1
|
Schwartz F, Deniel J, Causse M. Effects of startle on cognitive performance and physiological activity revealed by fNIRS and thermal imaging. Sci Rep 2025; 15:6878. [PMID: 40011512 DOI: 10.1038/s41598-025-90540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
Sudden and threatening stimuli can trigger a startle reflex, a stereotyped physiological response that may lead to a brief cognitive incapacitation. Better understanding this reaction would be beneficial to safety-critical occupational domains. We characterized some physiological correlates of the startle response while participants completed a difficult task (Toulouse N-back task) tapping executive functions. During the task, loud and threatening sounds were presented unpredictably to trigger a startle reflex. Brain activity and facial skin temperature were measured in 34 participants using functional near-infrared spectroscopy (fNIRS) and functional infrared thermal imaging (fITI), respectively. In the high difficulty condition, participants were generally less efficient, but their performance improved slightly following startle in the high difficulty condition. Brain activity in the right prefrontal cortex was also higher following startle, potentially reflecting a compensatory overactivation to sustain performance. Interestingly, higher trait-anxiety was associated with lower task performance, still following startle in the high difficulty condition. Finally, we found a decrease in temperature of the right eye and right cheek as well as an increase in the nose temperature following startle. These results underscore the complexity of startle-induced cognitive and physiological dynamics, which may have implications for occupational settings where managing sudden stressors is crucial.
Collapse
Affiliation(s)
- Flora Schwartz
- Institut Supérieur de l'Aéronautique et de l'Espace - Supaero, Université de Toulouse, Toulouse, France.
| | | | - Mickaël Causse
- Institut Supérieur de l'Aéronautique et de l'Espace - Supaero, Université de Toulouse, Toulouse, France
| |
Collapse
|
2
|
Yang G, Jiang J. Cost-benefit Tradeoff Mediates the Rule- to Memory-based Processing Transition during Practice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580214. [PMID: 38405946 PMCID: PMC10888779 DOI: 10.1101/2024.02.13.580214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Practice not only improves task performance but also changes task execution from rule- to memory-based processing by incorporating experiences from practice. However, how and when this change occurs is unclear. We test the hypothesis that strategy transitions in task learning can result from decision-making guided by cost-benefit analysis. Participants learn two task sequences and are then queried about the task type at a cued sequence and position. Behavioral improvement with practice can be accounted for by a computational model implementing cost-benefit analysis, and the model-predicted strategy transition points align with the observed behavioral slowing. Model comparisons using behavioral data show that strategy transitions are better explained by a cost-benefit analysis across alternative strategies rather than solely on memory strength. Model-guided fMRI findings suggest that the brain encodes a decision variable reflecting the cost-benefit analysis and that different strategy representations are double-dissociated. Further analyses reveal that strategy transitions are associated with activation patterns in the dorsolateral prefrontal cortex and increased pattern separation in the ventromedial prefrontal cortex. Together, these findings support cost-benefit analysis as a mechanism of practice-induced strategy shift.
Collapse
Affiliation(s)
- Guochun Yang
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Jiefeng Jiang
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Schouwenaars IT, de Dreu MJ, Rutten GJM, Ramsey NF, Jansma JM. Cognitive brain activity before and after surgery in meningioma patients. Eur J Neurosci 2024; 60:3759-3771. [PMID: 38736372 DOI: 10.1111/ejn.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
Neuropsychological studies have demonstrated that meningioma patients frequently exhibit cognitive deficits before surgery and show only limited improvement after surgery. Combining neuropsychological with functional imaging measurements can shed more light on the impact of surgery on cognitive brain function. We aimed to evaluate whether surgery affects cognitive brain activity in such a manner that it may mask possible changes in cognitive functioning measured by neuropsychological tests. Twenty-three meningioma patients participated in a fMRI measurement using a verbal working memory task as well as three neuropsychological tests focused on working memory, just before and 3 months after surgery. A region of interest based fMRI analysis was used to examine cognitive brain activity at these timepoints within the central executive network and default mode network. Neuropsychological assessment showed impaired cognitive functioning before as well as 3 months after surgery. Neuropsychological test scores, in-scanner task performance as well as brain activity within the central executive and default mode network were not significantly different between both timepoints. Our results indicate that surgery does not significantly affect cognitive brain activity in meningioma patients the first few months after surgery. Therefore, the lack of cognitive improvement after surgery is not likely the result of compensatory processes in the brain. Cognitive deficits that are already present before surgery appear to be persistent after surgery and a considerable recovery period. Our study shows potential leads that comprehensive cognitive evaluation can be of added value so that cognitive functioning may become a more prominent factor in clinical decision making.
Collapse
Affiliation(s)
- Irena T Schouwenaars
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Miek J de Dreu
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Geert-Jan M Rutten
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - J Martijn Jansma
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
4
|
Zhou T, Ye Y, Zhu Q, Vann W, Du J. Neural dynamics of delayed feedback in robot teleoperation: insights from fNIRS analysis. Front Hum Neurosci 2024; 18:1338453. [PMID: 38952645 PMCID: PMC11215083 DOI: 10.3389/fnhum.2024.1338453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction As robot teleoperation increasingly becomes integral in executing tasks in distant, hazardous, or inaccessible environments, operational delays remain a significant obstacle. These delays, inherent in signal transmission and processing, adversely affect operator performance, particularly in tasks requiring precision and timeliness. While current research has made strides in mitigating these delays through advanced control strategies and training methods, a crucial gap persists in understanding the neurofunctional impacts of these delays and the efficacy of countermeasures from a cognitive perspective. Methods This study addresses the gap by leveraging functional Near-Infrared Spectroscopy (fNIRS) to examine the neurofunctional implications of simulated haptic feedback on cognitive activity and motor coordination under delayed conditions. In a human-subject experiment (N = 41), sensory feedback was manipulated to observe its influences on various brain regions of interest (ROIs) during teleoperation tasks. The fNIRS data provided a detailed assessment of cerebral activity, particularly in ROIs implicated in time perception and the execution of precise movements. Results Our results reveal that the anchoring condition, which provided immediate simulated haptic feedback with a delayed visual cue, significantly optimized neural functions related to time perception and motor coordination. This condition also improved motor performance compared to the asynchronous condition, where visual and haptic feedback were misaligned. Discussion These findings provide empirical evidence about the neurofunctional basis of the enhanced motor performance with simulated synthetic force feedback in the presence of teleoperation delays. The study highlights the potential for immediate haptic feedback to mitigate the adverse effects of operational delays, thereby improving the efficacy of teleoperation in critical applications.
Collapse
Affiliation(s)
- Tianyu Zhou
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| | - Yang Ye
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| | - Qi Zhu
- Communications Technology Laboratory, Public Safety Communications Research Division, Advanced Communications Research Group, National Institute of Standards and Technology, Boulder, CO, United States
| | - William Vann
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| | - Jing Du
- The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Dengler J, Deck BL, Stoll H, Fernandez-Nunez G, Kelkar AS, Rich RR, Erickson BA, Erani F, Faseyitan O, Hamilton RH, Medaglia JD. Enhancing cognitive control with transcranial magnetic stimulation in subject-specific frontoparietal networks. Cortex 2024; 172:141-158. [PMID: 38330778 DOI: 10.1016/j.cortex.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Cognitive control processes, including those involving frontoparietal networks, are highly variable between individuals, posing challenges to basic and clinical sciences. While distinct frontoparietal networks have been associated with specific cognitive control functions such as switching, inhibition, and working memory updating functions, there have been few basic tests of the role of these networks at the individual level. METHODS To examine the role of cognitive control at the individual level, we conducted a within-subject excitatory transcranial magnetic stimulation (TMS) study in 19 healthy individuals that targeted intrinsic ("resting") frontoparietal networks. Person-specific intrinsic networks were identified with resting state functional magnetic resonance imaging scans to determine TMS targets. The participants performed three cognitive control tasks: an adapted Navon figure-ground task (requiring set switching), n-back (working memory), and Stroop color-word (inhibition). OBJECTIVE Hypothesis: We predicted that stimulating a network associated with externally oriented control [the "FPCN-B" (fronto-parietal control network)] would improve performance on the set switching and working memory task relative to a network associated with attention (the Dorsal Attention Network, DAN) and cranial vertex in a full within-subjects crossover design. RESULTS We found that set switching performance was enhanced by FPCN-B stimulation along with some evidence of enhancement in the higher-demand n-back conditions. CONCLUSION Higher task demands or proactive control might be a distinguishing role of the FPCN-B, and personalized intrinsic network targeting is feasible in TMS designs.
Collapse
Affiliation(s)
- Julia Dengler
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Benjamin L Deck
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Harrison Stoll
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, PA, USA
| | | | - Apoorva S Kelkar
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Ryan R Rich
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Brian A Erickson
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Fareshte Erani
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, PA, USA
| | | | - Roy H Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Medaglia
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Boulakis PA, Mortaheb S, van Calster L, Majerus S, Demertzi A. Whole-Brain Deactivations Precede Uninduced Mind-Blanking Reports. J Neurosci 2023; 43:6807-6815. [PMID: 37643862 PMCID: PMC10552942 DOI: 10.1523/jneurosci.0696-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Mind-blanking (MB) is termed as the inability to report our immediate-past mental content. In contrast to mental states with reportable content, such as mind-wandering or sensory perceptions, the neural correlates of MB started getting elucidated only recently. A notable particularity that pertains to MB studies is the way MB is instructed for reporting, like by deliberately asking participants to "empty their minds." Such instructions were shown to induce fMRI activations in frontal brain regions, typically associated with metacognition and self-evaluative processes, suggesting that MB may be a result of intentional mental content suppression. Here, we aim at examining this hypothesis by determining the neural correlates of MB without induction. Using fMRI combined with experience-sampling in 31 participants (22 female), univariate analysis of MB reports revealed deactivations in occipital, frontal, parietal, and thalamic areas, but no activations in prefrontal regions. These findings were confirmed using Bayesian region-of-interest analysis on areas previously shown to be implicated in induced MB, where we report evidence for frontal deactivations during MB reports compared with other mental states. Contrast analysis between reports of MB and content-oriented mental states also revealed deactivations in the left angular gyrus. We propose that these effects characterize a neuronal profile of MB, where key thalamocortical nodes are unable to communicate and formulate reportable content. Collectively, we show that study instructions for MB lead to differential neural activation. These results provide mechanistic insights linked to the phenomenology of MB and point to the possibility of MB being expressed in different forms.SIGNIFICANCE STATEMENT This study explores how brain activity changes when individuals report unidentifiable thoughts, a phenomenon known as mind-blanking (MB). It aims to detect changes in brain activations and deactivations when MB is reported spontaneously, as opposed to the neural responses that have been previously reported when MB is induced. By means of brain imaging and experience-sampling, the study points to reduced brain activity in a wide number of regions, including those mesio-frontally which were previously detected as activated during induced MB. These results enhance our understanding of the complexity of spontaneous thinking and contribute to broader discussions on consciousness and reportable experience.
Collapse
Affiliation(s)
- Paradeisios Alexandros Boulakis
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium
- National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - Sepehr Mortaheb
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium
- National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - Laurens van Calster
- National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium
- GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| | - Steve Majerus
- National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium
- GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium
| | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium
- National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium
| |
Collapse
|
7
|
Almeida J, Fracasso A, Kristensen S, Valério D, Bergström F, Chakravarthi R, Tal Z, Walbrin J. Neural and behavioral signatures of the multidimensionality of manipulable object processing. Commun Biol 2023; 6:940. [PMID: 37709924 PMCID: PMC10502059 DOI: 10.1038/s42003-023-05323-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
Understanding how we recognize objects requires unravelling the variables that govern the way we think about objects and the neural organization of object representations. A tenable hypothesis is that the organization of object knowledge follows key object-related dimensions. Here, we explored, behaviorally and neurally, the multidimensionality of object processing. We focused on within-domain object information as a proxy for the decisions we typically engage in our daily lives - e.g., identifying a hammer in the context of other tools. We extracted object-related dimensions from subjective human judgments on a set of manipulable objects. We show that the extracted dimensions are cognitively interpretable and relevant - i.e., participants are able to consistently label them, and these dimensions can guide object categorization; and are important for the neural organization of knowledge - i.e., they predict neural signals elicited by manipulable objects. This shows that multidimensionality is a hallmark of the organization of manipulable object knowledge.
Collapse
Affiliation(s)
- Jorge Almeida
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal.
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal.
| | - Alessio Fracasso
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Stephanie Kristensen
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Daniela Valério
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Fredrik Bergström
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden
| | | | - Zohar Tal
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Jonathan Walbrin
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Audiffren M, André N, Baumeister RF. Training Willpower: Reducing Costs and Valuing Effort. Front Neurosci 2022; 16:699817. [PMID: 35573284 PMCID: PMC9095966 DOI: 10.3389/fnins.2022.699817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The integrative model of effortful control presented in a previous article aimed to specify the neurophysiological bases of mental effort. This model assumes that effort reflects three different inter-related aspects of the same adaptive function. First, a mechanism anchored in the salience network that makes decisions about the effort that should be engaged in the current task in view of costs and benefits associated with the achievement of the task goal. Second, a top-down control signal generated by the mechanism of effort that modulates neuronal activity in brain regions involved in the current task to filter pertinent information. Third, a feeling that emerges in awareness during effortful tasks and reflects the costs associated with goal-directed behavior. The aim of the present article is to complete this model by proposing that the capacity to exert effortful control can be improved through training programs. Two main questions relative to this possible strengthening of willpower are addressed in this paper. The first question concerns the existence of empirical evidence that supports gains in effortful control capacity through training. We conducted a review of 63 meta-analyses that shows training programs are effective in improving performance in effortful tasks tapping executive functions and/or self-control with a small to large effect size. Moreover, physical and mindfulness exercises could be two promising training methods that would deserve to be included in training programs aiming to strengthen willpower. The second question concerns the neural mechanisms that could explain these gains in effortful control capacity. Two plausible brain mechanisms are proposed: (1) a decrease in effort costs combined with a greater efficiency of brain regions involved in the task and (2) an increase in the value of effort through operant conditioning in the context of high effort and high reward. The first mechanism supports the hypothesis of a strengthening of the capacity to exert effortful control whereas the second mechanism supports the hypothesis of an increase in the motivation to exert this control. In the last part of the article, we made several recommendations to improve the effectiveness of interventional studies aiming to train this adaptive function."Keep the faculty of effort alive in you by a little gratuitous exercise every day."James (1918, p. 127).
Collapse
Affiliation(s)
- Michel Audiffren
- Research Centre on Cognition and Learning, Centre National de la Recherche Scientifique, University of Poitiers, Poitiers, France
| | - Nathalie André
- Research Centre on Cognition and Learning, Centre National de la Recherche Scientifique, University of Poitiers, Poitiers, France
| | - Roy F. Baumeister
- School of Psychology, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
9
|
Neuropsychology of posteromedial parietal cortex and conversion factors from Mild Cognitive Impairment to Alzheimer's disease: systematic search and state-of-the-art review. Aging Clin Exp Res 2022; 34:289-307. [PMID: 34232485 PMCID: PMC8847304 DOI: 10.1007/s40520-021-01930-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
In the present review, we discuss the rationale and the clinical implications of assessing visuospatial working memory (VSWM), awareness of memory deficits, and visuomotor control in patients with mild cognitive impairment (MCI). These three domains are related to neural activity in the posteromedial parietal cortex (PMC) whose hypoactivation seems to be a significant predictor of conversion from MCI to Alzheimer’s disease (AD) as indicated by recent neuroimaging evidence. A systematic literature search was performed up to May 2021. Forty-eight studies were included: 42 studies provided analytical cross-sectional data and 6 studies longitudinal data on conversion rates. Overall, these studies showed that patients with MCI performed worse than healthy controls in tasks assessing VSWM, awareness of memory deficits, and visuomotor control; in some cases, MCI patients’ performance was comparable to that of patients with overt dementia. Deficits in VSWM and metamemory appear to be significant predictors of conversion. No study explored the relationship between visuomotor control and conversion. Nevertheless, it has been speculated that the assessment of visuomotor abilities in subjects at high AD risk might be useful to discriminate patients who are likely to convert from those who are not. Being able to indirectly estimate PMC functioning through quick and easy neuropsychological tasks in outpatient settings may improve diagnostic and prognostic accuracy, and therefore, the quality of the MCI patient’s management.
Collapse
|
10
|
Zhang M, McNab F, Smallwood J, Jefferies E. OUP accepted manuscript. Cereb Cortex 2022; 32:3959-3974. [PMID: 35088083 PMCID: PMC9476615 DOI: 10.1093/cercor/bhab459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
Working memory (WM) allows goal-relevant information to be encoded and maintained in mind, even when the contents of WM are incongruent with the immediate environment. While regions of heteromodal cortex are important for WM, the neural mechanisms that relate to individual differences in the encoding and maintenance of goal-relevant information remain unclear. Here, we used behavioral correlates of two large-scale heteromodal networks at rest, the default mode (DMN) and frontoparietal (FPN) networks, to understand their contributions to distinct features of WM. We assessed each individual’s ability to resist distracting information during the encoding and maintenance phases of a visuospatial WM task. Individuals with stronger connectivity of DMN with medial visual and retrosplenial cortex were less affected by encoding distraction. Conversely, weaker connectivity of both DMN and FPN with visual regions was associated with better WM performance when target information was no longer in the environment and distractors were presented in the maintenance phase. Our study suggests that stronger coupling between heteromodal cortex and visual–spatial regions supports WM encoding by reducing the influence of concurrently presented distractors, while weaker visual coupling is associated with better maintenance of goal-relevant information because it relates to the capacity to ignore task-irrelevant changes in the environment.
Collapse
Affiliation(s)
- Meichao Zhang
- Address correspondence to M. Zhang, Department of Psychology, The University of York, Heslington, York YO10 5DD, UK. ; E. Jefferies, Department of Psychology, The University of York, Heslington, York YO10 5DD, UK.
| | - Fiona McNab
- Department of Psychology, University of York, Heslington, York YO10 5DD, UK
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Elizabeth Jefferies
- Address correspondence to M. Zhang, Department of Psychology, The University of York, Heslington, York YO10 5DD, UK. ; E. Jefferies, Department of Psychology, The University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
11
|
The central executive network and executive function in healthy and persons with schizophrenia groups: a meta-analysis of structural and functional MRI. Brain Imaging Behav 2021; 16:1451-1464. [PMID: 34775552 DOI: 10.1007/s11682-021-00589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
This meta-analysis evaluated the extent to which executive function can be understood with structural and functional magnetic resonance imaging. Studies included structural in schizophrenia (k = 8; n = 241) and healthy controls (k = 12; n = 1660), and functional in schizophrenia (k = 4; n = 104) and healthy controls (k = 12; n = 712). Results revealed a positive association in the brain behavior relationship when pooled across schizophrenia and control samples for structural (pr = 0.27) and functional (pr = 0.29) modalities. Subgroup analyses revealed no significant difference for functional neuroimaging (pr = .43, 95%CI = -.08-.77, p = .088) but with structural neuroimaging (pr = .37, 95%CI = -.08-.69, p = .015) the association to executive functions is lower in the control group. Subgroup analyses also revealed no significant differences in the strength of the brain-behavior relationship in the schizophrenia group (pr = .59, 95%CI = .58-.61, p = .881) or the control group (pr = 0.19, 95%CI = 0.18-0.19, p = 0.920), suggesting concordance.
Collapse
|
12
|
Causse M, Lepron E, Mandrick K, Peysakhovich V, Berry I, Callan D, Rémy F. Facing successfully high mental workload and stressors: An fMRI study. Hum Brain Mapp 2021; 43:1011-1031. [PMID: 34738280 PMCID: PMC8764488 DOI: 10.1002/hbm.25703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
The present fMRI study aimed at highlighting patterns of brain activations and autonomic activity when confronted with high mental workload and the threat of auditory stressors. Twenty participants performed a complex cognitive task in either safe or aversive conditions. Our results showed that increased mental workload induced recruitment of the lateral frontoparietal executive control network (ECN), along with disengagement of medial prefrontal and posterior cingulate regions of the default mode network (DMN). Mental workload also elicited an increase in heart rate and pupil diameter. Task performance did not decrease under the threat of stressors, most likely due to efficient inhibition of auditory regions, as reflected by a large decrement of activity in the superior temporal gyri. The threat of stressors was also accompanied with deactivations of limbic regions of the salience network (SN), possibly reflecting emotional regulation mechanisms through control from dorsal medial prefrontal and parietal regions, as indicated by functional connectivity analyses. Meanwhile, the threat of stressors induced enhanced ECN activity, likely for improved attentional and cognitive processes toward the task, as suggested by increased lateral prefrontal and parietal activations. These fMRI results suggest that measuring the balance between ECN, SN, and DMN recruitment could be used for objective mental state assessment. In this sense, an extra recruitment of task‐related regions and a high ratio of lateral versus medial prefrontal activity may represent a relevant marker of increased but efficient mental effort, while the opposite may indicate a disengagement from the task due to mental overload and/or stressors.
Collapse
Affiliation(s)
| | - Evelyne Lepron
- Centre de Recherche Cerveau et CognitionUniversité de Toulouse UPS and CNRSToulouseFrance
| | | | | | - Isabelle Berry
- Centre de Recherche Cerveau et CognitionUniversité de Toulouse UPS and CNRSToulouseFrance
| | - Daniel Callan
- ATR Neural Information Analysis LaboratoriesKyotoJapan
| | - Florence Rémy
- Centre de Recherche Cerveau et CognitionUniversité de Toulouse UPS and CNRSToulouseFrance
| |
Collapse
|
13
|
A High-Density EEG Study Investigating VR Film Editing and Cognitive Event Segmentation Theory. SENSORS 2021; 21:s21217176. [PMID: 34770482 PMCID: PMC8586935 DOI: 10.3390/s21217176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/02/2022]
Abstract
This paper introduces a cognitive psychological experiment that was conducted to analyze how traditional film editing methods and the application of cognitive event segmentation theory perform in virtual reality (VR). Thirty volunteers were recruited and asked to watch a series of short VR videos designed in three dimensions: time, action (characters), and space. Electroencephalograms (EEG) were recorded simultaneously during their participation. Subjective results show that any of the editing methods used would lead to an increased load and reduced immersion. Furthermore, the cognition of event segmentation theory also plays an instructive role in VR editing, with differences mainly focusing on frontal, parietal, and central regions. On this basis, visual evoked potential (VEP) analysis was performed, and the standardized low-resolution brain electromagnetic tomography algorithm (sLORETA) traceability method was used to analyze the data. The results of the VEP analysis suggest that shearing usually elicits a late event-related potential component, while the sources of VEP are mainly the frontal and parietal lobes. The insights derived from this work can be used as guidance for VR content creation, allowing VR image editing to reveal greater richness and unique beauty.
Collapse
|
14
|
Lee JH, Lee TL, Kang N. Transcranial direct current stimulation decreased cognition-related reaction time in older adults: A systematic review and meta-analysis. Ageing Res Rev 2021; 70:101377. [PMID: 34089900 DOI: 10.1016/j.arr.2021.101377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/18/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND This systematic review and meta-analysis investigated the effects of transcranial direct current stimulation (tDCS) on the cognitive functions of healthy older adults by focusing on the changes in reaction time during cognitive tasks. METHOD A total of 31 studies qualified for this meta-analysis, and we acquired 36 comparisons from the included studies for data synthesis. The individual effect sizes were calculated by comparing the altered reaction time during the performance of a specific cognitive task between the active tDCS and sham groups. In two moderator variable analyses, we examined the potentially different effects of the tDCS protocols on the cognition-related reaction time based on the tDCS protocol used (i.e., online vs. offline tDCS) and the five cognitive domains: (a) perceptual-motor function, (b) learning and memory, (c) executive function / complex attention, (d) language, and (e) social cognition. Meta-regression analyses were conducted to estimate the relationship between demographic and tDCS parameter characteristics and the changes in reaction time. RESULTS The random-effects model meta-analysis revealed significant small effects of tDCS on cognition-related reaction time. Specifically, providing online tDCS significantly reduced the reaction time, and these patterns were observed during learning and memory and executive function / complex attention tasks. However, applying offline tDCS failed to find any significant reduction of reaction time across various cognitive tasks. The meta-regression analysis revealed that the effects of tDCS on the reaction time during the performance of cognitive tasks increased for the older people. CONCLUSIONS These findings suggest that providing online tDCS may effectively improve the ageing-induced reaction time related to specific cognitive functions of elderly people.
Collapse
|
15
|
Fiani B, Zhu L, Musch BL, Briceno S, Andel R, Sadeq N, Ansari AZ. The Neurophysiology of Caffeine as a Central Nervous System Stimulant and the Resultant Effects on Cognitive Function. Cureus 2021; 13:e15032. [PMID: 34150383 PMCID: PMC8202818 DOI: 10.7759/cureus.15032] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Caffeine is one of the world’s most consumed drugs. According to the Washington Post (2015), two billion cups of coffee are consumed per day worldwide. Caffeine is classified as a central nervous system (CNS) stimulant and an organic molecule called methylxanthine. Caffeine has three notable mechanisms of action on the CNS that produce a psychostimulant effect. These effects are responsible for the effect that caffeine has on cognitive function. The effects of caffeine consumption on cognitive function have been demonstrated across several studies involving humans and animals. With the immense number of people consuming caffeine around the world, it is of vital importance to study the effects that this drug has on people’s cognitive function. This literature review provides useful insights on this question through the analysis of caffeine’s effects on cognitive function, along with information on caffeine’s three modes of action. The findings of recent studies show mixed results regarding the effects of caffeine on mood, attention, processing speed, and memory. Current research suggests that if caffeine does have an effect on mood, the most significant changes may be anxiety. Studies did not support caffeine as having any significant effect on attention, but that it did play a role in enhancing processing speed. The majority of the studies reviewed suggest caffeine as having a significant positive effect on both short and long-term memory in adults and the elderly. Current findings warrant continued research on the association of caffeine and the resultant effects on cognitive function.
Collapse
Affiliation(s)
- Brian Fiani
- Neurosurgery, Desert Regional Medical Center, Palm Springs, USA
| | - Lawrence Zhu
- College of Osteopathic Medicine, New York Institute of Technology, Glen Head, USA
| | - Brian L Musch
- College of Osteopathic Medicine, William Carey University, Hattiesburg, USA
| | - Sean Briceno
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Erie, USA
| | - Ross Andel
- School of Aging Studies, University of South Florida, Tampa, USA
| | - Nasreen Sadeq
- College of Behavioral and Community Sciences, University of South Florida, Tampa, USA
| | - Ali Z Ansari
- College of Osteopathic Medicine, William Carey University, Hattiesburg, USA
| |
Collapse
|
16
|
He H, Hu L, Zhang X, Qiu J. Pleasantness of mind wandering is positively associated with focus back effort in daily life: Evidence from resting state fMRI. Brain Cogn 2021; 150:105731. [PMID: 33866054 DOI: 10.1016/j.bandc.2021.105731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Despite the dynamic property of consciousness, little research has explored the characteristic of the effort in trying to focus back, in which attention is shifted from mind wandering to ongoing activities. In the current study, we assessed the frequency of daily mind wandering, the pleasantness of daily mind wandering content, and the daily focus back effort of 69 participants, and then collected their resting-state functional magnetic resonance imaging (rsfMRI) scans. Our results revealed that (1) participants who experienced more daily pleasant mind wandering tended to have higher effort in trying to focus back than individuals with less pleasant mind wandering whereas there were no significant relations between pleasantness of mind wandering and mind wandering frequency or between focus back effort and mind wandering frequency in everyday life; (2) the pleasantness of mind wandering and focus back effort were associated with two functional connectivity that related to focus back episodes (right dorsolateral prefrontal cortex-right middle frontal gyrus, right inferior parietal - right middle frontal gyrus). The nodes forming these functional connections belonged to the executive network. Taken together, these findings support the content regulation hypothesis that humans maintain their minds wandering away from unpleasant topics by engaging in executive control processes.
Collapse
Affiliation(s)
- Hong He
- Beijing Key Lab of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Luming Hu
- Beijing Key Lab of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Xuemin Zhang
- Beijing Key Lab of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China; State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University.
| |
Collapse
|
17
|
Živanović M, Paunović D, Konstantinović U, Vulić K, Bjekić J, Filipović SR. The effects of offline and online prefrontal vs parietal transcranial direct current stimulation (tDCS) on verbal and spatial working memory. Neurobiol Learn Mem 2021; 179:107398. [PMID: 33540112 DOI: 10.1016/j.nlm.2021.107398] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/30/2020] [Accepted: 01/26/2021] [Indexed: 01/27/2023]
Abstract
Working memory (WM) is a limited-capacity system or set of processes that enables temporary storage and manipulation of information essential for complex cognitive processes. The WM performance is supported by a widespread neural network in which fronto-parietal functional connections have a pivotal role. Transcranial direct current stimulation (tDCS) is rapidly emerging as a promising tool for understanding the role of various cortical areas and their functional networks on cognitive performance. Here we comprehensively evaluated the effects of tDCS on WM by conducting three cross-over counterbalanced sham-controlled experiments in which we contrasted the effects and interactions of the anodal (i.e. facilitatory) tDCS across anterior-posterior (i.e. DLPFC vs PPC) and left-right (i.e. the lateralization) axes, and across online and offline protocols using both verbal and spatial WM (3-back) tasks as outcomes. In the offline protocols, left DLPFC stimulation affected neither verbal nor spatial WM, while left PPC stimulation increased spatial WM. When applied offline over right DLPFC, tDCS improved verbal WM task and marginally enhanced spatial WM; while when tDCS was applied over the right PPC, facilitatory effects were observed on verbal WM. In the online protocol, tDCS did not modulate WM regardless of the task modality or stimulation loci. In summary, the study did not replicate the left DLPFC tDCS effect on WM, found in some of the previous studies, but demonstrated positive effects of stimulation of the right DLPFC as well as PPC bilaterally. The observed effects varied across modality of the 3-back task, and tDCS protocol applied. The results of this study argue for moving towards targeting the lesser-explored stimulation sites within the fronto-parietal network, such as PPC, to gain a better understanding of the usefulness of tDCS for WM neuromodulation.
Collapse
Affiliation(s)
- Marko Živanović
- University of Belgrade Faculty of Philosophy, Department of Psychology, Serbia
| | - Dunja Paunović
- University of Belgrade Institute for Medical Research, Human Neuroscience Group, Serbia
| | - Uroš Konstantinović
- University of Belgrade Institute for Medical Research, Human Neuroscience Group, Serbia
| | - Katarina Vulić
- University of Belgrade Institute for Medical Research, Human Neuroscience Group, Serbia
| | - Jovana Bjekić
- University of Belgrade Institute for Medical Research, Human Neuroscience Group, Serbia.
| | - Saša R Filipović
- University of Belgrade Institute for Medical Research, Human Neuroscience Group, Serbia
| |
Collapse
|
18
|
Dai C, Zhang Y, Cai X, Peng Z, Zhang L, Shao Y, Wang C. Effects of Sleep Deprivation on Working Memory: Change in Functional Connectivity Between the Dorsal Attention, Default Mode, and Fronto-Parietal Networks. Front Hum Neurosci 2020; 14:360. [PMID: 33192381 PMCID: PMC7588803 DOI: 10.3389/fnhum.2020.00360] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023] Open
Abstract
Sleep deprivation (SD) is very common in modern society and has a profound effect on cognitive function, in particular on working memory (WM). This type of memory is required for completion of many tasks and is adversely affected by SD. However, the cognitive neural mechanism by which SD affects WM, remains unclear. In this study, we investigated the changes in the brain network involved in WM after SD. Twenty-two healthy subjects underwent functional magnetic resonance imaging scan while in a state of resting wakefulness and again after 36 h of total SD and performed a WM task before each scanning session. Nineteen main nodes of the default mode network (DMN), dorsal attention network (DAN), fronto-parietal network (FPN), salience network (SN), and other networks were selected for functional analysis of brain network connections. Functional connectivity measures were computed between seed areas for region of interest (ROI)-to-ROI analysis and to identify patterns of ROI-to-ROI connectivity. The relationship between the significant changes in functional connectivity in the brain network and WM performance were then examined by Pearson's correlation analysis. WM performance declined significantly after SD. Compared with the awake state, the functional connectivity between DAN and DMN significantly increased after SD while that between FPN and DMN significantly decreased. Correlation analysis showed that the enhanced functional connectivity between DAN and DMN was negatively correlated with the decline in WM performance and that the decline in functional connectivity between FPN and DMN was positively correlated with decreased WM performance. These findings suggested that SD may affect WM by altering the functional connectivity among DMN, DAN, and FPN.
Collapse
Affiliation(s)
- Cimin Dai
- School of Psychology, Beijing Sport University, Beijing, China
| | - Ying Zhang
- The Eighth Medical Center of the General Hospital of People’s Liberation Army, Beijing, China
| | - Xiaoping Cai
- Department of Cadraword 3 Division, General Hospital of People’s Liberation Army, Beijing, China
| | - Ziyi Peng
- School of Psychology, Beijing Sport University, Beijing, China
| | - Liwei Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing, China
- Suzhou Institute of Biomedical Engineering and Techology, Chinese Academy of Sciences, Suzhou, China
| | - Cuifeng Wang
- Department of Respiratory Medicine, Qingdao Huangdao People’s Hospital, Qingdao, China
| |
Collapse
|
19
|
Geissler CF, Domes G, Frings C. Shedding light on the frontal hemodynamics of spatial working memory using functional near-infrared spectroscopy. Neuropsychologia 2020; 146:107570. [DOI: 10.1016/j.neuropsychologia.2020.107570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 10/23/2022]
|
20
|
Zhang Y, Chen S, Deng Z, Yang J, Yuan J. Benefits of Implicit Regulation of Instructed Fear: Evidence From Neuroimaging and Functional Connectivity. Front Neurosci 2020; 14:201. [PMID: 32231516 PMCID: PMC7082334 DOI: 10.3389/fnins.2020.00201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/24/2020] [Indexed: 11/29/2022] Open
Abstract
Instructed fear, which denotes fearful emotions learned from others' verbal instructions, is an important form of fear acquisition in humans. Maladaptive instructed fear produces detrimental effects on health, but little is known about performing an efficient regulation of instructed fear and its underlying neural substrates. To address this question, 26 subjects performed an instructed fear task where emotional experiences and functional neuroimages were recorded during watching, explicit regulation (calmness imagination), and implicit regulation (calmness priming) conditions. Results indicated that implicit regulation decreased activity in the left amygdala and left insula for instructed fear; however, these effects were absent in explicit regulation. The implementation of implicit regulation did not increase activity in the frontoparietal control regions, while explicit regulation increased dorsolateral prefrontal cortex activity. Furthermore, implicit regulation increased functional connectivity between the right amygdala and right fusiform gyrus, and decreased functional connectivity between the right medial temporal gyrus and left inferior frontal gyrus, which are key nodes of memory retrieval and cognitive control networks, respectively. These findings suggest a favourable effect of implicit regulation on instructed fear, which is subserved by less involvement of control-related brain mechanisms.
Collapse
Affiliation(s)
- Yicheng Zhang
- The Laboratory for Affect Cognition and Regulation (ACRLab), Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Shengdong Chen
- The Laboratory for Affect Cognition and Regulation (ACRLab), Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Zhongyan Deng
- The Laboratory for Affect Cognition and Regulation (ACRLab), Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Jiemin Yang
- The Laboratory for Affect Cognition and Regulation (ACRLab), Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Jiajin Yuan
- The Laboratory for Affect Cognition and Regulation (ACRLab), Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
21
|
Schouwenaars IT, de Dreu MJ, Rutten GJM, Ramsey NF, Jansma JM. Processing of Targets and Non-targets in Verbal Working Memory. Neuroscience 2020; 429:273-281. [PMID: 31982465 DOI: 10.1016/j.neuroscience.2020.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 11/15/2022]
Abstract
In this study we used functional MRI (fMRI) to examine whether defining a stimulus as a target affects brain activation associated with a verbal working memory (WM) task. Seventeen healthy right-handed volunteers performed a Sternberg task with three consonants as memory set. We performed a region of interest based fMRI analysis to examine differences in brain activity patterns between targets and non-targets. Non-target brain activity was subtracted from target activity and hemispheric and fronto-parietal differences were tested by conducting a MANOVA. Participants responded correctly to 97.5% of the stimuli. The fMRI results showed a hemisphere by fronto-parietal location interaction, where targets evoked increased activity in the right frontal regions compared to non-targets, whereas the left frontal task activation did not differ between targets and non-targets. In the parietal regions, targets evoked increased activity compared to non-targets in the lateral anterior, but not the medial posterior part. Our study revealed that defining a stimulus as a target within a verbal WM task evokes an increase in brain activity in right frontal brain regions, compared to non-targets. Our results suggest an important hemispheric differentiation in target processing, in which the right frontal cortex is predominantly involved in processes associated with target stimuli. The left frontal cortex does not differentiate between processing target and non-target stimuli, suggesting involvement in WM processes that are independent of stimulus type. Parietal, the lateral anterior part is predominantly involved in target processing, while the medial posterior part does not differentiate between target and non-target processing.
Collapse
Affiliation(s)
- I T Schouwenaars
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands; Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - M J de Dreu
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands; Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - G J M Rutten
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands
| | - N F Ramsey
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - J M Jansma
- Department of Neurosurgery, Elisabeth-TweeSteden Hospital, Tilburg, the Netherlands; Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
22
|
Kuo PC, Tseng YL, Zilles K, Suen S, Eickhoff SB, Lee JD, Cheng PE, Liou M. Brain dynamics and connectivity networks under natural auditory stimulation. Neuroimage 2019; 202:116042. [PMID: 31344485 DOI: 10.1016/j.neuroimage.2019.116042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 02/03/2023] Open
Abstract
The analysis of functional magnetic resonance imaging (fMRI) data is challenging when subjects are under exposure to natural sensory stimulation. In this study, a two-stage approach was developed to enable the identification of connectivity networks involved in the processing of information in the brain under natural sensory stimulation. In the first stage, the degree of concordance between the results of inter-subject and intra-subject correlation analyses is assessed statistically. The microstructurally (i.e., cytoarchitectonically) defined brain areas are designated either as concordant in which the results of both correlation analyses are in agreement, or as discordant in which one analysis method shows a higher proportion of supra-threshold voxels than does the other. In the second stage, connectivity networks are identified using the time courses of supra-threshold voxels in brain areas contingent upon the classifications derived in the first stage. In an empirical study, fMRI data were collected from 40 young adults (19 males, average age 22.76 ± 3.25), who underwent auditory stimulation involving sound clips of human voices and animal vocalizations under two operational conditions (i.e., eyes-closed and eyes-open). The operational conditions were designed to assess confounding effects due to auditory instructions or visual perception. The proposed two-stage analysis demonstrated that stress modulation (affective) and language networks in the limbic and cortical structures were respectively engaged during sound stimulation, and presented considerable variability among subjects. The network involved in regulating visuomotor control was sensitive to the eyes-open instruction, and presented only small variations among subjects. A high degree of concordance was observed between the two analyses in the primary auditory cortex which was highly sensitive to the pitch of sound clips. Our results have indicated that brain areas can be identified as concordant or discordant based on the two correlation analyses. This may further facilitate the search for connectivity networks involved in the processing of information under natural sensory stimulation.
Collapse
Affiliation(s)
- Po-Chih Kuo
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yi-Li Tseng
- Department of Electrical Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Summit Suen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Juin-Der Lee
- Graduate Institute of Business Administration, National Chengchi University, Taipei, Taiwan
| | - Philip E Cheng
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Michelle Liou
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
23
|
Łaszewska K, Goroncy A, Weber P, Pracki T, Tafil-Klawe M. Influence of the Spectral Quality of Light on Daytime Alertness Levels in Humans. Adv Cogn Psychol 2018; 14:192-208. [PMID: 32509040 PMCID: PMC7263078 DOI: 10.5709/acp-0250-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Exposure to light is very important for human health. However, the characteristics of the light stimulus and the appropriate timing of such exposure are essential. Studies that have used monochromatic light exposure have shown no systematic patterns for the effects of blue light compared to longer wavelengths. Previous studies have shown that red light exposure increases objective and subjective measures of alertness at night without suppressing nocturnal melatonin or inducing circadian disruption. The present study investigated whether noon time exposure to red light would increase both objective and subjective measures of alertness such as those measured by EEG, cognitive-behavioral performance, and subjective sleepiness. The three lighting conditions were as follows: dim light (< 0.01 lux at cornea), blue light (465 nm, 72 μW/cm2), and red light (625 nm, 18 μW/cm2), both at 40 lux. The results of the EEG data showed an increase in theta power over time in dim light only. In red light, alpha power showed a decrease over time. The impact of red light was observed in the performance measures: The only significant effect was a deterioration in the continuous performance test after red light exposure. Subjective measures of alertness were not affected by light in either condition, in contrast to darkness, when subjects reported greater sleepiness than before. None of the changes in objective measures of alertness induced by red light exposure translated into subjective sleepiness at noon. Thus, we concluded that behavioral effects of light at noon are very limited at best.
Collapse
Affiliation(s)
- Kamila Łaszewska
- Department of Psychology, Faculty of Humanities, Nicolaus Copernicus University, Fosa Staromiejska 1a, 87-100 Toruń, Poland
| | - Agnieszka Goroncy
- Department of Mathematical Statistics and Data Analysis, Faculty of Mathematics and Computer Science, Nicolaus CopernicusUniversity, Chopina 12/18, 87-100 Toruń, Poland
| | - Piotr Weber
- Atomic and Optical Physics Division, Department of Atomic, Molecular and Optical Physics, Faculty of Applied Physics andMathematics, Gdańsk University of Technology, Narutowicza 11/12, 80- 233 Gdańsk, Poland
| | - Tadeusz Pracki
- Department of Human Physiology, Nicolaus Copernicus University Ludwik Rydygier Collegium Medicum in Bydgoszcz,Karłowicza 24, 85-092 Bydgoszcz, Poland
| | - Małgorzata Tafil-Klawe
- Department of Human Physiology, Nicolaus Copernicus University Ludwik Rydygier Collegium Medicum in Bydgoszcz,Karłowicza 24, 85-092 Bydgoszcz, Poland
| |
Collapse
|
24
|
Wertheim J, Ragni M. The Neural Correlates of Relational Reasoning: A Meta-analysis of 47 Functional Magnetic Resonance Studies. J Cogn Neurosci 2018; 30:1734-1748. [DOI: 10.1162/jocn_a_01311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
It is a core cognitive ability of humans to represent and reason about relational information, such as “the train station is north of the hotel” or “Charles is richer than Jim.” However, the neural processes underlying the ability to draw conclusions about relations are still not sufficiently understood. Central open questions are as follows: (1) What are the neural correlates of relational reasoning? (2) Where can deductive and inductive reasoning be localized? (3) What is the impact of different informational types on cerebral activity? For that, we conducted a meta-analysis of 47 neuroimaging studies. We found activation of the frontoparietal network during both deductive and inductive reasoning, with additional activation in an extended network during inductive reasoning in the basal ganglia and the inferior parietal cortex. Analyses revealed a double dissociation concerning the lateral and medial Brodmann's area 6 during deductive and inductive reasoning, indicating differences in terms of processing verbal information in deductive and spatial information in inductive tasks. During semantic and symbolic tasks, the frontoparietal network was found active, whereas geometric tasks only elicited prefrontal activation, which can be explained by the reduced demand for the construction of a mental representation in geometric tasks. Our study provides new insights into the cognitive mechanisms underlying relational reasoning and clarifies previous controversies concerning involved brain areas.
Collapse
|
25
|
Foerster M, Thielens A, Joseph W, Eeftens M, Röösli M. A Prospective Cohort Study of Adolescents' Memory Performance and Individual Brain Dose of Microwave Radiation from Wireless Communication. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:077007. [PMID: 30044230 PMCID: PMC6108834 DOI: 10.1289/ehp2427] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND The potential impact of microwave radiofrequency electromagnetic fields (RF-EMF) emitted by wireless communication devices on neurocognitive functions of adolescents is controversial. In a previous analysis, we found changes in figural memory scores associated with a higher cumulative RF-EMF brain dose in adolescents. OBJECTIVE We aimed to follow-up our previous results using a new study population, dose estimation, and approach to controlling for confounding from media usage itself. METHODS RF-EMF brain dose for each participant was modeled. Multivariable linear regression models were fitted on verbal and figural memory score changes over 1 y and on estimated cumulative brain dose and RF-EMF related and unrelated media usage (n=669-676). Because of the hemispheric lateralization of memory, we conducted a laterality analysis for phone call ear preference. To control for the confounding of media use behaviors, a stratified analysis for different media usage groups was also conducted. RESULTS We found decreased figural memory scores in association with an interquartile range (IQR) increase in estimated cumulative RF-EMF brain dose scores: -0.22 (95% CI: -0.47, 0.03; IQR: 953 mJ/kg per day) in the whole sample, -0.39 (95% CI: -0.67, -0.10; IQR: 953 mJ/kg per day) in right-side users (n=532), and -0.26 (95% CI: -0.42, -0.10; IQR: 341 mJ/kg per day) when recorded network operator data were used for RF-EMF dose estimation (n=274). Media usage unrelated to RF-EMF did not show significant associations or consistent patterns, with the exception of consistent (nonsignificant) positive associations between data traffic duration and verbal memory. CONCLUSIONS Our findings for a cohort of Swiss adolescents require confirmation in other populations but suggest a potential adverse effect of RF-EMF brain dose on cognitive functions that involve brain regions mostly exposed during mobile phone use. https://doi.org/10.1289/EHP2427.
Collapse
Affiliation(s)
- Milena Foerster
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Arno Thielens
- Department of Electrical Engineering and Computer Sciences, Berkeley Wireless Research Center, University of California Berkeley, Berkeley, California, USA
- Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
| | - Wout Joseph
- Interuniversity Microelectronics Centre (IMEC), Leuven, Belgium
- Department of Information Technology, Waves research group, Ghent University
| | - Marloes Eeftens
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Yüksel D, Dietsche B, Konrad C, Dannlowski U, Kircher T, Krug A. Neural correlates of working memory in first episode and recurrent depression: An fMRI study. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:39-49. [PMID: 29421266 DOI: 10.1016/j.pnpbp.2018.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Patients suffering from major depressive disorder (MDD) show deficits in working memory (WM) performance accompanied by bilateral fronto-parietal BOLD signal changes. It is unclear whether patients with a first depressive episode (FDE) exhibit the same signal changes as patients with recurrent depressive episodes (RDE). METHODS We investigated seventy-four MDD inpatients (48 RDE, 26 FDE) and 74 healthy control (HC) subjects performing an n-back WM task (0-back, 2-back, 3-back condition) in a 3T-fMRI. RESULTS FMRI analyses revealed deviating BOLD signal in MDD in the thalamus (0-back vs. 2-back), the angular gyrus (0-back vs. 3-back), and the superior frontal gyrus (2-back vs. 3-back). Further effects were observed between RDE vs. FDE. Thus, RDE displayed differing neural activation in the middle frontal gyrus (2-back vs. 3-back), the inferior frontal gyrus, and the precentral gyrus (0-back vs. 2-back). In addition, both HC and FDE indicated a linear activation trend depending on task complexity. CONCLUSIONS Although we failed to find behavioral differences between the groups, results suggest differing BOLD signal in fronto-parietal brain regions in MDD vs. HC, and in RDE vs. FDE. Moreover, both HC and FDE show similar trends in activation shapes. This indicates a link between levels of complexity-dependent activation in fronto-parietal brain regions and the stage of MDD. We therefore assume that load-dependent BOLD signal during WM is impaired in MDD, and that it is particularly affected in RDE. We also suspect neurobiological compensatory mechanisms of the reported brain regions in (working) memory functioning.
Collapse
Affiliation(s)
- Dilara Yüksel
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany.
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Carsten Konrad
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Agaplesion Diakonieklinikum Rotenburg, Centre for Psychosocial Medicine, Elise-Averdieck-Straße 17, 27356 Rotenburg (Wümme), Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| |
Collapse
|
27
|
Esteves M, Magalhães R, Marques P, Castanho TC, Portugal-Nunes C, Soares JM, Almeida A, Santos NC, Sousa N, Leite-Almeida H. Functional Hemispheric (A)symmetries in the Aged Brain-Relevance for Working Memory. Front Aging Neurosci 2018; 10:58. [PMID: 29593523 PMCID: PMC5857603 DOI: 10.3389/fnagi.2018.00058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022] Open
Abstract
Functional hemispheric asymmetries have been described in different cognitive processes, such as decision-making and motivation. Variations in the pattern of left/right activity have been associated with normal brain functioning, and with neuropsychiatric diseases. Such asymmetries in brain activity evolve throughout life and are thought to decrease with aging, but clear associations with cognitive function have never been established. Herein, we assessed functional laterality during a working memory task (N-Back) in a healthy aging cohort (over 50 years old) and associated these asymmetries with performance in the test. Activity of lobule VI of the cerebellar hemisphere and angular gyrus was found to be lateralized to the right hemisphere, while the precentral gyrus presented left > right activation during this task. Interestingly, 1-Back accuracy was positively correlated with left > right superior parietal lobule activation, which was mostly due to the influence of the left hemisphere. In conclusion, although regions were mostly symmetrically activated during the N-Back task, performance in working memory in aged individuals seems to benefit from lateralized involvement of the superior parietal lobule.
Collapse
Affiliation(s)
- Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Teresa C Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Carlos Portugal-Nunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - José M Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Nadine C Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| |
Collapse
|
28
|
Strangman GE, Ivkovic V, Zhang Q. Wearable brain imaging with multimodal physiological monitoring. J Appl Physiol (1985) 2018; 124:564-572. [DOI: 10.1152/japplphysiol.00297.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The brain is a central component of cognitive and physical human performance. Measures, including functional brain activation, cerebral perfusion, cerebral oxygenation, evoked electrical responses, and resting hemodynamic and electrical activity are all related to, or can predict, health status or performance decrements. However, measuring brain physiology typically requires large, stationary machines that are not suitable for mobile or self-monitoring. Moreover, when individuals are ambulatory, systemic physiological fluctuations—e.g., in heart rate, blood pressure, skin perfusion, and more—can interfere with noninvasive brain measurements. In efforts to address the physiological monitoring and performance assessment needs for astronauts during spaceflight, we have developed easy-to-use, wearable prototypes, such as NINscan, for near-infrared scanning, which can collect synchronized multimodal physiology data, including hemodynamic deep-tissue imaging (including brain and muscles), electroencephalography, electrocardiography, electromyography, electrooculography, accelerometry, gyroscopy, pressure, respiration, and temperature measurements. Given their self-contained and portable nature, these devices can be deployed in a much broader range of settings—including austere environments—thereby, enabling a wider range of novel medical and research physiology applications. We review these, including high-altitude assessments, self-deployable multimodal e.g., (polysomnographic) recordings in remote or low-resource environments, fluid shifts in variable-gravity, or spaceflight analog environments, intracranial brain motion during high-impact sports, and long-duration monitoring for clinical symptom-capture in various clinical conditions. In addition to further enhancing sensitivity and miniaturization, advanced computational algorithms could help support real-time feedback and alerts regarding performance and health.
Collapse
Affiliation(s)
- Gary E. Strangman
- Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
- Translational Research Institute, Houston, Texas
| | - Vladimir Ivkovic
- Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Quan Zhang
- Neural Systems Group, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
29
|
The influence of early life stress on the integration of emotion and working memory. Behav Brain Res 2018; 339:179-185. [DOI: 10.1016/j.bbr.2017.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/26/2017] [Accepted: 11/16/2017] [Indexed: 11/22/2022]
|
30
|
Kornisch M, Robb MP, Jones RD. Estimates of functional cerebral hemispheric differences in monolingual and bilingual people who stutter: Dual-task paradigm. CLINICAL LINGUISTICS & PHONETICS 2017; 31:409-423. [PMID: 28409657 DOI: 10.1080/02699206.2017.1305448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The inter-relationship of stuttering and bilingualism to functional cerebral hemispheric processing was examined on a dual-task paradigm. Eighty native German (L1) speakers, half of whom were sequential bilinguals (L2 = English), were recruited. The participants (mean age = 38.9 years) were organised into four different groups according to speech status and language ability: 20 bilinguals who stutter (BWS), 20 monolinguals who stutter (MWS), 20 bilinguals who do not stutter (BWNS), and 20 monolinguals who do not stutter (MWNS). All participants completed a dual-task paradigm involving simultaneous speaking and finger tapping. No performance differences between BWS and BWNS were found. In contrast, MWS showed greater dual-task interference compared to BWS and MWNS, as well as greater right- than left-hand disruption. A prevailing finding was that bilingualism seems to offset deficits in executive functioning associated with stuttering. Cognitive reserve may have been reflected in the present study, resulting in a bilingual advantage.
Collapse
Affiliation(s)
- Myriam Kornisch
- a Montreal Neurological Institute, McGill University , Montreal , Québec , Canada
| | - Michael P Robb
- b Department of Communication Disorders , University of Canterbury , Christchurch , New Zealand
| | - Richard D Jones
- b Department of Communication Disorders , University of Canterbury , Christchurch , New Zealand
| |
Collapse
|
31
|
Takata H, Nakajima-Ohigashi M, Yoshimatsu D, Yoshida S, Yoshimura M, Atsumori H, Hasegawa K. The Effect of Biting Stick-type Confectionaries with the Front Teeth on Brain Activity. J JPN SOC FOOD SCI 2017. [DOI: 10.3136/nskkk.64.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hiroki Takata
- Office of Strategic Research Planning, Ezaki Glico Co., Ltd
| | | | | | - Shinji Yoshida
- Brain Science Business Unit, Innovation Promotion Division, Hitachi High-Technologies Corporation
| | - Mina Yoshimura
- Brain Science Business Unit, Innovation Promotion Division, Hitachi High-Technologies Corporation
| | - Hirokazu Atsumori
- Brain Science Business Unit, Innovation Promotion Division, Hitachi High-Technologies Corporation
| | - Kiyoshi Hasegawa
- Brain Science Business Unit, Innovation Promotion Division, Hitachi High-Technologies Corporation
| |
Collapse
|
32
|
Göbel A, Heldmann M, Göttlich M, Dirk AL, Brabant G, Münte TF. Effect of Mild Thyrotoxicosis on Performance and Brain Activations in a Working Memory Task. PLoS One 2016; 11:e0161552. [PMID: 27536945 PMCID: PMC4990413 DOI: 10.1371/journal.pone.0161552] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/08/2016] [Indexed: 11/18/2022] Open
Abstract
AIMS Disturbed levels of thyroid hormones are associated with neuropsychiatric disorders, including memory impairments. The aim of this study was to evaluate effects of mild induced thyrotoxicosis on working memory and its neural correlates. METHODS Twenty-nine healthy, male subjects with normal thyroid state participated in the study. Functional MRI was acquired during a working memory task (n-back task) before and after ingesting 250 μg L-thyroxin per day for a period of eight weeks. In addition, neuropsychological tests were performed. RESULTS In the hyperthyroid condition the subjects showed slower reaction times, but a higher accuracy in the 0-back version of the memory tasks. Fewer differences between euthyroid and hyperthyroid state were seen for the more difficult conditions of the n-back task. FMRI revealed effects of difficulty in the parahippocampal gyrus, supplementary motor area, prefrontal cortex, anterior cingulate cortex, posterior cerebellum, rolandic operculum and insula (p<0.05, FWE corrected). When comparing euthyroid and hyperthyroid condition in relation to task-induced activation, differences of activation were found in the right prefrontal cortex as well as in the right parahippocampal area. In the psychological assessment, the alerting effect in the Attention Network Task (ANT) and four out of five parameters of the auditory verbal learning test (AVLT) showed an increase from euthyroid to hyperthyroid state. CONCLUSIONS It can be concluded that even a short-term intake of thyroid hormones leads to an activation of brain areas associated with working memory and to an improvement of accuracy of working memory tasks.
Collapse
Affiliation(s)
- Anna Göbel
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
| | - Martin Göttlich
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
| | - Anna-Luise Dirk
- Department of Internal Medicine I, University of Lübeck, 23538, Lübeck, Germany
| | - Georg Brabant
- Department of Internal Medicine I, University of Lübeck, 23538, Lübeck, Germany
| | - Thomas F. Münte
- Department of Neurology, University of Lübeck, 23538, Lübeck, Germany
- * E-mail:
| |
Collapse
|
33
|
Rac-Lubashevsky R, Kessler Y. Decomposing the n-back task: An individual differences study using the reference-back paradigm. Neuropsychologia 2016; 90:190-9. [PMID: 27425422 DOI: 10.1016/j.neuropsychologia.2016.07.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/14/2016] [Accepted: 07/12/2016] [Indexed: 11/25/2022]
Abstract
Working memory (WM) has two major functions: Maintenance, which is the ability to shield information from being overwritten by irrelevant information, and updating, the ability to modify the maintained information when needed. These two conflicting demands are suggested to be controlled by a gating mechanism (for review see O'Reilly (2006)) which enables selective control over updating. Information is robustly maintained in WM when the gate is closed, while opening the gate enables updating. In the present study, we utilized the reference-back paradigm in order to examine their unique contribution to individual differences in n-back, presumably the most widely-used WM updating task. The reference-back is composed of two types of trials: reference trials which require both matching (i.e., a same/different judgment) and WM updating, and comparison trials which require matching and maintenance. Eighty-eight participants performed the following tasks: 2-choice RT, 1-back, 2-back and the reference-back task. A multiple regression approach was taken in order to explain individual differences in 1-back and 2-back. The reference-back task enabled separating the contribution of the matching decision (difference between mismatch and match), gate-opening (the switch cost in reference trials), gate closing (the switch cost in comparison trials) and WM updating (the difference between reference and comparison trials) to task performance. An intrusion component (WM based proactive interference) was also calculated from 2-back performance. The results indicate that RT in 1-back is mainly predicted by gate opening and by WM updating while 2-back is mainly predicted by gate closing and intrusion. These results confirmed that n-back is not merely an updating task, but also that controlling the contents of WM is the main source of individual differences in the task. The implications for understanding the n-back task and WM updating in general are discussed.
Collapse
Affiliation(s)
- Rachel Rac-Lubashevsky
- Department of Brain and Cognitive Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Israel.
| | - Yoav Kessler
- Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Israel
| |
Collapse
|
34
|
García A, Romero C, Arroyave C, Giraldo F, Sánchez L, Sánchez J. Acute effects of energy drinks in medical students. Eur J Nutr 2016; 56:2081-2091. [PMID: 27312565 DOI: 10.1007/s00394-016-1246-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE To determine the acute effects of a variety of recognized energy drinks on medical students, based on the hypothesis that these beverages may affect negatively cardiovascular parameters, stress levels and working memory. METHODS Eighty young healthy medical students were included in the study. 62.5 % of the participants were male, and the age mean was 21.45 years. Each person was evaluated via measurement of systolic and diastolic blood pressure, electrocardiogram (ECG), heart rate, oxygen saturation, breath rate, temperature, STAI score (to assess anxiety state), salivary cortisol and N-back task score (to determine cognitive enhancement). These evaluations were performed before and following the intake of either carbonated water or one of three energy drinks containing caffeine in similar concentrations and an undetermined energy blend; A contained less sugar and no taurine. RESULTS Thirty-minute SBP increased significantly in the A and C groups. The B group exhibited a diminution of the percentage of the 1-h SBP increase, an increase of 1-h DBP and QTc shortening. HR showed an increase in the percent change in the A and C groups. Cortisol salivary levels increased in the B group. The STAI test score decreased in the C group. The percent change in N-back scores increased in the A group. CONCLUSIONS The data reinforce the need for further research on the acute and chronic effects of energy drinks to determine the actual risks and benefits. Consumers need to be more informed about the safety of these energy drinks, especially the young student population.
Collapse
Affiliation(s)
- Andrés García
- Faculty of Health Sciences, Universidad Tecnológica de Pereira, AA 97, La Julita, Pereira, Colombia
| | - César Romero
- Faculty of Health Sciences, Universidad Tecnológica de Pereira, AA 97, La Julita, Pereira, Colombia
| | - Cristhian Arroyave
- Faculty of Health Sciences, Universidad Tecnológica de Pereira, AA 97, La Julita, Pereira, Colombia
| | - Fabián Giraldo
- Faculty of Health Sciences, Universidad Tecnológica de Pereira, AA 97, La Julita, Pereira, Colombia
| | - Leidy Sánchez
- Faculty of Health Sciences, Universidad Tecnológica de Pereira, AA 97, La Julita, Pereira, Colombia
| | - Julio Sánchez
- Faculty of Health Sciences, Universidad Tecnológica de Pereira, AA 97, La Julita, Pereira, Colombia.
| |
Collapse
|
35
|
Kim S, Kim MS. Deficits in Verbal Working Memory among College Students with Attention-Deficit/Hyperactivity Disorder Traits: An Event-related Potential Study. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2016; 14:64-73. [PMID: 26792042 PMCID: PMC4730935 DOI: 10.9758/cpn.2016.14.1.64] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/08/2015] [Accepted: 08/18/2015] [Indexed: 12/24/2022]
Abstract
Objective This study investigated verbal working memory in college students with traits of attention-deficit/hyperactivity disorder (ADHD) using event-related potentials and the 2-back task. Methods Based on scores on the Adult ADHD Self-Report Scale and Conners’ Adult ADHD Rating Scale, participants were assigned to the normal control (n=28) or ADHD-trait (n=29) group. The 2-back task, which was administered to evaluate working memory, consists of a congruent condition, under which the current stimulus is the same as the one presented two trials earlier, and an incongruent condition, under which the current stimulus is not the same as the one presented two trials earlier. The numbers 1, 2, 3, and 4 were used as stimuli. Results On the 2-back task, the ADHD-trait group committed significantly more errors in response to congruent stimuli and showed a smaller P300 amplitude than did the control group. Conclusion These results indicate that college students with ADHD traits have deficits in verbal working memory, possibly due to difficulties in memory updating or attentional allocation.
Collapse
Affiliation(s)
- Seulki Kim
- Department of Psychology, Sungshin Women's University, Seoul, Korea
| | - Myung-Sun Kim
- Department of Psychology, Sungshin Women's University, Seoul, Korea
| |
Collapse
|
36
|
The effects of chronic trans-resveratrol supplementation on aspects of cognitive function, mood, sleep, health and cerebral blood flow in healthy, young humans. Br J Nutr 2015; 114:1427-37. [DOI: 10.1017/s0007114515003037] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractSingle doses of resveratrol have previously been shown to increase cerebral blood flow (CBF) with no clear effect on cognitive function or mood in healthy adults. Chronic resveratrol consumption may increase the poor bioavailability of resveratrol or otherwise potentiate its psychological effects. In this randomised, double-blind, placebo-controlled, parallel-groups study, a total of sixty adults aged between 18 and 30 years received either placebo or resveratrol for 28 d. On the 1st and 28th day of treatment, the performance of cognitively demanding tasks (serial subtractions, rapid visual information processing and 3-Back) (n 41 complete data sets) was assessed, alongside blood pressure (n 26) and acute (near-IR spectroscopy (NIRS)) and chronic (transcranial Doppler) measures of CBF (n 46). Subjective mood, sleep quality and health questionnaires were completed at weekly intervals (n 53/54). The results showed that the cognitive effects of resveratrol on day 1 were restricted to more accurate but slower serial subtraction task performance. The only cognitive finding on day 28 was a beneficial effect of resveratrol on the accuracy of the 3-Back task before treatment consumption. Subjective ratings of ‘fatigue’ were significantly lower across the entire 28 d in the resveratrol condition. Resveratrol also resulted in modulation of CBF parameters on day 1, as assessed by NIRS, and significantly increased diastolic blood pressure on day 28. Levels of resveratrol metabolites were significantly higher both before and after the day’s treatment on day 28, in comparison with day 1. These results confirm the acute CBF effects of resveratrol and the lack of interpretable cognitive effects.
Collapse
|
37
|
León-Domínguez U, Martín-Rodríguez JF, León-Carrión J. Executive n-back tasks for the neuropsychological assessment of working memory. Behav Brain Res 2015; 292:167-73. [PMID: 26068585 DOI: 10.1016/j.bbr.2015.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/11/2015] [Accepted: 06/01/2015] [Indexed: 11/25/2022]
Abstract
Working memory (WM) has been defined as a cerebral function which allows us to maintain and manipulate information "online". One of the most widely used paradigms to assess WM is the n-back test. Despite its extensive application, some authors have questioned its capacity to assess the manipulation of WM load. The present study introduces a new version of the n-back test to carry out this assessment. We use functional near-infrared spectroscopy (fNIRS) to evaluate prefrontal cortex (PFC) activation. The modified n-back requires monitoring of sequentially presented stimuli (in this case the days of the week). The target response relates to a stimulus which appears previously, from 0 to 2 items back, on the computer screen. Our data reveals that while modified and unmodified n-back activate the same regions of the left PFC, our modified 2-back version shows significantly higher activation in the left dorsolateral PFC (DLPFC) and the left frontal opercula. These results suggest that increased complexity in verbal WM tasks entail greater executive control, which would lead to an increase in cerebral blood flow to the areas associated with verbal WM. Therefore, an increase in the manipulation of WM load in verbal tasks reflects greater physiological activity in the left DLPFC and the left frontal opercula. The modified n-back test may also be incorporated into the armamentarium of valid instruments for the neuropsychological assessment of the maintenance and manipulation of verbal information in tasks requiring working memory.
Collapse
Affiliation(s)
| | | | - José León-Carrión
- Human Neuropsychology Laboratory, School of Psychology, Department of Experimental Psychology, C/Camilo José Cela s/n, Seville 41018, Spain.
| |
Collapse
|
38
|
Cromer JA, Schembri AJ, Harel BT, Maruff P. The nature and rate of cognitive maturation from late childhood to adulthood. Front Psychol 2015; 6:704. [PMID: 26074853 PMCID: PMC4445246 DOI: 10.3389/fpsyg.2015.00704] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/12/2015] [Indexed: 11/13/2022] Open
Abstract
To better understand the nature and rate of cognitive change across adolescence, the Cogstate Brief Battery (CBB) was utilized to assess psychomotor function, attention, working memory, and visual learning in individuals aged 10–18 years old. Since all CBB tasks have equivalent perceptual, motor, and linguistic demands as well as being appropriate for both children and adults, this approach allowed direct across-age comparison of multiple cognitive domains. Exponential decreases in reaction time and linear increases in accuracy were observed across adolescent development in a cross-sectional sample of 38,778 individuals and confirmed in a 5788 individual longitudinal sample with 1-year repeat assessments. These results have important implications for the repeated assessment of cognition during development where expected maturational changes in cognition must be accounted for during cognitive testing.
Collapse
Affiliation(s)
- Jason A Cromer
- Child Study Center, Yale University New Haven, CT, USA ; Cogstate, Inc. New Haven, CT, USA
| | - Adrian J Schembri
- Cogstate, Inc. New Haven, CT, USA ; Psychology, Royal Melbourne Institute of Technology University Melbourne, VIC, Australia
| | - Brian T Harel
- Child Study Center, Yale University New Haven, CT, USA ; Cogstate, Inc. New Haven, CT, USA
| | - Paul Maruff
- Cogstate, Inc. New Haven, CT, USA ; Florey Institute for Neuroscience and Mental Health, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
39
|
Byrd DL, Reuther ET, McNamara JPH, DeLucca TL, Berg WK. Age differences in high frequency phasic heart rate variability and performance response to increased executive function load in three executive function tasks. Front Psychol 2015; 5:1470. [PMID: 25798113 PMCID: PMC4350398 DOI: 10.3389/fpsyg.2014.01470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 11/30/2014] [Indexed: 12/30/2022] Open
Abstract
The current study examines similarity or disparity of a frontally mediated physiological response of mental effort among multiple executive functioning tasks between children and adults. Task performance and phasic heart rate variability (HRV) were recorded in children (6 to 10 years old) and adults in an examination of age differences in executive functioning skills during periods of increased demand. Executive load levels were varied by increasing the difficulty levels of three executive functioning tasks: inhibition (IN), working memory (WM), and planning/problem solving (PL). Behavioral performance decreased in all tasks with increased executive demand in both children and adults. Adults' phasic high frequency HRV was suppressed during the management of increased IN and WM load. Children's phasic HRV was suppressed during the management of moderate WM load. HRV was not suppressed during either children's or adults' increasing load during the PL task. High frequency phasic HRV may be most sensitive to executive function tasks that have a time-response pressure, and simply requiring performance on a self-paced task requiring frontal lobe activation may not be enough to generate HRV responsitivity to increasing demand.
Collapse
Affiliation(s)
- Dana L Byrd
- Psychology and Sociology, Texas A&M University-Kingsville Kingsville, TX, USA
| | - Erin T Reuther
- Department of Psychiatry, LSU Health Sciences Center-New Orleans New Orleans, LA, USA
| | | | | | | |
Collapse
|
40
|
Dobryakova E, Staffaroni A, DeLuca J, Sumowski JF, Chiaravalloti N, Wylie GR. CapMan: independent investigation of capacity and manipulation with a new working memory paradigm. Brain Imaging Behav 2014; 8:475-9. [PMID: 24370894 PMCID: PMC7173351 DOI: 10.1007/s11682-013-9282-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In a new working memory paradigm, CapMan, we independently investigated brain activity associated with capacity and manipulation of information. The investigation of Capacity, resulted in activation of the fronto-parietal network of regions that overlapped with areas usually found to be active in working memory tasks. The investigation of Manipulation revealed a more dorsal network of areas that also overlapped with areas usually found to be active in working memory tasks, but that did not overlap with the areas associated with Capacity. The CapMan paradigm thus appears to be able to separate the processes associated with capacity and manipulation increases and promises to be a valuable addition to the tools available for the study of working memory.
Collapse
Affiliation(s)
- Ekaterina Dobryakova
- Neuropsychology & Neuroscience Laboratory, Kessler Foundation Research Center, 300 Executive Drive, Suite 70, West Orange, NJ, 07052, USA
| | | | | | | | | | | |
Collapse
|
41
|
de Vries FE, de Wit SJ, Cath DC, van der Werf YD, van der Borden V, van Rossum TB, van Balkom AJLM, van der Wee NJA, Veltman DJ, van den Heuvel OA. Compensatory frontoparietal activity during working memory: an endophenotype of obsessive-compulsive disorder. Biol Psychiatry 2014; 76:878-87. [PMID: 24365484 DOI: 10.1016/j.biopsych.2013.11.021] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/07/2013] [Accepted: 11/22/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Subtle deficits in executive functioning are present in patients with obsessive-compulsive disorder (OCD) and their first-degree relatives, suggesting involvement of the frontoparietal circuits. The neural correlates of working memory may be a neurocognitive endophenotype of OCD. METHODS Forty-three unmedicated OCD patients, 17 unaffected siblings, and 37 matched comparison subjects performed a visuospatial n-back task, with a baseline condition (N0) and three working memory load levels (N1, N2, N3) during functional magnetic resonance imaging. Task-related brain activity was compared between groups in frontoparietal regions of interest. Generalized psychophysiological interaction analyses were used to study task-related changes in functional connectivity. RESULTS Obsessive-compulsive disorder patients, compared with comparison subjects and siblings, showed increased error rates at N3. Compared with comparison subjects, OCD patients showed task-related hyperactivation in left dorsal frontal areas and left precuneus associated with better task performance. Siblings exhibited hyperactivation in a bilateral frontoparietal network. Increased task load was associated with increased task-related brain activity, but in OCD patients and siblings this increase was smaller from load N2 to N3 than in comparison subjects. Obsessive-compulsive disorder patients, compared with siblings and comparison subjects, showed increased task-related functional connectivity between frontal regions and bilateral amygdala. CONCLUSIONS These findings indicate that compensatory frontoparietal brain activity in OCD patients and their unaffected relatives preserves task performance at low task loads but is insufficient to maintain performance at high task loads. Frontoparietal dysfunction may constitute a neurocognitive endophenotype for OCD, possibly reflecting limbic interference with and neural inefficiency within the frontoparietal network.
Collapse
Affiliation(s)
- Froukje E de Vries
- Department of Psychiatry (FEdV, SJdW, VvdB, TBvR, AJLMvB, DJV, OAvdH), VU University Medical Center, Amsterdam; Neuroscience Campus Amsterdam (FEdV, SJdW, YDvdW, DJV, OAvdH), VU University, Amsterdam.
| | - Stella J de Wit
- Department of Psychiatry (FEdV, SJdW, VvdB, TBvR, AJLMvB, DJV, OAvdH), VU University Medical Center, Amsterdam; Neuroscience Campus Amsterdam (FEdV, SJdW, YDvdW, DJV, OAvdH), VU University, Amsterdam
| | - Danielle C Cath
- Altrecht Academic Anxiety Center (DCC), Utrecht; Department of Clinical and Health Psychology (DCC), Utrecht University, Utrecht
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences (YDvdW, OAvdH), VU University Medical Center, Amsterdam; Netherlands Institute for Neuroscience (YDvdW), an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam
| | - Vionne van der Borden
- Department of Psychiatry (FEdV, SJdW, VvdB, TBvR, AJLMvB, DJV, OAvdH), VU University Medical Center, Amsterdam; Neuroscience Campus Amsterdam (FEdV, SJdW, YDvdW, DJV, OAvdH), VU University, Amsterdam
| | - Thomas B van Rossum
- Department of Psychiatry (FEdV, SJdW, VvdB, TBvR, AJLMvB, DJV, OAvdH), VU University Medical Center, Amsterdam; Neuroscience Campus Amsterdam (FEdV, SJdW, YDvdW, DJV, OAvdH), VU University, Amsterdam
| | - Anton J L M van Balkom
- Department of Psychiatry (FEdV, SJdW, VvdB, TBvR, AJLMvB, DJV, OAvdH), VU University Medical Center, Amsterdam; Neuroscience Campus Amsterdam (FEdV, SJdW, YDvdW, DJV, OAvdH), VU University, Amsterdam
| | - Nic J A van der Wee
- Department of Psychiatry and Leiden Institute for Brain and Cognition (NJAvdW), Leiden University Medical Center, Leiden, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry (FEdV, SJdW, VvdB, TBvR, AJLMvB, DJV, OAvdH), VU University Medical Center, Amsterdam; Neuroscience Campus Amsterdam (FEdV, SJdW, YDvdW, DJV, OAvdH), VU University, Amsterdam
| | - Odile A van den Heuvel
- Department of Psychiatry (FEdV, SJdW, VvdB, TBvR, AJLMvB, DJV, OAvdH), VU University Medical Center, Amsterdam; Neuroscience Campus Amsterdam (FEdV, SJdW, YDvdW, DJV, OAvdH), VU University, Amsterdam; Department of Anatomy and Neurosciences (YDvdW, OAvdH), VU University Medical Center, Amsterdam
| |
Collapse
|
42
|
Stanley ML, Dagenbach D, Lyday RG, Burdette JH, Laurienti PJ. Changes in global and regional modularity associated with increasing working memory load. Front Hum Neurosci 2014; 8:954. [PMID: 25520639 PMCID: PMC4249452 DOI: 10.3389/fnhum.2014.00954] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/10/2014] [Indexed: 11/13/2022] Open
Abstract
Using graph theory measures common to complex network analyses of neuroimaging data, the objective of this study was to explore the effects of increasing working memory processing load on functional brain network topology in a cohort of young adults. Measures of modularity in complex brain networks quantify how well a network is organized into densely interconnected communities. We investigated changes in both the large-scale modular organization of the functional brain network as a whole and regional changes in modular organization as demands on working memory increased from n = 1 to n = 2 on the standard n-back task. We further investigated the relationship between modular properties across working memory load conditions and behavioral performance. Our results showed that regional modular organization within the default mode and working memory circuits significantly changed from 1-back to 2-back task conditions. However, the regional modular organization was not associated with behavioral performance. Global measures of modular organization did not change with working memory load but were associated with individual variability in behavioral performance. These findings indicate that regional and global network properties are modulated by different aspects of working memory under increasing load conditions. These findings highlight the importance of assessing multiple features of functional brain network topology at both global and regional scales rather than focusing on a single network property.
Collapse
Affiliation(s)
- Matthew L Stanley
- Laboratory for Complex Brain Networks, Wake Forest University School of Medicine Winston-Salem, NC, USA
| | - Dale Dagenbach
- Laboratory for Complex Brain Networks, Wake Forest University School of Medicine Winston-Salem, NC, USA ; Department of Psychology, Wake Forest University Winston-Salem, NC, USA
| | - Robert G Lyday
- Laboratory for Complex Brain Networks, Wake Forest University School of Medicine Winston-Salem, NC, USA
| | - Jonathan H Burdette
- Laboratory for Complex Brain Networks, Wake Forest University School of Medicine Winston-Salem, NC, USA ; Department of Radiology, Wake Forest University School of Medicine Winston-Salem, NC, USA
| | - Paul J Laurienti
- Laboratory for Complex Brain Networks, Wake Forest University School of Medicine Winston-Salem, NC, USA ; Department of Radiology, Wake Forest University School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
43
|
Pacheco-Colón I, Fricke S, VanMeter J, Gropman AL. Advances in urea cycle neuroimaging: Proceedings from the 4th International Symposium on urea cycle disorders, Barcelona, Spain, September 2013. Mol Genet Metab 2014; 113:118-26. [PMID: 25066103 PMCID: PMC4177962 DOI: 10.1016/j.ymgme.2014.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 05/10/2014] [Indexed: 11/20/2022]
Abstract
Our previous imaging research performed as part of a Urea Cycle Rare Disorders Consortium (UCRDC) grant, has identified specific biomarkers of neurologic injury in ornithine transcarbamylase deficiency, OTCD. While characterization of mutations can be achieved in most cases, this information does not necessarily predict the severity of the underlying neurological syndrome. The biochemical consequences of any mutation may be modified additionally by a large number of factors, including contributions of other enzymes and transport systems that mediate flux through the urea cycle, diet and other environmental factors. These factors likely vary from one patient to another, and they give rise to heterogeneity of clinical severity. Affected cognitive domains include non-verbal learning, fine motor processing, reaction time, visual memory, attention, and executive function. Deficits in these capacities may be seen in symptomatic patients, as well as asymptomatic carriers with normal IQ and correlate with variances in brain structure and function in these patients. Using neuroimaging we can identify biomarkers that reflect the downstream impact of UCDs on cognition. This manuscript is a summary of the presentation from the 4th International Consortium on urea cycle disorders held in, Barcelona, Spain, September 2, 2014.
Collapse
Affiliation(s)
| | - Stanley Fricke
- Children's National Medical, USA; George Washington University, USA
| | - John VanMeter
- Center for Functional and Molecular Imaging, Georgetown University, USA
| | - Andrea L Gropman
- Center for Functional and Molecular Imaging, Georgetown University, USA; Children's National Medical, USA; George Washington University, USA.
| |
Collapse
|
44
|
Reduced prefrontal efficiency for visuospatial working memory in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2014; 53:1020-1030.e6. [PMID: 25151425 DOI: 10.1016/j.jaac.2014.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 04/02/2014] [Accepted: 06/16/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Visuospatial working memory impairments have been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, most ADHD research has focused on the neural correlates of nonspatial mnemonic processes. This study examined brain activation and functional connectivity for visuospatial working memory in youth with and without ADHD. METHOD Twenty-four youth with ADHD and 21 age- and sex-matched healthy controls were scanned with functional magnetic resonance imaging while performing an N-back test of working memory for spatial position. Block-design analyses contrasted activation and functional connectivity separately for high (2-back) and low (1-back) working memory load conditions versus the control condition (0-back). The effect of working memory load was modeled with linear contrasts. RESULTS The 2 groups performed comparably on the task and demonstrated similar patterns of frontoparietal activation, with no differences in linear gains in activation as working memory load increased. However, youth with ADHD showed greater activation in the left dorsolateral prefrontal cortex (DLPFC) and left posterior cingulate cortex (PCC), greater functional connectivity between the left DLPFC and left intraparietal sulcus, and reduced left DLPFC connectivity with left midcingulate cortex and PCC for the high load contrast compared to controls (p < .01; k > 100 voxels). Reanalysis using a more conservative statistical approach (p < .001; k > 100 voxels) yielded group differences in PCC activation and DLPFC-midcingulate connectivity. CONCLUSION Youth with ADHD show decreased efficiency of DLPFC for high-load visuospatial working memory and greater reliance on posterior spatial attention circuits to store and update spatial position than healthy control youth. Findings should be replicated in larger samples.
Collapse
|
45
|
Wightman EL, Reay JL, Haskell CF, Williamson G, Dew TP, Kennedy DO. Effects of resveratrol alone or in combination with piperine on cerebral blood flow parameters and cognitive performance in human subjects: a randomised, double-blind, placebo-controlled, cross-over investigation. Br J Nutr 2014; 112:203-13. [PMID: 24804871 DOI: 10.1017/s0007114514000737] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previous research has shown that resveratrol can increase cerebral blood flow (CBF) in the absence of improved cognitive performance in healthy, young human subjects during the performance of cognitively demanding tasks. This lack of cognitive effects may be due to low bioavailability and, in turn, reduced bioefficacy of resveratrol in vivo. Piperine can alter polyphenol pharmacokinetics, but previous studies have not investigated whether this affects the efficacy of the target compound. Therefore, the objective of the present study was to ascertain whether co-supplementation of piperine with resveratrol affects the bioavailability and efficacy of resveratrol with regard to cognition and CBF. The present study utilised a randomised, double-blind, placebo-controlled, within-subjects design, where twenty-three adults were given placebo, trans-resveratrol (250 mg) and trans-resveratrol with 20 mg piperine on separate days at least a week apart. After a 40 min rest/absorption period, the participants performed a selection of cognitive tasks and CBF was assessed throughout the period, in the frontal cortex, using near-IR spectroscopy. The presence of resveratrol and its conjugates in the plasma was confirmed by liquid chromatography-MS analysis carried out following the administration of the same doses in a separate cohort (n 6). The results indicated that when co-supplemented, piperine and resveratrol significantly augmented CBF during task performance in comparison with placebo and resveratrol alone. Cognitive function, mood and blood pressure were not affected. The plasma concentrations of resveratrol and its metabolites were not significantly different between the treatments, which indicates that co-supplementation of piperine with resveratrol enhances the bioefficacy of resveratrol with regard to CBF effects, but not cognitive performance, and does this without altering bioavailability.
Collapse
Affiliation(s)
- Emma L Wightman
- Brain, Performance and Nutrition Research Centre, Northumbria University,Newcastle upon TyneNE1 8ST,UK
| | - Jonathon L Reay
- School of Social Sciences and Law, Teesside University,MiddlesbroughTS1 3BA,UK
| | - Crystal F Haskell
- Brain, Performance and Nutrition Research Centre, Northumbria University,Newcastle upon TyneNE1 8ST,UK
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds,LeedsLS2 9JT,UK
| | - Tristan P Dew
- School of Food Science and Nutrition, University of Leeds,LeedsLS2 9JT,UK
| | - David O Kennedy
- Brain, Performance and Nutrition Research Centre, Northumbria University,Newcastle upon TyneNE1 8ST,UK
| |
Collapse
|
46
|
Vansteensel MJ, Bleichner MG, Freudenburg ZV, Hermes D, Aarnoutse EJ, Leijten FSS, Ferrier CH, Jansma JM, Ramsey NF. Spatiotemporal characteristics of electrocortical brain activity during mental calculation. Hum Brain Mapp 2014; 35:5903-20. [PMID: 25044370 DOI: 10.1002/hbm.22593] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 06/16/2014] [Accepted: 07/14/2014] [Indexed: 11/08/2022] Open
Abstract
Mental calculation is a complex mental procedure involving a frontoparietal network of brain regions. Functional MRI (fMRI) studies have revealed interesting characteristics of these regions, but the precise function of some areas remains elusive. In the present study, we used electrocorticographic (ECoG) recordings to chronometrically assess the neuronal processes during mental arithmetic. A calculation task was performed during presurgical 3T fMRI scanning and subsequent ECoG monitoring. Mental calculation induced an increase in fMRI blood oxygen level dependent signal in prefrontal, parietal and lower temporo-occipital regions. The group-fMRI result was subsequently used to cluster the implanted electrodes into anatomically defined regions of interest (ROIs). We observed remarkable differences in high frequency power profiles between ROIs, some of which were closely associated with stimulus presentation and others with the response. Upon stimulus presentation, occipital areas were the first to respond, followed by parietal and frontal areas, and finally by motor areas. Notably, we demonstrate that the fMRI activation in the middle frontal gyrus/precentral gyrus is associated with two subfunctions during mental calculation. This finding reveals the significance of the temporal dynamics of neural ensembles within regions with an apparent uniform function. In conclusion, our results shed more light on the spatiotemporal aspects of brain activation during a mental calculation task, and demonstrate that the use of fMRI data to cluster ECoG electrodes is a useful approach for ECoG group analysis.
Collapse
Affiliation(s)
- Mariska J Vansteensel
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Charlet K, Beck A, Jorde A, Wimmer L, Vollstädt-Klein S, Gallinat J, Walter H, Kiefer F, Heinz A. Increased neural activity during high working memory load predicts low relapse risk in alcohol dependence. Addict Biol 2014; 19:402-14. [PMID: 24147643 DOI: 10.1111/adb.12103] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Working memory (WM) impairments are often observed in alcohol-dependent individuals, especially in early abstinence, which may contribute to an increased relapse risk after detoxification. Brain imaging studies on visuospatial WM in alcohol-dependent patients compared to controls indicate that information processing requires compensatory increased neural activation to perform at a normal level. However, to date, no study tested whether such increased neural WM activation patterns or the lack thereof predict relapse behavior in alcohol-dependent individuals, and whether such differences persist when adequately correcting for individual grey matter differences. We combined analyses of neural activation during an n-back task and local grey matter volumes using Biological Parametric Mapping in 40 detoxified alcohol-dependent patients and 40 matched healthy controls (HC), and assessed prospective relapse risk during a 7-month follow-up period. Despite equal task performance, we found increased functional activation during high versus low cognitive WM load (2-back-0-back) in bilateral rostral prefrontal cortex (BA10) and bilateral ventrolateral prefrontal cortex (BA45,47) in prospective abstainers versus relapsers, and further in left/right lateral/medial premotor cortex (BA6,8) in abstainers versus HC. In prospective abstainers, but not relapsers, subtle cognitive impairment was associated with increased neural task activity in the premotor cortex. These findings suggest that in prospective abstainers, higher functional engagement of presumably less impaired neural resources in executive behavioral control brain areas (BA10, 45, 47, 6, 8) may constitute a resilience factor associated with good treatment outcome.
Collapse
Affiliation(s)
- Katrin Charlet
- Department of Psychiatry and Psychotherapy; Charité-Universitätsmedizin Berlin; Germany
| | - Anne Beck
- Department of Psychiatry and Psychotherapy; Charité-Universitätsmedizin Berlin; Germany
| | - Anne Jorde
- Department of Addictive Behavior and Addiction Medicine; Central Institute of Mental Health; Medical Faculty Mannheim; Heidelberg University; Germany
| | - Lioba Wimmer
- Department of Medical Psychology; Zentrum für Nervenheilkunde; Universitätsklinikum Bonn; Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behavior and Addiction Medicine; Central Institute of Mental Health; Medical Faculty Mannheim; Heidelberg University; Germany
| | - Jürgen Gallinat
- Charité Department of Psychiatry and Psychotherapy; St Hedwig Krankenhaus; Germany
| | - Henrik Walter
- Department of Medical Psychology; Zentrum für Nervenheilkunde; Universitätsklinikum Bonn; Germany
- Division of Mind and Brain Research; Charité-Universitätsmedizin Berlin; Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine; Central Institute of Mental Health; Medical Faculty Mannheim; Heidelberg University; Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy; Charité-Universitätsmedizin Berlin; Germany
- Charité Department of Psychiatry and Psychotherapy; St Hedwig Krankenhaus; Germany
| |
Collapse
|
48
|
Fishburn FA, Norr ME, Medvedev AV, Vaidya CJ. Sensitivity of fNIRS to cognitive state and load. Front Hum Neurosci 2014; 8:76. [PMID: 24600374 PMCID: PMC3930096 DOI: 10.3389/fnhum.2014.00076] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/30/2014] [Indexed: 01/23/2023] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is an emerging low-cost noninvasive neuroimaging technique that measures cortical bloodflow. While fNIRS has gained interest as a potential alternative to fMRI for use with clinical and pediatric populations, it remains unclear whether fNIRS has the necessary sensitivity to serve as a replacement for fMRI. The present study set out to examine whether fNIRS has the sensitivity to detect linear changes in activation and functional connectivity in response to cognitive load, and functional connectivity changes when transitioning from a task-free resting state to a task. Sixteen young adult subjects were scanned with a continuous-wave fNIRS system during a 10-min resting-state scan followed by a letter n-back task with three load conditions. Five optical probes were placed over frontal and parietal cortices, covering bilateral dorsolateral PFC (dlPFC), bilateral ventrolateral PFC (vlPFC), frontopolar cortex (FP), and bilateral parietal cortex. Activation was found to scale linearly with working memory load in bilateral prefrontal cortex. Functional connectivity increased with increasing n-back loads for fronto-parietal, interhemispheric dlPFC, and local connections. Functional connectivity differed between the resting state scan and the n-back scan, with fronto-parietal connectivity greater during the n-back, and interhemispheric vlPFC connectivity greater during rest. These results demonstrate that fNIRS is sensitive to both cognitive load and state, suggesting that fNIRS is well-suited to explore the full complement of neuroimaging research questions and will serve as a viable alternative to fMRI.
Collapse
Affiliation(s)
- Frank A Fishburn
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| | - Megan E Norr
- Department of Psychology, Georgetown University Washington, DC, USA
| | - Andrei V Medvedev
- Center for Functional and Molecular Imaging, Georgetown University Medical Center Washington, DC, USA
| | - Chandan J Vaidya
- Department of Psychology, Georgetown University Washington, DC, USA ; Children's National Medical Center, Children's Research Institute Washington, DC, USA
| |
Collapse
|
49
|
Very-low-frequency oscillations of cerebral hemodynamics and blood pressure are affected by aging and cognitive load. Neuroimage 2014; 85 Pt 1:608-15. [DOI: 10.1016/j.neuroimage.2013.04.107] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/04/2013] [Accepted: 04/26/2013] [Indexed: 11/22/2022] Open
|
50
|
Raybuck JD, Lattal KM. Bridging the interval: theory and neurobiology of trace conditioning. Behav Processes 2014; 101:103-11. [PMID: 24036411 PMCID: PMC3943893 DOI: 10.1016/j.beproc.2013.08.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/25/2013] [Accepted: 08/09/2013] [Indexed: 12/26/2022]
Abstract
An early finding in the behavioral analysis of learning was that conditioned responding weakens as the conditioned stimulus (CS) and unconditioned stimulus (US) are separated in time. This "trace" conditioning effect has been the focus of years of research in associative learning. Theoretical accounts of trace conditioning have focused on mechanisms that allow associative learning to occur across long intervals between the CS and US. These accounts have emphasized degraded contingency effects, timing mechanisms, and inhibitory learning. More recently, study of the neurobiology of trace conditioning has shown that even a short interval between the CS and US alters the circuitry recruited for learning. Here, we review some of the theoretical and neurobiological mechanisms underlying trace conditioning with an emphasis on recent studies of trace fear conditioning. Findings across many studies have implications not just for how we think about time and conditioning, but also for how we conceptualize fear conditioning in general, suggesting that circuitry beyond the usual suspects needs to be incorporated into current thinking about fear, learning, and anxiety.
Collapse
Affiliation(s)
- Jonathan D Raybuck
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|