1
|
Hariharan V, White JA, Dragoni F, Fray EJ, Pathoulas N, Moskovljevic M, Zhang H, Singhal A, Lai J, Beg SA, Scully EP, Gilliams EA, Block DS, Keruly J, Moore RD, Siliciano JD, Simonetti FR, Siliciano RF. Superinfection with intact HIV-1 results in conditional replication of defective proviruses and nonsuppressible viremia in people living with HIV-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647291. [PMID: 40236094 PMCID: PMC11996531 DOI: 10.1101/2025.04.04.647291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
During replication of some RNA viruses, defective particles can spontaneously arise and interfere with wild-type (WT) virus replication. Recently, engineered versions of these defective interfering particles (DIPs) have been proposed as an HIV-1 therapeutic. However, DIPs have yet to be reported in people with HIV-1 (PWH). Here, we find DIPs in PWH who have a rare, polyclonal form of non-suppressible viremia (NSV). While antiretroviral therapy (ART) rapidly reduces viremia to undetectable levels, some individuals experience sustained viremia due to virus production from cell clones harboring intact or defective proviruses. We characterized the source of NSV in two PWH who never reached undetectable viral load despite ART adherence. Remarkably, in each participant, we found a diverse set of defective viral genomes all sharing the same fatal deletions. We found that this paradoxical accumulation of mutations by viruses with fatal defects was driven by superinfection with intact viruses, resulting in mobilization of defective genomes and accumulation of additional mutations during untreated infection. We show that these defective proviruses interfere with WT virus replication, conditionally replicate, and, in one case, have an R 0 > 1, enabling in vivo spread. Despite this, clinical outcomes show no evidence of a beneficial effect of these DIPs.
Collapse
|
2
|
Pitchai FNN, Tanner EJ, Khetan N, Vasen G, Levrel C, Kumar AJ, Pandey S, Ordonez T, Barnette P, Spencer D, Jung SY, Glazier J, Thompson C, Harvey-Vera A, Son HI, Strathdee SA, Holguin L, Urak R, Burnett J, Burgess W, Busman-Sahay K, Estes JD, Hessell A, Fennessey CM, Keele BF, Haigwood NL, Weinberger LS. Engineered deletions of HIV replicate conditionally to reduce disease in nonhuman primates. Science 2024; 385:eadn5866. [PMID: 39116226 PMCID: PMC11545966 DOI: 10.1126/science.adn5866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/06/2024] [Indexed: 08/10/2024]
Abstract
Antiviral therapies with reduced frequencies of administration and high barriers to resistance remain a major goal. For HIV, theories have proposed that viral-deletion variants, which conditionally replicate with a basic reproductive ratio [R0] > 1 (termed "therapeutic interfering particles" or "TIPs"), could parasitize wild-type virus to constitute single-administration, escape-resistant antiviral therapies. We report the engineering of a TIP that, in rhesus macaques, reduces viremia of a highly pathogenic model of HIV by >3log10 following a single intravenous injection. Animal lifespan was significantly extended, TIPs conditionally replicated and were continually detected for >6 months, and sequencing data showed no evidence of viral escape. A single TIP injection also suppressed virus replication in humanized mice and cells from persons living with HIV. These data provide proof of concept for a potential new class of single-administration antiviral therapies.
Collapse
Affiliation(s)
- Fathima N. Nagoor Pitchai
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Elizabeth J. Tanner
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Neha Khetan
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Gustavo Vasen
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Clara Levrel
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
| | - Arjun J. Kumar
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Shilpi Pandey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Tracy Ordonez
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Philip Barnette
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - David Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
- Absci Corporation, Vancouver, WA, USA
| | - Seung-Yong Jung
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
| | - Joshua Glazier
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
| | - Cassandra Thompson
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alicia Harvey-Vera
- Global Health Sciences, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- US-Mexico Border Health Commission, Tijuana, Mexico
| | - Hye-In Son
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
| | - Steffanie A. Strathdee
- Global Health Sciences, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Leo Holguin
- Global Health Sciences, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ryan Urak
- Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - John Burnett
- Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - William Burgess
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
- Faculty of Health, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- School of Health and Biomedical Sciences College of Science, Engineering and Health RMIT University, Melbourne, Australia
| | - Ann Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Leor S. Weinberger
- Gladstone Center for Cell Circuitry, University of California, San Francisco, CA, USA
- Gladstone Institute of Virology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Bhat T, Cao A, Yin J. Virus-like Particles: Measures and Biological Functions. Viruses 2022; 14:383. [PMID: 35215979 PMCID: PMC8877645 DOI: 10.3390/v14020383] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Virus-like particles resemble infectious virus particles in size, shape, and molecular composition; however, they fail to productively infect host cells. Historically, the presence of virus-like particles has been inferred from total particle counts by microscopy, and infectious particle counts or plaque-forming-units (PFUs) by plaque assay; the resulting ratio of particles-to-PFUs is often greater than one, easily 10 or 100, indicating that most particles are non-infectious. Despite their inability to hijack cells for their reproduction, virus-like particles and the defective genomes they carry can exhibit a broad range of behaviors: interference with normal virus growth during co-infections, cell killing, and activation or inhibition of innate immune signaling. In addition, some virus-like particles become productive as their multiplicities of infection increase, a sign of cooperation between particles. Here, we review established and emerging methods to count virus-like particles and characterize their biological functions. We take a critical look at evidence for defective interfering virus genomes in natural and clinical isolates, and we review their potential as antiviral therapeutics. In short, we highlight an urgent need to better understand how virus-like genomes and particles interact with intact functional viruses during co-infection of their hosts, and their impacts on the transmission, severity, and persistence of virus-associated diseases.
Collapse
Affiliation(s)
| | | | - John Yin
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI 53715, USA; (T.B.); (A.C.)
| |
Collapse
|
4
|
Rast LI, Rouzine IM, Rozhnova G, Bishop L, Weinberger AD, Weinberger LS. Conflicting Selection Pressures Will Constrain Viral Escape from Interfering Particles: Principles for Designing Resistance-Proof Antivirals. PLoS Comput Biol 2016; 12:e1004799. [PMID: 27152856 PMCID: PMC4859541 DOI: 10.1371/journal.pcbi.1004799] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/08/2016] [Indexed: 02/07/2023] Open
Abstract
The rapid evolution of RNA-encoded viruses such as HIV presents a major barrier to infectious disease control using conventional pharmaceuticals and vaccines. Previously, it was proposed that defective interfering particles could be developed to indefinitely control the HIV/AIDS pandemic; in individual patients, these engineered molecular parasites were further predicted to be refractory to HIV’s mutational escape (i.e., be ‘resistance-proof’). However, an outstanding question has been whether these engineered interfering particles—termed Therapeutic Interfering Particles (TIPs)—would remain resistance-proof at the population-scale, where TIP-resistant HIV mutants may transmit more efficiently by reaching higher viral loads in the TIP-treated subpopulation. Here, we develop a multi-scale model to test whether TIPs will maintain indefinite control of HIV at the population-scale, as HIV (‘unilaterally’) evolves toward TIP resistance by limiting the production of viral proteins available for TIPs to parasitize. Model results capture the existence of two intrinsic evolutionary tradeoffs that collectively prevent the spread of TIP-resistant HIV mutants in a population. First, despite their increased transmission rates in TIP-treated sub-populations, unilateral TIP-resistant mutants are shown to have reduced transmission rates in TIP-untreated sub-populations. Second, these TIP-resistant mutants are shown to have reduced growth rates (i.e., replicative fitness) in both TIP-treated and TIP-untreated individuals. As a result of these tradeoffs, the model finds that TIP-susceptible HIV strains continually outcompete TIP-resistant HIV mutants at both patient and population scales when TIPs are engineered to express >3-fold more genomic RNA than HIV expresses. Thus, the results provide design constraints for engineering population-scale therapies that may be refractory to the acquisition of antiviral resistance. A major obstacle to effective antimicrobial therapy campaigns is the rapid evolution of drug resistance. Given the static nature of current pharmaceuticals and vaccines, natural selection inevitably drives pathogens to mutate into drug-resistant variants that can resume productive replication. Further, these drug-resistant mutants transmit across populations, resulting in untreatable epidemics. Recently, a therapeutic strategy was proposed in which viral deletion mutants—termed therapeutic interfering particles (TIPs)—are engineered to only replicate by stealing their missing proteins from full-length viruses in co-infected cells. By stealing essential viral proteins, these engineered molecular parasites have been predicted to reduce viral levels in patients and viral transmission events across populations. Yet, a critical question is whether rapidly mutating viruses like HIV can evolve around TIP control by reducing production of the proteins that TIPs must steal in order to replicate (i.e., by ‘starving’ the TIPs). Here we develop a multi-scale model that tests whether TIP-starving HIV mutants can spread across populations to undermine TIP therapy campaigns at the population-scale. Strikingly, model results show that inherent evolutionary tradeoffs prevent these TIP-resistant HIV mutants from increasing in frequency (i.e., these TIP-resistant HIV mutants are continually outcompeted by TIP-sensitive mutants in both patients and populations). Maintained by natural selection, TIPs may offer a novel therapeutic approach to indefinitely control rapidly evolving viral pandemics.
Collapse
Affiliation(s)
- Luke I. Rast
- Gladstone Institutes (Virology and Immunology), San Francisco, California, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Igor M. Rouzine
- Gladstone Institutes (Virology and Immunology), San Francisco, California, United States of America
| | - Ganna Rozhnova
- Gladstone Institutes (Virology and Immunology), San Francisco, California, United States of America
| | - Lisa Bishop
- Gladstone Institutes (Virology and Immunology), San Francisco, California, United States of America
| | - Ariel D. Weinberger
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- * E-mail: (ADW); (LSW)
| | - Leor S. Weinberger
- Gladstone Institutes (Virology and Immunology), San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
- QB3: California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (ADW); (LSW)
| |
Collapse
|
5
|
Abstract
Rapidly evolving viruses are a major threat to human health. Such viruses are often highly pathogenic (e.g., influenza virus, HIV, Ebola virus) and routinely circumvent therapeutic intervention through mutational escape. Error-prone genome replication generates heterogeneous viral populations that rapidly adapt to new selection pressures, leading to resistance that emerges with treatment. However, population heterogeneity bears a cost: when multiple viral variants replicate within a cell, they can potentially interfere with each other, lowering viral fitness. This genetic interference can be exploited for antiviral strategies, either by taking advantage of a virus’s inherent genetic diversity or through generating de novo interference by engineering a competing genome. Here, we discuss two such antiviral strategies, dominant drug targeting and therapeutic interfering particles. Both strategies harness the power of genetic interference to surmount two particularly vexing obstacles—the evolution of drug resistance and targeting therapy to high-risk populations—both of which impede treatment in resource-poor settings.
Collapse
|
6
|
Tong HI, Kang W, Davy PMC, Shi Y, Sun S, Allsopp RC, Lu Y. Monocyte Trafficking, Engraftment, and Delivery of Nanoparticles and an Exogenous Gene into the Acutely Inflamed Brain Tissue - Evaluations on Monocyte-Based Delivery System for the Central Nervous System. PLoS One 2016; 11:e0154022. [PMID: 27115998 PMCID: PMC4846033 DOI: 10.1371/journal.pone.0154022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/07/2016] [Indexed: 11/23/2022] Open
Abstract
The ability of monocytes and monocyte-derived macrophages (MDM) to travel towards chemotactic gradient, traverse tissue barriers, and accumulate precisely at diseased sites makes them attractive candidates as drug carriers and therapeutic gene delivery vehicles targeting the brain, where treatments are often hampered by the blockade of the blood brain barrier (BBB). This study was designed to fully establish an optimized cell-based delivery system using monocytes and MDM, by evaluating their homing efficiency, engraftment potential, as well as carriage and delivery ability to transport nano-scaled particles and exogenous genes into the brain, following the non-invasive intravenous (IV) cell adoptive transfer in an acute neuroinflammation mouse model induced by intracranial injection of Escherichia coli lipopolysaccharides. We demonstrated that freshly isolated monocytes had superior inflamed-brain homing ability over MDM cultured in the presence of macrophage colony stimulating factor. In addition, brain trafficking of IV infused monocytes was positively correlated with the number of adoptive transferred cells, and could be further enhanced by transient disruption of the BBB with IV administration of Mannitol, Bradykinin or Serotonin right before cell infusion. A small portion of transmigrated cells was detected to differentiate into IBA-1 positive cells with microglia morphology in the brain. Finally, with the use of superparamagnetic iron oxide nanoparticles SHP30, the ability of nanoscale agent-carriage monocytes to enter the inflamed brain region was validated. In addition, lentiviral vector DHIV-101 was used to introduce green fluorescent protein (GFP) gene into monocytes, and the exogenous GFP gene was detected in the brain at 48 hours following IV infusion of the transduced monocytes. All together, our study has set up the optimized conditions for the more-in-depth tests and development of monocyte-mediated delivery, and our data supported the notion to use monocytes as a non-invasive cell-based delivery system for the brain.
Collapse
Affiliation(s)
- Hsin-I Tong
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, Hawaii, United Sates of America
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Wen Kang
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, Hawaii, United Sates of America
| | - Philip M. C. Davy
- Institute for Biogenesis Research, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Yingli Shi
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, Hawaii, United Sates of America
| | - Si Sun
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, Hawaii, United Sates of America
| | - Richard C. Allsopp
- Institute for Biogenesis Research, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Yuanan Lu
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, Hawaii, United Sates of America
- * E-mail:
| |
Collapse
|
7
|
Nalla AK, Trobridge GD. Prospects for Foamy Viral Vector Anti-HIV Gene Therapy. Biomedicines 2016; 4:E8. [PMID: 28536375 PMCID: PMC5344253 DOI: 10.3390/biomedicines4020008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 12/22/2022] Open
Abstract
Stem cell gene therapy approaches for Human Immunodeficiency Virus (HIV) infection have been explored in clinical trials and several anti-HIV genes delivered by retroviral vectors were shown to block HIV replication. However, gammaretroviral and lentiviral based retroviral vectors have limitations for delivery of anti-HIV genes into hematopoietic stem cells (HSC). Foamy virus vectors have several advantages including efficient delivery of transgenes into HSC in large animal models, and a potentially safer integration profile. This review focuses on novel anti-HIV transgenes and the potential of foamy virus vectors for HSC gene therapy of HIV.
Collapse
Affiliation(s)
- Arun K Nalla
- Pharmaceutical Sciences, College of Pharmacy, Washington State University Spokane, Spokane, WA 99202, USA.
| | - Grant D Trobridge
- Pharmaceutical Sciences, College of Pharmacy, Washington State University Spokane, Spokane, WA 99202, USA.
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
8
|
Mao Y, Yan R, Li A, Zhang Y, Li J, Du H, Chen B, Wei W, Zhang Y, Sumners C, Zheng H, Li H. Lentiviral Vectors Mediate Long-Term and High Efficiency Transgene Expression in HEK 293T cells. Int J Med Sci 2015; 12:407-15. [PMID: 26005375 PMCID: PMC4441065 DOI: 10.7150/ijms.11270] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/20/2015] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES Lentiviral vectors have been used successfully to rapidly produce decigram quantities of active recombinant proteins in mammalian cell lines. To optimize the protein production platform, the roles of Ubiquitous Chromatin Opening Element (UCOE), an insulator, and selected promoters were evaluated based on efficiency and stability of foreign gene expression mediated by lentiviral vectors. METHODS Five lentiviral vectors, pFIN-EF1α-GFP-2A-mCherH-WPRE containing EF1α promoter and HS4 insulator, p'HR.cppt.3'1.2kb-UCOE-SFFV-eGFP containing SFFV promoter and UCOE, pTYF-CMV(β-globin intron)-eGFP containing CMV promoter and β-globin intron, pTYF-CMV-eGFP containing CMV promoter, and pTYF-EF1α-eGFP with EF1α promoter were packaged, titered, and then transduced into 293T cells (1000 viral genomes per cell). The transduced cells were passaged once every three days at a ratio of 1:10. Expression level and stability of the foreign gene, green fluorescence protein (GFP), was evaluated using fluorescent microscopy and flow cytometry. Furthermore, we constructed a hepatitis C virus (HCV) E1 recombinant lentiviral vector, pLV-CMV-E1, driven by the CMV promoter. This vector was packaged and transduced into 293T cells, and the recombinant cell lines with stable expression of E1 protein were established by limiting dilution. RESULTS GFP expression in 293T cells transduced with the five lentiviral vectors peaked between passages 3 and 5 and persisted for more than 5 weeks. The expression was prolonged in the cells transduced with TYF-CMV (β-globin intron)-eGFP or TYF-CMV-eGFP, demonstrating less than a 50% decrease even at 9 weeks post transduction (p>0.05). The TYF-CMV-eGFP-transduced cells began with a higher level of GFP expression than other vectors did. The percentage of GFP positive cells for any of the five lentiviral vectors sustained over time. Moreover, the survival rates of all transfected cells exceeded 80% at both 5 and 9 weeks post transduction. Surprisingly, neither the HS4 insulator nor the UCOE sequence improved the GFP expression level or stability. Clonal cell lines with HCV E1 gene were generated from LV-CMV-E1 vector-infected 293T cells. A representative recombinant cell line maintained stable E1expression for at least 9 weeks without significant difference in morphology compared with untreated 293T cells. CONCLUSION The results suggest that all five vectors can stably transduce 293T cells, producing long term transgene expression with different efficiencies. However, neither the insulator nor the UCOE improved the GFP expression. The vectors containing the promoter CMV or CMV (β-globin intron) generated the highest gene expressions, manifesting as more favorable candidates for recombinant protein production in HEK293T cells.
Collapse
Affiliation(s)
- Yingying Mao
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Renhe Yan
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Andrew Li
- 2. Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Yanling Zhang
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinlong Li
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Du
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Baihong Chen
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenjin Wei
- 3. Beijing Minhai Biotechnology CO., LTD, Beijing, China
| | - Yi Zhang
- 4. Department of Pharmacology, University of Florida, Gainesville, Florida, USA
| | - Colin Sumners
- 5. Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Haifa Zheng
- 3. Beijing Minhai Biotechnology CO., LTD, Beijing, China
| | - Hongwei Li
- 1. School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Design requirements for interfering particles to maintain coadaptive stability with HIV-1. J Virol 2012; 87:2081-93. [PMID: 23221552 DOI: 10.1128/jvi.02741-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Defective interfering particles (DIPs) are viral deletion mutants lacking essential transacting or packaging elements and must be complemented by wild-type virus to propagate. DIPs transmit through human populations, replicating at the expense of the wild-type virus and acting as molecular parasites of viruses. Consequently, engineered DIPs have been proposed as therapies for a number of diseases, including human immunodeficiency virus (HIV). However, it is not clear if DIP-based therapies would face evolutionary blocks given the high mutation rates and high within-host diversity of lentiviruses. Divergent evolution of HIV and DIPs appears likely since natural DIPs have not been detected for lentiviruses, despite extensive sequencing of HIVs and simian immunodeficiency viruses (SIVs). Here, we tested if the apparent lack of lentiviral DIPs is due to natural selection and analyzed which molecular characteristics a DIP or DIP-based therapy would need to maintain coadaptive stability with HIV-1. Using a well-established mathematical model of HIV-1 in a host extended to include its replication in a single cell and interference from DIP, we calculated evolutionary selection coefficients. The analysis predicts that interference by codimerization between DIPs and HIV-1 genomes is evolutionarily unstable, indicating that recombination between DIPs and HIV-1 would be selected against. In contrast, DIPs that interfere via competition for capsids have the potential to be evolutionarily stable if the capsid-to-genome production ratio of HIV-1 is >1. Thus, HIV-1 variants that attempt to "starve" DIPs to escape interference would be selected against. In summary, the analysis suggests specific experimental measurements that could address the apparent lack of naturally occurring lentiviral DIPs and specifies how therapeutic approaches based on engineered DIPs could be evolutionarily robust and avoid recombination.
Collapse
|
10
|
Zhang L, Yin S, Tan W, Xiao D, Weng Y, Wang W, Li T, Shi J, Shuai L, Li H, Zhou J, Allain JP, Li C. Recombinant interferon-γ lentivirus co-infection inhibits adenovirus replication ex vivo. PLoS One 2012; 7:e42455. [PMID: 22916129 PMCID: PMC3420869 DOI: 10.1371/journal.pone.0042455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/05/2012] [Indexed: 11/19/2022] Open
Abstract
Recombinant interferon-γ (IFNγ) production in cultured lentivirus (LV) was explored for inhibition of target virus in cells co-infected with adenovirus type 5 (Ad5). The ability of three different promoters of CMV, EF1α and Ubiquitin initiating the enhanced green fluorescence protein (GFP) activities within lentiviruses was systematically assessed in various cell lines, which showed that certain cell lines selected the most favorable promoter driving a high level of transgenic expression. Recombinant IFNγ lentivirus carrying CMV promoter (LV-CMV-IFNγ) was generated to co-infect 293A cells with a viral surrogate of recombinant GFP Ad5 in parallel with LV-CMV-GFP control. The best morphologic conditions were observed from the two lentiviruses co-infected cells, while single adenovirus infected cells underwent clear pathologic changes. Viral load of adenoviruses from LV-CMV-IFNγ or LV-CMV-GFP co-infected cell cultures was significantly lower than that from adenovirus alone infected cells (P=0.005-0.041), and the reduction of adenoviral load in the co-infected cells was 86% and 61%, respectively. Ad5 viral load from LV-CMV-IFNγ co-infected cells was significantly lower than that from LV-CMV-GFP co-infection (P=0.032), which suggested that IFNγ rather than GFP could further enhance the inhibition of Ad5 replication in the recombinant lentivirus co-infected cells. The results suggest that LV-CMV-IFNγ co-infection could significantly inhibit the target virus replication and might be a potential approach for alternative therapy of severe viral diseases.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Sen Yin
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Wanlong Tan
- Department of Urology, Southern Medical University, Guangzhou, China
| | - Dong Xiao
- Institute of Oncology, Southern Medical University, Guangzhou, China
| | - Yunceng Weng
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Wenjing Wang
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Tingting Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Junwen Shi
- Institute of Oncology, Southern Medical University, Guangzhou, China
| | - Lifang Shuai
- Guangzhou Military Centre of Disease Control, Guangzhou, China
| | - Hongwei Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Jianhua Zhou
- Laboratory of Lentiviruses and Horse Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | - Chengyao Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
- * E-mail:
| |
Collapse
|
11
|
Autonomous targeting of infectious superspreaders using engineered transmissible therapies. PLoS Comput Biol 2011; 7:e1002015. [PMID: 21483468 PMCID: PMC3060167 DOI: 10.1371/journal.pcbi.1002015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/17/2011] [Indexed: 12/15/2022] Open
Abstract
Infectious disease treatments, both pharmaceutical and vaccine, face three universal challenges: the difficulty of targeting treatments to high-risk ‘superspreader’ populations who drive the great majority of disease spread, behavioral barriers in the host population (such as poor compliance and risk disinhibition), and the evolution of pathogen resistance. Here, we describe a proposed intervention that would overcome these challenges by capitalizing upon Therapeutic Interfering Particles (TIPs) that are engineered to replicate conditionally in the presence of the pathogen and spread between individuals — analogous to ‘transmissible immunization’ that occurs with live-attenuated vaccines (but without the potential for reversion to virulence). Building on analyses of HIV field data from sub-Saharan Africa, we construct a multi-scale model, beginning at the single-cell level, to predict the effect of TIPs on individual patient viral loads and ultimately population-level disease prevalence. Our results show that a TIP, engineered with properties based on a recent HIV gene-therapy trial, could stably lower HIV/AIDS prevalence by ∼30-fold within 50 years and could complement current therapies. In contrast, optimistic antiretroviral therapy or vaccination campaigns alone could only lower HIV/AIDS prevalence by <2-fold over 50 years. The TIP's efficacy arises from its exploitation of the same risk factors as the pathogen, allowing it to autonomously penetrate superspreader populations, maintain efficacy despite behavioral disinhibition, and limit viral resistance. While demonstrated here for HIV, the TIP concept could apply broadly to many viral infectious diseases and would represent a new paradigm for disease control, away from pathogen eradication but toward robust disease suppression. We introduce a proposed intervention against infectious diseases that extends and optimizes the recognized benefit of ‘transmissible immunization’ that occurs with live-attenuated vaccines such as Oral Polio Vaccine (OPV), the vaccine chosen for the worldwide polio eradication campaign. The intervention proposed here is based upon Therapeutic Interfering Particles (TIPs) that are engineered to replicate only in the presence of the wildtype pathogen and act to inhibit the growth of the pathogen. Therefore TIPs ‘piggyback’ on the pathogen, leading to two important differences from live-attenuated vaccines: TIPs can only transmit from individuals already infected with wildtype pathogen, and TIPs could only revert to virulence in individuals already carrying the wild-type pathogen. Intriguingly, because TIPs spread between individuals using the same transmission routes as the pathogen, they automatically find their way to the populations at greatest risk of infection, thus circumventing the unsolved problem of how to identify superspreaders and target them for preventive measures. Based on clinical-trial data, we analyze the impact that TIP intervention would have on HIV/AIDS in sub-Saharan Africa and show that TIPs could lower HIV/AIDS prevalence more effectively than vaccines or drugs alone and, in fact, would effectively complement these other interventions.
Collapse
|
12
|
Asai D, Kuramoto M, Shoji Y, Kang JH, Kodama KB, Kawamura K, Mori T, Miyoshi H, Niidome T, Nakashima H, Katayama Y. Specific transgene expression in HIV-infected cells using protease-cleavable transcription regulator. J Control Release 2009; 141:52-61. [PMID: 19733602 DOI: 10.1016/j.jconrel.2009.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 08/18/2009] [Accepted: 08/23/2009] [Indexed: 11/28/2022]
Abstract
Gene therapy is a promising strategy for the treatment of HIV infection, but cell specificity remains an issue. Recently we have developed a new concept for a drug or gene delivery system responding to cellular signals (D-RECS) to achieve cell-specific transgene expression using a non-viral polymer-based vehicle. According to this concept, intracellular signaling enzymes, which are activated specifically in target cells, are used to trigger transgene expression. We previously applied this concept to HIV-1 protease and showed that the recombinant protease could act as a suitable signal. Here we further developed this system to achieve highly specific transgene expression in HIV-infected cells. We prepared a polymeric gene regulator grafted with a cationic peptide containing the HIV-Tat peptide via a specific substrate for HIV-1 protease. The regulator formed a stable polyplex with the transgene, suppressing its transcription. HIV-1 protease cleaved the peptide and released the transgene, which was consequently expressed specifically in activated HIV-infected cells, but remained unreleased and inactive in uninfected cells. The validity of this approach was further confirmed by applying it to the CVB1 2A protease of coxsackievirus (Picornaviridae family). This strategy should be widely applicable for specific expression of a variety of therapeutic genes in virus-infected cells.
Collapse
Affiliation(s)
- Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The discovery of RNA interference (RNAi) has resulted in a new class of biological agents that can specifically downmodulate HIV-1 gene expression. Delivery of these RNAi-based agents and the emergence of viral resistance present pressing issues in the use of RNAi in a genetic-based therapy for HIV-1. Here, we discuss a potential avenue around viral resistance and a targeted delivery scheme for treating HIV-1-infected individuals involving transcriptional gene silencing. Specifically, the use of small antisense RNAs targeted to the viral promoter regions and delivery by lentiviral-based mobilization-competent vectors expressing these promoter targeted RNAs may prove therapeutically relevant in a genetic therapy-based approach to treating HIV-1 infection.
Collapse
Affiliation(s)
- Anne-Marie W Turner
- Department of Molecular & Experimental Medicine and Kellogg School of Science & Technology, The Scripps Research Institute, 10550 N. Torrey Pines Road, MEM-115, La Jolla, CA 92037, USA
| | - Kevin V Morris
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, MEM-115, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Bahner I, Sumiyoshi T, Kagoda M, Swartout R, Peterson D, Pepper K, Dorey F, Reiser J, Kohn DB. Lentiviral vector transduction of a dominant-negative Rev gene into human CD34+ hematopoietic progenitor cells potently inhibits human immunodeficiency virus-1 replication. Mol Ther 2008; 15:76-85. [PMID: 17164778 DOI: 10.1038/sj.mt.6300025] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Gene therapy for human immunodeficiency virus (HIV)-1 may be performed by introducing into hematopoietic stem cells genes that inhibit replication of HIV-1 using lentiviral vectors. However, production of lentiviral vectors derived from HIV-1 may be inhibited by the gene being carried to inhibit HIV-1 and these vectors could be mobilized by wild-type HIV-1 infecting transduced cells. This study investigates these problems for the delivery of a dominant-negative rev gene humanized revM10 (huM10) by a lentiviral vector. Although most packaging plasmids suffered inhibition of expression of HIV-1 virion proteins by vectors expressing huM10, the packaging plasmids that expressed the highest levels of HIV-1 virion proteins produced vectors at titers that would be sufficient for clinical applications. The vectors carrying huM10 were used to transduce primary human CD34(+) hematopoietic progenitor cells and yielded high-level transduction without toxicity and conferred potent inhibition of HIV-1. The use of lentiviral vectors with deletion of the enhancers and promoter from the LTR (self-inactivating (SIN) vectors) decreased the frequency of vector mobilization by wild-type HIV-1; SIN vectors carrying huM10 were not mobilized detectably. These studies indicate that lentiviral vectors can be made effective for use in gene therapy for HIV-1.
Collapse
Affiliation(s)
- Ingrid Bahner
- Division of Research Immunology/Bone Marrow Transplantation, The Saban Research Institute of Childrens Hospital Los angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Efficient gene transfer mediated by HIV-1-based defective lentivector and inhibition of HIV-1 replication. Virol Sin 2007. [DOI: 10.1007/s12250-007-0002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
von Laer D, Hasselmann S, Hasselmann K. Gene therapy for HIV infection: what does it need to make it work? J Gene Med 2006; 8:658-67. [PMID: 16598816 DOI: 10.1002/jgm.908] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The efficacy of antiviral drug therapy for HIV infection is limited by toxicity and viral resistance. Thus, alternative therapies need to be explored. Several gene therapeutic strategies for HIV infection have been developed, but in clinical testing therapeutically effective levels of the transgene product were not achieved. This review focuses on the determinants of therapeutic efficacy and discusses the potential and also the limits of current gene therapy approaches for HIV infection.
Collapse
Affiliation(s)
- Dorothee von Laer
- Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42, Frankfurt a.M., Germany.
| | | | | |
Collapse
|
17
|
Zeng L, Planelles V, Sui Z, Gartner S, Maggirwar SB, Dewhurst S, Ye L, Nerurkar VR, Yanagihara R, Lu Y. HIV-1-based defective lentiviral vectors efficiently transduce human monocytes-derived macrophages and suppress replication of wild-type HIV-1. J Gene Med 2006; 8:18-28. [PMID: 16142830 PMCID: PMC2825118 DOI: 10.1002/jgm.825] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Human monocytes play an important role in mediating human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS), and monocytes-derived macrophages (MDM) represent a major viral reservoir within the brain and other target organs. Current gene transduction of MDM is hindered by a limited efficiency. In this study we established a lentiviral vector-based technique for improved gene transfer into human MDM cultures in vitro and demonstrated significant protection of transduced MDM from super-infection with wild-type HIV-1. METHODS HIV-1-based lentiviral vector stocks were prepared in 293T cells by the established calcium phosphate transfection method. Human monocytes were isolated from donors' blood by Ficoll-Paque separation and cultured in vitro. To establish an effective technique for vector-mediated gene transfer, primary cultures of human MDM were transduced at varying multiplicities of infection (MOI) and at a range of time points following initial isolation of cells (time-in-culture). Transduced cells were then examined for transgene (green fluorescent protein (GFP)) expression by fluorescent microscopy and reverse transcription polymerase chain reaction (RT-PCR). These cultures were then exposed to wild-type HIV-1, and viral replication was quantitated by p24 assay; production of neurotoxic effector molecules by the transduced MDM was also examined, using indicator neurons. RESULTS We have demonstrated that primary human MDM could be efficiently transduced (>50%) with concentrated HIV-1-based defective lentiviral vectors (DLV). Furthermore, DLV-mediated gene transduction was stable, and the transduced cells exhibited no apparent difference from normal MDM in terms of their morphology, viability and neurotoxin secretion. Challenge of DLV-transduced MDM cultures with HIV-1(Ba-L) revealed a 4- to 5-fold reduction in viral replication, as measured by p24 antigen production. This effect was associated with the mobilization of the GFP-expressing DLV construct by the wild-type virus. CONCLUSIONS These data demonstrate the inhibition of HIV-1 replication in primary MDM, by a DLV vector that lacks any anti-HIV-1 transgene. These findings lay the initial groundwork for future studies on the ability of DLV-modified monocytes to introduce anti-HIV-1 genes into the CNS. Lentiviral vector-mediated gene delivery to the CNS by monocytes/macrophages is a promising, emerging strategy for treating neuro-AIDS.
Collapse
Affiliation(s)
- Lingbing Zeng
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- College of Life Sciences, Wuhan University, Wuhan, China
| | | | - Ziye Sui
- Department of Microbiology, University of Rochester, Rochester, New York, USA
| | - Suzanne Gartner
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay B. Maggirwar
- Department of Microbiology, University of Rochester, Rochester, New York, USA
| | - Stephen Dewhurst
- Department of Microbiology, University of Rochester, Rochester, New York, USA
| | - Linbai Ye
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Vivek R. Nerurkar
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Richard Yanagihara
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yuanan Lu
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- Correspondence to: Yuanan Lu, Retrovirology Research Laboratory, Leahi Hospital, 3675 Kilauea Avenue, Honolulu, Hawaii 96816, USA.
| |
Collapse
|
18
|
Morris KV, Looney DJ. Characterization of human immunodeficiency virus (HIV)-2 vector mobilization by HIV-1. Hum Gene Ther 2006; 16:1463-72. [PMID: 16390277 DOI: 10.1089/hum.2005.16.1463] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conditionally replicating human immunodeficiency virus type 2 (crHIV-2) vectors can compete with HIV-1 for packaging in HIV-1-infected cells, indicating that the mobilization of vectors could selectively target as well as protect reservoirs susceptible to HIV-1 infection. The incorporation of HIV-1-specific antiviral transgenes in crHIV-2 vectors, although increasing the direct antiviral effect, may decrease mobilization and transmission to surrounding cells. To investigate how HIV-1-specific catalytic RNA cassettes (ribozymes) affect this balance between antiviral activity and mobilization, crHIV-2 vectors shown to display anti-HIV-1 activity were packaged by HIV-2 and used to transduce cells previously infected with HIV-1 or to transduce uninfected cells that were subsequently challenged with HIV-1. Vector mobilization was greater when HIV-1-infected cells were transduced with vector than when transduced cells were infected with HIV-1, and approximately 3-fold lower vector production was observed in cultures transduced with vectors expressing anti-HIV-1 ribozymes. Vector and antiviral effects could be transferred to new cultures by passaging supernatants to fresh cultures. No evidence of recombination with HIV-1 was observed. Vector mobilization and protection from HIV-1 infection were also demonstrated in human peripheral blood mononuclear cells. These data suggest that strategies employing vector mobilization for HIV-1 gene therapy should use vectors with maximal antiviral potency, despite resulting reductions in mobilization of the vector.
Collapse
Affiliation(s)
- Kevin V Morris
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
19
|
Morris KV, Looney DJ. Characterization of Human Immunodeficiency Virus (HIV)-2 Vector Mobilization by HIV-1. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Strayer DS, Akkina R, Bunnell BA, Dropulic B, Planelles V, Pomerantz RJ, Rossi JJ, Zaia JA. Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther 2005; 11:823-42. [PMID: 15922953 DOI: 10.1016/j.ymthe.2005.01.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 01/19/2005] [Accepted: 01/26/2005] [Indexed: 12/21/2022] Open
Abstract
Progress in developing effective gene transfer approaches to treat HIV-1 infection has been steady. Many different transgenes have been reported to inhibit HIV-1 in vitro. However, effective translation of such results to clinical practice, or even to animal models of AIDS, has been challenging. Among the reasons for this failure are uncertainty as to the most effective cell population(s) to target, the diffuseness of these target cells in the body, and ineffective or insufficiently durable gene delivery. Better understanding of the HIV-1 replicative cycle, host factors involved in HIV-1 infection, vector biology and application, transgene technology, animal models, and clinical study design have all contributed vastly to planning current and future strategies for application of gene therapeutic approaches to the treatment of AIDS. This review focuses on the newest developments in these areas and provides a strong basis for renewed optimism that gene therapy will have an important role to play in treating people infected with HIV-1.
Collapse
Affiliation(s)
- David S Strayer
- Department of Pathology, Jefferson Medical College, 1020 Locust Street, Room 251, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Dimitrova DI, Yang X, Reichenbach NL, Karakasidis S, Sutton RE, Henderson EE, Rogers TJ, Suhadolnik RJ. Lentivirus-mediated transduction of PKR into CD34(+) hematopoietic stem cells inhibits HIV-1 replication in differentiated T cell progeny. J Interferon Cytokine Res 2005; 25:345-60. [PMID: 15957958 DOI: 10.1089/jir.2005.25.345] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies from this laboratory evaluated the role of p68 kinase (PKR) in the control of HIV-1 replication via retrovirus-mediated gene transfer. PKR was studied because it is a key component of the interferon (IFN)-associated innate antiviral defense pathway in mammalian cells. In this study, CD34(+) hematopoietic stem cells (HSC) were transduced with an HIV-1-based lentiviral vector encoding the PKR transgene (pHIV-PIB) and cultured under conditions that support in vitro differentiation. With high-titer pseudotyped vector stocks, the histogram suggests 100% transduction of the HSC because the cells were blasticidin resistant. Analysis of transduced cells by hybridization revealed an average proviral vector copy number of 1.8 and 2.1 copies of vector sequence per cell. Increased PKR expression and activity (phosphorylation of eukaryotic initiation factor 2alpha [eIF2alpha]) were demonstrated in PKR-transduced, differentiated HSC. There was minimal reduction in cell viability and no induction of apoptosis after transduction of PKR. HSC transduced with the pHIV-PIB lentiviral vector demonstrated normal differentiation into CD34-derived T cell progeny. Two days after HIV-1 infection, lentivirus-mediated transduction of PKR inhibited HIV-1 replication by 72% in T cell progeny compared with cells transduced with the empty vector control (pHIV-IB). By days 5 and 7 post-HIV-1 infection, the surviving PKR-transduced cells were protected from HIV-1 infection, as evidenced by a decrease in p24 antigen expression of at least two orders of magnitude. Our results demonstrate that PKR can be effectively delivered to HSC by a lentiviral vector and can protect CD34-derived T cell progeny from HIV-1 infection. These results provide support for application of the innate antiviral defense pathway in a gene therapy setting to the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Dessislava I Dimitrova
- Departments of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pham HM, Argañaraz ER, Groschel B, Trono D, Lama J. Lentiviral vectors interfering with virus-induced CD4 down-modulation potently block human immunodeficiency virus type 1 replication in primary lymphocytes. J Virol 2004; 78:13072-81. [PMID: 15542659 PMCID: PMC524995 DOI: 10.1128/jvi.78.23.13072-13081.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 07/28/2004] [Indexed: 11/20/2022] Open
Abstract
CD4 down-modulation is essential for the production of human immunodeficiency virus (HIV) infectious particles. Disease progression correlates with enhanced viral induced CD4 down-modulation, and a subset of long-term nonprogressors carry viruses defective in this function. Despite multiple pieces of evidence highlighting the importance of this function in viral pathogenesis in vivo, to date, HIV-induced CD4 down-modulation has not been used as a target for intervention. We describe here HIV-based vectors that deliver truncated CD4 molecules resistant to down-modulation by the viral products Nef and Vpu. Infection of cells previously transduced with these vectors proceeded normally, and viral particles were released in normal amounts. However, the infectivity of the released virions was reduced 1,000-fold. Lentiviral vectors expressing truncated CD4 molecules were efficient at blocking HIV-1 infectivity and replication in several cell lines and in CD4-positive primary lymphocytes. The findings presented here provide proof-of-principle that approaches targeting the virus-induced CD4 down-modulation may constitute the basis for novel anti-HIV therapies.
Collapse
Affiliation(s)
- Hang M Pham
- La Jolla Institute for Molecular Medicine, 4570 Executive Dr., Suite 100, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
23
|
Diamond TL, Roshal M, Jamburuthugoda VK, Reynolds HM, Merriam AR, Lee KY, Balakrishnan M, Bambara RA, Planelles V, Dewhurst S, Kim B. Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. J Biol Chem 2004; 279:51545-53. [PMID: 15452123 PMCID: PMC1351161 DOI: 10.1074/jbc.m408573200] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retroviruses utilize cellular dNTPs to perform proviral DNA synthesis in infected host cells. Unlike oncoretroviruses, which replicate in dividing cells, lentiviruses, such as human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus, are capable of efficiently replicating in non-dividing cells (terminally differentiated macrophages) as well as dividing cells (i.e. activated CD4+ T cells). In general, non-dividing cells are likely to have low cellular dNTP content compared with dividing cells. Here, by employing a novel assay for cellular dNTP content, we determined the dNTP concentrations in two HIV-1 target cells, macrophages and activated CD4+ T cells. We found that human macrophages contained 130-250-fold lower dNTP concentrations than activated human CD4+ T cells. Biochemical analysis revealed that, unlike oncoretroviral reverse transcriptases (RTs), lentiviral RTs efficiently synthesize DNA even in the presence of the low dNTP concentrations equivalent to those found in macrophages. In keeping with this observation, HIV-1 vectors containing mutant HIV-1 RTs, which kinetically mimic oncoretroviral RTs, failed to transduce human macrophages despite retaining normal infectivity for activated CD4+ T cells and other dividing cells. These results suggest that the ability of HIV-1 to infect macrophages, which is essential to establishing the early pathogenesis of HIV-1 infection, depends, at least in part, on enzymatic adaptation of HIV-1 RT to efficiently catalyze DNA synthesis in limited cellular dNTP substrate environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Kwi Y. Lee
- Department of Microbiology and Immunology
| | | | - Robert A. Bambara
- Department of Biochemistry and Biophysics, and
- Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue Box 672, Rochester, New York 14642
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, 30 N. 1900 East, SOM C210, Salt Lake City, UT 84132
| | - Stephen Dewhurst
- Department of Microbiology and Immunology
- Cancer Center, University of Rochester Medical Center, 601 Elmwood Avenue Box 672, Rochester, New York 14642
| | - Baek Kim
- Department of Microbiology and Immunology
- *Corresponding author Baek Kim, Ph.D., Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue Box 672, Rochester, NY 14642, Tel: (585) 275-6916, Fax: (585) 473-9573,
| |
Collapse
|
24
|
Morris KV, Grahn RA, Looney DJ, Pedersen NC. Characterization of a mobilization-competent simian immunodeficiency virus (SIV) vector containing a ribozyme against SIV polymerase. J Gen Virol 2004; 85:1489-1496. [PMID: 15166433 DOI: 10.1099/vir.0.19106-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exploitation of the intracellular virus machinery within infected cells to drive an anti-viral gene therapy vector may prove to be a feasible alternative to reducing viral loads or overall virus infectivity while propagating the spread of a therapeutic vector. Using a simian immunodeficiency virus (SIV)-based system, it was shown that the pre-existing retroviral biological machinery within SIV-infected cells can drive the expression of an anti-SIV pol ribozyme and mobilize the vector to transduce neighbouring cells. The anti-SIV pol ribozyme vector was derived from the SIV backbone and contained the 5'- and 3'LTR including transactivation-response, Psi and Rev-responsive elements, thus requiring Tat and Rev and therefore limiting expression to SIV-infected cells. The data presented here show an early reduction in SIV p27 levels in the presence of the anti-SIV pol ribozyme, as well as successful mobilization (vector RNA constituted approximately 17 % of the total virus pool) and spread of the vector containing this ribozyme. These findings provide direct evidence that mobilization of an anti-retroviral SIV gene therapy vector is feasible in the SIV/macaque model.
Collapse
Affiliation(s)
- Kevin V Morris
- Department of Medicine, Stein Clinical Research Building Room 402, University of California San Diego, La Jolla, CA 92093-0665, USA
| | - Robert A Grahn
- Department of Population Health and Reproduction, Tupper Hall Room 1114, University of California Davis, Davis, CA 95616, USA
| | - David J Looney
- Department of Medicine, Stein Clinical Research Building Room 402, University of California San Diego, La Jolla, CA 92093-0665, USA
| | - Niels C Pedersen
- Department of Veterinary Medicine and Epidemiology, Tupper Hall Room 2108, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
25
|
Abstract
Despite the tremendous success of highly active antiretroviral treatment (HAART) introduced nearly 8 years ago for the treatment of human immunodeficiency virus (HIV), innovative therapies, including gene transfer approaches, are still required for nearly half of the general patient population. A number of potential gene therapeutic targets for HIV have been identified and include both viral and cellular genes essential for viral replication. The diverse methods used to inhibit viral replication comprise RNA-based strategies such as ribozymes, RNA decoys, antisense messenger RNAs and small interfering RNA (siRNA) molecules. Other potential anti-HIV genes include dominant negative viral proteins, intracellular antibodies, intrakines and suicide genes, all of which have had a modicum of success in vitro. Cellular targets include CD4+ T cells, macrophages and their progenitors. The greatest gene transfer efficiency has been achieved using retroviral or, more recently, lentiviral vectors. A limited number of Phase I clinical trials suggest that the general method is safe. It is proposed that a national network for HIV gene therapy (similar to the AIDS Clinical Trial Groups) may be the best way to determine which approaches should proceed clinically.
Collapse
Affiliation(s)
- Ananthalakshmi Poluri
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | |
Collapse
|
26
|
Abstract
Human immunodeficiency virus type I (HIV) is the etiologic agent of acquired immunodeficiency syndrome or AIDS. Vectors based upon HIV have been in use for over a decade. Beginning in 1996, with the demonstration of improved pseudotyping using vesicular stomatitis virus (VSV) G protein along with transduction of resting mammalian cells, a series of improvements have been made in these vectors, making them both safer and more efficacious. Taking a cue from vector development of murine leukemia virus (MLV), split coding and self-inactivating HIV vectors now appear quite suitable for phase I clinical trials. In parallel, a number of pre-clinical efficacy studies in animals have demonstrated the utility of these vectors for various diseases processes, especially neurodegenerative and hematopoietic illnesses. These vectors are also appropriate for the study of other viruses (specifically of viral entry) and investigation of the HIV replicative cycle, along with straightforward transgene delivery to target cells of interest. Vectors based upon other lentiviruses have shown similar abilities and promise. Although concerns remain, particularly with regards to detection and propagation of replication-competent lentivirus, it is almost certain that these vectors will be introduced into the clinic within the next 3-5 years.
Collapse
Affiliation(s)
- Ricardo Quinonez
- Department of Molecular Virology and Microbiology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
27
|
Schroers R, Davis CM, Wagner HJ, Chen SY. Lentiviral transduction of human T-lymphocytes with a RANTES intrakine inhibits human immunodeficiency virus type 1 infection. Gene Ther 2002; 9:889-97. [PMID: 12080383 DOI: 10.1038/sj.gt.3301711] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2001] [Accepted: 02/11/2002] [Indexed: 11/09/2022]
Abstract
Intrakines, modified intracellular chemokines, offer a novel strategy to prevent cellular entry of HIV-1 by blocking the surface expression of HIV-1 co-receptors. To investigate potential clinical applications of the RANTES-intrakine, we explored the use of HIV-1-based lentiviral vectors for therapeutic gene transfer into T-lymphocytes. RANTES-intrakine genes can be efficiently transduced into primary human T-lymphocytes by lentiviral vectors, especially when human T-lymphocytes were stimulated with CD3 and CD28 antibodies. The transduced T cells showed decreased surface expression of the chemokine receptor CCR-5, as well as CCR-1 and CCR-3. This lentivirus-mediated approach to intrakine gene transfer protected human T-lymphocytes from infection by a variety of R5-tropic HIV-1 strains. A quantitative real-time PCR assay, developed to monitor cells for HIV entry and persistence, revealed persistent low copy numbers of proviral HIV DNA in RANTES intrakine-transduced T-lymphocytes during 3-week culture, suggesting that viruses produced from infected untransduced cell populations were unable to infect the surrounding transduced T-lymphocytes. We conclude that targeting HIV-1 co-receptors to block virus entry with lentiviral vectors is an attractive approach to the control of HIV-1 infection.
Collapse
Affiliation(s)
- R Schroers
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
28
|
Mautino MR, Morgan RA. Enhanced inhibition of human immunodeficiency virus type 1 replication by novel lentiviral vectors expressing human immunodeficiency virus type 1 envelope antisense RNA. Hum Gene Ther 2002; 13:1027-37. [PMID: 12067436 DOI: 10.1089/104303402753812430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed optimized versions of a conditionally replicating human immunodeficiency virus type 1 (HIV-1)-based lentiviral vector for gene therapy of HIV-1 infection. These vectors target HIV-1 RNAs containing sequences of the envelope gene by expressing a 1-kb fragment of the HIV-1 Tat/Rev intron in the antisense orientation. Expression of the envelope antisense gene (envAS) was evaluated under the control of different internal promoters such as the human phosphoglycerate kinase (PGK) promoter, the human EF1-alpha promoter, and the U3 region of the SL3 murine leukemia virus. The U3-SL3 promoter transactivates transcription from the vector HIV-1 LTR and drives higher expression levels of envAS-containing RNAs than other promoters in T-cell lines. The effect of other vector structural features was also evaluated. We found that the central polypurine tract and central termination sequence (cPPT) produce a small increase in vector infectivity of 2-fold to 3-fold and results in a 10-fold higher inhibition of wild-type viral replication in challenge experiments. The woodchuck hepatitis posttranscriptional regulatory element (WPRE) does not increase the cytoplasmic levels of envAS mRNA in T-cell lines. We observed that SupT1 and primary CD4(+) T cells transduced with these vectors showed high inhibition of HIV-1 replication, suppression of syncitium formation, and increased cell viability when infected with several HIV-1 laboratory strains. Our results suggest that higher vector copy number and increased levels of envAS RNA expression contribute to block replication of divergent strains of HIV-1.
Collapse
Affiliation(s)
- Mario R Mautino
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 10 Center Drive, Building 10, Room 10C103, Bethesda, MD 20892-1851, USA.
| | | |
Collapse
|
29
|
Magnani M, Rossi L, Fraternale A, Bianchi M, Antonelli A, Crinelli R, Chiarantini L. Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides. Gene Ther 2002; 9:749-51. [PMID: 12032702 DOI: 10.1038/sj.gt.3301758] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An important determinant for the success of every new therapy is the ability to deliver the molecules of interest to the target cells or organ. This selective delivery is even more complex when the therapeutic agents are peptides, modified oligonucleotides or genes. In this paper we summarize the possibility of using autologous erythrocytes for the delivery and targeting of new and conventional therapeutics. In fact, a number of macromolecules can be encapsulated by different procedures into human erythrocytes. These modified cells can then be re-infused into the same or a compatible recipient where they can circulate for several weeks. However, drug-loaded erythrocytes can also be modified to be selectively recognized by tissue macrophages. These phagocyte cells recognize the modified drug-loaded erythrocytes which are able to release their content into the macrophage. The feasibility and safety of the use of erythrocytes as drug delivery systems was evaluated in 10 cystic fibrosis patients, where a sustained release of corticosteroids from dexamethasone 21-phosphate-loaded erythrocytes was obtained. In vitro human erythrocytes were found to be able to deliver ubiquitin analogues and modified oligonucleotides to macrophages. Thus, drug-loaded erythrocytes are safe and useful carriers of new and conventional therapeutics and can be advantageous delivery systems for new clinical applications where proteins and oligonucleotides are therapeutic agents.
Collapse
Affiliation(s)
- M Magnani
- Institute of Biochemistry 'Giorgio Fornaini', University of Urbino, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Mautino MR, Morgan RA. Gene therapy of HIV-1 infection using lentiviral vectors expressing anti-HIV-1 genes. AIDS Patient Care STDS 2002; 16:11-26. [PMID: 11839215 DOI: 10.1089/108729102753429361] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of vectors based on primate lentiviruses for gene therapy of human immunodeficiency virus type 1 (HIV-1) infection has many potential advantages over the previous murine retroviral vectors used for delivery of genes that inhibit replication of HIV-1. First, lentiviral vectors have the ability to transduce dividing and nondividing cells that constitute the targets of HIV-1 infection such as resting T cells, dendritic cells, and macrophages. Lentiviral vectors can also transfer genes to hematopoietic stem cells with a superior gene transfer efficiency and without affecting the repopulating capacity of these cells. Second, these vectors could be potentially mobilized in vivo by the wild-type virus to secondary target cells, thus expanding the protection to previously untransduced cells. And finally, lentiviral vector backbones have the ability to block HIV-1 replication by several mechanisms that include sequestration of the regulatory proteins Tat and Rev, competition for packaging into virions, and by inhibition of reverse transcription in heterodimeric virions with possible generation of nonfunctional recombinants between the vector and viral genomes. The inhibitory ability of lentiviral vectors can be further increased by expression of anti-HIV-1 genes. In this case, the lentiviral vector packaging system has to be modified to become resistant to the anti-HIV-1 genes expressed by the vector in order to avoid self-inhibition of the vector packaging system during vector production. This review focuses on the use of lentiviral vectors as the main agents to mediate inhibition of HIV-1 replication and discusses the different genetic intervention strategies for gene therapy of HIV-1 infection.
Collapse
Affiliation(s)
- Mario R Mautino
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
31
|
Renda MJ, Rosenblatt JD, Klimatcheva E, Demeter LM, Bambara RA, Planelles V. Mutation of the methylated tRNA(Lys)(3) residue A58 disrupts reverse transcription and inhibits replication of human immunodeficiency virus type 1. J Virol 2001; 75:9671-8. [PMID: 11559799 PMCID: PMC114538 DOI: 10.1128/jvi.75.20.9671-9678.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular tRNA(Lys)(3) serves as the primer for reverse transcription of human immunodeficiency virus type 1 (HIV-1). tRNA(Lys)(3) interacts directly with HIV-1 reverse transcriptase (RT), is packaged into viral particles, and anneals to the primer-binding site (PBS) of the HIV-1 genome in order to initiate reverse transcription. Residue A58 of tRNA(Lys)(3), which lies outside the PBS-complementary region, is posttranscriptionally methylated to form 1-methyladenosine 58 (M(1)A58). This methylation is thought to serve as a pause signal for plus-strand strong-stop DNA synthesis during reverse transcription. However, formal proof that the methylation is necessary for the pausing of RT has not been obtained in vivo. In the present study, we investigated the role of tRNA(Lys)(3) residue A58 in the replication cycle of HIV-1 in living cells. We have developed a mutant tRNA(Lys)(3) derivative, tRNA(Lys)(3)A58U, in which A58 was replaced by U. This mutant tRNA was expressed in CEM cells. We demonstrate that the presence of M(1)A58 is necessary for the appropriate termination of plus-strand strong-stop DNA synthesis and that the absence of M(1)A58 allows RT to read the tRNA sequences beyond residue 58. In addition, we show that replacement of M(1)A58 with U inhibits the replication of HIV-1 in vivo. These results highlight the importance of tRNA primer residue A58 in the reverse transcription process. Inhibition of reverse transcription with mutant tRNA primers constitutes a novel approach for therapeutic intervention against HIV-1.
Collapse
Affiliation(s)
- M J Renda
- Department of Medicine, University of Rochester Cancer Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|