1
|
Bähre H, Danker KY, Stasch JP, Kaever V, Seifert R. Nucleotidyl cyclase activity of soluble guanylyl cyclase in intact cells. Biochem Biophys Res Commun 2013; 443:1195-9. [PMID: 24380860 DOI: 10.1016/j.bbrc.2013.12.108] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/20/2013] [Indexed: 12/30/2022]
Abstract
Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and generates the second messenger cyclic GMP (cGMP). Recently, purified sGC α1β1 has been shown to additionally generate the cyclic pyrimidine nucleotides cCMP and cUMP. However, since cyclic pyrimidine nucleotide formation occurred only the presence of Mn(2+) but not Mg(2+), the physiological relevance of these in vitro findings remained unclear. Therefore, we studied cyclic nucleotide formation in intact cells. We observed NO-dependent cCMP- and cUMP formation in intact HEK293 cells overexpressing sGC α1β1 and in RFL-6 rat fibroblasts endogenously expressing sGC, using HPLC-tandem mass spectrometry. The identity of cCMP and cUMP was unambiguously confirmed by HPLC-time-of-flight mass spectrometry. Our data indicate that cCMP and cUMP play second messenger roles and that Mn(2+) is a physiological sGC cofactor.
Collapse
Affiliation(s)
- Heike Bähre
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Kerstin Y Danker
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | | | - Volkhard Kaever
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany; Core Unit Metabolomics, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
2
|
Hoffmann LS, Schmidt PM, Keim Y, Schaefer S, Schmidt HHHW, Stasch JP. Distinct molecular requirements for activation or stabilization of soluble guanylyl cyclase upon haem oxidation-induced degradation. Br J Pharmacol 2009; 157:781-95. [PMID: 19466990 PMCID: PMC2721263 DOI: 10.1111/j.1476-5381.2009.00263.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/30/2009] [Accepted: 02/18/2009] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE In endothelial dysfunction, signalling by nitric oxide (NO) is impaired because of the oxidation and subsequent loss of the soluble guanylyl cyclase (sGC) haem. The sGC activator 4-[((4-carboxybutyl){2-[(4-phenethylbenzyl)oxy]phenethyl}amino)methyl[benzoic]acid (BAY 58-2667) is a haem-mimetic able to bind with high affinity to sGC when the native haem (the NO binding site) is removed and it also protects sGC from ubiquitin-triggered degradation. Here we investigate whether this protection is a unique feature of BAY 58-2667 or a general characteristic of haem-site ligands such as the haem-independent sGC activator 5-chloro-2-(5-chloro-thiophene-2-sulphonylamino-N-(4-(morpholine-4-sulphonyl)-phenyl)-benzamide sodium salt (HMR 1766), the haem-mimetic Zn-protoporphyrin IX (Zn-PPIX) or the haem-dependent sGC stimulator 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl]-pyrimidin-4-ylamine (BAY 41-2272). EXPERIMENTAL APPROACH The sGC inhibitor 1H-(1,2,4)-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) was used to induce oxidation-induced degradation of sGC. Activity and protein levels of sGC were measured in a Chinese hamster ovary cell line as well as in primary porcine endothelial cells. Cells expressing mutant sGC were used to elucidate the molecular mechanism underlying the effects observed. KEY RESULTS Oxidation-induced sGC degradation was prevented by BAY 58-2667 and Zn-PPIX in both cell types. In contrast, the structurally unrelated sGC activator, HMR 1766, and the sGC stimulator, BAY 41-2272, did not protect. Similarly, the constitutively haem-free sGC mutant beta(1)H105F was stabilized by BAY 58-2667 and Zn-PPIX. CONCLUSIONS The ability of BAY 58-2667 not only to activate but also to stabilize oxidized/haem-free sGC represents a unique example of bimodal target interaction and distinguishes this structural class from non-stabilizing sGC activators and sGC stimulators such as HMR 1766 and BAY 41-2272, respectively.
Collapse
Affiliation(s)
- L S Hoffmann
- Pharma Research Centre, Bayer HealthCare, Aprather Weg 18a, Wuppertal, Germany
| | | | | | | | | | | |
Collapse
|
3
|
Rothkegel C, Schmidt PM, Atkins DJ, Hoffmann LS, Schmidt HHHW, Schröder H, Stasch JP. Dimerization region of soluble guanylate cyclase characterized by bimolecular fluorescence complementation in vivo. Mol Pharmacol 2007; 72:1181-90. [PMID: 17715400 DOI: 10.1124/mol.107.036368] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ubiquitously expressed nitric oxide (NO) receptor soluble guanylate cyclase (sGC) plays a key role in signal transduction. Binding of NO to the N-terminal prosthetic heme moiety of sGC results in approximately 200-fold activation of the enzyme and an increased conversion of GTP into the second messenger cGMP. sGC exists as a heterodimer the dimerization of which is mediated mainly by the central region of the enzyme. In the present work, we constructed deletion mutants within the predicted dimerization region of the sGC alpha(1)- and beta(1)-subunit to precisely map the sequence segments crucial for subunit dimerization. To track mutation-induced alterations of sGC dimerization, we used a bimolecular fluorescence complementation approach that allows visualizing sGC heterodimerization in a noninvasive manner in living cells. Our study suggests that segments spanning amino acids alpha(1)363-372, alpha(1)403-422, alpha(1)440-459, beta(1)212-222, beta(1)304-333, beta(1)344-363, and beta(1)381-400 within the predicted dimerization region are involved in the process of heterodimerization and therefore in the expression of functional sGC.
Collapse
Affiliation(s)
- Christiane Rothkegel
- Cardiovascular Research, Bayer HealthCare, Aprather Weg 18a, D-42096 Wuppertal, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Corazza S, Scarabottolo L, Lohmer S, Liberati C. An innovative cell-based assay for the detection of modulators of soluble guanylate cyclase. Assay Drug Dev Technol 2006; 4:165-73. [PMID: 16712420 DOI: 10.1089/adt.2006.4.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Guanylate cyclase (GC) catalyzes the biosynthesis of cyclic guanosine 3',5'- monophosphate (cGMP) from GTP. GC exists in two isoenzyme forms: soluble and membrane-bound. The soluble GC (sGC) is a heterodimer composed of an alpha and a beta subunit, and it contains heme as a prosthetic group. The most important physiological activator of sGC is nitric oxide, which activates the enzyme upon binding to the heme moiety. By producing the second messenger cGMP, which regulates various effector systems such as phosphodiesterases, ion channels, and protein kinases, sGC plays an important role in different physiological processes, thus representing a very attractive pharmacological target. In fact, the pathogenesis of several diseases, especially those of the cardiovascular system, has been linked to inappropriate regulation of sGC. In order to find new modulators for this important enzyme, an innovative cell-based assay has been developed and optimized for the use in high-throughput screening. This luminescent assay, which is suitable for both 96- and 384-well plate formats, has been achieved by stably expressing the alpha and beta subunits of a mutated form of sGC in Chinese hamster ovary cells. The mutated form synthesizes cyclic adenosine 3',5'-monophosphate instead of cGMP, allowing the detection of enzymatic activity by a reporter gene approach. We demonstrated that this cell line responds to compounds typically used in the field of sGC research and that it represents an innovative and robust assay to screen for sGC modulators with high efficiency and high sensitivity by means of standard luminescence readers.
Collapse
|
5
|
Rothkegel C, Schmidt PM, Stoll F, Schröder H, Schmidt HHHW, Stasch JP. Identification of residues crucially involved in soluble guanylate cyclase activation. FEBS Lett 2006; 580:4205-13. [PMID: 16831427 DOI: 10.1016/j.febslet.2006.06.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 06/23/2006] [Accepted: 06/27/2006] [Indexed: 11/21/2022]
Abstract
The ubiquitous heterodimeric nitric oxide (NO) receptor soluble guanylate cyclase (sGC) plays a key role in various signal transduction pathways. Binding of NO takes place at the prosthetic heme moiety at the N-terminus of the beta(1)-subunit of sGC. The induced structural changes lead to an activation of the catalytic C-terminal domain of the enzyme and to an increased conversion of GTP into the second messenger cyclic GMP (cGMP). In the present work we selected and substituted different residues of the sGC heme-binding pocket based on a sGC homology model. The generated sGC variants were tested in a cGMP reporter cell for their effect on the enzyme activation by heme-dependent (NO, BAY 41-2272) stimulators and heme-independent (BAY 58-2667) activators. The use of these experimental tools allows the enzyme's heme content to be explored in a non-invasive manner. Asp(44), Asp(45) and Phe(74) of the beta(1)-subunit were identified as being crucially important for functional enzyme activation. beta(1)Asp(45) may serve as a switch between different conformational states of sGC and point to a possible mechanism of action of the heme dependent sGC stimulator BAY 41-2272. Furthermore, our data shows that the activation profile of beta(1)IIe(145) Tyr is unchanged compared to the native enzyme, suggesting that Tyr(145) does not confer the ability to distinguish between NO and O(2). In summary, the present work further elucidated intramolecular mechanisms underlying the NO- and BAY 41-2272-mediated sGC activation and raises questions regarding the postulated role of Tyr(145) for ligand discrimination.
Collapse
Affiliation(s)
- Christiane Rothkegel
- Cardiovascular Research, Bayer HealthCare, Aprather Weg 18a, D-42096 Wuppertal, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Wunder F, Stasch JP, Hütter J, Alonso-Alija C, Hüser J, Lohrmann E. A cell-based cGMP assay useful for ultra-high-throughput screening and identification of modulators of the nitric oxide/cGMP pathway. Anal Biochem 2005; 339:104-12. [PMID: 15766716 DOI: 10.1016/j.ab.2004.12.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Indexed: 10/25/2022]
Abstract
We have established a rapid, homogeneous, cell-based, and highly sensitive assay for guanosine 3'-5'-cyclic monophosphate (cGMP) that is suitable for fully automated ultra-high-throughput screening. In this assay system, cGMP production is monitored in living cells via Ca2+ influx through the olfactory cyclic nucleotide-gated cation channel CNGA2, acting as the intracellular cGMP sensor. A stably transfected Chinese hamster ovary (CHO) cell line was generated recombinantly expressing soluble guanylate cyclase, CNGA2, and aequorin as a luminescence indicator for the intracellular calcium concentration. This cell line was used to screen more than 900,000 compounds in an automated ultra-high-throughput screening assay using 1536-well microtiter plates. In this way, we have been able to identify BAY 58-2667, a member of a new class of amino dicarboxylic acids that directly activate soluble guanylate cyclase. The assay system allows the real-time cGMP detection within living cells and makes it possible to screen for activators and inhibitors of enzymes involved in the nitric oxide/cGMP pathway.
Collapse
Affiliation(s)
- Frank Wunder
- Institute of Cardiovascular Research, Bayer HealthCare AG, D-42096 Wuppertal, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Schmidt PM, Schramm M, Schröder H, Wunder F, Stasch JP. Identification of residues crucially involved in the binding of the heme moiety of soluble guanylate cyclase. J Biol Chem 2003; 279:3025-32. [PMID: 14570894 DOI: 10.1074/jbc.m310141200] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Soluble guanylate cyclase (sGC), a heterodimeric hemeprotein, is the only receptor for the biological messenger nitric oxide (NO) identified to date and is intimately involved in various signal transduction pathways. By using the recently discovered NO- and heme-independent sGC activator BAY 58-2667 and a novel cGMP reporter cell, we could distinguish between heme-containing and heme-free sGC in an intact cellular system. Using these novel tools, we identified the invariant amino acids tyrosine 135 and arginine 139 of the beta(1)-subunit as crucially important for both the binding of the heme moiety and the activation of sGC by BAY 58-2667. The heme is displaced by BAY 58-2667 due to a competition between the carboxylic groups of this compound and the heme propionic acids for the identified residues tyrosine 135 and arginine 139. This displacement results in the release of the axial heme ligand histidine 105 and to the observed activation of sGC. Based on these findings we postulate a signal transmission triad composed of histidine 105, tyrosine 135, and arginine 139 responsible for the enzyme activation by this compound and probably also for transducing changes in heme status and porphyrin geometry upon NO binding into alterations of sGC catalytic activity.
Collapse
Affiliation(s)
- Peter M Schmidt
- Institute of Cardiovascular Research, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal
| | | | | | | | | |
Collapse
|
8
|
Schmidt P, Schramm M, Schröder H, Stasch JP. Mechanisms of nitric oxide independent activation of soluble guanylyl cyclase. Eur J Pharmacol 2003; 468:167-74. [PMID: 12754054 DOI: 10.1016/s0014-2999(03)01674-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The heterodimeric heme-protein soluble guanylyl cyclase (sGC) is the only proven receptor for nitric oxide (NO). Recently, two different types of NO-independent soluble guanylyl cyclase stimulators have been discovered. The heme-dependent stimulator 2-[1-[2-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridin-3-yl]-5(4-morpholinyl)-4,6-pyrimidinediamine (BAY 41-8543) stimulates the enzyme in a synergistic fashion when combined with NO, requires the presence of the heme group and can be blocked by the soluble guanylyl cyclase inhibitor 1H-(1,2,4)-Oxadiazole-(4,3-a)-quinoxalin-1-one (ODQ). The heme-independent activator 4-[((4-carboxybutyl)[2-[(4-phenethylbenzol) oxy]phenethyl]amino)methyl[benzoic]acid (BAY 58-2667) activates soluble guanylyl cyclase even in the presence of ODQ or rendered heme-deficient. In the present study, BAY 41-8543, BAY 58-2667 and NO strongly increased V(max). Combination of BAY 58-2667 and NO increased V(max) in an additive manner, whereas the synergistic effect of BAY 41-8543 and NO on enzyme activation was reflected in an overadditive increase of V(max). ODQ potentiated V(max) of BAY 58-2667-stimulated soluble guanylyl cyclase. BAY 41-8543 prolonged the half-life of the nitrosyl-heme complex of NO-activated enzyme, an effect that was not observed with BAY 58-2667. These results show the different activation patterns of both compounds and demonstrate their value as tools to investigate the mechanisms that underlie soluble guanylyl cyclase activation.
Collapse
Affiliation(s)
- Peter Schmidt
- Institute of Cardiovascular Research, Bayer AG, Aprather Weg 18a, D-42096, Wuppertal, Germany
| | | | | | | |
Collapse
|
9
|
Zhang L, Tinette S, Robichon A. Drosophila NO-dependent guanylyl cyclase is finely regulated by sequential order of coincidental signaling. J Cell Biochem 2002; 85:392-402. [PMID: 11948694 DOI: 10.1002/jcb.10146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigate the mechanism of regulation of Drosophila-soluble guanylate cyclase. Multiple putative sites of phosphorylation for the major kinases are present on both subunits of the heterodimer. We show that NO activation after binding to the heme group, is specifically modulated by sequential phosphorylations. PKA increases the NO stimulation at optimum level when both subunits are phosphorylated. Phosphorylation by CK (casein kinase-like) first, inhibits the PKA phosphorylation of the alpha subunit and limits the PKA upregulation of the cyclase activity. However, PKA phosphorylation first didn't prevent CK phosphorylation of the two subunits and the sequence PKA/CK induces higher level of NO activation than CK/PKA. These phosphorylations occur independently of NO binding and the direct inhibitory effect of calcium is observed for all the sCG forms. These data show that the sGC activity is regulated in a complex way, and the well-known asymmetry of the two subunits appears to cause the reading of the sequence of regulatory signals. This qualifies sGC as molecular detector on which converge coincidental and/or sequential neuronal signals. Furthermore, due to the fact that NO induction is huge (more than 600-fold obtained with the mammal counterpart), we might consider that any variation in kinases activation and/or calcium concentration in micro area of neuronal processes, provokes locally significant quantitative difference of cGMP synthesis in presence of diffusing NO.
Collapse
Affiliation(s)
- Lixing Zhang
- CNRS, Centre Européen des Sciences du Goût, 15, rue Hugues Picardet, DIJON 21000, France
| | | | | |
Collapse
|
10
|
Stasch JP, Schmidt P, Alonso-Alija C, Apeler H, Dembowsky K, Haerter M, Heil M, Minuth T, Perzborn E, Pleiss U, Schramm M, Schroeder W, Schröder H, Stahl E, Steinke W, Wunder F. NO- and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle. Br J Pharmacol 2002; 136:773-83. [PMID: 12086987 PMCID: PMC1573403 DOI: 10.1038/sj.bjp.0704778] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2002] [Revised: 04/17/2002] [Accepted: 04/24/2002] [Indexed: 11/08/2022] Open
Abstract
1. Soluble guanylyl cyclase (sGC) is the only proven receptor for the ubiquitous biological messenger nitric oxide (NO) and is intimately involved in many signal transduction pathways, most notably in regulating vascular tone and platelet function. sGC is a heterodimeric (alpha/ss) protein that converts GTP to cyclic GMP; NO binds to its prosthetic haem group. Here, we report the discovery of a novel sGC activating compound, its interaction with a previously unrecognized regulatory site and its therapeutic implications. 2. Through a high-throughput screen we identified BAY 58-2667, an amino dicarboxylic acid which potently activates sGC in an NO-independent manner. In contrast to NO, YC-1 and BAY 41-2272, the sGC stimulators described recently, BAY 58-2667 activates the enzyme even after it has been oxidized by the sGC inhibitor ODQ or rendered haem deficient. 3. Binding studies with radiolabelled BAY 58-2667 show a high affinity site on the enzyme. 4. Using photoaffinity labelling studies we identified the amino acids 371 (alpha-subunit) and 231 - 310 (ss-subunit) as target regions for BAY 58-2667. 5. sGC activation by BAY 58-2667 results in an antiplatelet activity both in vitro and in vivo and a potent vasorelaxation which is not influenced by nitrate tolerance. 6. BAY 58-2667 shows a potent antihypertensive effect in conscious spontaneously hypertensive rats. In anaesthetized dogs the hemodynamic effects of BAY 58-2667 and GTN are very similar on the arterial and venous system. 7. This novel type of sGC activator is a valuable research tool and may offer a new approach for treating cardiovascular diseases.
Collapse
|
11
|
Leach JK, Black SM, Schmidt-Ullrich RK, Mikkelsen RB. Activation of constitutive nitric-oxide synthase activity is an early signaling event induced by ionizing radiation. J Biol Chem 2002; 277:15400-6. [PMID: 11856735 DOI: 10.1074/jbc.m110309200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ionizing radiation at clinical dose levels activates both pro- and anti-proliferative signal transduction pathways, the balance of which determines cell fate. The initiating and amplifying mechanisms involved in the activation are poorly understood. We demonstrate that one mechanism involves stimulation of constitutive nitric-oxide synthase (NOS) activity. NOS activity of Chinese hamster ovary cells was measured by the arginine --> citrulline conversion assay. Irradiation stimulated a transient activation of NOS with maximal activity at 5 min of post-irradiation. Western blot analysis and genetic manipulation by overexpression of wild type or dominant negative NOS mutant identify the radiation-induced isoform as NOS-1. Further evidence that NOS-1 is activated by radiation was the demonstration of radiation-induced cGMP formation in cells transiently transfected with the NO-dependent soluble guanylate cyclase. Protein Tyr nitration, a footprint of peroxynitrite formation, followed radiation exposure and was inhibited by expression of a dominant negative NOS-1 mutant. Radiation-induced ERK1/2 kinase activity, a cytoprotective response to radiation, was also blocked by inhibiting NOS activity. These experiments establish NO-dependent signal transduction pathways as being radio-responsive. Given the lipophilic and relatively stable properties of NO, these results also suggest a possible mechanism by which ionization events in one cell may activate signaling processes in adjacent cells.
Collapse
Affiliation(s)
- J Kevin Leach
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298-0058, USA
| | | | | | | |
Collapse
|
12
|
Stasch JP, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, Minuth T, Perzborn E, Schramm M, Straub A. Pharmacological actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vitro studies. Br J Pharmacol 2002; 135:333-43. [PMID: 11815368 PMCID: PMC1573147 DOI: 10.1038/sj.bjp.0704484] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2001] [Revised: 10/30/2001] [Accepted: 11/05/2001] [Indexed: 11/09/2022] Open
Abstract
BAY 41-8543 is a novel, highly specific and so far the most potent NO-independent stimulator of sGC. Here we report the effects of BAY 41-8543 on the isolated enzyme, endothelial cells, platelets, isolated vessels and Langendorff heart preparation. BAY 41-8543 stimulates the recombinant sGC concentration-dependently from 0.0001 microM to 100 microM up to 92-fold. In combination, BAY 41-8543 and NO have synergistic effects over a wide range of concentrations. Similar results are shown in implying that BAY 41-8543 stimulates the sGC directly and furthermore makes the enzyme more sensitive to its endogenous activator NO. In vitro, BAY 41-8543 is a potent relaxing agent of aortas, saphenous arteries, coronary arteries and veins with IC(50)-values in the nM range. In the rat heart Langendorff preparation, BAY 41-8543 potently reduces coronary perfusion pressure from 10(-9) to 10(-6) g ml(-1) without any effect on left ventricular pressure and heart rate. BAY 41-8543 is effective even under nitrate tolerance conditions proved by the same vasorelaxing effect on aortic rings taken either from normal or nitrate-tolerant rats. BAY 41-8543 is a potent inhibitor of collagen-mediated aggregation in washed human platelets (IC(50)=0.09 microM). In plasma, BAY 41-8543 inhibits collagen-mediated aggregation better than ADP-induced aggregation, but has no effect on the thrombin pathway. BAY 41-8543 is also a potent direct stimulator of the cyclic GMP/PKG/VASP pathway in platelets and synergizes with NO over a wide range of concentrations. These results suggest that BAY 41-8543 is on the one hand an invaluable tool for studying sGC signaling in vitro and on the other hand its unique profile may offer a novel approach for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Johannes-Peter Stasch
- Institute of Cardiovascular Research, Bayer AG, Pharma Research Center, Wuppertal, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Becker EM, Alonso-Alija C, Apeler H, Gerzer R, Minuth T, Pleiβ U, Schmidt P, Schramm M, Schröder H, Schroeder W, Steinke W, Straub A, Stasch JP. NO-independent regulatory site of direct sGC stimulators like YC-1 and BAY 41-2272. BMC Pharmacol 2001; 1:13. [PMID: 11801189 PMCID: PMC64637 DOI: 10.1186/1471-2210-1-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2001] [Accepted: 12/28/2001] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The most important receptor for nitric oxide is the soluble guanylate cyclase (sGC), a heme containing heterodimer. Recently, a pyrazolopyridine derivative BAY 41-2272, structurally related to YC-1, was identified stimulating soluble guanylate cyclase in an NO-independent manner, which results in vasodilatation and antiplatelet activity. The study described here addresses the identification of the NO-independent site on soluble guanylate cyclase. RESULTS We developed a photoaffinity label (3H-meta-PAL) for the direct and NO-independent soluble guanylate cyclase (sGC) stimulator BAY 41-2272 by introducing an azido-group into the tritium labeled compound. The synthesized photoaffinitylabel directly stimulates the purified sGC and shows in combination with NO a synergistic effect on sGC activity. Irradiation with UV light of 3H-meta-PAL together with the highly purified sGC leads to a covalent binding to the alpha1-subunit of the enzyme. This binding is blocked by unlabeled meta-PAL, YC-1 and BAY 41-2272. For further identification of the NO-independent regulatory site the 3H-meta-PAL labeled sGC was fragmented by CNBr digest. The 3H-meta-PAL binds to a CNBr fragment, consisting of the amino acids 236-290 of the alpha1-subunit. Determination of radioactivity of the single PTH-cycles from the sequencing of this CNBr fragment detected the cysteines 238 and 243 as binding residues of the 3H-meta-PAL. CONCLUSIONS Our data demonstrate that the region surrounding the cysteines 238 and 243 in the alpha1-subunit of the sGC could play an important role in regulation of sGC activity and could be the target of this new type of sGC stimulators.
Collapse
Affiliation(s)
| | | | - Heiner Apeler
- Pharma Research Center, Bayer AG, Wuppertal, Germany
| | | | | | - Ulrich Pleiβ
- Pharma Research Center, Bayer AG, Wuppertal, Germany
| | - Peter Schmidt
- Pharma Research Center, Bayer AG, Wuppertal, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Straub A, Stasch JP, Alonso-Alija C, Benet-Buchholz J, Ducke B, Feurer A, Fürstner C. NO-independent stimulators of soluble guanylate cyclase. Bioorg Med Chem Lett 2001; 11:781-4. [PMID: 11277519 DOI: 10.1016/s0960-894x(01)00073-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
SARs around a novel type of guanylate cyclase stimulator which act by a mechanism different from classical NO-donors are described. Several pyrazolopyridinylpyrimidines are shown to relax aortic rings and revealed a long-lasting blood pressure lowering effect in rats after oral application.
Collapse
Affiliation(s)
- A Straub
- Institute of Medicinal Chemistry, Pharma Research Centre, Bayer AG, Wuppertal, FRG.
| | | | | | | | | | | | | |
Collapse
|
15
|
Stasch JP, Becker EM, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, Gerzer R, Minuth T, Perzborn E, Pleiss U, Schröder H, Schroeder W, Stahl E, Steinke W, Straub A, Schramm M. NO-independent regulatory site on soluble guanylate cyclase. Nature 2001; 410:212-5. [PMID: 11242081 DOI: 10.1038/35065611] [Citation(s) in RCA: 430] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) is a widespread, potent, biological mediator that has many physiological and pathophysiological roles. Research in the field of NO appears to have followed a straightforward path, and the findings have been progressive: NO and cyclic GMP are involved in vasodilatation; glycerol trinitrate relaxes vascular smooth muscles by bioconversion to NO; mammalian cells synthesize NO; and last, NO mediates vasodilatation by stimulating the soluble guanylate cyclase (sGC), a heterodimeric (alpha/beta) haem protein that converts GTP to cGMP2-4. Here we report the discovery of a regulatory site on sGC. Using photoaffinity labelling, we have identified the cysteine 238 and cysteine 243 region in the alpha1-subunit of sGC as the target for a new type of sGC stimulator. Moreover, we present a pyrazolopyridine, BAY 41-2272, that potently stimulates sGC through this site by a mechanism that is independent of NO. This results in antiplatelet activity, a strong decrease in blood pressure and an increase in survival in a low-NO rat model of hypertension, and as such may offer an approach for treating cardiovascular diseases.
Collapse
Affiliation(s)
- J P Stasch
- Pharma Research Center, Bayer AG, Aprather Wey 18a, D-42096 Wuppertal, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Didion SP, Heistad DD, Faraci FM. Mechanisms that produce nitric oxide-mediated relaxation of cerebral arteries during atherosclerosis. Stroke 2001; 32:761-6. [PMID: 11239199 DOI: 10.1161/01.str.32.3.761] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The first goal of the present study was to examine the hypothesis that relaxation of cerebral arteries to nitric oxide in primates is dependent on activation of soluble guanylate cyclase (sGC). The second goal was to determine whether the role of sGC in mediating responses to nitric oxide is altered in atherosclerosis. METHODS Basilar arteries from normal and atherosclerotic monkeys were studied in vitro. After precontraction with prostaglandin F(2alpha) (0.1 to 1 micromol/L), concentration-response curves to authentic nitric oxide (1 nmol/L to 1 micromol/L), sodium nitroprusside (10 nmol/L to 10 micromol/L; a nitric oxide donor), and papaverine (10 nmol/L to 10 micromol/L; a non-nitric oxide, non-sGC-dependent stimulus) were generated in the presence and absence of 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 and 10 micromol/L; an inhibitor of sGC). The effect of ODQ on basal tone of basilar arteries from normal and atherosclerotic monkeys was also examined. RESULTS Nitric oxide, sodium nitroprusside, and papaverine produced relaxation that was similar (P:>0.05) in normal and atherosclerotic monkeys. ODQ produced marked inhibition (P:<0.05) of vasorelaxation in response to nitric oxide and nitroprusside but not papaverine. For example, relaxation of the basilar artery in response to nitric oxide (0.1 micromol/L) was inhibited by approximately 85% and 73% by ODQ (1 micromol/L) in normal and atherosclerotic monkeys, respectively. ODQ produced contraction of the basilar arteries, and the increase in tension to ODQ was greater in normal (2.7+/-0.3 g; mean+/-SE) than in atherosclerotic monkeys (1.4+/-0.4 g; P:<0.05). In contrast, contraction to prostaglandin F(2alpha) was similar in the basilar artery from normal and atherosclerotic monkeys. CONCLUSIONS These findings suggest that (1) relaxation of cerebral arteries in primates in response to nitric oxide is normally dependent, in large part, on activation of sGC and (2) the influence of sGC (via reduced production and/or activity of basal nitric oxide) on cerebral vascular tone is reduced in atherosclerosis.
Collapse
Affiliation(s)
- S P Didion
- Departments of Internal Medicine and Pharmacology, Cardiovascular Center, University of Iowa College of Medicine, Iowa City, IA 52242-1081, USA
| | | | | |
Collapse
|
17
|
Schmidt K, Schrammel A, Koesling D, Mayer B. Molecular mechanisms involved in the synergistic activation of soluble guanylyl cyclase by YC-1 and nitric oxide in endothelial cells. Mol Pharmacol 2001; 59:220-4. [PMID: 11160856 DOI: 10.1124/mol.59.2.220] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
YC-1 is a direct activator of soluble guanylyl cyclase (sGC) and sensitizes the enzyme for activation by nitric oxide (NO) and CO. Because the potentiating effect of YC-1 on NO-induced cGMP formation in platelets and smooth muscle cells has been shown to be substantially higher than observed with the purified enzyme, the synergism between heme ligands and YC-1 is apparently more pronounced in intact cells than in cell-free systems. Here, we investigated the mechanisms underlying the synergistic activation of sGC by YC-1 and NO in endothelial cells. Stimulation of the cells with YC-1 enhanced cGMP accumulation up to approximately 100-fold. The maximal effect of YC-1 was more pronounced than that of the NO donor DEA/NO (approximately 20-fold increase in cGMP accumulation) and markedly diminished in the presence of L-N(G)-nitroarginine, EGTA, or oxyhemoglobin. Because YC-1 did not activate endothelial NO synthase, the pronounced effect of YC-1 on cGMP accumulation was apparently caused by a synergistic activation of sGC by YC-1 and basal NO. The effect of YC-1 was further enhanced by addition of DEA/NO, resulting in a approximately 160-fold stimulation of cGMP accumulation. Thus, YC-1 increased the NO-induced accumulation of cGMP in intact cells by approximately 8-fold. Addition of endothelial cell homogenate increased the stimulatory effect of YC-1 on NO-activated purified sGC from 1.2- to 3.7-fold. This effect was not observed with heat-denatured homogenates, suggesting that a heat-labile factor present in endothelial cells potentiates the effect of YC-1 on NO-activated sGC.
Collapse
Affiliation(s)
- K Schmidt
- Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Graz, Austria.
| | | | | | | |
Collapse
|
18
|
Becker EM, Schmidt P, Schramm M, Schröder H, Walter U, Hoenicka M, Gerzer R, Stasch JP. The vasodilator-stimulated phosphoprotein (VASP): target of YC-1 and nitric oxide effects in human and rat platelets. J Cardiovasc Pharmacol 2000; 35:390-7. [PMID: 10710123 DOI: 10.1097/00005344-200003000-00007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of the different types of soluble guanylate cyclase (sGC) stimulators on the phosphorylation status of vasodilator-stimulated phosphoprotein (VASP) in both human and rat platelets were studied under in vitro and in vivo conditions. sGC-dependent VASP phosphorylation (at Ser(239) and Ser(157)) both by the new direct sGC stimulator YC-1 and by NO donors was examined by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS/PAGE) with different antibodies. One antibody, which recognizes VASP independent of its phosphorylation state, was used to detect the mobility shift of VASP caused by Ser(157) phosphorylation. The other antibody was specifically directed against VASP phosphorylated at Ser(239), the cGMP-dependent protein kinase (PKG) preferred phosphorylation site of VASP. In vitro YC-1 increased both VASP phosphorylation and cyclic guanosine monophosphate (cGMP) levels as did the NO donors 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA/NO) and sodium nitroprusside (SNP). The combination of both types induced a synergistic effect in both VASP phosphorylation and cGMP increase. In rat platelets, similar effects could be shown in vitro. In vivo we observed a significant increase in cGMP and a distinct effect on VASP phosphorylation in rat platelets 1 h after oral administration of YC-1. These biochemical alterations are supported by a significant prolongation in rat-tail bleeding time. Direct stimulators of sGC like YC-1 are on the one hand direct potent stimulators of the cGMP/PKG/VASP pathway in platelets and on the other hand synergize with NO, the physiologic stimulator of sGC. Therefore YC-1-like substances are interesting tools for the development of new cardiovascular drugs with vasodilatory and antithrombotic properties.
Collapse
Affiliation(s)
- E M Becker
- Institute of Cardivascular and Arteriosclerosis Research, Bayer AG, Wuppertal, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Andreopoulos S, Papapetropoulos A. Molecular aspects of soluble guanylyl cyclase regulation. GENERAL PHARMACOLOGY 2000; 34:147-57. [PMID: 11120376 DOI: 10.1016/s0306-3623(00)00062-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme (comprised of alpha and beta subunits) that generates the intracellular second messenger cyclic guanosine monophosphate (cGMP) from guanosine triphosphate (GTP). cGMP is subsequently important for the regulation of protein kinases, ion channels, and phosphodiesterases. Since recent evidence has demonstrated that heterodimerization of the alpha/beta subunits is essential for basal and stimulated enzymatic activity, the existence of several types of isoforms for each of the two subunits, along with their varying degrees of expression in different tissues, implies that multiple regulatory mechanisms exist for sGC. Yet, progress in studying and clarifying the regulatory processes that can alter sGC expression and activity has only slowly started being elucidated. In the following paper, we elaborate on sGC structure, function, and distribution along with recently described signaling pathways that modulate sGC gene expression.
Collapse
Affiliation(s)
- S Andreopoulos
- "George P. Livanos" Laboratory, Department of Critical Care and Pulmonary Services, Levangelismos Hospital, University of Athens, Ploutarchou 3, 5th Floor, 10675, Athens, Greece
| | | |
Collapse
|