21
|
Stockenhuber R, Zoller S, Shimizu-Inatsugi R, Gugerli F, Shimizu KK, Widmer A, Fischer MC. Efficient Detection of Novel Nuclear Markers for Brassicaceae by Transcriptome Sequencing. PLoS One 2015; 10:e0128181. [PMID: 26061739 PMCID: PMC4465667 DOI: 10.1371/journal.pone.0128181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/24/2015] [Indexed: 11/19/2022] Open
Abstract
The lack of DNA sequence information for most non-model organisms impairs the design of primers that are universally applicable for the study of molecular polymorphisms in nuclear markers. Next-generation sequencing (NGS) techniques nowadays provide a powerful approach to overcome this limitation. We present a flexible and inexpensive method to identify large numbers of nuclear primer pairs that amplify in most Brassicaceae species. We first obtained and mapped NGS transcriptome sequencing reads from two of the distantly related Brassicaceae species, Cardamine hirsuta and Arabis alpina, onto the Arabidopsis thaliana reference genome, and then identified short conserved sequence motifs among the three species bioinformatically. From these, primer pairs to amplify coding regions (nuclear protein coding loci, NPCL) and exon-primed intron-crossing sequences (EPIC) were developed. We identified 2,334 universally applicable primer pairs, targeting 1,164 genes, which provide a large pool of markers as readily usable genomic resource that will help addressing novel questions in the Brassicaceae family. Testing a subset of the newly designed nuclear primer pairs revealed that a great majority yielded a single amplicon in all of the 30 investigated Brassicaceae taxa. Sequence analysis and phylogenetic reconstruction with a subset of these markers on different levels of phylogenetic divergence in the mustard family were compared with previous studies. The results corroborate the usefulness of the newly developed primer pairs, e.g., for phylogenetic analyses or population genetic studies. Thus, our method provides a cost-effective approach for designing nuclear loci across a broad range of taxa and is compatible with current NGS technologies.
Collapse
Affiliation(s)
- Reinhold Stockenhuber
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Stefan Zoller
- Genetic Diversity Centre, ETH Zurich, Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Felix Gugerli
- WSL Swiss Federal Research Institute, Birmensdorf, Switzerland
| | - Kentaro K. Shimizu
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
22
|
Ruiz-Estévez M, Ruiz-Ruano FJ, Cabrero J, Bakkali M, Perfectti F, López-León MD, Camacho JPM. Non-random expression of ribosomal DNA units in a grasshopper showing high intragenomic variation for the ITS2 region. INSECT MOLECULAR BIOLOGY 2015; 24:319-330. [PMID: 25565136 DOI: 10.1111/imb.12158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We analyse intragenomic variation of the ITS2 internal transcribed spacer of ribosomal DNA (rDNA) in the grasshopper Eyprepocnemis plorans, by means of tagged PCR 454 amplicon sequencing performed on both genomic DNA (gDNA) and RNA-derived complementary DNA (cDNA), using part of the ITS2 flanking coding regions (5.8S and 28S rDNA) as an internal control for sequencing errors. Six different ITS2 haplotypes (i.e. variants for at least one nucleotide in the complete ITS2 sequence) were found in a single population, one of them (Hap4) being specific to a supernumerary (B) chromosome. The analysis of both gDNA and cDNA from the same individuals provided an estimate of the expression efficiency of the different haplotypes. We found random expression (i.e. about similar recovery in gDNA and cDNA) for three haplotypes (Hap1, Hap2 and Hap5), but significant underexpression for three others (Hap3, Hap4 and Hap6). Hap4 was the most extremely underexpressed and, remarkably, it showed the lowest sequence conservation for the flanking 5.8-28S coding regions in the gDNA reads but the highest conservation (100%) in the cDNA ones, suggesting the preferential expression of mutation-free rDNA units carrying this ITS2 haplotype. These results indicate that the ITS2 region of rDNA is far from complete homogenization in this species, and that the different rDNA units are not expressed at random, with some of them being severely downregulated.
Collapse
Affiliation(s)
- M Ruiz-Estévez
- Departamento de Genética, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Tang Y, Yukawa T, Bateman RM, Jiang H, Peng H. Phylogeny and classification of the East Asian Amitostigma alliance (Orchidaceae: Orchideae) based on six DNA markers. BMC Evol Biol 2015; 15:96. [PMID: 26006185 PMCID: PMC4479074 DOI: 10.1186/s12862-015-0376-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/08/2015] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Tribe Orchideae dominates the orchid flora of the temperate Northern Hemisphere but its representatives in East Asia had been subject to less intensive phylogenetic study than those in Eurasia and North America. Although this situation was improved recently by the molecular phylogenetic study of Jin et al., comparatively few species were analyzed from the species-rich and taxonomically controversial East Asian Amitostigma alliance. Here, we present a framework nrITS tree of 235 accessions of Orchideae plus an in-depth analysis of 110 representative accessions, encompassing most widely recognized species within the alliance, to elucidate their relationships. RESULTS We used parsimony, likelihood and Bayesian approaches to generate trees from data for two nuclear (nrITS, low-copy Xdh) and four chloroplast (matK, psbA-trnH, trnL-F, trnS-trnG) markers. Nuclear and plastid data were analyzed separately due to a few hard incongruences that most likely reflect chloroplast capture. Our results suggest key phylogenetic placements for Sirindhornia and Brachycorythis, and confirm previous assertions that the Amitostigma alliance is monophyletic and sister to the Eurasian plus European clades of subtribe Orchidinae. Seven robust clades are evident within the alliance, but none corresponds precisely with any of the traditional genera; the smaller and more morphologically distinct genera Tsaiorchis, Hemipilia, Neottianthe and Hemipiliopsis are monophyletic but each is nested within a polyphyletic plexus of species attributed to either Ponerorchis or the most plesiomorphic genus, Amitostigma. Two early-divergent clades that escaped analysis by Jin et al. undermine their attempt to circumscribe an expanded monophyletic genus Ponerorchis. CONCLUSIONS We provide a new framework on the complex phylogenetic relationships between Amitostigma and other genera traditionally included in its alliance; based on which, we combine the entire Amitostigma alliance into a morphologically and molecularly circumscribed Amitostigma sensu latissimo that also contains seven molecularly circumscribed sections. Our molecular trees imply unusually high levels of morphological homoplasy, but these will need to be quantified via a future group-wide review of the alliance based on living plants if morphology is to be fully integrated into our classification.
Collapse
Affiliation(s)
- Ying Tang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tomohisa Yukawa
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan.
| | - Richard M Bateman
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, UK.
| | - Hong Jiang
- Yunnan Academy of Forestry/Yunnan Laboratory for Conservation of Rare, Endangered and Endemic Forest Plants, State Forestry Administration, Kunming, 650204, Yunnan, China.
| | - Hua Peng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
24
|
Coutinho JP, Carvalho A, Lima-Brito J. Taxonomic and ecological discrimination of Fagaceae species based on internal transcribed spacer polymerase chain reaction-restriction fragment length polymorphism. AOB PLANTS 2014; 7:plu079. [PMID: 25429047 PMCID: PMC4294445 DOI: 10.1093/aobpla/plu079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
The internal transcribed spacer (ITS) of ribosomal DNA has been used to confirm taxonomic classifications and define phylogenies in several plant species following sequencing or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) techniques. In this study, co-dominant ITS PCR-RFLP molecular markers were produced in 30 Fagaceae individuals belonging to the Castanea, Fagus and Quercus genera in order to assess the potential of this technique for taxonomic discrimination and determination of phylogenies. The complete ITS region (ITS1-5.8S rRNA-ITS2) was amplified in most of the Fagaceae individuals as a single fragment of ∼700 bp. The ITS amplified products were digested with nine restriction enzymes, but only four (HaeIII, HpaII, TaqI and Sau96I) produced polymorphic/discriminative patterns. The total expected heterozygosity (HE) was 20.31 % and the gene diversity (I), 32.97 %. The ITS polymorphism was higher within the Quercus genus (85.3 %). The ITS PCR-RFLP markers clustered the Fagaceae species according to genus or infrageneric group (in the case of Quercus sp. individuals). Five oaks did not cluster in line with the adopted infrageneric classification, but three of these were grouped according to their actual ecological distributions. The ITS PCR-RFLP markers indicated their potential for phylogenetic studies since all Fagaceae individuals were discriminated according to genus, and most of the oaks were clustered according to infrageneric group or ecological area.
Collapse
Affiliation(s)
- João Paulo Coutinho
- Institute of Biotechnology and Bioengineering (IBB), Centre of Genomics and Biotechnology (CGB), University of Tras-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Ana Carvalho
- Institute of Biotechnology and Bioengineering (IBB), Centre of Genomics and Biotechnology (CGB), University of Tras-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - José Lima-Brito
- Institute of Biotechnology and Bioengineering (IBB), Centre of Genomics and Biotechnology (CGB), University of Tras-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
25
|
Weber AAT, Pawlowski J. Wide Occurrence of SSU rDNA Intragenomic Polymorphism in Foraminifera and its Implications for Molecular Species Identification. Protist 2014; 165:645-61. [DOI: 10.1016/j.protis.2014.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/09/2014] [Accepted: 07/16/2014] [Indexed: 11/28/2022]
|
26
|
André A, Quillévéré F, Morard R, Ujiié Y, Escarguel G, de Vargas C, de Garidel-Thoron T, Douady CJ. SSU rDNA divergence in planktonic foraminifera: molecular taxonomy and biogeographic implications. PLoS One 2014; 9:e104641. [PMID: 25119900 PMCID: PMC4131912 DOI: 10.1371/journal.pone.0104641] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/11/2014] [Indexed: 11/21/2022] Open
Abstract
The use of planktonic foraminifera in paleoceanography requires taxonomic consistency and precise assessment of the species biogeography. Yet, ribosomal small subunit (SSUr) DNA analyses have revealed that most of the modern morpho-species of planktonic foraminifera are composed of a complex of several distinct genetic types that may correspond to cryptic or pseudo-cryptic species. These genetic types are usually delimitated using partial sequences located at the 3'end of the SSUrDNA, but typically based on empirical delimitation. Here, we first use patristic genetic distances calculated within and among genetic types of the most common morpho-species to show that intra-type and inter-type genetic distances within morpho-species may significantly overlap, suggesting that genetic types have been sometimes inconsistently defined. We further apply two quantitative and independent methods, ABGD (Automatic Barcode Gap Detection) and GMYC (General Mixed Yule Coalescent) to a dataset of published and newly obtained partial SSU rDNA for a more objective assessment of the species status of these genetic types. Results of these complementary approaches are highly congruent and lead to a molecular taxonomy that ranks 49 genetic types of planktonic foraminifera as genuine (pseudo)cryptic species. Our results advocate for a standardized sequencing procedure allowing homogenous delimitations of (pseudo)cryptic species. On the ground of this revised taxonomic framework, we finally provide an integrative taxonomy synthesizing geographic, ecological and morphological differentiations that can occur among the genuine (pseudo)cryptic species. Due to molecular, environmental or morphological data scarcities, many aspects of our proposed integrative taxonomy are not yet fully resolved. On the other hand, our study opens up the potential for a correct interpretation of environmental sequence datasets.
Collapse
Affiliation(s)
- Aurore André
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5276: Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Université Lyon 1, Villeurbanne, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6112: Laboratoire de Planétologie et de Géodynamique - Bioindicateurs Actuels et Fossiles, Université d'Angers, Angers, France
| | - Frédéric Quillévéré
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5276: Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Université Lyon 1, Villeurbanne, France
| | - Raphaël Morard
- Zentrum für marine Umweltwissenschaften MARUM, Universität Bremen, Bremen, Germany
| | - Yurika Ujiié
- Department of Biology, Shinshu University, Matsumoto, Japan
| | - Gilles Escarguel
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5276: Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Université Lyon 1, Villeurbanne, France
| | - Colomban de Vargas
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7144: Evolution des Protistes et des Ecosystèmes Pélagiques, Université Pierre et Marie Curie-Station Biologique de Roscoff, Roscoff, France
| | - Thibault de Garidel-Thoron
- Centre National de la Recherche Scientifique, Centre de Recherche et d'Enseignement de Géosciences de l'Environnement, Université Aix-Marseille, Aix-en-Provence, France
| | - Christophe J. Douady
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5023: Ecologie des Hydrosystèmes Fluviaux, Université Lyon 1, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
27
|
Bertrand C, Janzen DH, Hallwachs W, Burns JM, Gibson JF, Shokralla S, Hajibabaei M. Mitochondrial and nuclear phylogenetic analysis with Sanger and next-generation sequencing shows that, in Área de Conservación Guanacaste, northwestern Costa Rica, the skipper butterfly named Urbanus belli (family Hesperiidae) comprises three morphologically cryptic species. BMC Evol Biol 2014; 14:153. [PMID: 25005355 PMCID: PMC4112655 DOI: 10.1186/1471-2148-14-153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/17/2014] [Indexed: 11/22/2022] Open
Abstract
Background Skipper butterflies (Hesperiidae) are a relatively well-studied family of Lepidoptera. However, a combination of DNA barcodes, morphology, and natural history data has revealed several cryptic species complexes within them. Here, we investigate three DNA barcode lineages of what has been identified as Urbanus belli (Hesperiidae, Eudaminae) in Área de Conservación Guanacaste (ACG), northwestern Costa Rica. Results Although no morphological traits appear to distinguish among the three, congruent nuclear and mitochondrial lineage patterns show that “Urbanus belli” in ACG is a complex of three sympatric species. A single strain of Wolbachia present in two of the three cryptic species indicates that Urbanus segnestami Burns (formerly Urbanus belliDHJ01), Urbanus bernikerni Burns (formerly Urbanus belliDHJ02), and Urbanus ehakernae Burns (formerly Urbanus belliDHJ03) may be biologically separated by Wolbachia, as well as by their genetics. Use of parallel sequencing through 454-pyrosequencing improved the utility of ITS2 as a phylogenetic marker and permitted examination of the intra- and interlineage relationships of ITS2 variants within the species complex. Interlineage, intralineage and intragenomic compensatory base pair changes were discovered in the secondary structure of ITS2. Conclusion These findings corroborate the existence of three cryptic species. Our confirmation of a novel cryptic species complex, initially suggested by DNA barcode lineages, argues for using a multi-marker approach coupled with next-generation sequencing for exploration of other suspected species complexes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mehrdad Hajibabaei
- Biodiversity Institute of Ontario & Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
28
|
Multiple ITS copies reveal extensive hybridization within Rheum (Polygonaceae), a genus that has undergone rapid radiation. PLoS One 2014; 9:e89769. [PMID: 24587023 PMCID: PMC3937351 DOI: 10.1371/journal.pone.0089769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 01/25/2014] [Indexed: 11/24/2022] Open
Abstract
Background During adaptive radiation events, characters can arise multiple times due to parallel evolution, but transfer of traits through hybridization provides an alternative explanation for the same character appearing in apparently non-sister lineages. The signature of hybridization can be detected in incongruence between phylogenies derived from different markers, or from the presence of two divergent versions of a nuclear marker such as ITS within one individual. Methodology/Principal Findings In this study, we cloned and sequenced ITS regions for 30 species of the genus Rheum, and compared them with a cpDNA phylogeny. Seven species contained two divergent copies of ITS that resolved in different clades from one another in each case, indicating hybridization events too recent for concerted evolution to have homogenised the ITS sequences. Hybridization was also indicated in at least two further species via incongruence in their position between ITS and cpDNA phylogenies. None of the ITS sequences present in these nine species matched those detected in any other species, which provides tentative evidence against recent introgression as an explanation. Rheum globulosum, previously indicated by cpDNA to represent an independent origin of decumbent habit, is indicated by ITS to be part of clade of decumbent species, which acquired cpDNA of another clade via hybridization. However decumbent and glasshouse morphology are confirmed to have arisen three and two times, respectively. Conclusions These findings suggested that hybridization among QTP species of Rheum has been extensive, and that a role of hybridization in diversification of Rheum requires investigation.
Collapse
|
29
|
Galián JA, Rosato M, Rosselló JA. Partial Sequence Homogenization in the 5S Multigene Families May Generate Sequence Chimeras and Spurious Results in Phylogenetic Reconstructions. Syst Biol 2014; 63:219-30. [DOI: 10.1093/sysbio/syt101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- José A. Galián
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008 Valencia, Spain; and 2Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300 Blanes, Catalonia, Spain
| | - Marcela Rosato
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008 Valencia, Spain; and 2Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300 Blanes, Catalonia, Spain
| | - Josep A. Rosselló
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008 Valencia, Spain; and 2Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300 Blanes, Catalonia, Spain
- Jardín Botánico, Universidad de Valencia, c/Quart 80, E-46008 Valencia, Spain; and 2Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300 Blanes, Catalonia, Spain
| |
Collapse
|
30
|
Mahelka V, Kopecký D, Baum BR. Contrasting Patterns of Evolution of 45S and 5S rDNA Families Uncover New Aspects in the Genome Constitution of the Agronomically Important Grass Thinopyrum intermedium (Triticeae). Mol Biol Evol 2013; 30:2065-86. [DOI: 10.1093/molbev/mst106] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
Trinh NA, Nguyen HTT, Park SJ. Phylogenetic Relationships of the Korean Trigonotis Steven (Boraginaceae) Based on Chloroplast DNA (cpDNA) and Nuclear Ribosomal Markers (nrDNA) Region. ACTA ACUST UNITED AC 2012. [DOI: 10.7732/kjpr.2012.25.6.753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Ritz C, Reiker J, Charles G, Hoxey P, Hunt D, Lowry M, Stuppy W, Taylor N. Molecular phylogeny and character evolution in terete-stemmed Andean opuntias (Cactaceae−Opuntioideae). Mol Phylogenet Evol 2012; 65:668-81. [DOI: 10.1016/j.ympev.2012.07.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/23/2012] [Accepted: 07/23/2012] [Indexed: 11/15/2022]
|
33
|
SONG HUIXING, GAO SUPING, JIANG MINGYAN, LIU GUANGLI, YU XIAOFANG, CHEN QIBING. The evolution and utility of ribosomal ITS sequences in Bambusinae and related species: divergence, pseudogenes, and implications for phylogeny. J Genet 2012; 91:129-39. [DOI: 10.1007/s12041-012-0170-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Arca M, Hinsinger DD, Cruaud C, Tillier A, Bousquet J, Frascaria-Lacoste N. Deciduous trees and the application of universal DNA barcodes: a case study on the circumpolar Fraxinus. PLoS One 2012; 7:e34089. [PMID: 22479532 PMCID: PMC3313964 DOI: 10.1371/journal.pone.0034089] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/21/2012] [Indexed: 02/01/2023] Open
Abstract
The utility of DNA barcoding for identifying representative specimens of the circumpolar tree genus Fraxinus (56 species) was investigated. We examined the genetic variability of several loci suggested in chloroplast DNA barcode protocols such as matK, rpoB, rpoC1 and trnH-psbA in a large worldwide sample of Fraxinus species. The chloroplast intergenic spacer rpl32-trnL was further assessed in search for a potentially variable and useful locus. The results of the study suggest that the proposed cpDNA loci, alone or in combination, cannot fully discriminate among species because of the generally low rates of substitution in the chloroplast genome of Fraxinus. The intergenic spacer trnH-psbA was the best performing locus, but genetic distance-based discrimination was moderately successful and only resulted in the separation of the samples at the subgenus level. Use of the BLAST approach was better than the neighbor-joining tree reconstruction method with pairwise Kimura's two-parameter rates of substitution, but allowed for the correct identification of only less than half of the species sampled. Such rates are substantially lower than the success rate required for a standardised barcoding approach. Consequently, the current cpDNA barcodes are inadequate to fully discriminate Fraxinus species. Given that a low rate of substitution is common among the plastid genomes of trees, the use of the plant cpDNA "universal" barcode may not be suitable for the safe identification of tree species below a generic or sectional level. Supplementary barcoding loci of the nuclear genome and alternative solutions are proposed and discussed.
Collapse
Affiliation(s)
- Mariangela Arca
- Université Paris Sud, UMR 8079, Orsay, France
- Centre national de la recherche scientifique, UMR 8079, Orsay, France
- AgroParisTech, UMR 8079, Orsay, France
| | - Damien Daniel Hinsinger
- Université Paris Sud, UMR 8079, Orsay, France
- Centre national de la recherche scientifique, UMR 8079, Orsay, France
- AgroParisTech, UMR 8079, Orsay, France
- Chaire de recherche du Canada en génomique forestière et environnementale, Centre d'étude de la forêt, Université Laval, Québec, Québec, Canada
| | | | - Annie Tillier
- Département systématique et évolution and Service de systématique moléculaire, Muséum national d'histoire naturelle, Paris, France
| | - Jean Bousquet
- Chaire de recherche du Canada en génomique forestière et environnementale, Centre d'étude de la forêt, Université Laval, Québec, Québec, Canada
| | - Nathalie Frascaria-Lacoste
- Université Paris Sud, UMR 8079, Orsay, France
- Centre national de la recherche scientifique, UMR 8079, Orsay, France
- AgroParisTech, UMR 8079, Orsay, France
| |
Collapse
|
35
|
Zhang YX, Zeng CX, Li DZ. Complex evolution in Arundinarieae (Poaceae: Bambusoideae): incongruence between plastid and nuclear GBSSI gene phylogenies. Mol Phylogenet Evol 2012; 63:777-97. [PMID: 22415014 DOI: 10.1016/j.ympev.2012.02.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
The monophyly of tribe Arundinarieae (the temperate woody bamboos) has been unequivocally recovered in previous molecular phylogenetic studies. In a recent phylogenetic study, 10 major lineages in Arundinarieae were resolved based on eight non-coding plastid regions, which conflicted significantly with morphological classifications both at the subtribal and generic levels. Nevertheless, relationships among and within the 10 lineages remain unclear. In order to further unravel the evolutionary history of Arundinarieae, we used the nuclear GBSSI gene sequences along with those of eight plastid regions for phylogenetic reconstruction, with an emphasis on Chinese species. The results of the plastid analyses agreed with previous studies, whereas 13 primary clades revealed in the GBSSI phylogeny were better resolved at the generic level than the plastid phylogeny. Our analyses also revealed many inconsistencies between the plastid DNA and the nuclear GBSSI trees. These results implied that the nuclear genome and the plastid genome had different evolutionary trajectories. The patterns of incongruence suggested that lack of informative characters, incomplete lineage sorting, and/or hybridization (introgression) could be the causes. Seven putative hybrid species were hypothesized, four of which are discussed in detail on the basis of topological incongruence, chromosome numbers, morphology, and distribution patterns, and those taxa probably resulted from homoploid hybrid speciation. Overall, our study indicates that the tribe Arundinarieae has undergone a complex evolution.
Collapse
Affiliation(s)
- Yu-Xiao Zhang
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Heilongtan, Kunming, Yunnan 650201, PR China
| | | | | |
Collapse
|
36
|
Chemisquy MA, Morrone O. Molecular phylogeny of Gavilea (Chloraeinae: Orchidaceae) using plastid and nuclear markers. Mol Phylogenet Evol 2012; 62:889-97. [DOI: 10.1016/j.ympev.2011.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/25/2011] [Accepted: 11/26/2011] [Indexed: 11/16/2022]
|
37
|
Early evolutionary colocalization of the nuclear ribosomal 5S and 45S gene families in seed plants: evidence from the living fossil gymnosperm Ginkgo biloba. Heredity (Edinb) 2012; 108:640-6. [PMID: 22354111 DOI: 10.1038/hdy.2012.2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In seed plants, the colocalization of the 5S loci within the intergenic spacer (IGS) of the nuclear 45S tandem units is restricted to the phylogenetically derived Asteraceae family. However, fluorescent in situ hybridization (FISH) colocalization of both multigene families has also been observed in other unrelated seed plant lineages. Previous work has identified colocalization of 45S and 5S loci in Ginkgo biloba using FISH, but these observations have not been confirmed recently by sequencing a 1.8 kb IGS. In this work, we report the presence of the 45S-5S linkage in G. biloba, suggesting that in seed plants the molecular events leading to the restructuring of the ribosomal loci are much older than estimated previously. We obtained a 6.0 kb IGS fragment showing structural features of functional sequences, and a single copy of the 5S gene was inserted in the same direction of transcription as the ribosomal RNA genes. We also obtained a 1.8 kb IGS that was a truncate variant of the 6.0 kb IGS lacking the 5S gene. Several lines of evidence strongly suggest that the 1.8 kb variants are pseudogenes that are present exclusively on the satellite chromosomes bearing the 45S-5S genes. The presence of ribosomal IGS pseudogenes best reconciles contradictory results concerning the presence or absence of the 45S-5S linkage in Ginkgo. Our finding that both ribosomal gene families have been unified to a single 45S-5S unit in Ginkgo indicates that an accurate reassessment of the organization of rDNA genes in basal seed plants is necessary.
Collapse
|
38
|
Mráz P, Garcia-Jacas N, Gex-Fabry E, Susanna A, Barres L, Müller-Schärer H. Allopolyploid origin of highly invasive Centaurea stoebe s.l. (Asteraceae). Mol Phylogenet Evol 2011; 62:612-23. [PMID: 22126902 DOI: 10.1016/j.ympev.2011.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 09/26/2011] [Accepted: 11/04/2011] [Indexed: 02/04/2023]
Abstract
Spotted knapweed (Centaurea stoebe) occurs from Western Asia to Western Europe both as diploid and tetraploid cytotypes, predominantly in single-cytotype populations with higher frequency of diploid populations. Interestingly, only tetraploids have been recorded so far from its introduced range in North America where they became highly invasive. We performed phylogenetic and network analyses of more than 40 accessions of the C. stoebe and C. paniculata groups and other related taxa using cloned internal transcribed spacer (ITS) and sequences of the chloroplast trnT-trnL and atpBrbcL regions to (i) assess the evolutionary origin of tetraploid C. stoebe s.l., and (ii) uncover the phylogeny of the C. stoebe group. Both issues have not been studied so far and thus remained controversial. Cloned ITS sequences showed the presence of two slightly divergent ribotypes occurring in tetraploid cytotype, while only one major ribotype was present in diploid C. stoebe s.str. This pattern suggests an allopolyploid origin of tetraploids with contribution of the diploid C. stoebe s.str. genome. Although we were not able to detect the second parental taxon, we hypothesize that hybridization might have triggered important changes in morphology and life history traits, which in turn may explain the colonization success of the tetraploid taxon. Bayesian relaxed clock estimations indicate a relatively recent--Pleistocene origin of the tetraploid C. stoebe s.l. Furthermore, our analyses showed a deep split between the C. paniculata and C. stoebe groups, and a young diversification of the taxa within the C. stoebe group. In contrast to nrDNA analyses, the observed pattern based on two cpDNA regions was inconclusive with respect to the origin and phylogeny of the studied taxa, most likely due to shared ancient polymorphism and frequent homoplasies.
Collapse
Affiliation(s)
- Patrik Mráz
- Department of Biology, Unit of Ecology & Evolution, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland.
| | | | | | | | | | | |
Collapse
|
39
|
Molecular characterization of Atractolytocestus sagittatus (Cestoda: Caryophyllidea), monozoic parasite of common carp, and its differentiation from the invasive species Atractolytocestus huronensis. Parasitol Res 2011; 110:1621-9. [DOI: 10.1007/s00436-011-2673-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/27/2011] [Indexed: 01/24/2023]
|
40
|
Zhang CY, Wang FY, Yan HF, Hao G, Hu CM, Ge XJ. Testing DNA barcoding in closely related groups of Lysimachia L. (Myrsinaceae). Mol Ecol Resour 2011; 12:98-108. [PMID: 21967641 DOI: 10.1111/j.1755-0998.2011.03076.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been suggested that rbcL and matK are the core barcodes in plants, but they are not powerful enough to distinguish between closely related plant groups. Additional barcodes need to be evaluated to improve the level of discrimination between plant species. Because of their well-studied taxonomy and extreme diversity, we used Chinese Lysimachia (Myrsinaceae) species to test the performance of core barcodes (rbcL and matK) and two additional candidate barcodes (trnH-psbA and the nuclear ribosomal ITS); 97 accessions from four subgenus representing 34 putative Lysimachia species were included in this study. And many closely related species pairs in subgen. Lysimachia were covered to detect their discriminatory power. The inefficiency of rbcL and matK alone or combined in closely related plant groups was validated in this study. TrnH-psbA combined with rbcL + matK did not yet perform well in Lysimachia groups. In contrast, ITS, alone or combined with rbcL and/or matK, revealed high resolving ability in Lysimachia. We support ITS as a supplementary barcode on the basis of core barcode rbcL and matK. Besides, this study also illustrates several mistakes or underlying evolutionary events in Lysimachia detected by DNA barcoding.
Collapse
Affiliation(s)
- Cai-Yun Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | | | | | | | | | | |
Collapse
|
41
|
The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays. BMC Evol Biol 2011; 11:151. [PMID: 21627815 PMCID: PMC3123226 DOI: 10.1186/1471-2148-11-151] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/31/2011] [Indexed: 11/10/2022] Open
Abstract
Background Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates. Results We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution. Conclusions We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution.
Collapse
|
42
|
Garcia S, McArthur ED, Pellicer J, Sanderson SC, Vallès J, Garnatje T. A molecular phylogenetic approach to western North America endemic Artemisia and allies (Asteraceae): untangling the sagebrushes. AMERICAN JOURNAL OF BOTANY 2011; 98:638-653. [PMID: 21613164 DOI: 10.3732/ajb.1000386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PREMISE OF THE STUDY Artemisia subgenus Tridentatae plants characterize the North American Intermountain West. These are landscape-dominant constituents of important ecological communities and habitats for endemic wildlife. Together with allied species and genera (Picrothamnus and Sphaeromeria), they make up an intricate series of taxa whose limits are uncertain, likely the result of reticulate evolution. The objectives of this study were to resolve relations among Tridentatae species and their near relatives by delimiting the phylogenetic positions of subgenus Tridentatae species with particular reference to its New World geographic placement and to provide explanations for the relations of allied species and genera with the subgenus with an assessment of their current taxonomic placement. METHODS Bayesian inference and maximum parsimony analysis were based on 168 newly generated sequences (including the nuclear ITS and ETS and the plastid trnS(UGA)-trnfM(CAU) and trnS(GCU)-trnC(GCA)) and 338 previously published sequences (ITS and ETS). Genome size by flow cytometry of species from Sphaeromeria was also determined. KEY RESULTS The results support an expanded concept and reconfiguration of Tridentatae to accommodate additional endemic North American Artemisia species. The monotypic Picrothamnus and all Sphaeromeria species appear nested within subgenus Tridentatae clade. CONCLUSIONS A redefinition of subgenus Tridentatae to include other western North American endemics is supported. We propose a new circumscription of the subgenus and divide it into three sections: Tridentatae, Filifoliae, and Nebulosae. The position of the circumboreal and other North American species suggests that subgenus Artemisia is the ancestral stock for the New World endemics, including those native to South America.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (IBB-CSIC-ICUB). Passeig del Migdia s/n 08038 Barcelona, Catalonia, Spain.
| | | | | | | | | | | |
Collapse
|
43
|
Hybrid genera in Liatrinae (Asteraceae: Eupatorieae). Mol Phylogenet Evol 2011; 59:158-67. [DOI: 10.1016/j.ympev.2011.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/24/2011] [Accepted: 01/25/2011] [Indexed: 11/21/2022]
|
44
|
Hřibová E, Čížková J, Christelová P, Taudien S, de Langhe E, Doležel J. The ITS1-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny. PLoS One 2011; 6:e17863. [PMID: 21445344 PMCID: PMC3062550 DOI: 10.1371/journal.pone.0017863] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/11/2011] [Indexed: 01/27/2023] Open
Abstract
Genes coding for 45S ribosomal RNA are organized in tandem arrays of up to several thousand copies and contain 18S, 5.8S and 26S rRNA units separated by internal transcribed spacers ITS1 and ITS2. While the rRNA units are evolutionary conserved, ITS show high level of interspecific divergence and have been used frequently in genetic diversity and phylogenetic studies. In this work we report on the structure and diversity of the ITS region in 87 representatives of the family Musaceae. We provide the first detailed information on ITS sequence diversity in the genus Musa and describe the presence of more than one type of ITS sequence within individual species. Both Sanger sequencing of amplified ITS regions and whole genome 454 sequencing lead to similar phylogenetic inferences. We show that it is necessary to identify putative pseudogenic ITS sequences, which may have negative effect on phylogenetic reconstruction at lower taxonomic levels. Phylogenetic reconstruction based on ITS sequence showed that the genus Musa is divided into two distinct clades – Callimusa and Australimusa and Eumusa and Rhodochlamys. Most of the intraspecific banana hybrids analyzed contain conserved parental ITS sequences, indicating incomplete concerted evolution of rDNA loci. Independent evolution of parental rDNA in hybrids enables determination of genomic constitution of hybrids using ITS. The observation of only one type of ITS sequence in some of the presumed interspecific hybrid clones warrants further study to confirm their hybrid origin and to unravel processes leading to evolution of their genomes.
Collapse
Affiliation(s)
- Eva Hřibová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Jana Čížková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Pavla Christelová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Stefan Taudien
- Genome Analysis, Leibniz Institute for Age Research, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Edmond de Langhe
- Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
- * E-mail:
| |
Collapse
|
45
|
Hamsher SE, Evans KM, Mann DG, Poulíčková A, Saunders GW. Barcoding diatoms: exploring alternatives to COI-5P. Protist 2011; 162:405-22. [PMID: 21239228 DOI: 10.1016/j.protis.2010.09.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/12/2010] [Indexed: 11/15/2022]
Abstract
Diatoms are a diverse lineage with species that can be difficult to identify or cryptic, but DNA barcoding, a molecular technique, can assist identification and facilitate studies of speciation and biogeography. The most common region used for DNA barcoding, COI-5P, can distinguish diatom species, but has not displayed universality (i.e., successful PCR amplification from diverse taxa). Therefore, we have assessed the following alternative markers: ∼1400bp of rbcL; 748bp at the 3' end of rbcL (rbcL-3P); LSU D2/D3 and UPA. Sellaphora isolates were used to determine each marker's ability to discriminate among closely related species and culture collection material was utilized to explore further marker universality. All of the alternative markers investigated have greater universality than COI-5P. Both full and partial (3P) rbcL regions had the power to discriminate between all species, but rbcL-3P can be sequenced more easily. LSU D2/D3 could distinguish between all but the most closely related species (96%), whereas UPA only distinguished 20% of species. Our observations suggest that rbcL-3P should be used as the primary marker for diatom barcoding, while LSU D2/D3 should be sequenced as a secondary marker to facilitate environmental surveys.
Collapse
Affiliation(s)
- Sarah E Hamsher
- Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | | | | | | | | |
Collapse
|
46
|
Espert SM, Burghardt AD. Biogeography and divergence times of genus Macroptilium (Leguminosae). AOB PLANTS 2010; 2010:plq018. [PMID: 22476076 PMCID: PMC2995337 DOI: 10.1093/aobpla/plq018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/23/2010] [Accepted: 10/14/2010] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Macroptilium is a herbaceous legume genus with 18 currently accepted species, seven of them with economic importance due to their use as forage, green fertilizer and in medicine. The genus is strictly American, with an unknown biogeographic history. The aim of this study was to infer a biogeographic pattern of Macroptilium and to estimate its divergence times, using sequences from the nuclear ribosomal DNA internal transcribed spacers. METHODOLOGY To study the historical biogeography of Macroptilium, two approaches were used: area optimization on a previously obtained phylogeny and a dispersal-vicariance analysis. Divergence times were calculated by Bayesian methods. PRINCIPAL RESULTS The analyses revealed that Macroptilium has its origin in the middle Pliocene, with an estimated age that ranges from 2.9 to 4 million years. The biogeographic analyses placed its origin in South America, specifically on the Chaquean sub-region, where most of the cladogenetic events of the genus took place. CONCLUSIONS Macroptilium constitutes a further example of the geographic pattern displayed by numerous Neotropical taxa that moved north from South America to dominate the Central American lowlands after the land connection across the Isthmus of Panama was established.
Collapse
Affiliation(s)
- Shirley M. Espert
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia D. Burghardt
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
47
|
Peng YY, Baum BR, Ren CZ, Jiang QT, Chen GY, Zheng YL, Wei YM. The evolution pattern of rDNA ITS in Avena and phylogenetic relationship of the Avena species (Poaceae: Aveneae). Hereditas 2010; 147:183-204. [PMID: 21039456 DOI: 10.1111/j.1601-5223.2010.02172.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ribosomal ITS sequences are commonly used for phylogenetic reconstruction because they are included in rDNA repeats, and these repeats often undergo rapid concerted evolution within and between arrays. Therefore, the rDNA ITS copies appear to be virtually identical and can sometimes be treated as a single gene. In this paper we examined ITS polymorphism within and among 13 diploid (A and C genomes), seven tetraploid (AB, AC and CC genomes) and four hexaploid (ACD genome) to infer the extent and direction of concerted evolution, and to reveal the phylogenetic and genome relationship among species of Avena. A total of 170 clones of the ITS1-5.8S-ITS2 fragment were sequenced to carry out haplotype and phylogenetic analysis. In addition, 111 Avena ITS sequences retrieved from GenBank were combined with 170 clones to construct a phylogeny and a network. We demonstrate the major divergence between the A and C genomes whereas the distinction among the A and B/D genomes was generally not possible. High affinity among the A(d) genome species A. damascena and the ACD genome species A. fatua was found, whereas the rest of the ACD genome hexaploids and the AACC tetraploids were highly affiliated with the A(l) genome diploid A. longiglumis. One of the AACC species A. murphyi showed the closest relationship with most of the hexaploid species. Both C(v) and C(p) genome species have been proposed as paternal donors of the C-genome carrying polyploids. Incomplete concerted evolution is responsible for the observed differences among different clones of a single Avena individual. The elimination of C-genome rRNA sequences and the resulting evolutionary inference of hexaploid species are discussed.
Collapse
Affiliation(s)
- Yuan-Ying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Ya'an, Sichuan, PR China
| | | | | | | | | | | | | |
Collapse
|
48
|
CONESA MIQUELÀ, MUS MAURICI, ROSSELLÓ JOSEPA. Who threatens who? Natural hybridization between Lotus dorycnium and the island endemic Lotus fulgurans (Fabaceae). Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01456.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Xiao LQ, Möller M, Zhu H. High nrDNA ITS polymorphism in the ancient extant seed plant Cycas: Incomplete concerted evolution and the origin of pseudogenes. Mol Phylogenet Evol 2010; 55:168-177. [PMID: 19945537 DOI: 10.1016/j.ympev.2009.11.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 11/15/2022]
Affiliation(s)
- Long-Qian Xiao
- Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Kunming 650223, China; Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Michael Möller
- Royal Botanical Garden Edinburgh, Edinburg EH3 5LR, Scotland, United Kingdom
| | - Hua Zhu
- Xishuangbanna Tropical Botanical Garden, The Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
50
|
Vijaykumar A, Saini A, Jawali N. Phylogenetic Analysis of Subgenus Vigna Species Using Nuclear Ribosomal RNA ITS: Evidence of Hybridization among Vigna unguiculata Subspecies. J Hered 2009; 101:177-88. [PMID: 19861637 DOI: 10.1093/jhered/esp084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Archana Vijaykumar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | | | | |
Collapse
|