1
|
Chen X, Xu J, Qin F, Yang Z, Li X, Yu M, Li M, Wang Y, Xin W. An immunoregulation PLGA/Chitosan aligned nanofibers with polydopamine coupling basic fibroblast growth factor and ROS scavenging for peripheral nerve regeneration. Mater Today Bio 2025; 31:101543. [PMID: 40026623 PMCID: PMC11869013 DOI: 10.1016/j.mtbio.2025.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 03/05/2025] Open
Abstract
The repair and functional recovery of long-segment peripheral nerve injuries are crucial in clinical settings. Nerve conduits are seen as promising alternatives to autologous nerve grafts, but their effectiveness is limited by the controlled delivery of bioactive factors and meeting various functional requirements during different stages of repair. This research developed multifunctional nerve conduits using electrospinning and polydopamine (PDA) coating techniques to integrate bioactive substances. Chitosan-composite PLGA electrospun nerve conduits demonstrated exceptional mechanical properties and biocompatibility. Nanofibers with specific topological structures effectively promoted oriented cell growth. The PDA coating provided ROS scavenging and immune modulation functions. The bFGF growth factor attached to the PDA coating facilitated sustained release, enhancing Schwann cell functionality and stimulating neurite outgrowth. In a rat sciatic nerve defect model with a 10 mm gap, PLGA/CS-PDA-bFGF nerve conduits showed a positive impact on nerve regeneration and functional recovery. Consequently, nerve conduits with multiple functions modified with PDA-coated bioactive molecules are poised to be excellent materials for mending peripheral nerve injuries.
Collapse
Affiliation(s)
- Xiaokun Chen
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Jihai Xu
- Department of Hand Surgery, Department of Plastic Reconstructive Surgery, Ningbo No.6 Hospital, Ningbo, 315040, China
| | - Feng Qin
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
| | - Ziyuan Yang
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China
| | - Xueyuan Li
- Department of Hand Surgery, Ningbo No.6 Hospital, Ningbo, 315040, China
| | - Miao Yu
- Department of Hand Surgery, Ningbo No.6 Hospital, Ningbo, 315040, China
| | - Ming Li
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, China
| | - Yanhua Wang
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
| | - Wang Xin
- Department of Plastic Reconstructive Surgery, Ningbo No.6 Hospital, Ningbo, 315040, China
| |
Collapse
|
2
|
Khazaal AQ, Ismaeel HM, Cheah PS, Nordin N. Cellular Stem Cell Therapy for Treating Traumatic Brain Injury: Strategies for Enhancement of Therapeutic Efficacy. Mol Neurobiol 2025:10.1007/s12035-025-04778-9. [PMID: 40000574 DOI: 10.1007/s12035-025-04778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Traumatic brain injury (TBI) influences a considerable population globally. TBI notably impacts both fatalities and disabilities worldwide. The mortality related to TBI is a significant concern in public health, affecting persons across various age groups and demographic profiles. More research and preventative interventions are required to alleviate TBIs' effects and optimize patient outcomes. Stem cell (SC) treatment exhibits promise as a viable strategy for addressing TBI due to its capacity to possibly restore or regenerate the compromised cells within the central nervous system. Additionally, it can influence the inflammatory response and increase neurogenesis and neuroplasticity. Increasing evidence has shown that SC transplantation has the potential to enhance functional recovery and decrease the extent of lesions in animal models of TBI. Nevertheless, several hurdles and ambiguities persist in determining the most effective source, dosage, administration method, timing, and mechanism of action for SC treatment for TBI. Further investigation is required to prove the safety and effectiveness of SC treatment for TBI in human subjects. This review brings insight into the strategies for utilizing SCs as cellular therapy for TBI, mainly based on preclinical investigations and TBI-induced animal models. In addition, this study also addresses many elements related to cell transfusion in the context of TBI, including considerations of cell amount, method, and timing. Integrating biomaterials and genetically altering SCs as potential strategies to enhance therapeutic efficacy are also presented. We also describe the potential of SCs in treating TBI and evaluate the effectiveness of cellular therapy and its corresponding outcomes.
Collapse
Affiliation(s)
- Ali Q Khazaal
- Department of Biotechnology, College of Science, University of Baghdad, Al-Jadriya, Baghdad, Iraq
| | - Haneen M Ismaeel
- Department of Biotechnology, College of Science, University of Baghdad, Al-Jadriya, Baghdad, Iraq
| | - Pike See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Malaysian Research Institute of Ageing (Myageing®), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine (Regen) Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Norshariza Nordin
- Medical Genetics Unit, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Malaysian Research Institute of Ageing (Myageing®), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine (Regen) Research Group, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA® BRAIN), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Bastami M, Hosseini R. The codon optimised gene produces an active human basic fibroblastic growth factor in rice cell suspension culture. Growth Factors 2024; 42:171-187. [PMID: 39485262 DOI: 10.1080/08977194.2024.2423747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024]
Abstract
The coding sequence of human basic fibroblast growth factor (hbFGF) was optimised for expression in rice. An expression cassette was constructed by fusing the PCR-amplified RAmy3D promoter, along with its 5'UTR, 3'UTR, and terminator sequences, to the codon-optimised hbFGF sequence. This cassette was inserted into the pCAMBIA1304 shuttle vector, which also contained the RAmy3D signal peptide. Agrobacterium tumefaciens strain LBA 4404 was used to transform rice callus. Among the transformed lines, the callus expressing the highest level of bFGF (38.1 mg/kg fresh weight) was identified via ELISA and selected for establishing a cell suspension culture. Expression and secretion of the recombinant bFGF into the culture medium were observed three days after incubating the transgenic rice cells in sucrose-free medium. The presence of recombinant bFGF was confirmed through Western blot and SDS-PAGE analyses. Furthermore, the rice-derived bFGF effectively stimulated the proliferation of NIH/3T3 cells, demonstrating a comparable biological activity to that of commercial bFGF.
Collapse
Affiliation(s)
- Meysam Bastami
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Ramin Hosseini
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
4
|
Kumar S, Chu A, Theis T, Rastogi S, Costea DM, Banerjee R, Das BC, Yarmush ML, Hsia H, Cohen R, Schachner M, Berthiaume F. Self-Assembled Fibroblast Growth Factor Nanoparticles as a Therapeutic for Oxidant-Induced Neuronal and Skin Cell Injury. ACS APPLIED BIO MATERIALS 2024; 7:5158-5170. [PMID: 39038169 DOI: 10.1021/acsabm.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Traumatic brain injury (TBI) and spinal cord injury (SCI) are neurological conditions that result from immediate mechanical injury, as well as delayed injury caused by local inflammation. Furthermore, TBI and SCI often lead to secondary complications, including pressure wounds of the skin, which can heal slowly and are prone to infection. Pressure wounds are localized areas of damaged tissue caused by prolonged pressure on the skin due to immobility and loss of neurological sensation. With the aim to ameliorate these symptoms, we investigated whether fibroblast growth factors 2 (FGF-2) could contribute to recovery. FGF-2 plays a significant role in both neurogenesis and skin wound healing. We developed a recombinant fusion protein containing FGF-2 linked to elastin-like polypeptides (FGF-ELP) that spontaneously self-assembles into nanoparticles at around 33 °C. The nanoparticle's size was ranging between 220 and 250 nm in diameter at 2 μM. We tested this construct for its ability to address neuronal and skin cell injuries. Hydrogen peroxide was used to induce oxidant-mediated injury on cultured neuronal cells to mimic the impact of reactive oxidants released during the inflammatory response in vivo. We found that FGF-ELP nanoparticles protected against hydrogen peroxide-mediated injury and promoted neurite outgrowth. In the skin cell models, cells were depleted from serum to mimic the reduced levels of nutrients and growth factors in chronic skin wounds. FGF-ELP increased the proliferation and migration of human keratinocytes, fibroblasts, and endothelial cells. FGF-ELP is, therefore, a potentially useful agent to provide both neuroprotection and promotion of cellular processes involved in skin wound healing.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Alexa Chu
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Thomas Theis
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Shikhar Rastogi
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
- School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Denisa M Costea
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
- School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Roshni Banerjee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Biraja C Das
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, United States
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Henry Hsia
- Department of Surgery, Yale School of Medicine, Yale University, New Haven, Connecticut 06519, United States
| | - Rick Cohen
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
5
|
Du L, Chen L, Liu F, Wang W, Huang H. Nose-to-brain drug delivery for the treatment of CNS disease: New development and strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:255-297. [PMID: 37783558 DOI: 10.1016/bs.irn.2023.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Delivering drugs to the brain has always been a challenging task due to the restrictive properties of the blood-brain barrier (BBB). Intranasal delivery is therefore emerging as an efficient method of administration, making it easy to self-administration and thus provides a non-invasive and painless alternative to oral and parenteral administration for delivering therapeutics to the central nervous system (CNS). Recently, drug formulations have been developed to further enhance this nose-to-brain transport, primarily using nanoparticles (NPs). Therefore, the purposes of this review are to highlight and describe the anatomical basis of nasal-brain pathway and provide an overview of drug formulations and current drugs for intranasal administration in CNS disease.
Collapse
Affiliation(s)
- Li Du
- Biotherapeutic Research Center, Beijing Tsinghua Changgung Hospital, Beijing, P.R. China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital of Beijing University of Traditional Chinese Medicine, Beijing, P.R. China
| | - Fangfang Liu
- Department of Neurology, Jilin City Central Hospital, Jilin, China
| | - Wenya Wang
- Biotherapeutic Research Center, Beijing Tsinghua Changgung Hospital, Beijing, P.R. China,.
| | - Hongyun Huang
- Institute of Neurorestoratology, Third Medical Center of General Hospital of PLA, Beijing, P.R. China; Beijing Hongtianji Neuroscience Academy, Beijing, P.R. China.
| |
Collapse
|
6
|
Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-Guided Brain Drug Delivery: Expanding the Therapeutic Approach to Neurodegenerative Diseases. Pharmaceutics 2021; 13:1897. [PMID: 34834311 PMCID: PMC8623286 DOI: 10.3390/pharmaceutics13111897] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent a heterogeneous group of aging-related disorders featured by progressive impairment of motor and/or cognitive functions, often accompanied by psychiatric disorders. NDs are denoted as 'protein misfolding' diseases or proteinopathies, and are classified according to their known genetic mechanisms and/or the main protein involved in disease onset and progression. Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD) are included under this nosographic umbrella, sharing histopathologically salient features, including deposition of insoluble proteins, activation of glial cells, loss of neuronal cells and synaptic connectivity. To date, there are no effective cures or disease-modifying therapies for these NDs. Several compounds have not shown efficacy in clinical trials, since they generally fail to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells that greatly limits the brain internalization of endogenous substances. By engineering materials of a size usually within 1-100 nm, nanotechnology offers an alternative approach for promising and innovative therapeutic solutions in NDs. Nanoparticles can cross the BBB and release active molecules at target sites in the brain, minimizing side effects. This review focuses on the state-of-the-art of nanoengineered delivery systems for brain targeting in the treatment of AD, PD and HD.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy; (C.R.); (D.M.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Via Sergio Pansini, 5, I-80131 Naples, Italy; (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
7
|
Zhu S, Ying Y, He Y, Zhong X, Ye J, Huang Z, Chen M, Wu Q, Zhang Y, Xiang Z, Tu Y, Ying W, Xiao J, Li X, Ye Q, Wang Z. Hypoxia response element-directed expression of bFGF in dental pulp stem cells improve the hypoxic environment by targeting pericytes in SCI rats. Bioact Mater 2021; 6:2452-2466. [PMID: 33553827 PMCID: PMC7850944 DOI: 10.1016/j.bioactmat.2021.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 02/08/2023] Open
Abstract
Cell-based transplantation strategies possess great potential for spinal cord injury (SCI) repair. Basic fibroblast growth factor (bFGF) has been reported to have multiple neuro-promoting effects on developing and adult nervous system of mammals and considered a promising therapy for nerve injury following SCI. Human dental pulp stem cells (DPSCs) are abundant stem cells with low immune rejection, which can be considered for cell replacement therapy. The purpose of this study was to investigate the roles of DPSCs which express bFGF under the regulation of five hypoxia-responsive elements (5HRE) using an adeno-associated virus (AAV-5HRE-bFGF-DPSCs) in SCI repairing model. In this study, DPSCs were revealed to differentiate into CD13+ pericytes and up-regulate N-cadherin expression to promote the re-attachment of CD13+ pericytes to vascular endothelial cells. The re-attachment of CD13+ pericytes to vascular endothelial cells subsequently increased the flow rate of blood in microvessels via the contraction of protuberance. As a result, increased numbers of red blood cells carried more oxygen to the damaged area and the local hypoxia microenvironment in SCI was improved. Thus, this study represents a step forward towards the potential use of AAV-5HRE-bFGF-DPSCs in SCI treatment in clinic. ) 5HRE-bFGF-DPSCs secrete bFGF in a hypoxia dependent manner, making the administration more precise. CD13+ pericyte regulate vascular diameter and promote the recovery of hypoxia microenvironment via DDC-5HT-5HT-1B in SCI. 5HRE-bFGF-DPSCs can differentiate into CD13+ pericyte to compensate for the mass death of CD13+ pericyte after SCI. 5HRE-bFGF-DPSCs promote CD13+ pericyte adhesion to vascular endothelial cell by secreting bFGF through N-cadherin. 5HRE-bFGF-DPSCs promote the recovery of SCI by restoring hypoxic microenvironment and inhibit autophagy pathway.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yibo Ying
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yan He
- Laboratory of Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China
| | - Xingxing Zhong
- The Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Jiahui Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhiyang Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Min Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuji Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yifan Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ziyue Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yurong Tu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Weiyang Ying
- Department of Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, China
| | - Xiaokun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China.,Massachusetts General Hospital, Harvard University, Boston, 02114, USA.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 630060, China
| | - Zhouguang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Influence of the complex drug Cocarnit on the sciatic nerve in the development of diabetic polyneuropathy in rats. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2020. [DOI: 10.2478/cipms-2020-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Ulcers and slow wound healing are common in diabetic polyneuropathy (DP), as well as shooting or burning pain, sensitivity to touch or lack of sensitivity, low oxygenation of nerve tissue, conductivity disorders and various vascular disorders. The mechanisms of DP development are complex and have not been completely studied. To take into account the role of B group vitamins, we investigated histological structure of nerve tissue, the level of different growth factors and the qualitative composition of active proteolytic enzymes in rats with DP and after the use of the metabolic drug Cocarnit for 9 days. This drug composition include nicotinamide, cocarboxylase, cyanocobalamin, adenosine triphosphate disodium trihydrate. We used an histological study of sciatic nerve; enzyme-linked immunosorbent assay and enzyme electrophoresis methods. In rats with DP, fragmentation of nerve tissue and their necrosis was established. Moreover, degraded forms of plasmin that has a fully functional serine proteinase domain are evident, and, therefore, it exhibits proteolytic properties. DP led to a decrease of neuron growth factor (NGF), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). After treatment, the histological structure of nerve tissue was significantly improved, and the expression of growth factors NGF and bFGF was increased. Our study demonstrated that administration of Corcarnit brought about the complete restoration of the activation potential of plasmin and the almost disappearance of all degraded forms which were evident in the group with DP.
Collapse
|
9
|
Torregrossa F, Sallì M, Grasso G. Emerging Therapeutic Strategies for Traumatic Spinal Cord Injury. World Neurosurg 2020; 140:591-601. [PMID: 32797989 DOI: 10.1016/j.wneu.2020.03.199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 01/18/2023]
Abstract
Spinal cord injury (SCI) is a debilitating neurologic condition with tremendous socioeconomic impact on affected individuals and the health care system. The treatment of SCI principally includes surgical treatment and marginal pharmacologic and rehabilitation therapies targeting secondary events with minor clinical improvements. This unsuccessful result mainly reflects the complexity of SCI pathophysiology and the diverse biochemical and physiologic changes that occur in the injured spinal cord. Once the nervous system is injured, cascades of cellular and molecular events are triggered at varying times. Although the cascade of tissue reactions and cell injury develops over a period of days or weeks, the most extensive cell death in SCI occurs within hours of trauma. This situation suggests that early intervention is likely to be the most promising approach to rescue the cord from further and irreversible cell damage. Over the past decades, a wealth of research has been conducted in preclinical and clinical studies with the hope to find new therapeutic strategies. Researchers have identified several targets for the development of potential therapeutic interventions (e.g., neuroprotection, replacement of cells lost, removal of inhibitory molecules, regeneration, and rehabilitation strategies to induce neuroplasticity). Most of these treatments have passed preclinical and initial clinical evaluations but have failed to be strongly conclusive in the clinical setting. This narrative review provides an update of the many therapeutic interventions after SCI, with an emphasis on the underlying pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Fabio Torregrossa
- Neurosurgical Unit, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Marcello Sallì
- Department of Neurosensory and Motor Surgery, University of Palermo, Palermo, Italy
| | - Giovanni Grasso
- Neurosurgical Unit, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy.
| |
Collapse
|
10
|
Tunçel ÖK, Sarisoy G, Çetin E, Kaynar Tunçel E, Bilgici B, Karaustaoğlu A. Neurotrophic factors in bipolar disorders patients with manic episode. Turk J Med Sci 2020; 50:985-993. [PMID: 32283906 PMCID: PMC7379459 DOI: 10.3906/sag-1907-70] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 04/11/2020] [Indexed: 12/31/2022] Open
Abstract
Background/aim Neurotrophins are one of the most important molecule groups affecting cerebral neuroplasticity. The amount of
evidence about the role of changes in neuroplasticity in the pathophysiology of bipolar disease is growing. Materials and methods We measured serum levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), glial cell-line derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), fibroblast growth factor (FGF)-2, neuritin 1 (Nrn 1) in bipolar 1 manic episode patients (n = 45) and healthy control group. Results When controlled for age, BMI and cortisol, it was found that the serum levels of BDNF, NGF, NT-3, VEGF and FGF-2 of bipolar manic episode patients were not statistically different compared to those of the control group. GDNF level and Nrn 1 levels were significantly lower (P = 0.003 and P = 0.025 respectively) while IGF-1 levels were significantly higher than the control group (P = 0.0001). ROC analysis was performed and the area under the the curve was calculated as 0.737, 0.766 for GDNF, IGF-1 respectively. Conclusion The changes in the levels of GDNF, IGF-1 and Nrn 1 might be involved in pathopysiology of bipolar disorder, and GDNF, IGF-1 may be considered as state markers in bipolar manic episode.
Collapse
Affiliation(s)
- Özgür Korhan Tunçel
- Medical Biochemistry Department, Faculty of Medicine, Ondokuz Mayıs University, Samsun,Turkey
| | - Gökhan Sarisoy
- Psychiatry Department, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Eda Çetin
- Psychiatry Department, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | | | - Birşen Bilgici
- Medical Biochemistry Department, Faculty of Medicine, Ondokuz Mayıs University, Samsun,Turkey
| | - Arzu Karaustaoğlu
- Medical Biochemistry Department, Faculty of Medicine, Ondokuz Mayıs University, Samsun,Turkey
| |
Collapse
|
11
|
Wu S, Zheng T, Du J, Yuan Y, Shi Q, Wang Z, Liu D, Liu J, Wang X, Liu L. Neuroprotective effect of low-intensity transcranial ultrasound stimulation in endothelin-1-induced middle cerebral artery occlusion in rats. Brain Res Bull 2020; 161:127-135. [PMID: 32439337 DOI: 10.1016/j.brainresbull.2020.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ischemic stroke is one of the leading causes of death and disability worldwide. Low-intensity transcranial ultrasound stimulation (LITUS) is a promising neuroprotective treatment for ischemic stroke. Diffusion-weighted imaging (DWI) can be highly sensitive in the detection of ischemic brain injury. Relative apparent diffusion coefficient (rADC) values can be used to evaluate the effect of LITUS on ischemic stroke. PURPOSE The aim of this study was to determine the neuroprotective effect of LITUS at different time points using endothelin-1-induced middle cerebral artery occlusion in rats as a model of ischemic stroke. METHODS Endothelin-1 (ET-1) was injected into the cerebral parenchyma near the middle cerebral artery, which induced focal, reversible, low-flow ischemia in rats. After occlusion of the middle cerebral artery for 30 min, 120 min, and 240 min, LITUS stimulation was used respectively. DWI was performed at 1, 3, 6, 12, 18, 24, 48, and 72 h after ischemia using a 3 T scanner. The rADC values were calculated, and functional outcomes assessed using neurobehavioral scores after ischemia. Nissl staining and estimation of Na+-K+-ATPase activity were used to assess the neuropathology after completing the last Magnetic Resonance Imaging (MRI) examination. RESULTS Endothelin-1-induced occlusion of the middle cerebral artery resulted in significant dysfunction and neuronal damage in rats. Rats that received LITUS exhibited reduced damage of the affected brain tissue after cerebral ischemia. The greatest protective effect was found when LITUS stimulation occurred 30 min after cerebral ischemia. CONCLUSIONS Imaging, behavioral, and histological results suggested that LITUS stimulation after an ischemic stroke produced significant neuroprotective effects.
Collapse
Affiliation(s)
- Shuo Wu
- Graduate School of Hebei Medical University, China
| | - Tao Zheng
- Qinhuangdao Municipal No. 1 Hospital, China
| | - Juan Du
- Qinhuangdao Municipal No. 1 Hospital, China
| | - Yi Yuan
- Institute of Electrical Engineering, Yanshan University, China
| | - Qinglei Shi
- Scientific Clinical Specialist, Siemens Ltd., China
| | | | - Defeng Liu
- Qinhuangdao Municipal No. 1 Hospital, China
| | - Jian Liu
- Northeastern University, School of Information Science and Engineering, China
| | - Xiaohan Wang
- Graduate School of Chengde Medical University, China
| | | |
Collapse
|
12
|
Thompson C, Otero P, Srinageshwar B, Petersen RB, Dunbar GL, Rossignol J. Possible roles of epigenetics in stem cell therapy for Parkinson's disease. Epigenomics 2020; 12:647-656. [PMID: 32396465 DOI: 10.2217/epi-2019-0347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with loss of dopaminergic neurons. PD has genetic and epigenetic influences that determine specific changes in the brain. Epigenetic changes result in defective methylation of genes leading to differential gene-expression causing PD. This review provides an overview of stem cell transplantations as potential therapies for PD, with a focus on the epigenetic changes, prior or following transplantation. To date, no reports have addressed epigenetic alterations following stem cell transplantation into the PD brain. Given the potential for affecting the efficacy of stem cell therapy, increased attention needs to be given to the epigenetic processes that occur during stem cell culture and transplantation to maximize the therapeutic potential of stem cells to PD.
Collapse
Affiliation(s)
- Cassandra Thompson
- Field Neurosciences Institute laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.,Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Paulina Otero
- Field Neurosciences Institute laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.,Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Bhairavi Srinageshwar
- Field Neurosciences Institute laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.,Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA.,College of Medicine, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Robert B Petersen
- College of Medicine, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Gary L Dunbar
- Field Neurosciences Institute laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.,Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA.,College of Medicine, Central Michigan University, Mt. Pleasant, MI 48859, USA.,Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA.,Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604, USA
| | - Julien Rossignol
- Field Neurosciences Institute laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.,Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA.,College of Medicine, Central Michigan University, Mt. Pleasant, MI 48859, USA
| |
Collapse
|
13
|
Piotrowicz Z, Chalimoniuk M, Płoszczyca K K, Czuba M, Langfort J. Acute normobaric hypoxia does not affect the simultaneous exercise-induced increase in circulating BDNF and GDNF in young healthy men: A feasibility study. PLoS One 2019; 14:e0224207. [PMID: 31644554 PMCID: PMC6808427 DOI: 10.1371/journal.pone.0224207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/08/2019] [Indexed: 01/25/2023] Open
Abstract
Physical exercise has a neuromodulatory effect on the central nervous system (CNS) partially by modifying expression of neuropeptides produced and secreted by neurons and glial cells, among which the best examined are brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Because both neurotrophins can cross the brain-blood barrier (BBB), their blood levels indirectly reflect their production in the CNS. Moreover, both neuropeptides are involved in modulation of dopaminergic and serotoninergic system function. Because limited information is available on the effects of exercise to volition exhaustion and acute hypoxia on CNS, BDNF and GDNF formation, the aims of the present study were to verify whether 1) acute exercise to exhaustion in addition to neurons also activates glial cells and 2) additional exposure to acute normobaric moderate hypoxia affects their function. In this feasibility study we measured blood concentrations of BDNF, GDNF, and neuropeptides considered as biomarkers of brain damage (bFGF, NGF, S100B, GFAP) in seven sedentary healthy young men who performed a graded exercise test to volitional exhaustion on a cycle ergometer under normoxic (N) and hypoxic conditions: 2,000 m (H2; FiO2 = 16.6%) and 3,000 m altitude (H3; FiO2 = 14.7%). In all conditions serum concentrations of both BDNF and GDNF increased immediately after cessation of exercise (p<0.01). There was no effect of condition or interaction (condition x time of measurement) and exercise on any of the brain damage biomarkers: bFGF, NGF, S100B, GFAP. Moreover, in N (0<0.01) and H3 (p<0.05) exercise caused elevated serum 5-HT concentration. The results suggest that a graded effort to volitional exhaustion in normoxia, as well as hypoxia, simultaneously activates both neurons and astrocytes. Considering that s100B, GFAP, bFGF, and NGF (produced mainly by astrocytes) are markers of brain damage, it can be assumed that a maximum effort in both conditions is safe for the CNS.
Collapse
Affiliation(s)
- Zofia Piotrowicz
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Małgorzata Chalimoniuk
- Department of Tourism and Health in Biała Podlaska, The Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | | - Miłosz Czuba
- Department of Kinesiology, Institute of Sport, Warsaw, Poland
- Department of Sports Theory, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Józef Langfort
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
14
|
Chen P, Zhang H, Zhang Q, Zhou W, Deng Y, Hu X, Zhang L. Basic Fibroblast Growth Factor Reduces Permeability and Apoptosis of Human Brain Microvascular Endothelial Cells in Response to Oxygen and Glucose Deprivation Followed by Reoxygenation via the Fibroblast Growth Factor Receptor 1 (FGFR1)/ERK Pathway. Med Sci Monit 2019; 25:7191-7201. [PMID: 31551405 PMCID: PMC6778414 DOI: 10.12659/msm.918626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Disruption of the blood–brain barrier (BBB) is a mechanism in the pathogenesis of traumatic brain injury. Basic fibroblast growth factor (bFGF) is expressed in angiogenesis, neurogenesis, and neuronal survival. This study aimed to investigate the role of bFGF in vitro in human brain microvascular endothelial cells (HBMECs) challenged by oxygen-glucose deprivation/reperfusion (OGD/R). Material/Methods HBMECs were cultured in glucose-free medium and an environment with <0.5% oxygen in an anaerobic chamber. Immunocytochemistry, Western blot, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were used to measure the protein and mRNA expression levels of bFGF, tight junction, adherens junction, apoptotic proteins, and matrix metalloproteinases (MMPs). The effects of bFGF on the viability of HBMECs was evaluated using the cell counting kit-8 (CCK-8) assay. Cell apoptosis was evaluated using the TUNEL assay, and endothelial permeability was quantified using a transwell migration assay with fluorescein isothiocyanate (FITC) conjugated with dextran. The effects of bFGF were evaluated following inhibition of fibroblast growth factor receptor 1 (FGFR1) with PD173074 and inhibition of ERK with PD98059. Results Following OGD/R of HBMECs, bFGF significantly reduced cell permeability and apoptosis and significantly inhibited the down-regulation of the expressions of proteins associated with tight junctions, adherens junctions, apoptosis and matrix metalloproteinases (MMPs). The effects of bFGF were mediated by the activation of FGFR1 and ERK, as they were blocked by FGFR1 and ERK inhibitors. Conclusions Permeability and apoptosis of HBMECs challenged by OGD/R were reduced by bFGF by activation of the FGFR1 and the ERK pathway.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center of People's Liberation Army (PLA), Daping Hospital, Army Medical University, Chongqing, China (mainland).,Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Hongguang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center of People's Liberation Army (PLA), Daping Hospital, Army Medical University, Chongqing, China (mainland)
| | - Qingtao Zhang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Wei Zhou
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Xi Hu
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Lianyang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center of People's Liberation Army (PLA), Daping Hospital, Army Medical University, Chongqing, China (mainland)
| |
Collapse
|
15
|
Reis KP, Sperling LE, Teixeira C, Paim Á, Alcântara B, Vizcay-Barrena G, Fleck RA, Pranke P. Application of PLGA/FGF-2 coaxial microfibers in spinal cord tissue engineering: an in vitro and in vivo investigation. Regen Med 2018; 13:785-801. [DOI: 10.2217/rme-2018-0060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Scaffolds are a promising approach for spinal cord injury (SCI) treatment. FGF-2 is involved in tissue repair but is easily degradable and presents collateral effects in systemic administration. In order to address the stability issue and avoid the systemic effects, FGF-2 was encapsulated into core–shell microfibers by coaxial electrospinning and its in vitro and in vivo potential were studied. Materials & methods: The fibers were characterized by physicochemical and biological parameters. The scaffolds were implanted in a hemisection SCI rat model. Locomotor test was performed weekly for 6 weeks. After this time, histological analyses were performed and expression of nestin and GFAP was quantified by flow cytometry. Results: Electrospinning resulted in uniform microfibers with a core–shell structure, with a sustained liberation of FGF-2 from the fibers. The fibers supported PC12 cells adhesion and proliferation. Implanted scaffolds into SCI promoted locomotor recovery at 28 days after injury and reduced GFAP expression. Conclusion: These results indicate the potential of these microfibers in SCI tissue engineering. [Formula: see text]
Collapse
Affiliation(s)
- Karina P Reis
- Hematology & Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federale do Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Post Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Laura E Sperling
- Hematology & Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federale do Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Cristian Teixeira
- Hematology & Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federale do Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Ágata Paim
- Hematology & Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federale do Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Bruno Alcântara
- Hematology & Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federale do Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, King’s College London, London, WC2R 2LS, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, King’s College London, London, WC2R 2LS, UK
| | - Patricia Pranke
- Hematology & Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federale do Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
- Stem Cell Laboratory, Fundamental Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Post Graduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Stem Cell Research Institute, Porto Alegre, RS, 90020-10, Brazil
| |
Collapse
|
16
|
Laplante P, Brillant-Marquis F, Brissette MJ, Joannette-Pilon B, Cayrol R, Kokta V, Cailhier JF. MFG-E8 Reprogramming of Macrophages Promotes Wound Healing by Increased bFGF Production and Fibroblast Functions. J Invest Dermatol 2017; 137:2005-2013. [DOI: 10.1016/j.jid.2017.04.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022]
|
17
|
Leviton A, Allred EN, Yamamoto H, Fichorova RN, Kuban K, O'Shea TM, Dammann O. Antecedents and correlates of blood concentrations of neurotrophic growth factors in very preterm newborns. Cytokine 2017; 94:21-28. [PMID: 28396037 PMCID: PMC5464409 DOI: 10.1016/j.cyto.2017.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 11/16/2022]
Abstract
AIM To identify the antecedents and very early correlates of low concentrations of neurotrophic growth factors in the blood of extremely preterm newborns during the first postnatal month. METHODS Using an immunobead assay, we measured the concentrations of neurotrophin 4 (NT4), brain-derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF) in blood spots collected on postnatal days 1 (N=1062), 7 (N=1087), 14 (N=989), 21 (N=940) and 28 (N=880) from infants born before the 28th week of gestation. We then sought the correlates of measurements in the top and bottom quartiles for gestational age and day the specimen was collected. RESULTS The concentrations of 2 neurotrophic proteins, NT4 and BDNF, were low among children delivered for medical (maternal or fetal) indications, and among those who were growth restricted. Children who had top quartile concentrations of NT4, BDNF, and bFGF tended to have elevated concentrations of inflammation-related proteins that day. This pattern persisted for much of the first postnatal month. CONCLUSIONS Delivery for medical indications and fetal growth restriction are associated with a relative paucity of NT4 and BDNF concentrations during the first 24 h after very preterm birth. Elevated blood concentrations of NT4, BDNF, and bFGF tended to co-occur with indicators of systemic inflammation on the same day.
Collapse
Affiliation(s)
- Alan Leviton
- Boston Children's Hospital, and Harvard Medical School, Boston, MA, United States.
| | - Elizabeth N Allred
- Boston Children's Hospital, and Harvard Medical School, Boston, MA, United States
| | | | - Raina N Fichorova
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Karl Kuban
- Boston Medical Center and Boston University, Boston, MA, United States
| | | | - Olaf Dammann
- Tufts University School of Medicine, Boston, MA, United States; Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
bFGF Protects Against Oxygen Glucose Deprivation/Reoxygenation-Induced Endothelial Monolayer Permeability via S1PR1-Dependent Mechanisms. Mol Neurobiol 2017; 55:3131-3142. [DOI: 10.1007/s12035-017-0544-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/07/2017] [Indexed: 12/21/2022]
|
19
|
Fann DYW, Ng GYQ, Poh L, Arumugam TV. Positive effects of intermittent fasting in ischemic stroke. Exp Gerontol 2017; 89:93-102. [PMID: 28115234 DOI: 10.1016/j.exger.2017.01.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/26/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
Intermittent fasting (IF) is a dietary protocol where energy restriction is induced by alternate periods of ad libitum feeding and fasting. Prophylactic intermittent fasting has been shown to extend lifespan and attenuate the progress and severity of age-related diseases such as cardiovascular (e.g. stroke and myocardial infarction), neurodegenerative (e.g. Alzheimer's disease and Parkinson's disease) and cancerous diseases in animal models. Stroke is the second leading cause of death, and lifestyle risk factors such as obesity and physical inactivity have been associated with elevated risks of stroke in humans. Recent studies have shown that prophylactic IF may mitigate tissue damage and neurological deficit following ischemic stroke by a mechanism(s) involving suppression of excitotoxicity, oxidative stress, inflammation and cell death pathways in animal stroke models. This review summarizes data supporting the potential hormesis mechanisms of prophylactic IF in animal models, and with a focus on findings from animal studies of prophylactic IF in stroke in our laboratory.
Collapse
Affiliation(s)
- David Yang-Wei Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
20
|
Yang PH, Zhu JX, Huang YD, Zhang XY, Lei P, Bush AI, Xiang Q, Su ZJ, Zhang QH. Human Basic Fibroblast Growth Factor Inhibits Tau Phosphorylation via the PI3K/Akt-GSK3β Signaling Pathway in a 6-Hydroxydopamine-Induced Model of Parkinson's Disease. NEURODEGENER DIS 2016; 16:357-69. [PMID: 27228974 DOI: 10.1159/000445871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/29/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Basic fibroblast growth factor (bFGF) has been increasingly investigated due to its neuroprotection in neurodegenerative disorders. Because there are still no cures for any of these disorders, it is crucial to identify new therapeutic targets and screen potential drugs. The increased phosphorylation of tau at Ser396 leads to intracellular tau accumulation, which forms neurofibrillary tangles in Parkinson's disease (PD). In this study, neuroprotection by bFGF was observed, and the mechanisms related to its regulation of phosphorylated tau were investigated. METHODS bFGF-loaded liposome carriers were intranasally administered to rats. The neuroprotective effects of bFGF were assessed in a PD model induced by 6-hydroxydopamine (6-OHDA) in vivo and in vitro. The phosphorylation of tau was measured, and the PI3K/Akt-GSK3β signaling pathway was investigated. RESULTS Our study demonstrated that liposomes markedly assisted in the delivery of bFGF to the striatum and substantia nigra of rats and enhanced the neuroprotective effects of bFGF on dopaminergic neurons. bFGF treatment significantly ameliorated the behavioral deficits induced by 6-OHDA, rescued the loss of tyrosine hydroxylase-positive neurons and increased the number of Nissl bodies. bFGF reduced the phosphorylation of tau and GSK3β and increased the phosphorylation of PI3K/Akt. CONCLUSION Liposomes markedly assisted in the delivery of bFGF to the brain and enhanced the neuroprotective effects of bFGF by inhibiting the phosphorylation of tau. bFGF down-regulated the phosphorylation of tau by increasing the phosphorylation of GSK3β via the PI3K/Akt signaling pathway. These findings provide a new vision of bFGF as a potential therapy for PD.
Collapse
Affiliation(s)
- Peng-Hui Yang
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
High-efficiency expression of TAT-bFGF fusion protein in Escherichia coli and the effect on hypertrophic scar tissue. PLoS One 2015; 10:e0117448. [PMID: 25706539 PMCID: PMC4338132 DOI: 10.1371/journal.pone.0117448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/19/2014] [Indexed: 01/09/2023] Open
Abstract
Background Basic fibroblast growth factor (bFGF) is a member of the fibroblast growth factor family that has effects on wounding healing and neuro-protection. However, it is difficult to use bFGF to treat diseases that are separated by physiological barriers, such as the dermal barrier and blood brain barrier. Methodology/Principal Findings To improve bFGF’s penetration ability, we fused the recombinant human fibroblast growth factor (rhbFGF) gene with TAT. We constructed a pET3c vector that contained the recombinant bFGF gene and successfully expressed this gene in the E. coli strain BL21 (DE3) pLsS. The fusion protein was purified using CM Sepharose FF and heparin affinity chromatography. The purity of the TAT-rhbFGF was greater than 95%, as detected by SDS-PAGE. An in vitro MTT trial revealed that the modified bFGF significantly promoted the proliferation of NIH3T3 cells. The cell penetration trial and the mouse skin penetration trial demonstrated that the fusion protein had certain penetration abilities. The animal experiments confirmed that TAT-rhbFGF was effective in the treatment of the hypertrophic scars. Conclusions/Significance We have successfully expressed and purified a TAT-rhbFGF fusion protein in this study. Our results have shown that the fusion protein had a greater ability to penetrate the dermal skin layer. TAT-rhbFGF improved the physical appearance of hypertrophic scars. TAT-rhbFGF may be a potential fusion protein in the treatment of dermal disorders, including hypertrophic scar.
Collapse
|
22
|
Decreased anti-regenerative effects after spinal cord injury in spry4-/- mice. Neuroscience 2014; 287:104-12. [PMID: 25541251 DOI: 10.1016/j.neuroscience.2014.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 11/22/2022]
Abstract
Previously, we have demonstrated a role for fibroblast growth factor (Fgf) in spinal cord regeneration in both zebrafish and mouse. We have shown that exogenous Fgf2 treatment attenuates astrocytic gliosis and induces glia cells to become progenitors that undergo neurogenesis as well as differentiating into bipolar astrocytes that support axonal regeneration (Goldshmit et al., 2012, 2014). One of the downstream signaling target genes of Fgf is spry4, which acts as a feedback inhibitor for Fgf signaling. In this study we examined the effects of increased endogenous Fgf signaling, in spry4-/- mice, on the early events that occur after spinal cord injury (SCI). We demonstrate that in spry4-/- mice inflammatory responses, such as tumor necrosis factor α (TNFα) secretion and macrophage/neutrophil invasion into the lesion site are reduced. In addition, astrocytic gliosis is attenuated and neuronal survival is increased. These results further support a pro-regenerative role of Fgf after SCI, and suggest that increased endogenous Fgf signaling after SCI may contribute to functional recovery and therefore presents this pathway as a target for new therapy development.
Collapse
|
23
|
Cohen G, Ettinger K, Lecht S, Lelkes PI, Lazarovici P. Transcriptional Down-regulation of Epidermal Growth Factor (EGF) Receptors by Nerve Growth Factor (NGF) in PC12 Cells. J Mol Neurosci 2014; 54:574-85. [DOI: 10.1007/s12031-014-0388-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022]
|
24
|
Kasai M, Jikoh T, Fukumitsu H, Furukawa S. FGF-2-responsive and spinal cord-resident cells improve locomotor function after spinal cord injury. J Neurotrauma 2014; 31:1584-98. [PMID: 20199141 DOI: 10.1089/neu.2009.1108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The adult central nervous system has only a limited capacity for axonal regeneration. In this study, fibroblast growth factor-2 (FGF-2) was injected once into the spinal cord tissue around the injury site immediately after complete spinal cord transection in rats. This treatment markedly improved the locomotor function of the animals. Histological analysis demonstrated that tissue composed of FGF-2-induced fibronectin-positive cells (FIFs) had infiltrated the injury site and filled large cystic cavities, into which numerous axons with growth-associated protein-43 immunoreactivity penetrated. The FIFs could also be cultured from the intact spinal cord tissue, demonstrating that they were resident in the non-injured spinal cord. They had a spindle-shaped morphology and enhanced expression of mRNAs of N-cadherin and neurotrophic factors, suggesting the beneficial properties of the FIFs for axonal regeneration. Thus, these results argue for the continual use of autologous transplantation as a novel and promising cell therapy for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Masaki Kasai
- Laboratory of Molecular Biology, Gifu Pharmaceutical University , Gifu, Japan
| | | | | | | |
Collapse
|
25
|
AS1069562, the (+)-isomer of indeloxazine, but not duloxetine has a curative-like analgesic effect in a rat model of streptozotocin-induced diabetic neuropathy. Neuropharmacology 2014; 79:10-6. [DOI: 10.1016/j.neuropharm.2013.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/25/2013] [Accepted: 10/27/2013] [Indexed: 02/06/2023]
|
26
|
Zhang C, Chen J, Feng C, Shao X, Liu Q, Zhang Q, Pang Z, Jiang X. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer's disease. Int J Pharm 2014; 461:192-202. [DOI: 10.1016/j.ijpharm.2013.11.049] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 11/04/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
|
27
|
Luan P, Zhou HH, Zhang B, Liu AM, Yang LH, Weng XL, Tao EX, Liu J. Basic fibroblast growth factor protects C17.2 cells from radiation-induced injury through ERK1/2. CNS Neurosci Ther 2013; 18:767-72. [PMID: 22943143 DOI: 10.1111/j.1755-5949.2012.00365.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIMS To establish a radiation-induced neural injury model using C17.2 neural stem cells (NSCs) and to investigate whether basic fibroblast growth factor (bFGF) can protect the radiation-induced injury of C17.2 NSCs. Furthermore, we aim to identify the possible mechanisms involved in this model. METHODS C17.2 NSCs received a single exposure (3, 6, and 9 Gy, respectively) at a dose rate of 300 cGy/min with a control group receiving 0 Gy. Different concentrations of bFGF were added for 24 h, 5 min postirradiation. The MTS assay and flow cytometry were used to detect cytotoxicity and apoptosis. Expression of FGFR1, ERK1/2, and p-ERK1/2 proteins was detected with or without U0126 was pretreated prior to C17.2 NSCs receiving irradiation. RESULTS C17.2 NSCs showed a dose-dependent cell death as the dose of radiation was increased. Additionally, the rate of apoptosis in the C17.2 NSCs reached 31.2 ± 1.23% in the 6 Gy irradiation group, which was the most significant when compared to the other irradiation treated groups. bFGF showed protective effect on cell apoptosis in a dose-dependent manner. The mean percentage of apoptotic cells decreased to 7.83 ± 1.75% when 100 ng/mL bFGF was given. Furthermore, U0126 could block the protective effect of bFGF by inhibiting the phosphorylation of ERK1/2. CONCLUSIONS An in vitro cellular model of radiation-induced apoptosis of NSCs, in C17.2 NSCs, was developed successfully. Additionally, bFGF can protect neurons from radiation injury in vitro via the ERK1/2 signal transduction pathway.
Collapse
Affiliation(s)
- Ping Luan
- Medical School, Shenzhen University, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Improvement in protocol to generate homogeneous glutamatergic neurons from mouse embryonic stem cells reduced apoptosis. Biochem Biophys Res Commun 2012; 430:604-9. [PMID: 23219817 DOI: 10.1016/j.bbrc.2012.11.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 11/27/2012] [Indexed: 12/11/2022]
Abstract
Obtaining a homogenous population of central nervous system neurons has been a significant challenge in neuroscience research; however, a recent study established a retinoic acid-treated embryoid bodies-based differentiation protocol that permits the effective generation of highly homogeneous glutamatergic cortical pyramidal neurons from embryonic stem cells. We were able to reproduce this protocol regarding the purity of glutamatergic neurons, but these neurons were not sufficiently healthy for long-term observation under the same conditions that were originally described. Here, we achieved a substantial improvement in cell survival by applying a simple technique: We changed the medium for glutamatergic neurons from the original complete medium to commercially available SBM (the Nerve-Cell Culture Medium manufactured by Sumitomo Bakelite Co. Ltd.) and finally succeeded in maintaining healthy neurons for at least 3 weeks without decreasing their purity. Because SBM contains glial conditioned medium, we postulated that brain-derived neurotrophic factor or basic fibroblast growth factor is the key components responsible for pro-survival effect of SBM on neurons, and examined their effects by adding them to CM. As a result, neither of them had pro-survival effect on pure glutamatergic neuronal population.
Collapse
|
29
|
Hendrickson ML, Ling C, Kalil RE. Degeneration of axotomized projection neurons in the rat dLGN: temporal progression of events and their mitigation by a single administration of FGF2. PLoS One 2012; 7:e46918. [PMID: 23144793 PMCID: PMC3489851 DOI: 10.1371/journal.pone.0046918] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022] Open
Abstract
Removal of visual cortex in the rat axotomizes projection neurons in the dorsal lateral geniculate nucleus (dLGN), leading to cytological and structural changes and apoptosis. Biotinylated dextran amine was injected into the visual cortex to label dLGN projection neurons retrogradely prior to removing the cortex in order to quantify the changes in the dendritic morphology of these neurons that precede cell death. At 12 hours after axotomy we observed a loss of appendages and the formation of varicosities in the dendrites of projection neurons. During the next 7 days, the total number of dendrites and the cross-sectional areas of the dendritic arbors of projection neurons declined to about 40% and 20% of normal, respectively. The response of dLGN projection neurons to axotomy was asynchronous, but the sequence of structural changes in individual neurons was similar; namely, disruption of dendrites began within hours followed by cell soma atrophy and nuclear condensation that commenced after the loss of secondary dendrites had occurred. However, a single administration of fibroblast growth factor-2 (FGF2), which mitigates injury-induced neuronal cell death in the dLGN when given at the time of axotomy, markedly reduced the dendritic degeneration of projection neurons. At 3 and 7 days after axotomy the number of surviving dendrites of dLGN projection neurons in FGF-2 treated rats was approximately 50% greater than in untreated rats, and the cross-sectional areas of dendritic arbors were approximately 60% and 50% larger. Caspase-3 activity in axotomized dLGN projection neurons was determined by immunostaining for fractin (fractin-IR), an actin cleavage product produced exclusively by activated caspase-3. Fractin-IR was seen in some dLGN projection neurons at 36 hours survival, and it increased slightly by 3 days. A marked increase in reactivity was seen by 7 days, with the entire dLGN filled with dense fractin-IR in neuronal cell somas and dendrites.
Collapse
Affiliation(s)
- Michael L. Hendrickson
- W.M. Keck Laboratory for Biological Imaging, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Changying Ling
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ronald E. Kalil
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
30
|
Effect of bFGF on neuronal damage induced by sequential treatment of amyloid β and excitatory amino acid in vitro and in vivo. Eur J Pharmacol 2012; 695:76-82. [DOI: 10.1016/j.ejphar.2012.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 11/18/2022]
|
31
|
Zhang HY, Zhang X, Wang ZG, Shi HX, Wu FZ, Lin BB, Xu XL, Wang XJ, Fu XB, Li ZY, Shen CJ, Li XK, Xiao J. Exogenous basic fibroblast growth factor inhibits ER stress-induced apoptosis and improves recovery from spinal cord injury. CNS Neurosci Ther 2012; 19:20-9. [PMID: 23082997 DOI: 10.1111/cns.12013] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 08/26/2012] [Accepted: 08/27/2012] [Indexed: 01/13/2023] Open
Abstract
AIM To investigate the mechanism of endoplasmic reticulum (ER) stress-induced apoptosis as well as the protective action of basic fibroblast growth factor (bFGF) both in vivo and in vitro. METHODS AND RESULTS ER stress-induced apoptosis was involved in the injuries of spinal cord injury (SCI) model rat. bFGF administration improved the recovery and increased the survival of neurons in spinal cord lesions in model rat. The protective effect of bFGF is related to the inhibition of CHOP, GRP78 and caspase-12, which are ER stress-induced apoptosis response proteins. bFGF administration also increased the survival of neurons and the expression of growth-associated protein 43 (GAP43), which is related to neural regeneration. The protective effect of bFGF is related to the activation of downstream signals, PI3K/Akt/GSK-3β and ERK1/2, especially in the ER stress cell model. CONCLUSIONS This is the first study to illustrate that the role of bFGF in SCI recovery is related to the inhibition of ER stress-induced cell death via the activation of downstream signals. Our work also suggested a new trend for bFGF drug development in central neural system injuries, which are involved in chronic ER stress-induced apoptosis.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical College, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zamburlin P, Ruffinatti FA, Gilardino A, Farcito S, Lovisolo D. Calcium signals induced by FGF-2 in parasympathetic neurons: role of second messenger pathways. Neurosci Lett 2012; 523:30-4. [PMID: 22732451 DOI: 10.1016/j.neulet.2012.06.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/25/2012] [Accepted: 06/13/2012] [Indexed: 11/18/2022]
Abstract
Basic Fibroblast Growth Factor, or FGF-2, has been shown to promote neuronal survival and neurite outgrowth in dissociated neurons from the embryonic chick ciliary ganglion; in these effects the three main signal transduction pathways downstream the activated FGFR receptor, i.e. the MAPK, the PI3-K and the PLCγ ones, are differentially involved. While it has been shown that FGF-2 can elicit long lasting elevations in intracellular calcium concentration, [Ca(2+)](i), the role of the three pathways in this process has not been elucidated. Here we show, by means of pharmacological inhibitors, that all three are involved, at a different extent, in the generation of the [Ca(2+)](i) increase induced by FGF-2; in particular, inhibition of the PLCγ pathway, in addition to reducing the number of responsive cells, induces, in a significant population of cells, basal calcium oscillations in the absence of the growth factor and interferes with calcium signals elicited by depolarization. We propose that this complex behaviour can be due to a perturbation in PIP(2) levels at the plasmamembrane.
Collapse
Affiliation(s)
- Pollyanna Zamburlin
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy
| | | | | | | | | |
Collapse
|
33
|
Huang Z, Ye C, Liu Z, Wang X, Chen H, Liu Y, Tang L, Zhao H, Wang J, Feng W, Li X. Solid-Phase N-Terminus PEGylation of Recombinant Human Fibroblast Growth Factor 2 on Heparin-Sepharose Column. Bioconjug Chem 2012; 23:740-50. [DOI: 10.1021/bc200550f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhifeng Huang
- Key Laboratory of
Biotechnology
and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou 325035, China
- Normal Bethune Medical College, Jilin University, Changchun, 130021, China
| | - Chaohui Ye
- Key Laboratory of
Biotechnology
and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou 325035, China
| | - Zhijun Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiaojie Wang
- Key Laboratory of
Biotechnology
and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou 325035, China
| | - Huaibin Chen
- Key Laboratory of
Biotechnology
and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou 325035, China
| | - Yanlong Liu
- Key Laboratory of
Biotechnology
and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou 325035, China
| | - Lu Tang
- Key Laboratory of
Biotechnology
and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou 325035, China
| | - Hongxin Zhao
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Junfeng Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenke Feng
- Key Laboratory of
Biotechnology
and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou 325035, China
- Department of Medicine, University of Louisville, Louisville, Kentucky 40202,
United States
| | - Xiaokun Li
- Key Laboratory of
Biotechnology
and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou 325035, China
- Normal Bethune Medical College, Jilin University, Changchun, 130021, China
| |
Collapse
|
34
|
Bye N, Turnley AM, Morganti-Kossmann MC. Inflammatory regulators of redirected neural migration in the injured brain. Neurosignals 2012; 20:132-46. [PMID: 22456466 DOI: 10.1159/000336542] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/16/2012] [Indexed: 01/19/2023] Open
Abstract
Brain injury following stroke or trauma induces the migration of neuroblasts derived from subventricular zone neural precursor cells (NPCs) towards the damaged tissue, where they then have the potential to contribute to repair. Enhancing the recruitment of new cells thus presents an enticing prospect for the development of new therapeutic approaches to treat brain injury; to this end, an understanding of the factors regulating this process is required. During the neuroinflammatory response to ischemic and traumatic brain injuries, a plethora of pro- and anti-inflammatory cytokines, chemokines and growth factors are released in the damaged tissue, and recent work indicates that a variety of these are able to influence injury-induced migration. In this review, we will discuss the contribution of specific chemokines and growth factors towards stimulating NPC migration in the injured brain.
Collapse
Affiliation(s)
- Nicole Bye
- National Trauma Research Institute, Alfred Hospital, Department of Surgery, Monash University, Melbourne, Vic, Australia.
| | | | | |
Collapse
|
35
|
Salmaso N, Cossette MP, Woodside B. Pregnancy and maternal behavior induce changes in glia, glutamate and its metabolism within the cingulate cortex. PLoS One 2011; 6:e23529. [PMID: 21909402 PMCID: PMC3167812 DOI: 10.1371/journal.pone.0023529] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 07/20/2011] [Indexed: 11/18/2022] Open
Abstract
An upregulation of the astrocytic proteins GFAP and bFGF within area 2 of the cingulate cortex (Cg2) occurs within 3 hours of parturition in rats. These changes are the result of an interaction between hormonal state and maternal experience and are associated with increased dendritic spine density in this area. Here, we examined whether this upregulation of astrocytic proteins generalized to other glial markers and, in particular those associated with glutamate metabolism. We chose glial markers commonly used to reflect different aspects of glial function: vimentin, like GFAP, is a marker of intermediate filaments; glutamine synthetase (GS), and S-100beta, are used as markers for mature astrocytes and GS has also been used as a specific marker for glutamatergic enzymatic activity. In addition, we examined levels of proteins associated with glutamine synthetase, glutamate, glutamine and two excitatory amino acid transporters found in astrocytes, glt-1 and glast. S100beta immunoreactivity did not vary with reproductive state in either Cg2 or MPOA suggesting no change in the number of mature astrocytes across these conditions. Vimentin-ir did not differ across groups in Cg2, but expression of this protein decreased from Day 1 postpartum onwards in the MPOA. By contrast, GS-ir was increased within 24 h postpartum in Cg2 but not MPOA and similarly to GFAP and bFGF this upregulation of GS resulted from an interaction between hormonal state and maternal experience. Within Cg2, upregulation of GS was not accompanied by changes in the astrocytic glutamatergic transporters, glt-1 and glast, however, an increase in both glutamate and glutamine proteins were observed within the Cg2 of postpartum animals. Together, these changes suggest postpartum upregulation of glutamatergic activity and metabolism within Cg2 that is stimulated by pregnancy hormones and maternal experience.
Collapse
Affiliation(s)
- Natalina Salmaso
- Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America.
| | | | | |
Collapse
|
36
|
Nemati F, Kolb B. FGF-2 induces behavioral recovery after early adolescent injury to the motor cortex of rats. Behav Brain Res 2011; 225:184-91. [PMID: 21801753 DOI: 10.1016/j.bbr.2011.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/09/2011] [Accepted: 07/13/2011] [Indexed: 11/30/2022]
Abstract
Motor cortex injuries in adulthood lead to poor performance in behavioral tasks sensitive to limb movements in the rat. We have shown previously that motor cortex injury on day 10 or day 55 allow significant spontaneous recovery but not injury in early adolescence (postnatal day 35 "P35"). Previous studies have indicated that injection of basic fibroblast growth factor (FGF-2) enhances behavioral recovery after neonatal cortical injury but such effect has not been studied following motor cortex lesions in early adolescence. The present study undertook to investigate the possibility of such behavioral recovery. Rats with unilateral motor cortex lesions were assigned to two groups in which they received FGF-2 or bovine serum albumin (BSA) and were tested in a number of behavioral tests (postural asymmetry, skilled reaching, sunflower seed manipulation, forepaw inhibition in swimming). Golgi-Cox analysis was used to examine the dendritic structure of pyramidal cells in the animals' parietal (layer III) and forelimb (layer V) area of the cortex. The results indicated that rats injected with FGF-2 (but not BSA) showed significant behavioral recovery that was associated with increased dendritic length and spine density. The present study suggests a role for FGF-2 in the recovery of function following injury during early adolescence.
Collapse
Affiliation(s)
- Farshad Nemati
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4.
| | | |
Collapse
|
37
|
Yoo KY, Hwang IK, Lee CH, Choi JH, Kwon SH, Kang IJ, You SG, Kim YM, Won MH. Difference of fibroblast growth factor receptor 1 expression among CA1-3 regions of the gerbil hippocampus after transient cerebral ischemia. J Neurol Sci 2010; 296:13-21. [PMID: 20621308 DOI: 10.1016/j.jns.2010.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 06/16/2010] [Accepted: 06/17/2010] [Indexed: 12/17/2022]
Abstract
Fibroblast growth factors are important regulators of neuronal development. In this study, we observed fibroblast growth factor receptor 1 (FGFR1) immunoreactivity and its protein levels in the hippocampus proper (CA1-3 regions) of the gerbil at various time points after ischemia/reperfusion. In the sham-operated group, FGFR1 immunoreaction was not detected in the hippocampus proper. FGFR1 immunoreaction was first detected in non-pyramidal neurons in the CA1-3 region at 12h and 1day after ischemia/reperfusion. From 2days after ischemia/reperfusion, FGFR1 immunoreaction was found in astrocytes, not in microglial cells, in the CA1 region: FGFR1 immunoreactivity and the number of astrocytes were significantly increased at 5days post-ischemia. Western blot analysis revealed that FGFR1 protein levels were also increased from 1day after ischemia/reperfusion. These results indicate that increase of FGFR1 in astrocytes of the ischemic CA1 region may be associated with gliosis followed by delayed neuronal death.
Collapse
Affiliation(s)
- Ki-Yeon Yoo
- Department of Anatomy and Neurobiology, and Institute of Neurodegeneration and Neuroregeneration, College of Medicine, Hallym University, Chuncheon 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rudenko O, Tkach V, Berezin V, Bock E. Effects of FGF receptor peptide agonists on animal behavior under normal and pathological conditions. Neurosci Res 2010; 68:35-43. [PMID: 20562017 DOI: 10.1016/j.neures.2010.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 04/25/2010] [Accepted: 05/10/2010] [Indexed: 01/19/2023]
Abstract
Hexafins are recently identified low-molecular-weight peptide agonists of the fibroblast growth factor receptor (FGFR), derived from the beta6-beta7 loop region of various FGFs. Synthetic hexafin peptides have been shown to bind to and induce tyrosine phosphorylation of FGFR1, stimulate neurite outgrowth, and promote neuronal survival in vitro. Thus, the pronounced biological activities of hexafins in vitro make them attractive compounds for pharmacological studies in vivo. The present study investigated the effects of subcutaneous administration of hexafin1 and hexafin2 (peptides derived from FGF1 and FGF2, respectively) on social memory, exploratory activity, and anxiety-like behavior in adult rats. Treatment with hexafin1 and hexafin2 resulted in prolonged retention of social memory. Furthermore, rats treated with hexafin2 exhibited decreased anxiety-like behavior in the elevated plus maze. Employing an R6/2 mouse model of Huntington's disease (HD), we found that although hexafin2 did not affect the progression of motor symptoms, it alleviated deficits in activity related to social behavior, including sociability and social novelty. Thus, hexafin2 may have therapeutic potential for the treatment of HD.
Collapse
Affiliation(s)
- Olga Rudenko
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
39
|
Gilardino A, Farcito S, Zamburlin P, Audisio C, Lovisolo D. Specificity of the second messenger pathways involved in basic fibroblast growth factor-induced survival and neurite growth in chick ciliary ganglion neurons. J Neurosci Res 2010; 87:2951-62. [PMID: 19405103 DOI: 10.1002/jnr.22116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Basic fibroblast growth factor (bFGF) exerts multiple neurotrophic actions on cultured neurons from the ciliary ganglion of chick embryo, among them promotion of neuronal survival and of neurite outgrowth. To understand the specificity of the signal transduction cascades involved in the control of these processes, we used pharmacological inhibitors of the three main effectors known to act downstream of the bFGF receptor (FGFR): phospholipase Cgamma (PLCgamma), mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase (PI3-K). Neuronal survival was assessed at 24 and 48 hr; neurite growth was analyzed both on dissociated neurons and on explants of whole ganglia. Our data show that only the PI3-K pathway is involved in the survival-promoting effect of bFGF; on the other hand, all three effectors converge on the enhancement of neurite outgrowth, both on isolated neurons and in whole ganglia.
Collapse
|
40
|
Hu HW, Li XK, Zheng RY, Xiao J, Zeng JQ, Hou ST. bFGF expression mediated by a hypoxia-regulated adenoviral vector protects PC12 cell death induced by serum deprivation. Biochem Biophys Res Commun 2009; 390:115-20. [PMID: 19782044 DOI: 10.1016/j.bbrc.2009.09.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 09/19/2009] [Indexed: 10/20/2022]
Abstract
Basic fibroblast growth factor (bFGF) is a known neuroprotectant against a number of brain injury conditions such as cerebral ischemia. However, bFGF also regulates a plethora of brain developmental processes and functions as a strong mitogen. Therefore, unregulated long-term expression of bFGF in brain may potentially be tumorigenic, limiting its utility in brain therapy. Here, we report the successful construction of an adenoviral vector (Ad-5HRE-bFGF) expressing bFGF under the regulation of five hypoxia-responsive elements (5HRE) and a minimal cytomegalovirus promoter (CMVmp). Following hypoxia treatment in a hypoxic chamber with less than 1% of oxygen, Ad-5HRE-bFGF induced a significant and time-dependent expression of bFGF protein and the fluorescent tag, humanized GFP (hrGFP) protein, in infected PC12 cells. In contrast, normoxia treatment evoked extremely low level of bFGF and hrGFP expression, demonstrating that the 5HRE-CMVmp cassette was effective in regulating the expression of bFGF gene in response to hypoxia. More importantly, bFGF expressed by the Ad-5HRE-bFGF viral vector under the regulation of hypoxia was significantly neuroprotective against PC12 cell death evoked by serum deprivation. Taken together, these studies demonstrated the feasibility to express bFGF in a hypoxia-regulated fashion to provide neuroprotection. The Ad-5HRE-bFGF can be further developed as an effective tool to provide neuroprotection against hypoxia-induced brain diseases, such as cerebral ischemia.
Collapse
Affiliation(s)
- Hou-Wen Hu
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou City, Zhejiang Province, PR China
| | | | | | | | | | | |
Collapse
|
41
|
A quantitative approach to the dynamics of neurite sprouting induced by a neurotrophic factor. J Neurosci Methods 2009; 185:178-83. [PMID: 19765612 DOI: 10.1016/j.jneumeth.2009.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 11/22/2022]
Abstract
The sprouting, stabilization and growth of neurites is a dynamic process by which developing neurons establish connections with the other elements of the nervous system; this process is under the control of extracellular cues, among which neurotrophic factors play a crucial role. Due to the complexity of the spatiotemporal evolution of the neurite network, particularly in the early stages of growth, it is not easy to obtain information about the relevant parameters from qualitative observations. We have developed a quantitative description of the dynamics of production and stabilization of neuritic processes in a well-characterized experimental model of peripheral neurons in culture, and we have combined it with a simulation approach to extract the differences between the behaviour in the absence and in the presence of the neurotrophic factor basic Fibroblast Growth Factor (bFGF). We show that the factor rapidly stabilizes the neuronal morphology to a bipolar phenotype, by shifting the sprouting process from a disordered phase to a more ordered and organized one.
Collapse
|
42
|
Graham BM, Richardson R. Acute systemic fibroblast growth factor-2 enhances long-term memory in developing rats. Neurobiol Learn Mem 2009; 91:424-30. [DOI: 10.1016/j.nlm.2008.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/08/2008] [Accepted: 12/09/2008] [Indexed: 10/21/2022]
|
43
|
Salmaso N, Nadeau J, Woodside B. Steroid hormones and maternal experience interact to induce glial plasticity in the cingulate cortex. Eur J Neurosci 2009; 29:786-94. [DOI: 10.1111/j.1460-9568.2009.06627.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One 2008; 3:e3511. [PMID: 18958151 PMCID: PMC2568804 DOI: 10.1371/journal.pone.0003511] [Citation(s) in RCA: 466] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 10/03/2008] [Indexed: 12/05/2022] Open
Abstract
Possessing the ability to noninvasively elicit brain circuit activity yields immense experimental and therapeutic power. Most currently employed neurostimulation methods rely on the somewhat invasive use of stimulating electrodes or photon-emitting devices. Due to its ability to noninvasively propagate through bone and other tissues in a focused manner, the implementation of ultrasound (US) represents a compelling alternative approach to current neuromodulation strategies. Here, we investigated the influence of low-intensity, low-frequency ultrasound (LILFU) on neuronal activity. By transmitting US waveforms through hippocampal slice cultures and ex vivo mouse brains, we determined LILFU is capable of remotely and noninvasively exciting neurons and network activity. Our results illustrate that LILFU can stimulate electrical activity in neurons by activating voltage-gated sodium channels, as well as voltage-gated calcium channels. The LILFU-induced changes in neuronal activity were sufficient to trigger SNARE-mediated exocytosis and synaptic transmission in hippocampal circuits. Because LILFU can stimulate electrical activity and calcium signaling in neurons as well as central synaptic transmission we conclude US provides a powerful tool for remotely modulating brain circuit activity.
Collapse
|
45
|
Neurobin/TMPRSS11c, a novel type II transmembrane serine protease that cleaves fibroblast growth factor-2 in vitro. Biochem J 2008; 412:81-91. [PMID: 18215125 DOI: 10.1042/bj20071432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TTSPs [type II TMPRSSs (transmembrane serine proteases)] are a growing family of trypsin-like enzymes with, in some cases, restricted tissue distribution. To investigate the expression of TTSPs in the nervous system, we performed a PCR-based screening approach with P10 (postnatal day 10) mouse spinal cord mRNA. We detected the expression of five known TTSPs and identified a novel TTSP, which we designated neurobin. Neurobin consists of 431 amino acids. In the extracellular part, neurobin contains a single SEA (sea-urchin sperm protein, enterokinase and agrin) domain and a C-terminal serine protease domain. RT-PCR (reverse transcription-PCR) analysis indicated the expression of neurobin in spinal cord and cerebellum. Histochemical analysis of brain sections revealed distinct staining of Purkinje neurons of the cerebellum. Transiently overexpressed neurobin was autocatalytically processed and inserted into the plasma membrane. Autocatalytic activation could be suppressed by mutating Ser(381) in the catalytic pocket to an alanine residue. The protease domain of neurobin, produced in Escherichia coli and refolded from inclusion bodies, cleaved chromogenic peptides with an arginine residue in position P(1). Serine protease inhibitors effectively suppressed the proteolytic activity of recombinant neurobin. Ca2+ or Na+ ions did not significantly modulate the catalytic activity of the protease. Recombinant neurobin processed 17-kDa FGF-2 (fibroblast growth factor-2) at several P(1) lysine and arginine positions to distinct fragments, in a heparin-inhibitable manner, but did not cleave FGF-7, laminin or fibronectin. These results indicate that neurobin is an authentic TTSP with trypsin-like activity and is able to process FGF-2 in vitro.
Collapse
|
46
|
Fumagalli F, Madaschi L, Brenna P, Caffino L, Marfia G, Di Giulio AM, Racagni G, Gorio A. Single exposure to erythropoietin modulates Nerve Growth Factor expression in the spinal cord following traumatic injury: Comparison with methylprednisolone. Eur J Pharmacol 2008; 578:19-27. [PMID: 17936749 DOI: 10.1016/j.ejphar.2007.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/31/2007] [Accepted: 09/24/2007] [Indexed: 11/30/2022]
|
47
|
Bellucci C, Lilli C, Baroni T, Parnetti L, Sorbi S, Emiliani C, Lumare E, Calabresi P, Balloni S, Bodo M. Differences in extracellular matrix production and basic fibroblast growth factor response in skin fibroblasts from sporadic and familial Alzheimer's disease. Mol Med 2007; 13:542-50. [PMID: 17660861 PMCID: PMC1933258 DOI: 10.2119/2007-00034.bellucci] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 07/09/2007] [Indexed: 11/06/2022] Open
Abstract
Extracellular matrix (ECM) molecules and growth factors, such as fibroblast growth factor (FGF), play a crucial role in Alzheimer's disease (AD). The purpose of this investigation was to determine whether phenotypic alterations in ECM production are present in non-neuronal AD cells associated with different FGF expression and response. Synthesis of glycosaminoglycans (GAG) and collagen were measured in skin fibroblasts from patients with familial, sporadic AD (FAD and SAD respectively), and from age-matched controls by radiolabeled precursors. Proteoglycans (PG), metalloprotease (MMP)-1, and FGF gene expressions were measured by reverse transcription-polymerase chain reaction. The results showed different ECM neosynthesis and mRNA levels in the two AD fibroblast populations. FAD accumulated more collagen and secreted less GAG than SAD. Biglycan PG was upregulated in FAD while betaglycan, syndecan, and decorin were markedly downregulated in SAD fibroblasts. We found a significant decrease of MMP1, more marked in FAD than in SAD fibroblasts. Constitutive FGF expression was greatly reduced in both pathological conditions (SAD>FAD). Moreover, an inverse high affinity/low affinity FGF receptor ratio between SAD and FAD fibroblasts was observed. FGF treatment differently modulated ECM molecule production and gene expression in the two cell populations. These observations in association with the changes in FGF gene expression and in the FGF receptor number, suggest that cellular mechanisms downstream from FGF receptor binding are involved in the two different forms of AD.
Collapse
Affiliation(s)
- Catia Bellucci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Cinzia Lilli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Tiziano Baroni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Lucilla Parnetti
- Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy
| | - Sandro Sorbi
- Department of Neurologic and Psychiatric Sciences, University of Firenze, Italy
| | - Carla Emiliani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | | | - Paolo Calabresi
- Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy
| | - Stefania Balloni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy
| | - Maria Bodo
- Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy
- Address correspondence and reprint requests to Maria Bodo, Department of Specialistic Medicine and Public Health, Neuroscience Clinical section, University of Perugia, Italy. Phone/Fax: 075-5857432; E-mail:
| |
Collapse
|
48
|
Preissler T, Luft T, Kapczinski F, Quevedo J, Schwartsmann G, Roesler R. Basic Fibroblast Growth Factor Prevents the Memory Impairment Induced by Gastrin-Releasing Peptide Receptor Antagonism in Area CA1 of the Rat Hippocampus. Neurochem Res 2007; 32:1381-6. [PMID: 17406984 DOI: 10.1007/s11064-007-9320-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
Increasing evidence indicates that the gastrin-releasing peptide receptor (GRPR) is implicated in regulating synaptic plasticity and memory formation in the hippocampus and other brain areas. However, the molecular mechanisms underlying the memory-impairing effects of GRPR antagonism have remained unclear. Here we report that basic fibroblast growth factor (bFGF/FGF-2) rescues the memory impairment induced by GRPR antagonism in the rat dorsal hippocampus. The GRPR antagonist [D-Tpi(6), Leu(13) psi(CH(2)NH)-Leu(14)] bombesin (6-14) (RC-3095) at 1.0 microg impaired, whereas bFGF at 0.25 microg enhanced, 24 h retention of inhibitory avoidance (IA) when infused immediately after training into the CA1 hippocampal area in male rats. Coinfusion with an otherwise ineffective dose of bFGF blocked the memory-impairing effect of RC-3095. These findings suggest that the memory-impairing effects of GRPR antagonists might be partially mediated by an inhibition in the function and/or expression of neuronal bFGF or diminished activation of intracellular protein kinase pathways associated with bFGF signaling.
Collapse
Affiliation(s)
- Thales Preissler
- Department of Pharmacology, Institute for Basic Health Sciences, Cellular and Molecular Neuropharmacology Research Group, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Zamburlin P, Gilardino A, Dalmazzo S, Ariano P, Lovisolo D. Temporal dynamics of neurite outgrowth promoted by basic fibroblast growth factor in chick ciliary ganglia. J Neurosci Res 2006; 84:505-14. [PMID: 16786578 DOI: 10.1002/jnr.20954] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Basic fibroblast growth factor (bFGF) is a potent and multifunctional neurotrophic factor that can influence neuronal survival and differentiation. It has been shown to modulate growth and orientation of neuritic processes both in intact organs and in neuronal cultures, with a wide spectrum of effects on different preparations. Here we report that it promotes neurite growth in developing parasympathetic neurons from the chick ciliary ganglion. We have used both organotypic cultures and dissociated neurons, and we have combined assessment of global neurite growth by immunocytochemical techniques with evaluation of dynamic parameters of single neurites via time-lapse microscopy. We show that laminin, a molecule of the extracellular matrix that has been associated with stimulation of neurite extension, has only a limited and short-lived effect on neurite outgrowth. In contrast, bFGF can promote global growth of the neuritic network both in whole ganglia and in dissociated cultures for times up to 48 hr, and this effect is related to an increase in the growth rate of single neurites. Moreover, the effect can be observed even in enriched neuronal cultures, pointing to a direct action of bFGF on neurons.
Collapse
|
50
|
Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry M. Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull 2006; 70:221-7. [PMID: 16861106 DOI: 10.1016/j.brainresbull.2006.04.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 03/07/2006] [Accepted: 04/13/2006] [Indexed: 11/17/2022]
Abstract
INTRODUCTION FGF-2 is important for stem cell proliferation, neocortical development and adult neuronal survival and growth. Reduced frontal cortical FGF-2 expression is described in major depression and is attenuated by antidepressants. We determined the distribution of hippocampal FGF-2 and its receptor (FGFR1) mRNA in post-mortem brains of people who suffered from major depression, bipolar disorder and schizophrenia and those of controls. METHODS FGF-2 and FGFR1 mRNA were measured within hippocampal CA1, CA4 regions and the dentate gyrus (DG), using in situ hybridization. Within hippocampal regions, cellular staining was compared between diagnostic groups, using repeated measures analysis of variance. RESULTS The density of FGF-2 mRNA+ cells in CA4 was reduced in depression compared to controls. The percentage of FGFR1 mRNA+ cells was higher in depression (CA1 and CA4) and schizophrenia (CA4) than in controls. FGFR1 mRNA expression was higher in depression than in the other groups in CA1, CA4 and DG. Overall FGF-2 mRNA expression was higher in DG than in CA1 and CA4. CONCLUSIONS We found raised measures of FGFR1 mRNA+ in major depression and, less so, in schizophrenia, along with reduced FGF-2 mRNA density in depression. Perturbations of FGF regulation could be relevant to the pathogenesis of both disorders as FGF-2 and FGFR1 are implicated in normal hippocampal synaptology, stem cell recruitment, and connectivity, and are modulated by corticosteroids.
Collapse
Affiliation(s)
- Fiona Gaughran
- Institute of Psychiatry, De Crespigny Park, London SE5 8AF, United Kingdom.
| | | | | | | | | |
Collapse
|