1
|
The Gene Targeting Approach of Small Fragment Homologous Replacement (SFHR) Alters the Expression Patterns of DNA Repair and Cell Cycle Control Genes. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e304. [PMID: 27045208 PMCID: PMC5014528 DOI: 10.1038/mtna.2016.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/12/2015] [Indexed: 12/27/2022]
Abstract
Cellular responses and molecular mechanisms activated by exogenous DNA that
invades cells are only partially understood. This limits the practical use of
gene targeting strategies. Small fragment homologous replacement (SFHR) uses a
small exogenous wild-type DNA fragment to restore the endogenous wild-type
sequence; unfortunately, this mechanism has a low frequency of correction.
In this study, we used a mouse embryonic fibroblast cell line with a stably
integrated mutated gene for enhanced green fluorescence protein. The restoration
of a wild-type sequence can be detected by flow cytometry analysis. We
quantitatively analyzed the expression of 84 DNA repair genes and 84 cell cycle
control genes. Peculiar temporal gene expression patterns were observed for both
pathways. Different DNA repair pathways, not only homologous recombination, as
well as the three main cell cycle checkpoints appeared to mediate the cellular
response. Eighteen genes were selected as highly significant target/effectors of
SFHR. We identified a wide interconnection between SFHR, DNA repair, and cell
cycle control. Our results increase the knowledge of the molecular mechanisms
involved in cell invasion by exogenous DNA and SFHR. Specific molecular targets
of both the cell cycle and DNA repair machineries were selected for manipulation
to enhance the practical application of SFHR.
Collapse
|
2
|
Suzuki S, Sargent RG, Illek B, Fischer H, Esmaeili-Shandiz A, Yezzi MJ, Lee A, Yang Y, Kim S, Renz P, Qi Z, Yu J, Muench MO, Beyer AI, Guimarães AO, Ye L, Chang J, Fine EJ, Cradick TJ, Bao G, Rahdar M, Porteus MH, Shuto T, Kai H, Kan YW, Gruenert DC. TALENs Facilitate Single-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Submucosal Gland Cell-derived CF-iPSCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e273. [PMID: 26730810 PMCID: PMC5012545 DOI: 10.1038/mtna.2015.43] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/17/2015] [Indexed: 12/22/2022]
Abstract
Cystic fibrosis (CF) is a recessive inherited disease associated with multiorgan damage that compromises epithelial and inflammatory cell function. Induced pluripotent stem cells (iPSCs) have significantly advanced the potential of developing a personalized cell-based therapy for diseases like CF by generating patient-specific stem cells that can be differentiated into cells that repair tissues damaged by disease pathology. The F508del mutation in airway epithelial cell-derived CF-iPSCs was corrected with small/short DNA fragments (SDFs) and sequence-specific TALENs. An allele-specific PCR, cyclic enrichment strategy gave ~100-fold enrichment of the corrected CF-iPSCs after six enrichment cycles that facilitated isolation of corrected clones. The seamless SDF-based gene modification strategy used to correct the CF-iPSCs resulted in pluripotent cells that, when differentiated into endoderm/airway-like epithelial cells showed wild-type (wt) airway epithelial cell cAMP-dependent Cl ion transport or showed the appropriate cell-type characteristics when differentiated along mesoderm/hematopoietic inflammatory cell lineage pathways.
Collapse
Affiliation(s)
- Shingo Suzuki
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - R Geoffrey Sargent
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Beate Illek
- Childrens Hospital Oakland Research Institute, Oakland, California, USA
| | - Horst Fischer
- Childrens Hospital Oakland Research Institute, Oakland, California, USA
| | - Alaleh Esmaeili-Shandiz
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
| | - Michael J Yezzi
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Albert Lee
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- Present address: Graduate Program in Biochemistry, Molecular, Cellular, and Developmental Biology, University of California–Davis, Davis, California, USA
| | - Yanu Yang
- California Pacific Medical Center Research Institute, San Francisco, California, USA
- Present address: Molecular Department, Hunter Laboratories, Campbell, California, USA
| | - Soya Kim
- Liver Center, University of California–San Francisco, San Francisco, California, USA
- Present address: Heinrich-Heine-Universität Düsseldorf, Institut für Genetik, Düsseldorf, Germany
| | - Peter Renz
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- California Pacific Medical Center Research Institute, San Francisco, California, USA
- Present address: Graduate Program in the Department of Biosystems Science and Engineering, ETH, Zürich, Switzerland
| | - Zhongxia Qi
- Department of Laboratory Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Jingwei Yu
- Department of Laboratory Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Marcus O Muench
- Department of Laboratory Medicine, University of California–San Francisco, San Francisco, California, USA
- Liver Center, University of California–San Francisco, San Francisco, California, USA
- Blood Systems Research Institute, San Francisco, California, USA
| | - Ashley I Beyer
- Blood Systems Research Institute, San Francisco, California, USA
| | | | - Lin Ye
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Judy Chang
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
| | - Eli J Fine
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Thomas J Cradick
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Meghdad Rahdar
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuet W Kan
- Department of Medicine, University of California–San Francisco, San Francisco, California, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, Institute for Human Genetics, Cardiovascular Research Institute, University of California–San Francisco, San Francisco, California, USA
| | - Dieter C Gruenert
- Department of Otolaryngology – Head and Neck Surgery, University of California–San Francisco, San Francisco, California, USA
- California Pacific Medical Center Research Institute, San Francisco, California, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, Institute for Human Genetics, Cardiovascular Research Institute, University of California–San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
3
|
Bell SC, De Boeck K, Amaral MD. New pharmacological approaches for cystic fibrosis: Promises, progress, pitfalls. Pharmacol Ther 2015; 145:19-34. [DOI: 10.1016/j.pharmthera.2014.06.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 12/17/2022]
|
4
|
Small Fragment Homologous Replacement (SFHR): sequence-specific modification of genomic DNA in eukaryotic cells by small DNA fragments. Methods Mol Biol 2014; 1114:85-101. [PMID: 24557898 DOI: 10.1007/978-1-62703-761-7_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The sequence-specific correction of a mutated gene (e.g., point mutation) by the Small Fragment Homologous Replacement (SFHR) method is a highly attractive approach for gene therapy. Small DNA fragments (SDFs) were used in SFHR to modify endogenous genomic DNA in both human and murine cells. The advantage of this gene targeting approach is to maintain the physiologic expression pattern of targeted genes without altering the regulatory sequences (e.g., promoter, enhancer), but the application of this technique requires the knowledge of the sequence to be targeted. In our recent study, an optimized SFHR protocol was used to replace the eGFP mutant sequence in SV-40-transformed mouse embryonic fibroblast (MEF-SV40), with the wild-type eGFP sequence. Nevertheless in the past, SFHR has been used to correct several mutant genes, each related to a specific genetic disease (e.g., spinal muscular atrophy, cystic fibrosis, severe combined immune deficiency). Several parameters can be modified to optimize the gene modification efficiency, as described in our recent study. In this chapter we describe the main guidelines that should be followed in SFHR application, in order to increase technique efficiency.
Collapse
|
5
|
Nimishakavi S, Besprozvannaya M, Raymond WW, Craik CS, Gruenert DC, Caughey GH. Activity and inhibition of prostasin and matriptase on apical and basolateral surfaces of human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2012; 303:L97-106. [PMID: 22582115 DOI: 10.1152/ajplung.00303.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prostasin is a membrane-anchored protease expressed in airway epithelium, where it stimulates salt and water uptake by cleaving the epithelial Na(+) channel (ENaC). Prostasin is activated by another transmembrane tryptic protease, matriptase. Because ENaC-mediated dehydration contributes to cystic fibrosis (CF), prostasin and matriptase are potential therapeutic targets, but their catalytic competence on airway epithelial surfaces has been unclear. Seeking tools for exploring sites and modulation of activity, we used recombinant prostasin and matriptase to identify substrate t-butyloxycarbonyl-l-Gln-Ala-Arg-4-nitroanilide (QAR-4NA), which allowed direct assay of proteases in living cells. Comparisons of bronchial epithelial cells (CFBE41o-) with and without functioning cystic fibrosis transmembrane conductance regulator (CFTR) revealed similar levels of apical and basolateral aprotinin-inhibitable activity. Although recombinant matriptase was more active than prostasin in hydrolyzing QAR-4NA, cell surface activity resisted matriptase-selective inhibition, suggesting that prostasin dominates. Surface biotinylation revealed similar expression of matriptase and prostasin in epithelial cells expressing wild-type vs. ΔF508-mutated CFTR. However, the ratio of mature to inactive proprostasin suggested surface enrichment of active enzyme. Although small amounts of matriptase and prostasin were shed spontaneously, prostasin anchored to the cell surface by glycosylphosphatidylinositol was the major contributor to observed QAR-4NA-hydrolyzing activity. For example, the apical surface of wild-type CFBE41o- epithelial cells express 22% of total, extractable, aprotinin-inhibitable, QAR-4NA-hydrolyzing activity and 16% of prostasin immunoreactivity. In conclusion, prostasin is present, mature and active on the apical surface of wild-type and CF bronchial epithelial cells, where it can be targeted for inhibition via the airway lumen.
Collapse
|
6
|
Small fragment homologous replacement: evaluation of factors influencing modification efficiency in an eukaryotic assay system. PLoS One 2012; 7:e30851. [PMID: 22359552 PMCID: PMC3281040 DOI: 10.1371/journal.pone.0030851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 12/26/2011] [Indexed: 02/07/2023] Open
Abstract
Homologous Replacement is used to modify specific gene sequences of chromosomal DNA in a process referred to as “Small Fragment Homologous Replacement”, where DNA fragments replace genomic target resulting in specific sequence changes. To optimize the efficiency of this process, we developed a reporter based assay system where the replacement frequency is quantified by cytofluorimetric analysis following restoration of a stably integrated mutated eGFP gene in the genome of SV-40 immortalized mouse embryonic fibroblasts (MEF-SV-40). To obtain the highest correction frequency with this system, several parameters were considered: fragment synthesis and concentration, cell cycle phase and methylation status of both fragment and recipient genome. In addition, different drugs were employed to test their ability to improve technique efficiency. SFHR-mediated genomic modification resulted to be stably transmitted for several cell generations and confirmed at transcript and genomic levels. Modification efficiency was estimated in a range of 0.01–0.5%, further increasing when PARP-1 repair pathway was inhibited. In this study, for the first time SFHR efficiency issue was systematically approached and in part addressed, therefore opening new potential therapeutic ex-vivo applications.
Collapse
|
7
|
Sargent RG, Kim S, Gruenert DC. Oligo/polynucleotide-based gene modification: strategies and therapeutic potential. Oligonucleotides 2011; 21:55-75. [PMID: 21417933 DOI: 10.1089/oli.2010.0273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential.
Collapse
Affiliation(s)
- R Geoffrey Sargent
- Department of Otolaryngology-Head and Neck Surgery, University of California , San Francisco, California 94115, USA
| | | | | |
Collapse
|
8
|
Bedayat B, Abdolmohamadi A, Ye L, Maurisse R, Parsi H, Schwarz J, Emamekhoo H, Nicklas JA, O'Neill JP, Gruenert DC. Sequence-specific correction of genomic hypoxanthine-guanine phosphoribosyl transferase mutations in lymphoblasts by small fragment homologous replacement. Oligonucleotides 2010; 20:7-16. [PMID: 19995283 DOI: 10.1089/oli.2009.0205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oligo/polynucleotide-based gene targeting strategies provide new options for achieving sequence-specific modification of genomic DNA and have implications for the development of new therapies and transgenic animal models. One such gene modification strategy, small fragment homologous replacement (SFHR), was evaluated qualitatively and quantitatively in human lymphoblasts that contain a single base substitution in the hypoxanthine-guanine phosphoribosyl transferase (HPRT1) gene. Because HPRT1 mutant cells are readily discernable from those expressing the wild type (wt) gene through growth in selective media, it was possible to identify and isolate cells that have been corrected by SFHR. Transfection of HPRT1 mutant cells with polynucleotide small DNA fragments (SDFs) comprising wild type HPRT1 (wtHPRT1) sequences resulted in clones of cells that grew in hypoxanthine-aminopterin-thymidine (HAT) medium. Initial studies quantifying the efficiency of correction in 3 separate experiments indicate frequencies ranging from 0.1% to 2%. Sequence analysis of DNA and RNA showed correction of the HPRT1 mutation. Random integration was not indicated after transfection of the mutant cells with an SDF comprised of green fluorescent protein (GFP) sequences that are not found in human genomic DNA. Random integration was also not detected following Southern blot hybridization analysis of an individual corrected cell clone.
Collapse
Affiliation(s)
- Babak Bedayat
- California Pacific Medical Center Research Institute, San Francisco, California 94107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Maurisse R, De Semir D, Emamekhoo H, Bedayat B, Abdolmohammadi A, Parsi H, Gruenert DC. Comparative transfection of DNA into primary and transformed mammalian cells from different lineages. BMC Biotechnol 2010; 10:9. [PMID: 20144189 PMCID: PMC2830169 DOI: 10.1186/1472-6750-10-9] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 02/08/2010] [Indexed: 11/18/2022] Open
Abstract
Background The delivery of DNA into human cells has been the basis of advances in the understanding of gene function and the development of genetic therapies. Numerous chemical and physical approaches have been used to deliver the DNA, but their efficacy has been variable and is highly dependent on the cell type to be transfected. Results Studies were undertaken to evaluate and compare the transfection efficacy of several chemical reagents to that of the electroporation/nucleofection system using both adherent cells (primary and transformed airway epithelial cells and primary fibroblasts as well as embryonic stem cells) and cells in suspension (primary hematopoietic stem/progenitor cells and lymphoblasts). With the exception of HEK 293 cell transfection, nucleofection proved to be less toxic and more efficient at effectively delivering DNA into the cells as determined by cell proliferation and GFP expression, respectively. Lipofectamine and nucleofection of HEK 293 were essentially equivalent in terms of toxicity and efficiency. Transient transfection efficiency in all the cell systems ranged from 40%-90%, with minimal toxicity and no apparent species specificity. Differences in efficiency and toxicity were cell type/system specific. Conclusions In general, the Amaxa electroporation/nucleofection system appears superior to other chemical systems. However, there are cell-type and species specific differences that need to be evaluated empirically to optimize the conditions for transfection efficiency and cell survival.
Collapse
Affiliation(s)
- Rosalie Maurisse
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair. BMC Biotechnol 2009; 9:35. [PMID: 19379497 PMCID: PMC2676283 DOI: 10.1186/1472-6750-9-35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 04/20/2009] [Indexed: 12/14/2022] Open
Abstract
Background Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1). Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome. Results In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin. Conclusion Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments.
Collapse
|
11
|
Kamiya H, Uchiyama M, Nakatsu Y, Tsuzuki T, Harashima H. Effects of Target Sequence and Sense versus Anti-sense Strands on Gene Correction with Single-stranded DNA Fragments. J Biochem 2008; 144:431-6. [DOI: 10.1093/jb/mvn085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
12
|
Sangiuolo F, Scaldaferri ML, Filareto A, Spitalieri P, Guerra L, Favia M, Caroppo R, Mango R, Bruscia E, Gruenert DC, Casavola V, De Felici M, Novelli G. Cftr gene targeting in mouse embryonic stem cells mediated by Small Fragment Homologous Replacement (SFHR). FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2008; 13:2989-99. [PMID: 17981772 PMCID: PMC3725395 DOI: 10.2741/2904] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, "Small Fragment Homologous Replacement (SFHR)", has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely lost any measurable CFTR-dependent chloride efflux. The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.
Collapse
Affiliation(s)
- Federica Sangiuolo
- Department of Biopathology and Diagnostic Imaging, Tor Vergata University, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Maurisse R, Cheung J, Widdicombe J, Gruenert DC. Modification of the pig CFTR gene mediated by small fragment homologous replacement. Ann N Y Acad Sci 2007; 1082:120-3. [PMID: 17145933 DOI: 10.1196/annals.1348.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The generation of a pig model of cystic fibrosis (CF) is a multistep process. Initial steps in this process involved the design and cloning of a small DNA fragment (SDF) or large oligodeoxynucleotide (LODN) that contains the F508del mutation and a silent restriction fragment length polymorphism causing mutation. This SDF/LODN was transfected into wild-type (WT) pig fetal fibroblast with the intention of modifying the pig genomic DNA by small fragment homologous replacement (SFHR). The targeted deletion (F508del) was detected in a subpopulation of transfected cells by allele-specific polymerase chain reaction (AS-PCR).
Collapse
Affiliation(s)
- Rosalie Maurisse
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | | | | | | |
Collapse
|
14
|
Maurisse R, Fichou Y, De Semir D, Cheung J, Ferec C, Gruenert DC. Gel purification of genomic DNA removes contaminating small DNA fragments interfering with polymerase chain reaction analysis of small fragment homologous replacement. Oligonucleotides 2007; 16:375-86. [PMID: 17155912 DOI: 10.1089/oli.2006.16.375] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oligonucleotides can mediate sequence-specific gene modification that results in the correction and/or alteration of genomic DNA. There is evidence to suggest that the polymerase chain reaction (PCR)-based analytical methods usually used to analyze oligonucleotide-mediated modification can generate artifacts. To investigate the conditions under which a PCR artifact can be generated and eliminated when analyzing small fragment homologous replacement (SHFR)-mediated modification, cells homozygous for the DeltaF508 mutation (CFBE41o-) were mixed with small DNA fragments (SDFs) containing the wild-type CFTR (wt-CFTR) sequence. An artifact could be generated after wild-type allele-specific PCR (wtAS-PCR) if the genomic DNA was not gel purified. Without gel purification, the amount of SDF/cell required to generate the artifact was dependent to the AS primer pairs used. When the genomic DNA was gel purified, no artifact could be detected with any of the wtAS-PCR primers whether the SDF was mixed with the cells or transfected into the cells. Furthermore, treatment of cellular mRNA with DNase was sufficient to eliminate potential artifacts in the reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Thus, it is critical to gel purify genomic DNA and DNase treat mRNA when analyzing SFHR-mediated modification by PCR.
Collapse
Affiliation(s)
- Rosalie Maurisse
- Research Institute, California Pacific Medical Center, San Francisco, CA 94107, USA
| | | | | | | | | | | |
Collapse
|
15
|
Goncz KK, Prokopishyn NL, Abdolmohammadi A, Bedayat B, Maurisse R, Davis BR, Gruenert DC. Small fragment homologous replacement-mediated modification of genomic beta-globin sequences in human hematopoietic stem/progenitor cells. Oligonucleotides 2006; 16:213-24. [PMID: 16978085 DOI: 10.1089/oli.2006.16.213] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An ultimate goal of gene therapy is the development of a means to correct mutant genomic sequences in the cells that give rise to pathology. A number of oligonucleotide-based gene-targeting strategies have been developed to achieve this goal. One approach, small fragment homologous replacement (SFHR), has previously demonstrated disease-specific genotypic and phenotypic modification after introduction of small DNA fragments (SDFs) into somatic cells. To validate whether the gene responsible for sickle cell anemia (beta-globin) can be modified by SFHR, a series of studies were undertaken to introduce sickle globin sequences at the appropriate locus of human hematopoietic stem/progenitor cells (HSPCs). The characteristic A two head right arrow T transversion in codon 6 of the beta-globin gene was indicated by restriction fragment length polymorphic (RFLP) analysis of polymerase chain reaction (PCR) products generated by amplification of DNA and RNA. At the time of harvest, it was determined that the cells generally contained </=1 fragment per cell. Control studies mixing genomic DNA from nontransfected cells with varying amounts of the targeting SDFs did not indicate any PCR amplification artifacts due to the presence of residual SDF during amplification. RNA was analyzed after DNase treatment, thus eliminating the potential for SDF contamination. Stable SFHRmediated conversion of normal (beta (A)) to sickle (beta (S)) globin was detected at frequencies up to 13% in cells harvested 30-45 days posttransfection. The minimum conversion efficiency ranged from 0.2 to 3%, assuming modification of at least one cell per experiment showing conversion. Conversion of sickle (beta (S)) to normal (beta (A)) globin was detected up to 10 days posttransfection in lymphoblastoid cells from a sickle cell patient. These studies suggest that SFHR may be effective for ex vivo gene therapy of sickle cells in a patient's HSPCs before autologous transplantation.
Collapse
Affiliation(s)
- Kaarin K Goncz
- Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Zayed H, McIvor RS, Wiest DL, Blazar BR. In vitro functional correction of the mutation responsible for murine severe combined immune deficiency by small fragment homologous replacement. Hum Gene Ther 2006; 17:158-66. [PMID: 16454649 DOI: 10.1089/hum.2006.17.158] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A homologous recombination (HR) approach for site-specific correction of mutations would be highly desirable for the treatment of genetic disorders if recombination efficiencies were sufficiently high as to permit a biological effect. Using a T cell thymoma line derived from severe combined immunodeficient (SCID) mice with a point mutation in the gene encoding the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), we have shown that short DNA fragments (SDFs; 621 bases) can provide genotypic and functional correction of these cells. Double-stranded SDFs (dsSDFs) or single-stranded SDFs (ssSDFs) were designed to span the wild-type sequence of exon 85 in the DNA-PKcs gene and part of the 3' and 5' flanking intron regions. SCID cells were nucleofected with both single- and double-stranded wild-type SDF sequences. Corrected cells were selected on the basis of protection from radiation hypersensitivity that occurs as a consequence of the SCID mutation. Correction was mediated by both SDF forms (double and single stranded). These results indicate that SDFs can correct point mutations by HR with the possibility of harnessing ionizing radiation (IR) as a selection method to eliminate noncorrected cells and enrich for corrected SCID radioresistant cells.
Collapse
Affiliation(s)
- Hatem Zayed
- University of Minnesota Cancer Center, and Department of Pediatrics, Division of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
17
|
Tsuchiya H, Sawamura T, Harashima H, Kamiya H. Correction of frameshift mutations with single-stranded and double-stranded DNA fragments prepared from phagemid/plasmid DNAs. Biol Pharm Bull 2006; 28:1958-62. [PMID: 16204954 DOI: 10.1248/bpb.28.1958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently found that a heat-denatured, double-stranded DNA fragment, prepared from plasmid DNA (dsHES), and a sense single-stranded DNA fragment, prepared from single-stranded phagemid DNA (fSense), corrected an inactivated hygromycin-resistance and enhanced green fluorescence protein fusion (Hyg-EGFP) gene containing a base substitution (G:C to C:G) mutation 2-fold and more than 10-fold, respectively, more efficiently than the conventional PCR fragment (pcrHES), in the small fragment homologous replacement method. In this study, we tested the abilities of these new DNA fragments to correct Hyg-EGFP genes inactivated by one base insertion (+G) and deletion (-C) mutations. In contrast to its activity with the substitution mutation, the fSense fragment showed similar efficiencies to those of the dsHES fragment in the correction of frameshift mutations. For the correction of the insertion mutation, the efficiencies were in the order of dsHES (0.21%)>or=fSense (0.18%)>pcrHES (0.08%). In the case of the correction of the deletion mutation, the efficiencies were in the order of fSense (0.27%)>or=dsHES (0.19%)>pcrHES (0.12%). These results suggest that sense single- and double-stranded DNA fragments prepared from phagemid and plasmid DNAs, respectively, have the potential to correct frameshift mutations.
Collapse
Affiliation(s)
- Hiroyuki Tsuchiya
- Graduate School of Pharmaceutical Sciences, Hokkaido University; Kita-12, Nishi-6, Sapporo, 060-0812, Japan
| | | | | | | |
Collapse
|
18
|
Zayed H, McIvor RS, Wiest DL, Blazar BR. In Vitro Functional Correction of the Mutation Responsible for Murine Severe Combined Immune Deficiency by Small Fragment Homologous Replacement. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.17.ft-166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Lewin AS, Glazer PM, Milstone LM. Gene therapy for autosomal dominant disorders of keratin. J Investig Dermatol Symp Proc 2005; 10:47-61. [PMID: 16250209 DOI: 10.1111/j.1087-0024.2005.10207.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dominant mutations that interfere with the assembly of keratin filaments cause painful and disfiguring epidermal diseases like pachyonychia congenita and epidermolysis bullosa simplex. Genetic therapies for such diseases must either suppress the production of the toxic proteins or correct the genetic defect in the chromosome. Because epidermal skin cells may be genetically modified in tissue culture or in situ, gene correction is a legitimate goal for keratin diseases. In addition, recent innovations, such as RNA interference in animals, make an RNA knockdown approach plausible in the near future. Although agents of RNA reduction (small interfering RNA, ribozymes, triplex oligonucleotides, or antisense DNA) can be delivered as nucleotides, the impermeability of the skin to large charged molecules presents a serious impediment. Using viral vectors to deliver genes for selective inhibitors of gene expression presents an attractive alternative for long-term treatment of genetic disease in the skin.
Collapse
MESH Headings
- Animals
- Darier Disease/genetics
- Darier Disease/therapy
- Dependovirus/genetics
- Ectodermal Dysplasia/genetics
- Ectodermal Dysplasia/therapy
- Epidermolysis Bullosa Simplex/genetics
- Epidermolysis Bullosa Simplex/therapy
- Gene Silencing
- Gene Targeting
- Genes, Dominant
- Genetic Therapy
- Genetic Vectors
- Humans
- Keratins/genetics
- Keratoderma, Palmoplantar/genetics
- Keratoderma, Palmoplantar/therapy
- Mice
- Mutation
- Nails, Malformed/genetics
- Nails, Malformed/therapy
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/therapeutic use
- RNA Interference
- RNA, Catalytic/genetics
- RNA, Catalytic/therapeutic use
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
Collapse
Affiliation(s)
- Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610-0266, USA.
| | | | | |
Collapse
|
20
|
Gruenert DC, Kunzelmann K, Novelli G, Colosimo A, Kapsa R, Bruscia E. Oligonucleotide-based gene targeting approaches. Oligonucleotides 2005; 14:157-8; author reply 158-60. [PMID: 15294078 DOI: 10.1089/1545457041526272] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Tsuchiya H, Harashima H, Kamiya H. Factors affecting SFHR gene correction efficiency with single-stranded DNA fragment. Biochem Biophys Res Commun 2005; 336:1194-200. [PMID: 16171787 DOI: 10.1016/j.bbrc.2005.08.258] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 08/30/2005] [Indexed: 12/17/2022]
Abstract
A 606-nt single-stranded (ss) DNA fragment, prepared by restriction enzyme digestion of ss phagemid DNA, improves the gene correction efficiency by 12-fold as compared with a PCR fragment, which is the conventional type of fragment used in the small fragment homologous replacement method [H. Tsuchiya, H. Harashima, H. Kamiya, Increased SFHR gene correction efficiency with sense single-stranded DNA, J. Gene Med. 7 (2005) 486-493]. To reveal the characteristic features of this gene correction with the ss DNA fragment, the effects on the gene correction in CHO-K1 cells of the chain length, 5'-phosphate, adenine methylation, and transcription were studied. Moreover, the possibility that the ss DNA fragment is integrated into the target DNA was examined with a radioactively labeled ss DNA fragment. The presence of methylated adenine, but not the 5'-phosphate, enhanced the gene correction efficiency, and the optimal length of the ss DNA fragment (approximately 600 nt) was determined. Transcription of the target gene did not affect the gene correction efficiency. In addition, the target DNA recovered from the transfected CHO-K1 cells was radioactive. The results obtained in this study indicate that length and adenine methylation were important factors affecting the gene correction efficiency, and that the ss DNA fragment was integrated into the double-stranded target DNA.
Collapse
Affiliation(s)
- Hiroyuki Tsuchiya
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
22
|
Del Vecchio F, Filareto A, Spitalieri P, Sangiuolo F, Novelli G. Cellular genetic therapy. Transplant Proc 2005; 37:2657-61. [PMID: 16182776 DOI: 10.1016/j.transproceed.2005.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cellular genetic therapy is the ultimate frontier for those pathologies that are consequent to a specific nonfunctional cellular type. A viable cure for there kinds of diseases is the replacement of sick cells with healthy ones, which can be obtained from the same patient or a different donor. In fact, structures can be corrected and strengthened with the introduction of undifferentiated cells within specific target tissues, where they will specialize into the desired cellular types. Furthermore, consequent to the recent results obtained with the transdifferentiation experiments, a process that allows the in vitro differentiation of embryonic and adult stem cells, it has also became clear that many advantages may be obtained from the use of stem cells to produce drugs, vaccines, and therapeutic molecules. Since stem cells can sustain lineage potentials, the capacity for differentiation, and better tolerance for the introduction of exogenous genes, they are also considered as feasible therapeutic vehicles for gene therapy. In fact, it is strongly believed that the combination of cellular genetic and gene therapy approaches will definitely allow the development of new therapeutic strategies as well as the production of totipotent cell lines to be used as experimental models for the cure of genetic disorders.
Collapse
Affiliation(s)
- F Del Vecchio
- Dipartimento di Biopatologia e Diagnostica per Immagini, Sezione di Genetica, Universita' di Tor Vergata, Rome, Italy
| | | | | | | | | |
Collapse
|
23
|
Tsuchiya H, Harashima H, Kamiya H. Increased SFHR gene correction efficiency with sense single-stranded DNA. J Gene Med 2005; 7:486-93. [PMID: 15521053 DOI: 10.1002/jgm.673] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The correction of a mutated gene by the small fragment homologous replacement (SFHR) method is a highly attractive approach for gene therapy. However, the current SFHR method with a heat-denatured double-stranded PCR fragment yielded a low correction efficiency. METHODS Single-stranded (ss) DNA fragments were prepared from ss phagemid DNA and tested in a gene correction assay with an inactivated Hyg-EGFP fusion gene, as a model target. RESULTS A 606-nt sense, ss DNA fragment dramatically (12-fold) improved the gene correction efficiency, although the antisense strand showed only minimal correction efficiency. CONCLUSIONS These results suggest that the use of a sense, single-stranded DNA fragment is useful in the SFHR method for the correction of mutated genes.
Collapse
Affiliation(s)
- Hiroyuki Tsuchiya
- Laboratory for Molecular Design of Pharmaceutics and COE Program in the 21st Century, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Sapporo, Hokkaido 060-0812, Japan
| | | | | |
Collapse
|
24
|
De Semir D, Aran JM. Misleading gene conversion frequencies due to a PCR artifact using small fragment homologous replacement. Oligonucleotides 2005; 13:261-9. [PMID: 15000840 DOI: 10.1089/154545703322460630] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent studies have reported successful correction of the most common F508del mutation in cystic fibrosis (CF) airway epithelial cells by small fragment homologous replacement (SFHR). We wished to apply the SFHR methodology to our CF bronchial epithelial cells, of compound heterozygous genotype (F508del/W1282X), in which nucleic acid transfer was previously optimized by electroporation. Using a PCR-based detection methodology, with one of the primers located outside the SFHR homology region, we obtained SFHR dose-dependent F508del to wild-type CFTR gene conversion frequencies reaching 30%. However, the increased wild-type/F508del CFTR allele ratio was transient, vanishing at 5 days posttransfection. Furthermore, we have been unable to reproduce the SFHR-mediated repair of the F508del mutation in our cellular model when both detection primers were located outside the SFHR homology region. A thorough reexamination of our initial detection strategy revealed that a false positive result was originated from a PCR artifact created by the SFHR fragment itself. Thus, nonamplifiable detection methods, such as Southern blotting, protein analysis, or functional assays, should be performed, whenever possible, to correctly assess gene conversion frequencies.
Collapse
Affiliation(s)
- David De Semir
- Centre de Genètica Mèdica i Molecular, Institut de Recerca Oncològica, Hospital Duran i Reynals, Barcelona, Spain
| | | |
Collapse
|
25
|
Nickerson HD, Colledge WH. A LacZ-based transgenic mouse for detection of somatic gene repair events in vivo. Gene Ther 2004; 11:1351-7. [PMID: 15229632 DOI: 10.1038/sj.gt.3302311] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Somatic gene repair of disease-causing chromosomal mutations is a novel approach for gene therapy. This method would ensure that the corrected gene is regulated by its endogenous promoter and expressed at physiological levels in the appropriate cell types. A reporter mouse, Gtrosa26(tm1Col), was generated by targeting a mutated LacZ gene to the Rosa26 locus in mouse embryonic stem (ES) cells. The LacZ gene contains a G to A point mutation, resulting in a Glu to Lys amino-acid substitution at position 461, which abrogates enzymatic activity. The gene is expressed in ES cells, primary embryonic fibroblasts, and in all tissues examined in the adult mouse, including the lung, liver, kidney, spleen, heart, brain and smooth muscle. This transgenic mouse will allow testing of gene repair strategies in vivo and identification of which cell types can be successfully targeted by chromosomal gene repair. Although low levels of gene repair were achieved in the ES cells used to generate the Gtrosa26(tm1Col) mouse, preliminary attempts at gene repair in vivo were unsuccessful, thus highlighting the difficulties that will have to be overcome to get this approach to work.
Collapse
Affiliation(s)
- H D Nickerson
- Physiology Department, University of Cambridge, Downing Street, Cambridge, UK
| | | |
Collapse
|
26
|
Liu X, Yan Z, Luo M, Zak R, Li Z, Driskell RR, Huang Y, Tran N, Engelhardt JF. Targeted correction of single-base-pair mutations with adeno-associated virus vectors under nonselective conditions. J Virol 2004; 78:4165-75. [PMID: 15047832 PMCID: PMC374254 DOI: 10.1128/jvi.78.8.4165-4175.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors possess the unique ability to introduce genetic alterations at sites of homology in genomic DNA through a mechanism thought to predominantly involve homologous recombination. We have investigated the efficiency of this approach using a mutant enhanced green fluorescent protein (eGFP) fluorescence recovery assay that facilitates detection of gene correction events in living cells under nonselective conditions. Our data demonstrate that rAAV infection can correct a mutant eGFP transgene at an efficiency of 0.1% in 293 cells, as determined by fluorescence-activated cell-sorting analysis. Gene repair was also confirmed using clonal expansion of GFP-positive cells and sequencing of the eGFP transgene. These results support previous findings demonstrating the efficacy of rAAV for gene targeting. In an effort to improve gene-targeting efficiencies, we evaluated several agents known to increase rAAV transduction (i.e., expression of an expressed gene), including genotoxic stress and proteasome inhibitors, but observed no correlation between the level of gene repair and rAAV transduction. Interestingly, however, our results demonstrated that enrichment of G(1)/S-phase cells in the target population through the addition of thymidine moderately (approximately 2-fold) increased gene correction compared to cells in other cell cycle phases, including G(0)/G1, G(1), and G(2)/M. These results suggest that the S phase of the cell cycle may more efficiently facilitate gene repair by rAAV. Transgenic mice expressing the mutant GFP were used to evaluate rAAV targeting efficiencies in primary fetal fibroblast and tibialis muscles. However, targeting efficiencies in primary mouse fetal fibroblasts were significantly lower (approximately 0.006%) than in 293 cells, and no correction was seen in tibialis muscles following rAAV infection. To evaluate the molecular structures of rAAV genomes that might be responsible for gene repair, single-cell injection studies were performed with purified viral DNA in a mutant eGFP target cell line. However, the failure of direct cytoplasm- or nucleus-injected rAAV DNA to facilitate gene repair suggests that some aspect of intracellular viral processing may be required to prime recombinant viral genomes for gene repair events.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Anatomy and Cell Biology and the Center for Gene Therapy of Cystic Fibrosis and Other Genetic Diseases, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Josep M. Aran
- Institut de Recerca Oncològica, Hospital Duran i Reynals, Gran Via, Km. 2.7, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | | |
Collapse
|
28
|
Nickerson HD, Colledge WH. A comparison of gene repair strategies in cell culture using a lacZ reporter system. Gene Ther 2003; 10:1584-91. [PMID: 12907950 DOI: 10.1038/sj.gt.3302049] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synthetic oligonucleotides and DNA fragments of less than 1 kilobase (kb) have been shown to cause site-specific genetic alterations in mammalian cells in culture and in vivo. We have used a lacZ reporter gene system to compare the efficiency of episomal and chromosomal gene repair in human embryonic kidney epithelial cells (HEK293), Chinese Hamster Ovary fibroblasts (CHOK1), human bronchial epithelial cells (16HBE), and mouse embryonic stem (ES) cells. The lacZ gene contains a G to A nucleotide change, (Glu to Lys mutation) that abrogates beta-galactosidase activity. We compared the efficiency of different gene repair methods to correct this mutation and restore beta-galactosidase activity. We evaluated PCR-generated double-stranded DNA fragments of 0.52-1.9 kb, single-stranded DNA oligonucleotides of 20, 35, or 80 bases containing internal phosphorothioate links, and a 68 base RNA:DNA oligonucleotide. All of the oligonucleotides and DNA fragments showed some gene repair ability with an episomal plasmid. Short DNA fragments of 0.52 kb or greater gave the highest frequencies of episomal gene repair while single-stranded DNA oligonucleotides gave the highest frequency of chromosomal repair. In the context of a chromosomal target, antisense DNA oligonucleotides gave 5-fold higher frequencies of gene repair than their sense counterparts. The RNA:DNA chimeric oligonucleotide gave little or no gene repair on either a chromosomal or episomal target.
Collapse
Affiliation(s)
- H D Nickerson
- Department of Physiology, University of Cambridge, Downing Street, Cambridge, UK
| | | |
Collapse
|
29
|
Gruenert DC, Bruscia E, Novelli G, Colosimo A, Dallapiccola B, Sangiuolo F, Goncz KK. Sequence-specific modification of genomic DNA by small DNA fragments. J Clin Invest 2003; 112:637-41. [PMID: 12952908 PMCID: PMC182219 DOI: 10.1172/jci19773] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Small DNA fragments have been used to modify endogenous genomic DNA in both human and mouse cells. This strategy for sequence-specific modification or genomic editing, known as small-fragment homologous replacement (SFHR), has yet to be characterized in terms of its underlying mechanisms. Genotypic and phenotypic analyses following SFHR have shown specific modification of disease-causing genetic loci associated with cystic fibrosis, beta-thalassemia, and Duchenne muscular dystrophy, suggesting that SFHR has potential as a therapeutic modality for the treatment of monogenic inherited disease.
Collapse
Affiliation(s)
- Dieter C Gruenert
- Department of Medicine, University of Vermont, Burlington, Vermont, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
A technique that can direct the repair of a genetic mutation in a human chromosome using the DNA repair machinery of the cell is under development. Although this approach is not as mature as other forms of gene therapy and fundamental problems continue to arise, it promises to be the ultimate therapy for many inherited disorders. There is a continuing effort to understand the potential and the limitations of this controversial approach.
Collapse
Affiliation(s)
- Li Liu
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
31
|
Bennett M, Schaack J. Development of a dual-luciferase fusion gene as a sensitive marker for site-directed DNA repair strategies. J Gene Med 2003; 5:723-32. [PMID: 12898641 DOI: 10.1002/jgm.386] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several novel techniques have been developed recently for the site-specific repair of DNA as an approach to gene therapy. Correction efficiencies as high as 40% have been reported, well within the range of therapeutic impact for a number of genetic diseases. Unfortunately, many of the model systems in which these methods have been employed typically target genes that are not well suited for analyzing the various techniques. METHODS To address this, we have constructed and characterized a dual-luciferase fusion gene as a sensitive marker for optimizing repair strategies. The genes encoding two distinct luciferase proteins were fused so that expression of one luciferase necessitated expression of the other. Engineering a stop codon in the downstream luciferase gene created an ideal tool to study the efficiency of various site-directed DNA repair techniques as one luciferase can act as an internal control while the other is targeted for correction. RESULTS Fusing two luciferase genes resulted in a single protein that produces two bioluminescent activities in a constant ratio. The utility of this system as a target for site-directed DNA repair research was demonstrated using two of the recently developed gene repair techniques, small fragment homologous replacement and oligonucleotide-mediated repair, to mediate correction and by the ability to detect repair efficiencies of less than 5 x 10(-6) (<1 event in 200000). CONCLUSIONS The ability to rapidly and accurately quantify the amount of correction using the dual-luciferase fusion system will allow the comparison and evaluation of the many factors involved in successful gene repair and lead to the optimization of these techniques, both in cell culture and in whole animals.
Collapse
Affiliation(s)
- Michael Bennett
- Department of Microbiology, School of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | |
Collapse
|
32
|
Tsulaia TV, Prokopishyn NL, Yao A, Carsrud NDV, Carou MC, Brown DB, Davis BR, Yannariello-Brown J. Glass needle-mediated microinjection of macromolecules and transgenes into primary human mesenchymal stem cells. J Biomed Sci 2003; 10:328-36. [PMID: 12711860 DOI: 10.1007/bf02256452] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2002] [Accepted: 01/07/2003] [Indexed: 01/14/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are multipotent cells that can differentiate into various tissue types, including bone, cartilage, tendon, adipocytes, and marrow stroma, making them potentially useful for human cell and gene therapies. Our objective was to demonstrate the utility of glass needle-mediated microinjection as a method to deliver macromolecules (e.g. dextrans, DNA) to hMSCs for cell and molecular biological studies. hMSCs were isolated and cultured using a specific fetal bovine serum, prescreened for its ability to promote cell adherence, proliferation, and osteogenic differentiation. Successful delivery of Oregon Green-dextran via intranuclear microinjection was achieved, yielding a postinjection viability of 76 +/- 13%. Excellent short-term gene expression (63 +/- 11%) was achieved following microinjection of GFP-containing vectors into hMSCs. Higher efficiencies of short-term gene expression ( approximately 5-fold) were observed when injecting supercoiled DNA, pYA721, as compared with the same DNA construct in a linearized form, YA721. Approximately 0.05% of hMSCs injected with pYA721 containing both the GFP and neomycin resistance genes formed GFP-positive, drug-resistant colonies that survived >120 days. Injection of linearized YA721 resulted in 3.6% of injected hMSC forming drug-resistant colonies, none of which expressed GFP that survived 60-120 days. These studies demonstrate that glass needle-mediated microinjection can be used as a method of delivering macromolecules to hMSCs and may prove to be a useful technique for molecular and cell biological mechanistic studies and future genetic modification of hMSCs.
Collapse
Affiliation(s)
- Tamara V Tsulaia
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77550, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Liver transplantation has become a well-recognized therapy for hepatic failure resulting from acute or chronic liver disease. It also plays a role in the treatment of certain inborn errors of metabolism that do not directly injure the liver. In fact, the liver maintains a central role in many inherited and acquired genetic disorders. There has been a considerable effort to develop new and more effective gene therapy approaches, in part, to overcome the need for transplantation as well as the shortage of donor livers. Traditional gene therapy involves the delivery of a piece of DNA to replace the faulty gene. More recently, there has been a growing interest in the use of gene repair to correct certain genetic defects. In fact, targeted gene repair has many advantages over conventional replacement strategies. In this review, we will describe a variety of viral and nonviral strategies that are now available to the liver. The ever-growing list includes viral vectors, antisense and ribozyme technology, and the Sleeping Beauty transposon system. In addition, targeted gene repair with RNA/DNA oligonucleotides, small-fragment homologous replacement, and triplex-forming and single-stranded oligonucleotides is a long-awaited and potentially exciting approach. Although each method uses different mechanisms for gene repair and therapy, they all share a basic requirement for the efficient delivery of DNA.
Collapse
Affiliation(s)
- Betsy T Kren
- Department of Medicine, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
34
|
Abstract
The nature of DNA, the sequence of the human genome and our increased understanding of the genetic basis of many inherited and acquired disorders have made the possibility of curing diseases a reality. The modulation of a host's genome is now the ultimate goal in the treatment of genetic diseases. Historically, gene therapy recognized two very different approaches: gene replacement or augmentation and gene repair. Gene repair precisely targets and corrects the chromosomal mutation responsible for a genetic and/or acquired disorder. Many recent advances have been made in this area of research.
Collapse
Affiliation(s)
- Betsy T Kren
- Department of Medicine, University of Minnesota Medical School MMC 36, Mayo Building A536, 420 Delaware Street, Minneapolis, MN 55455, USA
| | | |
Collapse
|
35
|
Abstract
Several new approaches to gene therapy for the muscular dystrophies involve oligonucleotides as targeting vectors. These oligonucleotides are designed to repair genetic mutations, to modify genomic sequences in order to compensate for gene deletions, or to modify RNA processing in order to ameliorate the effects of the underlying gene mutation. Among the various approaches currently under investigation for dystrophin mutations that cause Duchenne muscular dystrophy is the use of chimeric RNA/DNA oligonucleotides ("chimeraplasts") to repair point mutations. Studies in the mdx mouse and the GRMD dog have demonstrated that point mutations in the dystrophin gene can be corrected by chimeraplasts that have been injected into muscles. The scope of this review includes a summary of the current status of chimeraplast-mediated gene repair for dystrophin mutations, ongoing studies to apply chimeraplast-mediated gene repair to frame-shift deletions of the dystrophin gene, and major hurdles that need to be overcome to translate current experimental successes into a viable therapeutic modality for Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Room A-343, Stanford, CA 94305-5235, USA.
| |
Collapse
|
36
|
Sangiuolo F, Bruscia E, Serafino A, Nardone AM, Bonifazi E, Lais M, Gruenert DC, Novelli G. In vitro correction of cystic fibrosis epithelial cell lines by small fragment homologous replacement (SFHR) technique. BMC MEDICAL GENETICS 2002; 3:8. [PMID: 12243649 PMCID: PMC130050 DOI: 10.1186/1471-2350-3-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2002] [Accepted: 09/23/2002] [Indexed: 11/23/2022]
Abstract
BACKGROUND SFHR (small fragment homologous replacement)-mediated targeting is a process that has been used to correct specific mutations in mammalian cells. This process involves both chemical and cellular factors that are not yet defined. To evaluate potential of this technique for gene therapy it is necessary to characterize gene transfer efficacy in terms of the transfection vehicle, the genetic target, and the cellular processing of the DNA and DNA-vehicle complex. METHODS In this study, small fragments of genomic cystic fibrosis (CF) transmembrane conductance regulator (CFTR) DNA, that comprise the wild-type and DeltaF508 sequences, were transfected into immortalized CF and normal airway epithelial cells, respectively. Homologous replacement was evaluated using PCR and sequence-based analyses of cellular DNA and RNA. Individual stages of cationic lipid-facilitated SFHR in cultured cell lines were also examined using transmission electron microscopy (TEM). RESULTS We demonstrated that the lipid/DNA (+/-) ratio influences the mode of entry into the cell and therefore affects the efficacy of SFHR-mediated gene targeting. Lipid/DNA complexes with more negative ratios entered the cell via a plasma membrane fusion pathway. Transfer of the DNA that relies on an endocytic pathway appeared more effective at mediating SFHR. In addition, it was also clear that there is a correlation between the specific cell line transfected and the optimal lipid/DNA ratio. CONCLUSIONS These studies provide new insights into factors that underlie SFHR-mediated gene targeting efficacy and into the parameters that can be modulated for its optimization.
Collapse
Affiliation(s)
- Federica Sangiuolo
- Department of Biopathology, Human Genetics Unit, Tor Vergata University of Rome, Italy
| | - Emanuela Bruscia
- Department of Biopathology, Human Genetics Unit, Tor Vergata University of Rome, Italy
- Department of Medicine, Human Molecular Genetics Unit, University of Vermont, Burlington, VT, USA
| | | | | | - Emanuela Bonifazi
- Department of Biopathology, Human Genetics Unit, Tor Vergata University of Rome, Italy
| | - Monica Lais
- Department of Biopathology, Human Genetics Unit, Tor Vergata University of Rome, Italy
| | - Dieter C Gruenert
- Department of Medicine, Human Molecular Genetics Unit, University of Vermont, Burlington, VT, USA
| | - Giuseppe Novelli
- Department of Biopathology, Human Genetics Unit, Tor Vergata University of Rome, Italy
| |
Collapse
|
37
|
Abstract
The main strategy of gene therapy has traditionally been focused on gene augmentation. This approach typically involves the introduction of an expression system designed to express a specific protein in the transfected cell. Both the basic and clinical sciences have generated enough information to suggest that gene therapy would eventually alter the fundamental practice of modern medicine. However, despite progress in the field, widespread clinical applications and success have not been achieved. The myriad deficiencies associated with gene augmentation have resulted in the development of alternative approaches to treat inherited and acquired genetic disorders. One, derived primarily from the pioneering work of homologous recombination, is gene repair. Simply stated, the process involves targeting the mutation in situ for gene correction and a return to normal gene function. Site-specific genetic repair has many advantages over augmentation although it too is associated with significant limitations. This review outlines the advantages and disadvantages of gene correction. In particular, we discuss technologies based on chimeric RNA/DNA oligonucleotides, single-stranded and triplex-forming oligonucleotides, and small fragment homologous replacement. While each of these approaches is different, they all share a number of common characteristics, including the need for efficient delivery of nucleic acids to the nucleus. In addition, we review the potential application of a novel and exciting nonviral gene augmentation strategy--the Sleeping Beauty transposon system.
Collapse
Affiliation(s)
- Paul D Richardson
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MH 55455, USA
| | | | | | | |
Collapse
|
38
|
Goncz KK, Prokopishyn NL, Chow BL, Davis BR, Gruenert DC. Application of SFHR to gene therapy of monogenic disorders. Gene Ther 2002; 9:691-4. [PMID: 12032689 DOI: 10.1038/sj.gt.3301743] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene therapy treatment of disease will be greatly facilitated by the identification of genetic mutations through the Human Genome Project. The specific treatment will ultimately depend on the type of mutation as different genetic lesions will require different gene therapies. For example, large rearrangements and translocations may call for complementation with vectors containing the cDNA for the wild-type (wt) gene. On the other hand, smaller lesions, such as the reversion, addition or deletion of only a few base pairs, on single genes, or monogenic disorders, lend themselves to gene targeting. The potential for one gene targeting technique, small fragment homologous replacement (SFHR) to the gene therapy treatment of sickle cell disease (SCD) is presented. Successful conversion of the wt-beta-globin locus to a SCD genotype of human lymphocytes (K562) and progenitor/stem hematopoietic cells (CD34(+) and lin-CD38-) was achieved by electroporation or microinjection small DNA fragments (SDF).
Collapse
Affiliation(s)
- K K Goncz
- Human Molecular Genetics Unit, Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
39
|
Gruenert DC, Novelli G, Dallapiccola B, Colosimo A. Genome medicine: gene therapy for the millennium, 30 September-3 October 2001, Rome, Italy. Gene Ther 2002; 9:653-7. [PMID: 12032680 DOI: 10.1038/sj.gt.3301740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recent surge of DNA sequence information resulting from the efforts of agencies interested in deciphering the human genetic code has facilitated technological developments that have been critical in the identification of genes associated with numerous disease pathologies. In addition, these efforts have opened the door to the opportunity to develop novel genetic therapies to treat a broad range of inherited disorders. Through a joint effort by the University of Vermont, the University of Rome, Tor Vergata, University of Rome, La Sapienza, and the CSS Mendel Institute, Rome, an international meeting, 'Genome Medicine: Gene Therapy for the Millennium' was organized. This meeting provided a forum for the discussion of scientific and clinical advances stimulated by the explosion of sequence information generated by the Human Genome Project and the implications these advances have for gene therapy. The meeting had six sessions that focused on the functional evaluation of specific genes via biochemical analysis and through animal models, the development of novel therapeutic strategies involving gene targeting, artificial chromsomes, DNA delivery systems and non-embryonic stem cells, and on the ethical and social implications of these advances.
Collapse
Affiliation(s)
- D C Gruenert
- Human Molecular Genetics, Department of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
40
|
Colosimo A, Guida V, Palka G, Dallapiccola B. Extrachromosomal genes: a powerful tool in gene targeting approaches. Gene Ther 2002; 9:679-82. [PMID: 12032686 DOI: 10.1038/sj.gt.3301749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several studies, some of which have been updated during the recent workshop entitled Genome Medicine: Gene Therapy for the Millennium (Rome, 30 September-3 October 2001), have highlighted the usefulness of extrachromosomal or episomal genes in gene targeting strategies. Due to the selectable nature of antibiotic resistance and reporter genes, targeted correction of mutated versions of these extrachromosomal genes allows an accurate quantification of correction frequency. In addition, these model systems facilitate and speed up the optimization of critical parameters for the successful application of gene targeting approaches. In fact, type of cell line, gene delivery system, molar ratio of episomal target/therapeutic constructs, nature and design of therapeutic complexes and different recombinative proteins may be critical for the actual feasibility of each method. Although virus-based approaches are now being investigated as well, this article is focusing on the targeted correction of extrachromosomal genes by the use of small DNA fragments (SDF), chimeric RNA/DNA oligonucleotides (RDO) and triplex-forming oligonucleotides (TFO).
Collapse
|
41
|
Abstract
Gene repair, the precise modification of the genome, offers a number of advantages over replacement gene therapy. In practice, gene targeting strategies are limited by the inefficiency of homologous recombination in mammalian cells. A number of strategies, including RNA-DNA oligonucleotides (RDOs) and short DNA fragments (SDFs), show promise in improving the efficiency of gene correction. We are using GFP as a reporter for gene repair in living cells. A single base substitution was introduced into GFP to create a nonsense mutation (STOP codon, W399X). RDOs and SDFs are used to repair this mutation episomally in transient transfections and restore green fluorescence. The correction efficiency is determined by FACS analysis. SDFs appear to correct GFP W399X in a number of different cell lines (COS7, A549, HT1080, HuH-7), although all at a similar low frequency ( approximately 0.6% of transfected cells). RDOs correct only one of our cell lines significantly (HT1080-RAD51), these cells overexpress the human RAD51 gene; the bacterial RecA homologue. The GFP W399X reporter is a fusion gene with hygromycin (at the 5' end), this has allowed us to make stable cell lines (A549, HT1080) to study genomic correction. Initial studies using our correction molecules show only low efficiencies of genomic repair ( approximately 10(-4)). Polyethylenimine (PEI) is used to deliver RDOs and SDFs into mammalian cells in culture for our study. We have used fluorescently labelled RDOs and SDFs to study the effectiveness of this process. FACS analysis of transfected nuclei implied efficient delivery (>90%) both with SDFs and RDOs. However, confocal fluorescence microscopy suggests that a large proportion of the complexed RDO/SDF appears to remain outside the nucleus (or attached to the nuclear membrane). On the basis of these data we are assessing new delivery methods and factors that may alter recombination status to optimise gene repair.
Collapse
Affiliation(s)
- P Thorpe
- Medical Genetics Section, Molecular Medicine Centre, University of Edinburgh, Western General Hospital, Edinburgh, UK.
| | | | | |
Collapse
|
42
|
Thorpe PH, Stevenson BJ, Porteous DJ. Functional correction of episomal mutations with short DNA fragments and RNA-DNA oligonucleotides. J Gene Med 2002; 4:195-204. [PMID: 11933220 DOI: 10.1002/jgm.249] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Gene correction is an alternative approach to replacement gene therapy. By correcting mutations within the genome, some of the barriers to effective gene therapy are avoided. Homologous nucleic acid sequences can correct mutations by inducing recombination or mismatch repair. Recently, encouraging data have been presented using both short DNA fragments (SDFs) and RNA-DNA oligonucleotides (RDOs) in experimental strategies to realize clinical gene correction. METHODS The delivery of labelled SDFs and RDOs to a variety of cell lines was tested using both FACS analysis and confocal microscopy. A GFP-based reporter system was constructed, containing a nonsense mutation, to allow quantitation of gene correction in living cells. This reporter was used to compare efficiencies of functional gene correction using SDFs and RDOs in arange of mammalian cell lines. RESULTS The delivery experiments highlight the inefficient delivery of SDFs and RDOs to the nucleus using polyethylenimine (PEI) transfection. This study compared the episomal correction efficiency of the reporter plasmid mediated by SDFs and RDOs within different cell types; low levels of functional correction were detected in cell culture. CONCLUSIONS Whilst delivery of PEI-complexed SDFs or RDOs to the cell is highly effective, nuclear entry appears to be a limiting factor. SDFs elicited episomal GFP correction across a range of cell lines, whereas RDOs only corrected the reporter in a cell line that overexpresses RAD51.
Collapse
Affiliation(s)
- P H Thorpe
- Medical Genetics Section, University of Edinburgh, Molecular Medicine Centre, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | | | | |
Collapse
|
43
|
Abstract
One of the most productive areas of biologic research has been the utilization of model organisms for the systematic study of gene function. Although the experimental manipulation of these model genetic systems has provided important insights into the function of homologous genes in humans, such studies are necessarily limited by the need to extrapolate among divergent species and cell types. Researchers have now begun to apply the technology of gene targeting to human cell lines. Recently, studies of human cell knockouts have yielded important new information about how the cell cycle is regulated and how this regulation can go awry in cancer cells. The targeting of human genes promises to be a powerful tool in the characterization of the molecular pathways relevant to cancer.
Collapse
Affiliation(s)
- Fred Bunz
- Radiobiology Program, Johns Hopkins Oncology Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
44
|
Affiliation(s)
- Giuseppe Novelli
- Human Genetics Unit, Department of Biopathology and Diagnostic Imaging, Tor Vergata University, Via Montpellier, 00133 Rome, Italy.
| | | |
Collapse
|
45
|
Vasquez KM, Marburger K, Intody Z, Wilson JH. Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8403-10. [PMID: 11459982 PMCID: PMC37450 DOI: 10.1073/pnas.111009698] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene targeting in mammalian cells has proven invaluable in biotechnology, in studies of gene structure and function, and in understanding chromosome dynamics. It also offers a potential tool for gene-therapeutic applications. Two limitations constrain the current technology: the low rate of homologous recombination in mammalian cells and the high rate of random (nontargeted) integration of the vector DNA. Here we consider possible ways to overcome these limitations within the framework of our present understanding of recombination mechanisms and machinery. Several studies suggest that transient alteration of the levels of recombination proteins, by overexpression or interference with expression, may be able to increase homologous recombination or decrease random integration, and we present a list of candidate genes. We consider potentially beneficial modifications to the vector DNA and discuss the effects of methods of DNA delivery on targeting efficiency. Finally, we present work showing that gene-specific DNA damage can stimulate local homologous recombination, and we discuss recent results with two general methodologies--chimeric nucleases and triplex-forming oligonucleotides--for stimulating recombination in cells.
Collapse
Affiliation(s)
- K M Vasquez
- Science Park Research Division, M. D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
46
|
Goncz KK, Colosimo A, Dallapiccola B, Gagné L, Hong K, Novelli G, Papahadjopoulos D, Sawa T, Schreier H, Wiener-Kronish J, Xu Z, Gruenert DC. Expression of DeltaF508 CFTR in normal mouse lung after site-specific modification of CFTR sequences by SFHR. Gene Ther 2001; 8:961-5. [PMID: 11426337 DOI: 10.1038/sj.gt.3301476] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2000] [Accepted: 04/06/2001] [Indexed: 11/09/2022]
Abstract
The development of gene targeting strategies for specific modification of genomic DNA in human somatic cells has provided a potential gene therapy for the treatment of inherited diseases. One approach, small fragment homologous replacement (SFHR), directly targets and modifies specific genomic sequences with small fragments of exogenous DNA (400-800 bp) that are homologous to genomic sequences except for the desired modification. This approach has been effective for the in vitro modification of exon 10 in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in human airway epithelial cells. As another step in the development of SFHR for gene therapy, studies were carried out to target and modify specific genomic sequences in exon 10 of the mouse CFTR (mCFTR) in vivo. Small DNA fragments (783 bp), homologous to mCFTR except for a 3-bp deletion (DeltaF508) and a silent mutation which introduces a unique restriction site (KpnI), were instilled into the lungs of normal mice using four different DNA vehicles (AVE, LipofectAMINE, DDAB, SuperFect). Successful modification was determined by PCR amplification of DNA or mRNA-derived cDNA followed by KpnI digestion. The results of these studies showed that SFHR can be used as a gene therapy to introduce specific modifications into the cells of clinically affected organs and that the cells will express the new sequence.
Collapse
Affiliation(s)
- K K Goncz
- Human Molecular Genetics, Department of Medicine, University of Vermont, Burlington, VT, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Suzuki I, Im S, Tada A, Scott C, Akcali C, Davis MB, Barsh G, Hearing V, Abdel-Malek Z. Participation of the melanocortin-1 receptor in the UV control of pigmentation. J Investig Dermatol Symp Proc 1999; 4:29-34. [PMID: 10537004 DOI: 10.1038/sj.jidsp.5640177] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cloning of the melanocortin-1 receptor (MC1R) gene from human melanocytes and the demonstration that these cells respond to the melanocortins alpha-melanocyte stimulating hormone (alpha-MSH) and adrenocorticotropic hormone (ACTH) with increased proliferation and melanogenesis have renewed the interest in investigation the physiological role of these hormones in regulating human pigmentation. Alpha-melanocyte stimulating hormone and ACTH are both synthesized in the human epidermis, and their synthesis is upregulated by exposure to ultraviolet radiation (UVR). Activation of the MC1R by ligand binding results in stimulation of cAMP formation, which is a principal mechanism for inducing melanogenesis. The increase in cAMP is required for the pigmentary response of human melanocytes to UVR, and for allowing them to overcome the UVR-induced G1 arrest. Treatment of human melanocytes with alpha-MSH increases eumelanin synthesis, an effect that is expected to enhance photoprotection of the skin. Population studies have revealed more than 20 allelic variants of the MC1R gene. Some of these variants are overexpressed in individuals with skin type I or II, red hair, and poor tanning ability. Future studies will aim at further exploration of the role of these variants in MC1R function, and in determining constitutive human pigmentation, the response to sun exposure, and possibly the susceptibility to skin cancer.
Collapse
Affiliation(s)
- I Suzuki
- Department of Dermatology, University of Cincinnati, Ohio 45267-0592, USA
| | | | | | | | | | | | | | | | | |
Collapse
|