1
|
Pereira M, Chen X, Paltarzhytskaya A, Pacheсo Y, Muller N, Bovy L, Lei X, Chen W, Ren H, Song C, Lewis LD, Dang-Vu TT, Czisch M, Picchioni D, Duyn J, Peigneux P, Tagliazucchi E, Dresler M. Sleep neuroimaging: Review and future directions. J Sleep Res 2025:e14462. [PMID: 39940102 DOI: 10.1111/jsr.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/29/2024] [Accepted: 12/29/2024] [Indexed: 02/14/2025]
Abstract
Sleep research has evolved considerably since the first sleep electroencephalography recordings in the 1930s and the discovery of well-distinguishable sleep stages in the 1950s. While electrophysiological recordings have been used to describe the sleeping brain in much detail, since the 1990s neuroimaging techniques have been applied to uncover the brain organization and functional connectivity of human sleep with greater spatial resolution. The combination of electroencephalography with different neuroimaging modalities such as positron emission tomography, structural magnetic resonance imaging and functional magnetic resonance imaging imposes several challenges for sleep studies, for instance, the need to combine polysomnographic recordings to assess sleep stages accurately, difficulties maintaining and consolidating sleep in an unfamiliar and restricted environment, scanner-induced distortions with physiological artefacts that may contaminate polysomnography recordings, and the necessity to account for all physiological changes throughout the sleep cycles to ensure better data interpretability. Here, we review the field of sleep neuroimaging in healthy non-sleep-deprived populations, from early findings to more recent developments. Additionally, we discuss the challenges of applying concurrent electroencephalography and imaging techniques to sleep, which consequently have impacted the sample size and generalizability of studies, and possible future directions for the field.
Collapse
Affiliation(s)
- Mariana Pereira
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xinyuan Chen
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | | | - Yibran Pacheсo
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nils Muller
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leonore Bovy
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Wei Chen
- School of Information Science and Technology & Human Phenome Institute, Fudan University, Shanghai, China
| | - Haoran Ren
- School of Health and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Song
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Thien Thanh Dang-Vu
- Department of Health, Kinesiology and Applied Physiology, Concordia University & Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Quebec, Canada
| | | | - Dante Picchioni
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Jeff Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Centre de Recherches Cognition et Neurosciences, and UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Enzo Tagliazucchi
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute, Universidad Adolfo Ibanez, Santiago, Chile
| | - Martin Dresler
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
2
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Examining First Night Effect on Sleep Parameters with hd-EEG in Healthy Individuals. Brain Sci 2022; 12:brainsci12020233. [PMID: 35203996 PMCID: PMC8870064 DOI: 10.3390/brainsci12020233] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/04/2022] Open
Abstract
Difficulty sleeping in a novel environment is a common phenomenon that is often described as the first night effect (FNE). Previous works have found FNE on sleep architecture and sleep power spectra parameters, especially during non-rapid eye movement (NREM) sleep. However, the impact of FNE on sleep parameters, including local differences in electroencephalographic (EEG) activity across nights, has not been systematically assessed. Here, we performed high-density EEG sleep recordings on 27 healthy individuals on two nights and examined differences in sleep architecture, NREM (stages 2 and 3) EEG power spectra, and NREM power topography across nights. We found higher wakefulness after sleep onset (WASO), reduced sleep efficiency, and less deep NREM sleep (stage 3), along with increased high-frequency NREM EEG power during the first night of sleep, corresponding to small to medium effect sizes (Cohen’s d ≤ 0.5). Furthermore, study individuals showed significantly lower slow-wave activity in right frontal/prefrontal regions as well as higher sigma and beta activities in medial and left frontal/prefrontal areas, yielding medium to large effect sizes (Cohen’s d ≥ 0.5). Altogether, these findings suggest the FNE is characterized by less efficient, more fragmented, shallower sleep that tends to affect especially certain brain regions. The magnitude and specificity of these effects should be considered when designing sleep studies aiming to compare across night effects.
Collapse
|
4
|
Olejarczyk E, Gotman J, Frauscher B. Region-specific complexity of the intracranial EEG in the sleeping human brain. Sci Rep 2022; 12:451. [PMID: 35013431 PMCID: PMC8748934 DOI: 10.1038/s41598-021-04213-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/13/2021] [Indexed: 11/18/2022] Open
Abstract
As the brain is a complex system with occurrence of self-similarity at different levels, a dedicated analysis of the complexity of brain signals is of interest to elucidate the functional role of various brain regions across the various stages of vigilance. We exploited intracranial electroencephalogram data from 38 cortical regions using the Higuchi fractal dimension (HFD) as measure to assess brain complexity, on a dataset of 1772 electrode locations. HFD values depended on sleep stage and topography. HFD increased with higher levels of vigilance, being highest during wakefulness in the frontal lobe. HFD did not change from wake to stage N2 in temporo-occipital regions. The transverse temporal gyrus was the only area in which the HFD did not differ between any two vigilance stages. Interestingly, HFD of wakefulness and stage R were different mainly in the precentral gyrus, possibly reflecting motor inhibition in stage R. The fusiform and parahippocampal gyri were the only areas showing no difference between wakefulness and N2. Stages R and N2 were similar only for the postcentral gyrus. Topographical analysis of brain complexity revealed that sleep stages are clearly differentiated in fronto-central brain regions, but that temporo-occipital regions sleep differently.
Collapse
Affiliation(s)
- Elzbieta Olejarczyk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Trojdena 4 Str., 02-109, Warsaw, Poland.
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
5
|
Zou G, Xu J, Zhou S, Liu J, Su ZH, Zou Q, Gao JH. Functional MRI of arousals in nonrapid eye movement sleep. Sleep 2021; 43:5573984. [PMID: 31555827 DOI: 10.1093/sleep/zsz218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/26/2019] [Indexed: 11/13/2022] Open
Abstract
Arousals commonly occur during human sleep and have been associated with several sleep disorders. Arousals are characterized as an abrupt electroencephalography (EEG) frequency change to higher frequencies during sleep. However, the human brain regions involved in arousal are not yet clear. Simultaneous EEG and functional magnetic resonance imaging (fMRI) data were recorded during the early portion of the sleep period in healthy young adults. Arousals were identified based on the EEG data, and fMRI signal changes associated with 83 arousals from 19 subjects were analyzed. Subcortical regions, including the midbrain, thalamus, basal ganglia, and cerebellum, were activated with arousal. Cortices, including the temporal gyrus, occipital gyrus, and frontal gyrus, were deactivated with arousal. The activations associated with arousal in the subcortical regions were consistent with previous findings of subcortical involvement in behavioral arousal and consciousness. Cortical deactivations may serve as a mechanism to direct incoming sensory stimuli to specific brain regions, thereby monitoring environmental perturbations during sleep.
Collapse
Affiliation(s)
- Guangyuan Zou
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jing Xu
- Laboratory of Applied Brain and Cognitive Sciences, College of International Business, Shanghai International Studies University, Shanghai, China
| | - Shuqin Zhou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Jiayi Liu
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zi Hui Su
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China.,Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
6
|
Counsell SJ, Arichi T, Arulkumaran S, Rutherford MA. Fetal and neonatal neuroimaging. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:67-103. [PMID: 31324329 DOI: 10.1016/b978-0-444-64029-1.00004-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) can provide detail of the soft tissues of the fetal and neonatal brain that cannot be obtained by any other imaging modality. Conventional T1 and T2 weighted sequences provide anatomic detail of the normally developing brain and can demonstrate lesions, including those associated with preterm birth, hypoxic ischemic encephalopathy, perinatal arterial stroke, infections, and congenital malformations. Specialized imaging techniques can be used to assess cerebral vasculature (magnetic resonance angiography and venography), cerebral metabolism (magnetic resonance spectroscopy), cerebral perfusion (arterial spin labeling), and function (functional MRI). A wealth of quantitative tools, most of which were originally developed for the adult brain, can be applied to study the developing brain in utero and postnatally including measures of tissue microstructure obtained from diffusion MRI, morphometric studies to measure whole brain and regional tissue volumes, and automated approaches to study cortical folding. In this chapter, we aim to describe different imaging approaches for the fetal and neonatal brain, and to discuss their use in a range of clinical applications.
Collapse
Affiliation(s)
- Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
7
|
Developmental changes in cortical sensory processing during wakefulness and sleep. Neuroimage 2018; 178:519-530. [DOI: 10.1016/j.neuroimage.2018.05.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/05/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022] Open
|
8
|
Sharon O, Nir Y. Attenuated Fast Steady-State Visual Evoked Potentials During Human Sleep. Cereb Cortex 2017; 28:1297-1311. [DOI: 10.1093/cercor/bhx043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 12/30/2022] Open
Affiliation(s)
- Omer Sharon
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Functional Neurophysiology and Sleep Research Lab, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
9
|
Mapping visual dominance in human sleep. Neuroimage 2017; 150:250-261. [PMID: 28232191 DOI: 10.1016/j.neuroimage.2017.02.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/15/2017] [Accepted: 02/19/2017] [Indexed: 12/19/2022] Open
Abstract
Sleep is a universal behavior, essential for humans and animals alike to survive. Its importance to a person's physical and mental health cannot be overstated. Although lateralization of function is well established in the lesion, split-brain and task based neuroimaging literature, and more recently in functional imaging studies of spontaneous fluctuations of the fMRI BOLD signal during wakeful rest, it is unknown if these asymmetries are present during sleep. We investigated hemispheric asymmetries in the global brain signal during non-REM sleep. Here we show that increasing sleep depth is accompanied by an increasing rightward asymmetry of regions in visual cortex including primary bilaterally and in the right hemisphere along the lingual gyrus and middle temporal cortex. In addition, left hemisphere language regions largely maintained their leftward asymmetry during sleep. Right hemisphere attention related regions expressed a more complicated relation with some regions maintaining a rightward asymmetry while this was lost in others. These results suggest that asymmetries in the human brain are state dependent.
Collapse
|
10
|
Norton JJS, Umunna S, Bretl T. The elicitation of steady-state visual evoked potentials during sleep. Psychophysiology 2017; 54:496-507. [PMID: 28098351 DOI: 10.1111/psyp.12807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022]
Abstract
This study confirmed the hypothesis that it is possible to elicit SSVEPs through closed eyelids during NREM sleep. To test this hypothesis, SSVEP amplitudes were measured in eight subjects across two conditions of stimulation (stimulation on and stimulation off) and three brain states (waking, light sleep, and deep sleep). Results showed a significant interaction between stimulation and brain state. In particular, EEG activity at the frequency of stimulation was higher during both light sleep and deep sleep in the stimulation on condition than in the stimulation off condition. The fact that it is possible to elicit SSVEPs during sleep may provide a new way to study how SSVEPs are generated in the brain-one that might help resolve open questions such as identifying the SSVEP activation sequence or deciding if SSVEPs derive from evoked or oscillatory neural processes.
Collapse
Affiliation(s)
- James J S Norton
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Stephen Umunna
- Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Timothy Bretl
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
11
|
Merhar SL, Gozdas E, Tkach JA, Harpster KL, Schwartz TL, Yuan W, Kline-Fath BM, Leach JL, Altaye M, Holland SK. Functional and structural connectivity of the visual system in infants with perinatal brain injury. Pediatr Res 2016; 80:43-8. [PMID: 26991261 DOI: 10.1038/pr.2016.49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/23/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Infants with perinatal brain injury are at risk of later visual problems. Advanced neuroimaging techniques show promise to detect functional and structural alterations of the visual system. We hypothesized that infants with perinatal brain injury would have less brain activation during a visual functional magnetic resonance imaging (fMRI) task and reduced task-based functional connectivity and structural connectivity as compared with healthy controls. METHODS Ten infants with perinatal brain injury and 20 control infants underwent visual fMRI and diffusion tensor imaging (DTI) during natural sleep with no sedation. Activation maps, functional connectivity maps, and structural connectivity were analyzed and compared between the two groups. RESULTS Most infants in both groups had negative activation in the visual cortex during the fMRI task. Infants with brain injury showed reduced activation in the occipital cortex, weaker connectivity between visual areas and other areas of the brain during the visual task, and reduced fractional anisotropy in white matter tracts projecting to visual regions, as compared with control infants. CONCLUSION Infants with brain injury sustained in the perinatal period showed evidence of decreased brain activity and functional connectivity during a visual task and altered structural connectivity as compared with healthy term neonates.
Collapse
Affiliation(s)
- Stephanie L Merhar
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Elveda Gozdas
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jean A Tkach
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Karen L Harpster
- Division of Occupational and Physical Therapy, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Terry L Schwartz
- Division of Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Beth M Kline-Fath
- Department of Radiology and Medical imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - James L Leach
- Department of Radiology and Medical imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Scott K Holland
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
12
|
Chen C, Sung JY, Cheng Y. Neural Dynamics of Emotional Salience Processing in Response to Voices during the Stages of Sleep. Front Behav Neurosci 2016; 10:117. [PMID: 27378870 PMCID: PMC4906046 DOI: 10.3389/fnbeh.2016.00117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/25/2016] [Indexed: 11/21/2022] Open
Abstract
Sleep has been related to emotional functioning. However, the extent to which emotional salience is processed during sleep is unknown. To address this concern, we investigated night sleep in healthy adults regarding brain reactivity to the emotionally (happily, fearfully) spoken meaningless syllables dada, along with correspondingly synthesized nonvocal sounds. Electroencephalogram (EEG) signals were continuously acquired during an entire night of sleep while we applied a passive auditory oddball paradigm. During all stages of sleep, mismatch negativity (MMN) in response to emotional syllables, which is an index for emotional salience processing of voices, was detected. In contrast, MMN to acoustically matching nonvocal sounds was undetected during Sleep Stage 2 and 3 as well as rapid eye movement (REM) sleep. Post-MMN positivity (PMP) was identified with larger amplitudes during Stage 3, and at earlier latencies during REM sleep, relative to wakefulness. These findings clearly demonstrated the neural dynamics of emotional salience processing during the stages of sleep.
Collapse
Affiliation(s)
- Chenyi Chen
- Institute of Neuroscience, National Yang-Ming University Taipei, Taiwan
| | - Jia-Ying Sung
- Department of Neurology, Wan Fang Hospital, Taipei Medical UniversityTaipei, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Yawei Cheng
- Institute of Neuroscience, National Yang-Ming UniversityTaipei, Taiwan; Department of Rehabilitation, National Yang-Ming University HospitalYilan, Taiwan
| |
Collapse
|
13
|
Davis B, Tagliazucchi E, Jovicich J, Laufs H, Hasson U. Progression to deep sleep is characterized by changes to BOLD dynamics in sensory cortices. Neuroimage 2016; 130:293-305. [PMID: 26724779 PMCID: PMC4819724 DOI: 10.1016/j.neuroimage.2015.12.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/26/2015] [Accepted: 12/18/2015] [Indexed: 11/17/2022] Open
Abstract
Sleep has been shown to subtly disrupt the spatial organization of functional connectivity networks in the brain, but in a way that largely preserves the connectivity within sensory cortices. Here we evaluated the hypothesis that sleep does impact sensory cortices, but through alteration of activity dynamics. We therefore examined the impact of sleep on hemodynamics using a method for quantifying non-random, high frequency signatures of the blood-oxygen-level dependent (BOLD) signal (amplitude variance asymmetry; AVA). We found that sleep was associated with the elimination of these dynamics in a manner that is restricted to auditory, motor and visual cortices. This elimination was concurrent with increased variance of activity in these regions. Functional connectivity between regions showing AVA during wakefulness maintained a relatively consistent hierarchical structure during wakefulness and N1 and N2 sleep, despite a gradual reduction of connectivity strength as sleep progressed. Thus, sleep is related to elimination of high frequency non-random activity signatures in sensory cortices that are robust during wakefulness. The elimination of these AVA signatures conjointly with preservation of the structure of functional connectivity patterns may be linked to the need to suppress sensory inputs during sleep while still maintaining the capacity to react quickly to complex multimodal inputs.
Collapse
Affiliation(s)
- Ben Davis
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Enzo Tagliazucchi
- Department of Neurology and Brain Imaging Center, Goethe University, Frankfurt, Germany
| | - Jorge Jovicich
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Helmut Laufs
- Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany; Department of Neurology and Brain Imaging Center, Goethe University, Frankfurt, Germany
| | - Uri Hasson
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy.
| |
Collapse
|
14
|
Pediatric applications of functional magnetic resonance imaging. Pediatr Radiol 2015; 45 Suppl 3:S382-96. [PMID: 26346144 DOI: 10.1007/s00247-015-3365-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/31/2014] [Accepted: 02/23/2015] [Indexed: 01/05/2023]
Abstract
Pediatric functional MRI has been used for the last 2 decades but is now gaining wide acceptance in the preoperative workup of children with brain tumors and medically refractory epilepsy. This review covers pediatrics-specific difficulties such as sedation and task paradigm selection according to the child's age and cognitive level. We also illustrate the increasing uses of functional MRI in the depiction of cognitive function, neuropsychiatric disorders and response to pharmacological agents. Finally, we review the uses of resting-state fMRI in the evaluation of children and in the detection of epileptogenic regions.
Collapse
|
15
|
Rosinvil T, Lafortune M, Sekerovic Z, Bouchard M, Dubé J, Latulipe-Loiselle A, Martin N, Lina JM, Carrier J. Age-related changes in sleep spindles characteristics during daytime recovery following a 25-hour sleep deprivation. Front Hum Neurosci 2015; 9:323. [PMID: 26089788 PMCID: PMC4452883 DOI: 10.3389/fnhum.2015.00323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/19/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The mechanisms underlying sleep spindles (~11-15 Hz; >0.5 s) help to protect sleep. With age, it becomes increasingly difficult to maintain sleep at a challenging time (e.g., daytime), even after sleep loss. This study compared spindle characteristics during daytime recovery and nocturnal sleep in young and middle-aged adults. In addition, we explored whether spindles characteristics in baseline nocturnal sleep were associated with the ability to maintain sleep during daytime recovery periods in both age groups. METHODS Twenty-nine young (15 women and 14 men; 27.3 y ± 5.0) and 31 middle-aged (19 women and 13 men; 51.6 y ± 5.1) healthy subjects participated in a baseline nocturnal sleep and a daytime recovery sleep after 25 hours of sleep deprivation. Spindles were detected on artifact-free Non-rapid eye movement (NREM) sleep epochs. Spindle density (nb/min), amplitude (μV), frequency (Hz), and duration (s) were analyzed on parasagittal (linked-ears) derivations. RESULTS In young subjects, spindle frequency increased during daytime recovery sleep as compared to baseline nocturnal sleep in all derivations, whereas middle-aged subjects showed spindle frequency enhancement only in the prefrontal derivation. No other significant interaction between age group and sleep condition was observed. Spindle density for all derivations and centro-occipital spindle amplitude decreased whereas prefrontal spindle amplitude increased from baseline to daytime recovery sleep in both age groups. Finally, no significant correlation was found between spindle characteristics during baseline nocturnal sleep and the marked reduction in sleep efficiency during daytime recovery sleep in both young and middle-aged subjects. CONCLUSION These results suggest that the interaction between homeostatic and circadian pressure modulates spindle frequency differently in aging. Spindle characteristics do not seem to be linked with the ability to maintain daytime recovery sleep.
Collapse
Affiliation(s)
- T. Rosinvil
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de MontréalMontréal, QC, Canada
- Department of Psychology, Université de MontréalMontréal, QC, Canada
- Research Center, Institut Universitaire Gériatrique de MontréalMontréal, QC, Canada
| | - M. Lafortune
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de MontréalMontréal, QC, Canada
- Department of Psychology, Université de MontréalMontréal, QC, Canada
- Research Center, Institut Universitaire Gériatrique de MontréalMontréal, QC, Canada
| | - Z. Sekerovic
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de MontréalMontréal, QC, Canada
- Department of Psychology, Université de MontréalMontréal, QC, Canada
- Research Center, Institut Universitaire Gériatrique de MontréalMontréal, QC, Canada
| | - M. Bouchard
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de MontréalMontréal, QC, Canada
- Department of Psychology, Université de MontréalMontréal, QC, Canada
- Research Center, Institut Universitaire Gériatrique de MontréalMontréal, QC, Canada
| | - J. Dubé
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de MontréalMontréal, QC, Canada
- Department of Psychology, Université de MontréalMontréal, QC, Canada
- Research Center, Institut Universitaire Gériatrique de MontréalMontréal, QC, Canada
| | | | - N. Martin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de MontréalMontréal, QC, Canada
- Department of Psychology, Université de MontréalMontréal, QC, Canada
- Research Center, Institut Universitaire Gériatrique de MontréalMontréal, QC, Canada
| | - J. M. Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de MontréalMontréal, QC, Canada
- Department of Electrical Engineering, École de Technologie SupérieureMontréal, QC, Canada
| | - J. Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de MontréalMontréal, QC, Canada
- Department of Psychology, Université de MontréalMontréal, QC, Canada
- Research Center, Institut Universitaire Gériatrique de MontréalMontréal, QC, Canada
| |
Collapse
|
16
|
Abstract
Over the past 20 years, the field of cognitive neuroscience has relied heavily on hemodynamic measures of blood oxygenation in local regions of the brain to make inferences about underlying cognitive processes. These same functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) techniques have recently been adapted for use with human infants. We review the advantages and disadvantages of these two neuroimaging methods for studies of infant cognition, with a particular emphasis on their technical limitations and the linking hypotheses that are used to draw conclusions from correlational data. In addition to summarizing key findings in several domains of infant cognition, we highlight the prospects of improving the quality of fNIRS data from infants to address in a more sophisticated way how cognitive development is mediated by changes in underlying neural mechanisms.
Collapse
Affiliation(s)
- Richard N Aslin
- Brain and Cognitive Sciences, University of Rochester, Rochester, New York 14627; ,
| | | | | |
Collapse
|
17
|
Krainik A, Villien M, Troprès I, Attyé A, Lamalle L, Bouvier J, Pietras J, Grand S, Le Bas JF, Warnking J. Functional imaging of cerebral perfusion. Diagn Interv Imaging 2013; 94:1259-78. [PMID: 24011870 DOI: 10.1016/j.diii.2013.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The functional imaging of perfusion enables the study of its properties such as the vasoreactivity to circulating gases, the autoregulation and the neurovascular coupling. Downstream from arterial stenosis, this imaging can estimate the vascular reserve and the risk of ischemia in order to adapt the therapeutic strategy. This method reveals the hemodynamic disorders in patients suffering from Alzheimer's disease or with arteriovenous malformations revealed by epilepsy. Functional MRI of the vasoreactivity also helps to better interpret the functional MRI activation in practice and in clinical research.
Collapse
Affiliation(s)
- A Krainik
- Clinique universitaire de neuroradiologie et IRM, CHU de Grenoble, CS 10217, 38043 Grenoble cedex, France; Inserm U836, université Joseph-Fourier, site santé, chemin Fortuné-Ferrini, 38706 La Tronche cedex, France; UMS IRMaGe, unité IRM 3T recherche, CHU de Grenoble, CS 10217, 38043 Grenoble cedex 9, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ferrarelli F, Smith R, Dentico D, Riedner BA, Zennig C, Benca RM, Lutz A, Davidson RJ, Tononi G. Experienced mindfulness meditators exhibit higher parietal-occipital EEG gamma activity during NREM sleep. PLoS One 2013; 8:e73417. [PMID: 24015304 PMCID: PMC3756031 DOI: 10.1371/journal.pone.0073417] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/22/2013] [Indexed: 11/18/2022] Open
Abstract
Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG) recordings in long-term meditators (LTM) of Buddhist meditation practices (approximately 8700 mean hours of life practice) and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25–40 Hz), was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function.
Collapse
Affiliation(s)
- Fabio Ferrarelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Richard Smith
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Daniela Dentico
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brady A. Riedner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Corinna Zennig
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ruth M. Benca
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Antoine Lutz
- Waisman Center for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Lyon Neuroscience Research Center, Lyon 1 University, Lyon, France
| | - Richard J. Davidson
- Waisman Center for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
19
|
Negative BOLD response to interictal epileptic discharges in focal epilepsy. Brain Topogr 2013; 26:627-40. [PMID: 23793553 DOI: 10.1007/s10548-013-0302-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
In EEG-fMRI studies, BOLD responses related to interictal epileptic discharges (IEDs) are most often the expected positive response (activation) but sometimes a surprising negative response (deactivation). The significance of deactivation in the region of IED generation is uncertain. The aim of this study was to determine if BOLD deactivation was caused by specific IED characteristics. Among focal epilepsy patients who underwent 3T EEG-fMRI from 2006 to 2011, those with negative BOLD having a maximum t-value in the IED generating region were selected. As controls, subjects with maximum activation in the IED generating region were selected. We established the relationship between the type of response (activation/deactivation) and (1) presence of slow wave in the IEDs, (2) lobe of epileptic focus, (3) occurrence as isolated events or bursts, (4) spatial extent of the EEG discharge. Fifteen patients with deactivation and 15 with activation were included. The IEDs were accompanied by a slow wave in 87 % of patients whose primary BOLD was a deactivation and only in 33 % of patients with activation. In the deactivation group, the epileptic focus was more frequently in the posterior quadrant and involved larger cortical areas, whereas in the activation group it was more frequently temporal. IEDs were more frequently of long duration in the deactivation group. The main factor responsible for focal deactivations is the presence of a slow wave, which is the likely electrographic correlate of prolonged inhibition. This adds a link to the relationship between electrophysiological and BOLD activities.
Collapse
|
20
|
Duyn JH. EEG-fMRI Methods for the Study of Brain Networks during Sleep. Front Neurol 2012; 3:100. [PMID: 22783221 PMCID: PMC3387650 DOI: 10.3389/fneur.2012.00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 06/01/2012] [Indexed: 12/11/2022] Open
Abstract
Modern neuroimaging methods may provide unique insights into the mechanism and role of sleep, as well as into particular mechanisms of brain function in general. Many of the recent neuroimaging studies have used concurrent EEG and fMRI, which present unique technical challenges ranging from the difficulty of inducing sleep in the MRI environment to appropriate instrumentation and data processing methods to obtain artifact free data. In addition, the use of EEG-fMRI during sleep leads to unique data interpretation issues, as common approaches developed for the analysis of task-evoked activity do not apply to sleep. Reviewed are a variety of statistical approaches that can be used to characterize brain activity from fMRI data acquired during sleep, with an emphasis on approaches that investigate the presence of correlated activity between brain regions. Each of these approaches has advantages and disadvantages that must be considered in concert with the theoretical questions of interest. Specifically, fundamental theories of sleep control and function should be considered when designing these studies and when choosing the associated statistical approaches. For example, the notion that local brain activity during sleep may be triggered by local, use-dependent activity during wakefulness may be tested by analyzing sleep networks as statistically independent components. Alternatively, the involvement of regions in more global processes such as arousal may be investigated with correlation analysis.
Collapse
Affiliation(s)
- Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
21
|
Tagliazucchi E, von Wegner F, Morzelewski A, Borisov S, Jahnke K, Laufs H. Automatic sleep staging using fMRI functional connectivity data. Neuroimage 2012; 63:63-72. [PMID: 22743197 DOI: 10.1016/j.neuroimage.2012.06.036] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022] Open
Abstract
Recent EEG-fMRI studies have shown that different stages of sleep are associated with changes in both brain activity and functional connectivity. These results raise the concern that lack of vigilance measures in resting state experiments may introduce confounds and contamination due to subjects falling asleep inside the scanner. In this study we present a method to perform automatic sleep staging using only fMRI functional connectivity data, thus providing vigilance information while circumventing the technical demands of simultaneous recording of EEG, the gold standard for sleep scoring. The features to classify are the linear correlation values between 20 cortical regions identified using independent component analysis and two regions in the bilateral thalamus. The method is based on the construction of binary support vector machine classifiers discriminating between all pairs of sleep stages and the subsequent combination of them into multiclass classifiers. Different multiclass schemes and kernels are explored. After parameter optimization through 5-fold cross validation we achieve accuracies over 0.8 in the binary problem with functional connectivities obtained for epochs as short as 60s. The multiclass classifier generalizes well to two independent datasets (accuracies over 0.8 in both sets) and can be efficiently applied to any dataset using a sliding window procedure. Modeling vigilance states in resting state analysis will avoid confounded inferences and facilitate the study of vigilance states themselves. We thus consider the method introduced in this study a novel and practical contribution for monitoring vigilance levels inside an MRI scanner without the need of extra recordings other than fMRI BOLD signals.
Collapse
Affiliation(s)
- Enzo Tagliazucchi
- Department of Neurology and Brain Imaging Center, Goethe University Frankfurt am Main, Germ.
| | | | | | | | | | | |
Collapse
|
22
|
Neuronal Oscillations in Sleep: Insights from Functional Neuroimaging. Neuromolecular Med 2012; 14:154-67. [DOI: 10.1007/s12017-012-8166-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/06/2012] [Indexed: 12/31/2022]
|
23
|
Abstract
Depressive illness beginning early in life can have serious developmental and functional consequences. Therefore, understanding its etiology and pathophysiology during this developmental stage is critical for developing effective prevention and intervention strategies. There is considerable evidence of sleep alterations in adult major depressive disorder. However, studies in children and adolescents have not found consistent changes in sleep architecture paralleling adult depression. This review article summarizes sleep polysomnography research in early-onset depression, highlighting the factors associated with variable findings across studies. In addition, potential avenues for future research will be suggested in order to develop more comprehensive theoretical models and interventions for pediatric depression.
Collapse
Affiliation(s)
- Uma Rao
- Center for Molecular and Behavioral Neuroscience, and the Department of Psychiatry and Behavioral Sciences, Meharry Medical College, Nashville, TN, USADepartment of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
24
|
Watanabe H, Homae F, Taga G. Activation and deactivation in response to visual stimulation in the occipital cortex of 6-month-old human infants. Dev Psychobiol 2011; 54:1-15. [PMID: 21594872 DOI: 10.1002/dev.20569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 04/25/2011] [Indexed: 11/08/2022]
Abstract
In an infant's developing cortex, the explanation for the mechanisms underlying the activations and deactivations in response to visual stimuli remains controversial. While previous near-infrared spectroscopy (NIRS) studies in awake infants have demonstrated cortical activations in response to meaningful/attractive visual stimuli, functional magnetic resonance imaging (fMRI) studies performed on sleeping infants showed negative blood oxygenation level-dependent (BOLD) responses to high-luminance unpatterned stimulations, such as a photic stimulation. To examine the effect of the characteristics of visual stimuli on cortical processing in awake infants, we measured cortical hemodynamic responses in 6-month-old infants during the presentation of a high-luminance unpatterned stimulus by using a NIRS system with 94 measurement channels. Results from 35 infants showed dissociated cortical responses between the occipital region and the other parts of the cortex, including the temporal and prefrontal regions. Although the visual stimulus produced sustained increases in oxygenated hemoglobin (oxy-Hb) signals in the temporal and prefrontal regions, it produced a transient increase in oxy-Hb signals followed by a salient decrease in oxy-Hb signals during a trial in a focal region of the occipital visual region. This suggests that the deactivation of the occipital visual region in response to visual stimulation is not a phenomenon that occurs only in the sleeping state, but that a high-luminance unpatterned stimulus can induce deactivation even in the awake infants.
Collapse
Affiliation(s)
- Hama Watanabe
- Department of Physical and Health Education, Graduate School of Education, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
25
|
Barb SM, Rodriguez-Galindo C, Wilson MW, Phillips NS, Zou P, Scoggins MA, Li Y, Qaddoumi I, Helton KJ, Bikhazi G, Haik BG, Ogg RJ. Functional neuroimaging to characterize visual system development in children with retinoblastoma. Invest Ophthalmol Vis Sci 2011; 52:2619-26. [PMID: 21245407 DOI: 10.1167/iovs.10-5600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To use functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to investigate visual system development in children being treated for retinoblastoma. METHODS Informed consent was obtained for all participants (N = 42) in this institutional review board-approved study. Participants were imaged with a 1.5-T scanner while under propofol sedation. Diagnostic brain and orbital imaging was followed by investigational functional neuroimaging, which included fMRI during photic stimulation through closed eyelids, to measure functional activation in the visual cortex, and DTI, to evaluate diffusion parameters of white matter tracts in the corpus callosum and the periventricular optic radiations. Analysis included 115 examinations of 39 patients with a median age of 16.4 months and age range from 1.5 to 101.5 months at first evaluation. RESULTS The blood oxygen level-dependent signal was predominantly negative and located in the anterior visual cortex. Activation was affected by tumor lateralization (unilateral or bilateral), macular involvement, and retinal detachment. Patients who had undergone unilateral enucleation showed cortical dominance corresponding to the projection from the nasal hemiretina in the unaffected eye. Diffusion parameters followed a normal developmental trajectory in the optic radiations and corpus callosum, but variability was greater in the splenium than in the genu of the corpus callosum. CONCLUSIONS Longitudinal functional neuroimaging demonstrated important effects of disease and treatment. Therefore, fMRI and DTI may be useful for characterizing the impact of retinoblastoma on the developing visual system and improving the prediction of visual outcome in survivors.
Collapse
Affiliation(s)
- Scott M Barb
- Department of Radiological Sciences, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sämann PG, Wehrle R, Hoehn D, Spoormaker VI, Peters H, Tully C, Holsboer F, Czisch M. Development of the brain's default mode network from wakefulness to slow wave sleep. ACTA ACUST UNITED AC 2011; 21:2082-93. [PMID: 21330468 DOI: 10.1093/cercor/bhq295] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Falling asleep is paralleled by a loss of conscious awareness and reduced capacity to process external stimuli. Little is known on sleep-associated changes of spontaneously synchronized anatomical networks as detected by resting-state functional magnetic resonance imaging (rs-fMRI). We employed functional connectivity analysis of rs-fMRI series obtained from 25 healthy participants, covering all non-rapid eye movement (NREM) sleep stages. We focused on the default mode network (DMN) and its anticorrelated network (ACN) that are involved in internal and external awareness during wakefulness. Using independent component analysis, cross-correlation analysis (CCA), and intraindividual dynamic network tracking, we found significant changes in DMN/ACN integrity throughout the NREM sleep. With increasing sleep depth, contributions of the posterior cingulate cortex (PCC)/retrosplenial cortex (RspC), parahippocampal gyrus, and medial prefrontal cortex to the DMN decreased. CCA revealed a breakdown of corticocortical functional connectivity, particularly between the posterior and anterior midline node of the DMN and the DMN and the ACN. Dynamic tracking of the DMN from wakefulness into slow wave sleep in a single subject added insights into intraindividual network fluctuations. Results resonate with a role of the PCC/RspC for the regulation of consciousness. We further submit that preserved corticocortical synchronization could represent a prerequisite for maintaining internal and external awareness.
Collapse
|
27
|
Desseilles M, Dang-Vu T, Maquet P. Functional neuroimaging in sleep, sleep deprivation, and sleep disorders. HANDBOOK OF CLINICAL NEUROLOGY 2011; 98:71-94. [DOI: 10.1016/b978-0-444-52006-7.00006-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Riedner BA, Hulse BK, Murphy MJ, Ferrarelli F, Tononi G. Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves. PROGRESS IN BRAIN RESEARCH 2011; 193:201-18. [PMID: 21854964 PMCID: PMC3160723 DOI: 10.1016/b978-0-444-53839-0.00013-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Slow waves are the most prominent electroencephalographic feature of non-rapid eye movement (NREM) sleep. During NREM sleep, cortical neurons oscillate approximately once every second between a depolarized upstate, when cortical neurons are actively firing, and a hyperpolarized downstate, when cortical neurons are virtually silent (Destexhe et al., 1999; Steriade et al., 1993a, 2001). Intracellular recordings indicate that the origins of the slow oscillation are cortical and that corticocortical connections are necessary for their synchronization (Amzica and Steriade, 1995; Steriade et al., 1993b; Timofeev and Steriade, 1996; Timofeev et al., 2000). The currents produced by the near-synchronous slow oscillation of large populations of neurons appear on the scalp as electroencephalogram (EEG) slow waves (Amzica and Steriade, 1997). Despite this cellular understanding, questions remain about the role of specific cortical structures in individual slow waves. Early EEG studies of slow waves in humans were limited by the small number of derivations employed and by the difficulty of relating scalp potentials to underlying brain activity (Brazier, 1949; Roth et al., 1956). Functional neuroimaging methods offer exceptional spatial resolution, but lack the temporal resolution to track individual slow waves (Dang-Vu et al., 2008; Maquet, 2000). Intracranial recordings in patient populations are limited by the availability of medically necessary electrode placements and can be confounded by pathology and medications (Cash et al., 2009; Nir et al., 2011; Wenneberg 2010). Source modeling of high-density EEG recordings offers a unique opportunity for neuroimaging sleep slow waves. So far, the results have challenged several of the influential topographic observations about slow waves that had persisted since the original EEG recordings of sleep. These recent analyses revealed that individual slow waves are idiosyncratic cortical events and that the negative peak of the EEG slow wave often involves cortical structures not necessarily apparent from the scalp, like the inferior frontal gyrus, anterior cingulate, posterior cingulate, and precuneus (Murphy et al., 2009). In addition, not only do slow waves travel (Massimini et al., 2004), but they often do so preferentially through the areas comprising the major connectional backbone of the human cortex (Hagmann et al., 2008). In this chapter, we will review the cellular, intracranial recording, and neuroimaging results concerning EEG slow waves. We will also confront a long held belief about peripherally evoked slow waves, also known as K-complexes, namely that they are modality independent and do not involve cortical sensory pathways. The analysis included here is the first to directly compare K-complexes evoked with three different stimulation modalities within the same subject on the same night using high-density EEG.
Collapse
Affiliation(s)
- Brady A Riedner
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | |
Collapse
|
29
|
Dang-Vu TT, Schabus M, Desseilles M, Sterpenich V, Bonjean M, Maquet P. Functional neuroimaging insights into the physiology of human sleep. Sleep 2010; 33:1589-603. [PMID: 21120121 PMCID: PMC2982729 DOI: 10.1093/sleep/33.12.1589] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional brain imaging has been used in humans to noninvasively investigate the neural mechanisms underlying the generation of sleep stages. On the one hand, REM sleep has been associated with the activation of the pons, thalamus, limbic areas, and temporo-occipital cortices, and the deactivation of prefrontal areas, in line with theories of REM sleep generation and dreaming properties. On the other hand, during non-REM (NREM) sleep, decreases in brain activity have been consistently found in the brainstem, thalamus, and in several cortical areas including the medial prefrontal cortex (MPFC), in agreement with a homeostatic need for brain energy recovery. Benefiting from a better temporal resolution, more recent studies have characterized the brain activations related to phasic events within specific sleep stages. In particular, they have demonstrated that NREM sleep oscillations (spindles and slow waves) are indeed associated with increases in brain activity in specific subcortical and cortical areas involved in the generation or modulation of these waves. These data highlight that, even during NREM sleep, brain activity is increased, yet regionally specific and transient. Besides refining the understanding of sleep mechanisms, functional brain imaging has also advanced the description of the functional properties of sleep. For instance, it has been shown that the sleeping brain is still able to process external information and even detect the pertinence of its content. The relationship between sleep and memory has also been refined using neuroimaging, demonstrating post-learning reactivation during sleep, as well as the reorganization of memory representation on the systems level, sometimes with long-lasting effects on subsequent memory performance. Further imaging studies should focus on clarifying the role of specific sleep patterns for the processing of external stimuli, as well as the consolidation of freshly encoded information during sleep.
Collapse
Affiliation(s)
- Thien Thanh Dang-Vu
- Cyclotron Research Center, University of Liege, Liege, Belgium
- Department of Neurology, Liege University Hospital, Liege, Belgium
| | - Manuel Schabus
- Cyclotron Research Center, University of Liege, Liege, Belgium
- Laboratory for Sleep and Consciousness Research, Department of Psychology, University of Salzburg, Salzburg, Austria
| | - Martin Desseilles
- Cyclotron Research Center, University of Liege, Liege, Belgium
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | | | - Maxime Bonjean
- Cyclotron Research Center, University of Liege, Liege, Belgium
- Howard Hughes Medical Institute, The Salk Institute & School of Medicine, University of California, San Diego, CA
| | - Pierre Maquet
- Cyclotron Research Center, University of Liege, Liege, Belgium
- Department of Neurology, Liege University Hospital, Liege, Belgium
| |
Collapse
|
30
|
Acoustic oddball during NREM sleep: a combined EEG/fMRI study. PLoS One 2009; 4:e6749. [PMID: 19707599 PMCID: PMC2727699 DOI: 10.1371/journal.pone.0006749] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 07/19/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A condition vital for the consolidation and maintenance of sleep is generally reduced responsiveness to external stimuli. Despite this, the sleeper maintains a level of stimulus processing that allows to respond to potentially dangerous environmental signals. The mechanisms that subserve these contradictory functions are only incompletely understood. METHODOLOGY/PRINCIPAL FINDINGS Using combined EEG/fMRI we investigated the neural substrate of sleep protection by applying an acoustic oddball paradigm during light NREM sleep. Further, we studied the role of evoked K-complexes (KCs), an electroencephalographic hallmark of NREM sleep with a still unknown role for sleep protection. Our main results were: (1) Other than in wakefulness, rare tones did not induce a blood oxygenation level dependent (BOLD) signal increase in the auditory pathway but a strong negative BOLD response in motor areas and the amygdala. (2) Stratification of rare tones by the presence of evoked KCs detected activation of the auditory cortex, hippocampus, superior and middle frontal gyri and posterior cingulate only for rare tones followed by a KC. (3) The typical high frontocentral EEG deflections of KCs were not paralleled by a BOLD equivalent. CONCLUSIONS/SIGNIFICANCE We observed that rare tones lead to transient disengagement of motor and amygdala responses during light NREM sleep. We interpret this as a sleep protective mechanism to delimit motor responses and to reduce the sensitivity of the amygdala towards further incoming stimuli. Evoked KCs are suggested to originate from a brain state with relatively increased stimulus processing, revealing an activity pattern resembling novelty processing as previously reported during wakefulness. The KC itself is not reflected by increased metabolic demand in BOLD based imaging, arguing that evoked KCs result from increased neural synchronicity without altered metabolic demand.
Collapse
|
31
|
Saccuman MC, Scifo P. Using MRI to Characterize the Anatomy and Function of the Auditory Cortex in Infancy. Ann N Y Acad Sci 2009; 1169:297-307. [DOI: 10.1111/j.1749-6632.2009.04586.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Gorfine T, Zisapel N. Late evening brain activation patterns and their relation to the internal biological time, melatonin, and homeostatic sleep debt. Hum Brain Mapp 2009; 30:541-52. [PMID: 18095278 DOI: 10.1002/hbm.20525] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Sleep propensity increases sharply at night. Some evidence implicates the pineal hormone melatonin in this process. Using functional magnetic resonance imaging, brain activation during a visual search task was examined at 22:00 h (when endogenous melatonin levels normally increase). The relationships between brain activation, endogenous melatonin (measured in saliva), and self-reported fatigue were assessed. Finally, the effects of exogenous melatonin administered at 22:00 h were studied in a double blind, placebo-controlled crossover manner. We show that brain activation patterns as well as the response to exogenous melatonin significantly differ at night from those seen in afternoon hours. Thus, activation in the rostro-medial and lateral aspects of the occipital cortex and the thalamus diminished at 22:00 h. Activation in the right parietal cortex increased at night and correlated with individual fatigue levels, whereas exogenous melatonin given at 22:00 h reduced activation in this area. The right dorsolateral prefrontal cortex, an area considered to reflect homeostatic sleep debt, demonstrated increased activation at 22:00 h. Surprisingly, this increase correlated with endogenous melatonin. These results demonstrate and partially differentiate circadian effects (whether mediated by melatonin or not) and homeostatic sleep debt modulation of human brain activity associated with everyday fatigue at night.
Collapse
Affiliation(s)
- Tali Gorfine
- Department of Neurobiochemistry, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
33
|
Liu Y, Yang T, Liao W, Yang X, Liu I, Yan B, Chen H, Gong Q, Stefan H, Zhou D. EEG-fMRI study of the ictal and interictal epileptic activity in patients with eyelid myoclonia with absences. Epilepsia 2008; 49:2078-2086. [PMID: 18657177 DOI: 10.1111/j.1528-1167.2008.01724.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the blood oxygenation level-dependent (BOLD) signal changes correlated with ictal and interictal epileptic discharges using electroencephalography-correlated functional magnetic resonance imaging (EEG-fMRI) in patients with eyelid myoclonia with absences (EMA) and then to explore the pathophysiological mechanisms of epileptic discharges and their effect on brain function. METHODS Four patients with EMA were investigated through the method of EEG-fMRI. The characteristics of BOLD signal changes linked to ictal and interictal epileptic discharges under different states of consciousness were explored. RESULTS Seven sessions of EEG-fMRI scanning in the four patients were obtained. The main regions of activation included thalamus, mesial frontal cortex, middle parietal lobe, temporal lobe, insula, midline structures, and cerebellum. Deactivations were mainly in the anterior frontal lobe, posterior parietal lobe, and posterior cingulate gyrus. Thalamic BOLD change was predominantly activation in most of our cases. The distribution of activation associated with ictal epileptic discharges was wider, and the distribution of deactivation was closer to pericortex compared with the BOLD change linked with interictal epileptic discharges. CONCLUSIONS The activation in the thalamus may be associated with generalized spike wave in EMA; the combination of different patterns of activation with consistent pattern of deactivations ("default" pattern) in patients with EMA may prognosticate different states of consciousness in response to ictal and interictal epileptic discharges.
Collapse
Affiliation(s)
- Yonghong Liu
- Department of Neurology, West China Hospital, Si Chuan University, Chengdu, Sichuan, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lin W, Zhu Q, Gao W, Chen Y, Toh CH, Styner M, Gerig G, Smith JK, Biswal B, Gilmore JH. Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain. AJNR Am J Neuroradiol 2008; 29:1883-9. [PMID: 18784212 DOI: 10.3174/ajnr.a1256] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Unlike conventional functional MR imaging where external sensory/cognitive paradigms are needed to specifically activate different regions of the brain, resting functional connectivity MR imaging acquires images in the absence of cognitive demands (a resting condition) and detects brain regions, which are highly temporally correlated. Therefore, resting functional MR imaging is highly suited for the study of brain functional development in pediatric subjects. This study aimed to determine the temporal and spatial patterns of rfc in healthy pediatric subjects between 2 weeks and 2 years of age. MATERIALS AND METHODS Rfc studies were performed on 85 children: 38 neonates (2-4 weeks of age), 26 one-year-olds, and 21 two-year-olds. All subjects were imaged while asleep; no sedation was used. Six regions of interest were chosen, including the primary motor, sensory, and visual cortices in each hemisphere. Mean signal intensity of each region of interest was used to perform correlation analysis pixel by pixel throughout the entire brain, identifying regions with high temporal correlation. RESULTS Functional connectivity was observed in all subjects in the sensorimotor and visual areas. The percent brain volume exhibiting rfc and the strength of rfc continued to increase from 2 weeks to 2 years. The growth trajectories of the percent brain volume of rfc appeared to differ between the sensorimotor and visual areas, whereas the z-score was similar. The percent brain volume of rfc in the sensorimotor area was significantly larger than that in the visual area for subjects 2 weeks of age (P = .008) and 1-year-olds (P = .017) but not for the 2-year-olds. CONCLUSIONS These findings suggest that rfc in the sensorimotor precedes that in the visual area from 2 weeks to 1 year but becomes comparable at 2 years. In contrast, the comparable z-score values between the sensorimotor and visual areas for all age groups suggest a disassociation between percent brain volume and the strength of cortical rfc.
Collapse
Affiliation(s)
- W Lin
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Non-REM sleep influences results of fMRI studies in epilepsy. Neurosci Lett 2008; 443:61-6. [DOI: 10.1016/j.neulet.2008.07.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 06/05/2008] [Accepted: 07/04/2008] [Indexed: 11/23/2022]
|
36
|
Shvets-Ténéta-Gurii TB, Troshin GI, Dubinin AG. Changes in the redox potential of the rabbit cerebral cortex accompanying episodes of ECoG arousal during slow-wave sleep. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2008; 38:63-70. [PMID: 18097762 DOI: 10.1007/s11055-008-0009-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Indexed: 05/25/2023]
Abstract
The redox potential (E) is a useful measure of the intensity and quality of shifts in energy metabolism. Brain E depends on the ratio of the rates of processes occurred in two compartments of energy metabolism - the glycolysis compartment, in which glucose is split without oxygen, and the oxidative metabolism compartment. The present report describes recording of local changes in E using platinum electrodes implanted into several points in the cortex. In these conditions, decreases in E correspond to local increases in the rates of glycolytic processes in the tissue surrounding the electrode and are related to mitochondrial processes, while increases in E correspond to local acceleration of processes in oxidative metabolism in the tissues around the electrode. Our previous studies in rats showed that during episodes of slow-wave sleep (SWS), metabolically active points of the rat cerebral cortex show significant decreases in E, and it was suggested that these are associated with increases in the rate of glycolysis. At the same time, E showed characteristic oscillations lasting 20-40 sec with amplitudes of tens of millivolts. The experiments reported here demonstrated that slow oscillations in E developing during SWS are created by regular episodes of ECoG arousal occurring during SWS, accompanied by startling of the animal, decreases in E, and inhibition of respiration. We suggest that a homeostasis system operates during SWS to maintain the animal's level of consciousness at a particular level and that this, like any system with feedback, operates in an oscillatory fashion. The role of glycolysis in supplying energy to the cerebral cortex to support the elevated level of consciousness increases.
Collapse
Affiliation(s)
- T B Shvets-Ténéta-Gurii
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Street, Moscow, Russia.
| | | | | |
Collapse
|
37
|
Jacobs J, Kobayashi E, Boor R, Muhle H, Stephan W, Hawco C, Dubeau F, Jansen O, Stephani U, Gotman J, Siniatchkin M. Hemodynamic Responses to Interictal Epileptiform Discharges in Children with Symptomatic Epilepsy. Epilepsia 2007; 48:2068-78. [PMID: 17645544 DOI: 10.1111/j.1528-1167.2007.01192.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) (EEG-fMRI) recording is a noninvasive tool for investigating epileptogenic networks. Most EEG-fMRI studies in epilepsy have been performed in adults. Childhood epilepsies, however, differ from those in adults due to interactions between epileptogenic and developmental processes. The purpose of this study was to investigate EEG-fMRI in children with lesional epilepsies. METHODS Thirteen children with symptomatic epilepsy underwent a 20-min EEG-fMRI acquisition at 3 T under sedation-induced sleep. Statistical analysis was performed using the timing of spikes as events, modelled with hemodynamic response functions (HRFs) that peaked at 3, 5, 7, and 9 s after the spike. RESULTS Each spike type was analyzed separately, resulting in 25 studies. In 84% of the studies, blood oxygenation level-dependent (BOLD) responses were localized in the lesion or brain area presumably generating spikes. Activation (positive BOLD) corresponding with the lesion was seen in 20% and deactivation (negative BOLD) in 52% of the studies. In the area of spike generation, activation was found in 48% of studies and deactivation in 36%. CONCLUSIONS Despite the necessarily short recording times (20 min), good results could be obtained from the EEG-fMRI recordings, performed in sedated children using a high field scanner and individual HRFs. In contrast to studies in adults, deactivations in the lesion and the irritative zone were more common than activations. The impact of age, sleep, and sedation on the BOLD response might explain these findings, but future studies in children should not disregard the importance of deactivations in relation to the epileptogenic network.
Collapse
Affiliation(s)
- Julia Jacobs
- Neuropediatric Department, Christian-Albrechts-University Kiel, Schwanenweg 20, Kiel, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Redcay E, Kennedy DP, Courchesne E. fMRI during natural sleep as a method to study brain function during early childhood. Neuroimage 2007; 38:696-707. [PMID: 17904385 DOI: 10.1016/j.neuroimage.2007.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 07/30/2007] [Accepted: 08/02/2007] [Indexed: 01/21/2023] Open
Abstract
Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.
Collapse
Affiliation(s)
- Elizabeth Redcay
- Department of Psychology, University of California, San Diego, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
39
|
Vu TD, Pourcelot L, Nguyen TTB, Luong KC, Sirinelli D, Tranquart F. Constant delay in adapted cerebral response to light stimulation in premature neonates: a transcranial Doppler study. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:672-80. [PMID: 17412484 DOI: 10.1016/j.ultrasmedbio.2006.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 10/12/2006] [Accepted: 10/24/2006] [Indexed: 05/14/2023]
Abstract
Transcranial Doppler has been used previously to determine hemodynamic response to sensorial stimulation in adults but not in the neonatal period. Cerebral blood flow velocity (CBFV) was recorded in both middle cerebral arteries (MCA) and posterior cerebral arteries (PCA) in 100 premature neonates (male 56; female 44; 26 to 36 weeks gestation) from birth to 12 months. Brain development was evaluated on clinical examination. No difference in velocities was noted on prestimulation recordings from birth to 12 months. During light stimulation before six months, the CBFV was reduced (-11 +/- 6% in MCA and -13 +/- 5% in PCA compared with baseline values). After stimulation, the CBFV was increased (+6.7 +/- 3% in MCA and + 10.5 +/- 4% in PCA compared with baseline values). This study is in favor of cortex maturation in normal premature neonates at only six months. Consequently, functional transcranial Doppler technique will be helpful for the diagnosis of abnormal maturation timing in neonates with possible developmental retardation.
Collapse
Affiliation(s)
- Te-Dang Vu
- Université François Rabelais, Inserm U619, Tours Cédex, France
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
In order to provide accurate prognosis and developmental intervention to newborns, new methods of assessing cerebral functions are needed. The non-invasive technique of functional magnetic resonance imaging (fMRI) can be considered as the leading technique for functional exploration of the infant's brain. Several studies have previously applied fMRI in both healthy and diseased newborns with different sensory and cognitive tasks. In this chapter, the methodological issues that are proper to the use of fMRI in the newborn are detailed. In addition, an overview of the major findings of previous fMRI studies is provided, with a focus on notable differences from those in adult subjects. More specifically, the functional responses and the localization of cortical activations in healthy and diseased newborns are discussed. We expect a rapid expansion of this field and the establishment of fMRI as a valid clinical diagnostic tool in the newborn.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Wellcome Department of Imaging Neuroscience, Institute of Neurology, UCL, 12 Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|
41
|
Tomasi D, Ernst T, Caparelli EC, Chang L. Common deactivation patterns during working memory and visual attention tasks: an intra-subject fMRI study at 4 Tesla. Hum Brain Mapp 2006; 27:694-705. [PMID: 16404736 PMCID: PMC2424317 DOI: 10.1002/hbm.20211] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This parametric functional magnetic resonance imaging (fMRI) study investigates the balance of negative and positive fMRI signals in the brain. A set of visual attention (VA) and working memory (WM) tasks with graded levels of difficulty was used to deactivate separate but overlapping networks that include the frontal, temporal, occipital, and limbic lobes; regions commonly associated with auditory and emotional processing. Brain activation (% signal change and volume) was larger for VA tasks than for WM tasks, but deactivation was larger for WM tasks. Load-related increases of blood oxygenation level-dependent (BOLD) responses for different levels of task difficulty cross-correlated strongly in the deactivated network during VA but less so during WM. The variability of the deactivated network across different cognitive tasks supports the hypothesis that global cerebral blood flow vary across different tasks, but not between different levels of task difficulty of the same task. The task-dependent balance of activation and deactivation might allow maximization of resources for the activated network.
Collapse
Affiliation(s)
- Dardo Tomasi
- Medical Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
| | | | | | | |
Collapse
|
42
|
Kobayashi E, Bagshaw AP, Grova C, Dubeau F, Gotman J. Negative BOLD responses to epileptic spikes. Hum Brain Mapp 2006; 27:488-97. [PMID: 16180210 PMCID: PMC6871405 DOI: 10.1002/hbm.20193] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Simultaneous electroencephalogram/functional magnetic resonance imaging (EEG-fMRI) during interictal epileptiform discharges can result in positive (activation) and negative (deactivation) changes in the blood oxygenation level-dependent (BOLD) signal. Activation probably reflects increased neuronal activity and energy demand, but deactivation is more difficult to explain. Our objective was to evaluate the occurrence and significance of deactivations related to epileptiform discharges in epilepsy. We reviewed all EEG-fMRI studies from our database, identified those with robust responses (P = 0.01, with > or =5 contiguous voxels with a |t| > 3.1, including > or =1 voxel at |t| > 5.0), and divided them into three groups: activation (A = 8), deactivation (D = 9), and both responses (AD = 43). We correlated responses with discharge type and location and evaluated their spatial relationship with regions involved in the "default" brain state (Raichle et al. [2001]: Proc Natl Acad Sci 98:676-682]. Deactivations were seen in 52/60 studies (AD + D): 26 related to focal discharges, 12 bilateral, and 14 generalized. Deactivations were usually distant from anatomical areas related to the discharges and more frequently related to polyspike- and spike-and-slow waves than to spikes. The "default" pattern occurred in 10/43 AD studies, often associated with bursts of generalized discharges. In conclusion, deactivations are frequent, mostly with concomitant activation, for focal and generalized discharges. Discharges followed by a slow wave are more likely to result in deactivation, suggesting neuronal inhibition as the underlying phenomenon. Involvement of the "default" areas, related to bursts of generalized discharges, provides evidence of a subclinical effect of the discharges, temporarily suspending normal brain function in the resting state.
Collapse
Affiliation(s)
- Eliane Kobayashi
- Montreal Neurological Institute and Hospital, McGill University, Canada.
| | | | | | | | | |
Collapse
|
43
|
Hamandi K, Salek-Haddadi A, Laufs H, Liston A, Friston K, Fish DR, Duncan JS, Lemieux L. EEG–fMRI of idiopathic and secondarily generalized epilepsies. Neuroimage 2006; 31:1700-10. [PMID: 16624589 DOI: 10.1016/j.neuroimage.2006.02.016] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 02/02/2006] [Accepted: 02/07/2006] [Indexed: 10/24/2022] Open
Abstract
We used simultaneous EEG and functional MRI (EEG-fMRI) to study generalized spike wave activity (GSW) in idiopathic and secondary generalized epilepsy (SGE). Recent studies have demonstrated thalamic and cortical fMRI signal changes in association with GSW in idiopathic generalized epilepsy (IGE). We report on a large cohort of patients that included both IGE and SGE, and give a functional interpretation of our findings. Forty-six patients with GSW were studied with EEG-fMRI; 30 with IGE and 16 with SGE. GSW-related BOLD signal changes were seen in 25 of 36 individual patients who had GSW during EEG-fMRI. This was seen in thalamus (60%) and symmetrically in frontal cortex (92%), parietal cortex (76%), and posterior cingulate cortex/precuneus (80%). Thalamic BOLD changes were predominantly positive and cortical changes predominantly negative. Group analysis showed a negative BOLD response in the cortex in the IGE group and to a lesser extent a positive response in thalamus. Thalamic activation was consistent with its known role in GSW, and its detection in individual cases with EEG-fMRI may in part be related to the number and duration of GSW epochs recorded. The spatial distribution of the cortical fMRI response to GSW in both IGE and SGE involved areas of association cortex that are most active during conscious rest. Reduction of activity in these regions during GSW is consistent with the clinical manifestation of absence seizures.
Collapse
Affiliation(s)
- Khalid Hamandi
- National Society for Epilepsy and Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queen Square, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Fukunaga M, Horovitz SG, van Gelderen P, de Zwart JA, Jansma JM, Ikonomidou VN, Chu R, Deckers RHR, Leopold DA, Duyn JH. Large-amplitude, spatially correlated fluctuations in BOLD fMRI signals during extended rest and early sleep stages. Magn Reson Imaging 2006; 24:979-92. [PMID: 16997067 DOI: 10.1016/j.mri.2006.04.018] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 04/10/2006] [Indexed: 11/26/2022]
Abstract
A number of recent studies of human brain activity using blood-oxygen-level-dependent (BOLD) fMRI and EEG have reported the presence of spatiotemporal patterns of correlated activity in the absence of external stimuli. Although these patterns have been hypothesized to contain important information about brain architecture, little is known about their origin or about their relationship to active cognitive processes such as conscious awareness and monitoring of the environment. In this study, we have investigated the amplitude and spatiotemporal characteristics of resting-state activity patterns and their dependence on the subjects' alertness. For this purpose, BOLD fMRI was performed at 3.0 T on 12 normal subjects using a visual stimulation protocol, followed by a 27 min rest period, during which subjects were allowed to fall asleep. In subjects who were asleep at the end of the scan, we found (a) a higher amplitude of BOLD signal fluctuation during rest compared with subjects who were awake at the end of the scan; (b) spatially independent patterns of correlated activity that involve all of gray matter, including deep brain nuclei; (c) many patterns that were consistent across subjects; (d) that average percentage levels of fluctuation in visual cortex (VC) and whole brain were higher in subjects who were asleep (up to 1.71% and 1.16%, respectively) than in those who were awake (up to 1.15% and 0.96%) at the end of the scan and were comparable with those levels evoked by intense visual stimulation (up to 1.85% and 0.76% for two subject groups); (e) no confirmation of correlation, positive or negative, between thalamus and VC found in earlier studies. These findings suggest that resting-state activity continues during sleep and does not require active cognitive processes or conscious awareness.
Collapse
Affiliation(s)
- Masaki Fukunaga
- Advanced MRI, LFMI, NINDS, National Institutes of Health, Bethesda, MD 20892-1065, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gorfine T, Assaf Y, Goshen-Gottstein Y, Yeshurun Y, Zisapel N. Sleep-anticipating effects of melatonin in the human brain. Neuroimage 2006; 31:410-8. [PMID: 16427787 DOI: 10.1016/j.neuroimage.2005.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 11/14/2005] [Accepted: 11/15/2005] [Indexed: 11/26/2022] Open
Abstract
Melatonin, the hormone produced nocturnally by the pineal gland, is an endogenous regulator of the sleep-wake cycle. The effects of melatonin on brain activities and their relation to induction of sleepiness were studied in a randomized, double-blind, placebo controlled functional magnetic resonance imaging (fMRI) study. Melatonin, but not placebo, reduced task-related activity in the rostro-medial aspect of the occipital cortex during a visual-search task and in the auditory cortex during a music task. These effects correlated with subjective measurements of fatigue. In addition, melatonin enhanced the activation in the left parahippocampus in an autobiographic memory task. Results demonstrate that melatonin modulates brain activity in a manner resembling actual sleep although subjects are fully awake. Furthermore, the fatigue inducing effect of melatonin on brain activity is essentially different from that of sleep deprivation thus revealing differences between fatigues related to the circadian sleep regulation as opposed to increased homeostatic sleep need. Our findings highlight the role of melatonin in priming sleep-associated brain activation patterns in anticipation of sleep.
Collapse
Affiliation(s)
- Tali Gorfine
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
46
|
Akiyama T, Ohira T, Kato T, Toda Y, Orii M, Hiraga K, Fukunaga A, Kobayashi M, Onozuka S, Kawase T. Motor-Related Intracortical Steal Phenomenon Detected by Multichannel Functional Near-Infrared Spectroscopy Imaging. Cerebrovasc Dis 2005; 20:337-46. [PMID: 16131803 DOI: 10.1159/000087934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Accepted: 06/23/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Patients with severe cerebral ischemia may lose autoregulation to increase cerebral blood flow following neural activity. Although the steal phenomenon under conventional cerebral blood flow study has been known as a high-risk factor for stroke, the cerebral oxygen hemodynamics in ischemic patients during functional activation has not been thoroughly investigated. In this study, we present rare cases with intracortical steal phenomenon during motor tasks detected by multichannel functional near-infrared spectroscopy before and after surgery. METHODS The relative concentration change of oxygenated, deoxygenated and total hemoglobin in and around the primary sensorimotor cortex during contralateral hand grasping was investigated in 11 patients with severe internal carotid artery stenosis. RESULTS In 3 patients, the concentration of total hemoglobin around the primary sensorimotor cortex significantly decreased in response to motor stimulation and returned to baseline soon after termination of the motor task. This phenomenon partially disappeared postoperatively in all patients who underwent surgery. The remaining 8 patients showed no signs of total hemoglobin decrease in and around the sensorimotor cortex. In 9 patients, lack of decrease in deoxygenated hemoglobin in the center of the primary motor cortex during the motor task was observed and 3 of them showed significant increase in deoxygenated hemoglobin. CONCLUSIONS We have demonstrated that in some patients with severe ischemia, an abnormal motor-related steal phenomenon can be observed. This phenomenon can be modulated by surgical intervention and might imply the severity of ischemia.
Collapse
Affiliation(s)
- Takenori Akiyama
- Department of Neurosurgery, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Drzezga A, Grimmer T, Peller M, Wermke M, Siebner H, Rauschecker JP, Schwaiger M, Kurz A. Impaired cross-modal inhibition in Alzheimer disease. PLoS Med 2005; 2:e288. [PMID: 16159306 PMCID: PMC1216331 DOI: 10.1371/journal.pmed.0020288] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 07/20/2005] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Successful cognitive performance depends not only on the activation of specific neuronal networks but also on selective suppression of task-irrelevant modalities, i.e., deactivation of non-required cerebral regions. This ability to suppress the activation of specific brain regions has, to our knowledge, never been systematically evaluated in patients with Alzheimer disease (AD). The aim of the current study was to evaluate both cerebral activation and deactivation in (1) healthy volunteers, (2) patients with mild cognitive impairment (MCI) who are at risk for AD, and (3) patients with moderate AD during active navigation, representing a cognitive task typically affected in AD. METHODS AND FINDINGS Changes in regional cerebral blood flow (rCBF) were assessed with PET imaging during an active navigation task in a 3D virtual-reality environment. The task was based on visual cues exclusively; no auditory cues were provided. Age-matched groups of healthy individuals, patients with MCI, and patients with AD were examined. Specific differences in the activation patterns were observed in the three groups, with stronger activation of cerebellar portions and visual association cortex in controls and stronger activation of primary visual and frontal cortical areas in patients with MCI and AD. Highly significant bilateral decrease of rCBF in task-irrelevant auditory cortical regions was detected in healthy individuals during performance of the task. This rCBF decrease was interpreted as a cross-modal inhibitory effect. It was diminished in patients with MCI and completely absent in patients with AD. A regression analysis across all individuals revealed a clear positive relation between cognitive status (mini mental state examination score) and the extent of auditory cortical deactivation. CONCLUSION During active navigation, a high level of movement automation and an involvement of higher-order cerebral association functions were observed in healthy controls. Conversely, in patients with MCI and AD, increased cognitive effort and attention towards movement planning, as well as stronger involvement of lower-order cerebral systems, was found. Successful cognitive performance in healthy individuals is associated with deactivation of task-irrelevant cerebral regions, whereas the development of AD appears to be characterized by a progressive impairment of cross-modal cerebral deactivation functions. These changes may cause the generally decreased ability of patients with AD to direct attention primarily to the relevant cognitive modality.
Collapse
Affiliation(s)
- Alexander Drzezga
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Sleep should not be considered a behavioural state characterized by brain inertia; instead, it is a highly dynamic process involving numerous brainstem areas and all physiological systems of the body. Our understanding of the underlying mechanisms responsible for sleep regulation has considerably advanced since the discovery of rapid eye movement (REM) sleep, about half a century ago. Based on standardized electroencephalographic, electro-oculographic and electromyographic features, two distinct main states periodically alternating throughout the night have been identified: REM and non-REM sleep; the latter is further distinguished into stages 1, 2, 3 and 4. Computerized analysis of sleep recordings yielded more detailed information on sleep physiology and pathology. Although still preliminary, neuroimaging studies promise to elucidate the functional alterations of neuronal substrates during sleep. Regarding sleep disorders, which account for a substantial individual and socio-economic burden, considerable progress has been achieved in terms of their classification, assessment, clinical diagnosis and treatment. Specific sleep disorders within the three major categories, that is, 'dysomnias', 'parasomnias', and 'sleep disorders associated with mental, neurologic, or other medical conditions', exhibit characteristic clinical features; sleep laboratory recordings considerably assist to definitely diagnose several among them. Pertinence of sleep medicine for psychiatrists is obvious, taking into consideration that psychiatric disorders account for the largest diagnostic group of patients with sleep problems. In fact, the basics of this interdisciplinary field should be of special concern both to medical students and clinicians of diverse backgrounds who are interested in acquiring the necessary skills to globally and comprehensively understand and eventually effectively treat their patients.
Collapse
|
49
|
Pfeuffer J, Merkle H, Beyerlein M, Steudel T, Logothetis NK. Anatomical and functional MR imaging in the macaque monkey using a vertical large-bore 7 Tesla setup. Magn Reson Imaging 2005; 22:1343-59. [PMID: 15707785 DOI: 10.1016/j.mri.2004.10.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 10/08/2004] [Indexed: 01/10/2023]
Abstract
Functional magnetic resonance imaging (MRI) in the nonhuman primate promises to provide a much desired link between brain research in humans and the large body of systems neuroscience work in animals. We present here a novel high field, large-bore, vertical MR system (7 T/60 cm, 300 MHz), which was optimized for neuroscientific research in macaque monkeys. A strong magnetic field was applied to increase sensitivity and spatial resolution for both MRI and spectroscopy. Anatomical imaging with voxel sizes as small as 75x150x300 microm3 and with high contrast-to-noise ratios permitted the visualization of the characteristic lamination of some neocortical areas, e.g., Baillarger lines. Relaxation times were determined for different structures: at 7 T, T1 was 2.01/1.84/1.54 s in GM/GM-V1/WM, T2 was 59.1/54.4 ms in GM/WM and T2* was 29 ms. At 4.7 T, T1 was 25% shorter, T2 and T2* 18% longer compared to 7T. Spatiotemporally resolved blood-oxygen-level-dependent (BOLD) signal changes yielded robust activations and deactivations (negative BOLD), with average amplitudes of 4.1% and -2.4%, respectively. Finally, the first high-resolution (500 microm in-plane) images of cerebral blood flow in the anesthetized monkey are presented. On functional activation we observed flow increases of up to 38% (59 to 81 ml/100 g/min) in the primary visual cortex, V1. Compared to BOLD maps, functional CBF maps were found to be localized entirely within the gray matter, providing unequivocal evidence for high spatial specificity. The exquisite sensitivity of the system and the increased specificity of the hemodynamic signals promise further insights into the relationship of the latter to the underlying physiological activity.
Collapse
Affiliation(s)
- Josef Pfeuffer
- Department Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics, 72012 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
50
|
Drummond SPA, Smith MT, Orff HJ, Chengazi V, Perlis ML. Functional imaging of the sleeping brain: review of findings and implications for the study of insomnia. Sleep Med Rev 2004; 8:227-42. [PMID: 15144964 DOI: 10.1016/j.smrv.2003.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Despite the growing literature indicating that insomnia is prevalent and a substantial risk factor for medical and psychiatric morbidity, the pathophysiology of both Primary and Secondary Insomnia is poorly understood. Multiple trait and state factors are thought to give rise to and/or moderate illness severity in insomnia, but 'hyperarousal' is widely believed to be the final common pathway of the disorder. To date, very little work has been undertaken using functional imaging to explore the CNS correlates, underpinnings, or consequences of hyperarousal as it occurs in Primary Insomnia. In fact, all but one of the extant studies have been of healthy good sleepers or subjects with Secondary Insomnia. In the present article, we: (1) review the studies that have been undertaken in good sleepers and in patients using functional neuroimaging methodologies, and (2) discuss how these data can inform a research agenda aimed at describing the neuropathophysiology of insomnia.
Collapse
Affiliation(s)
- Sean P A Drummond
- Department of Psychiatry, University of California, San Diego and VA San Diego Healthcare System, San Diego, CA, USA
| | | | | | | | | |
Collapse
|