1
|
Schmidtke DT, Hickey AS, Liachko I, Sherlock G, Bhatt AS. Analysis and culturing of the prototypic crAssphage reveals a phage-plasmid lifestyle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585998. [PMID: 38562748 PMCID: PMC10983915 DOI: 10.1101/2024.03.20.585998] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The prototypic crAssphage (Carjivirus communis) is one of the most abundant, prevalent, and persistent gut bacteriophages, yet it remains uncultured and its lifestyle uncharacterized. For the last decade, crAssphage has escaped plaque-dependent culturing efforts, leading us to investigate alternative lifestyles that might explain its widespread success. Through genomic analyses and culturing, we find that crAssphage uses a phage-plasmid lifestyle to persist extrachromosomally. Plasmid-related genes are more highly expressed than those implicated in phage maintenance. Leveraging this finding, we use a plaque-free culturing approach to measure crAssphage replication in culture with Phocaeicola vulgatus, Phocaeicola dorei, and Bacteroides stercoris, revealing a broad host range. We demonstrate that crAssphage persists with its hosts in culture without causing major cell lysis events or integrating into host chromosomes. The ability to switch between phage and plasmid lifestyles within a wide range of hosts contributes to the prolific nature of crAssphage in the human gut microbiome.
Collapse
Affiliation(s)
- Danica T. Schmidtke
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | | | | | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, CA, USA
- Senior author
| | - Ami S. Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Division of Hematology), Stanford University, Stanford, CA, USA
- Lead corresponding author
- Senior author
| |
Collapse
|
2
|
de Sousa JM, Fillol-Salom A, Penadés JR, Rocha EC. Identification and characterization of thousands of bacteriophage satellites across bacteria. Nucleic Acids Res 2023; 51:2759-2777. [PMID: 36869669 PMCID: PMC10085698 DOI: 10.1093/nar/gkad123] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Bacteriophage-bacteria interactions are affected by phage satellites, elements that exploit phages for transfer between bacteria. Satellites can encode defense systems, antibiotic resistance genes, and virulence factors, but their number and diversity are unknown. We developed SatelliteFinder to identify satellites in bacterial genomes, detecting the four best described families: P4-like, phage inducible chromosomal islands (PICI), capsid-forming PICI, and PICI-like elements (PLE). We vastly expanded the number of described elements to ∼5000, finding bacterial genomes with up to three different families of satellites. Most satellites were found in Proteobacteria and Firmicutes, but some are in novel taxa such as Actinobacteria. We characterized the gene repertoires of satellites, which are variable in size and composition, and their genomic organization, which is very conserved. Phylogenies of core genes in PICI and cfPICI indicate independent evolution of their hijacking modules. There are few other homologous core genes between other families of satellites, and even fewer homologous to phages. Hence, phage satellites are ancient, diverse, and probably evolved multiple times independently. Given the many bacteria infected by phages that still lack known satellites, and the recent proposals for novel families, we speculate that we are at the beginning of the discovery of massive numbers and types of satellites.
Collapse
Affiliation(s)
- Jorge A Moura de Sousa
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Alfred Fillol-Salom
- Center for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - José R Penadés
- Center for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| |
Collapse
|
3
|
Moura de Sousa JA, Rocha EPC. To catch a hijacker: abundance, evolution and genetic diversity of P4-like bacteriophage satellites. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200475. [PMID: 34839713 PMCID: PMC8628076 DOI: 10.1098/rstb.2020.0475] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacteriophages (phages) are bacterial parasites that can themselves be parasitized by phage satellites. The molecular mechanisms used by satellites to hijack phages are sometimes understood in great detail, but the origins, abundance, distribution and composition of these elements are poorly known. Here, we show that P4-like elements are present in more than 30% of the genomes of Enterobacterales, and in almost half of those of Escherichia coli, sometimes in multiple distinct copies. We identified over 1000 P4-like elements with very conserved genetic organization of the core genome and a few hotspots with highly variable genes. These elements are never found in plasmids and have very little homology to known phages, suggesting an independent evolutionary origin. Instead, they are scattered across chromosomes, possibly because their integrases are often exchanged with other elements. The rooted phylogenies of hijacking functions are correlated and suggest longstanding coevolution. They also reveal broad host ranges in P4-like elements, as almost identical elements can be found in distinct bacterial genera. Our results show that P4-like phage satellites constitute a very distinct, widespread and ancient family of mobile genetic elements. They pave the way for studying the molecular evolution of antagonistic interactions between phages and their satellites. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Jorge A Moura de Sousa
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| |
Collapse
|
4
|
Borodovich T, Shkoporov AN, Ross RP, Hill C. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac012. [PMID: 35425613 PMCID: PMC9006064 DOI: 10.1093/gastro/goac012] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/08/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
Abstract
Horizontal gene transfer (HGT) in the microbiome has profound consequences for human health and disease. The spread of antibiotic resistance genes, virulence, and pathogenicity determinants predominantly occurs by way of HGT. Evidence exists of extensive horizontal transfer in the human gut microbiome. Phage transduction is a type of HGT event in which a bacteriophage transfers non-viral DNA from one bacterial host cell to another. The abundance of tailed bacteriophages in the human gut suggests that transduction could act as a significant mode of HGT in the gut microbiome. Here we review in detail the known mechanisms of phage-mediated HGT, namely specialized and generalized transduction, lateral transduction, gene-transfer agents, and molecular piracy, as well as methods used to detect phage-mediated HGT, and discuss its potential implications for the human gut microbiome.
Collapse
Affiliation(s)
- Tatiana Borodovich
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Corresponding author. APC Microbiome Ireland, Biosciences Institute, University College Cork, Room 3.63, College Road, Cork, T12 YT20, Ireland.
| | - Andrey N Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Ibarra-Chávez R, Hansen MF, Pinilla-Redondo R, Seed KD, Trivedi U. Phage satellites and their emerging applications in biotechnology. FEMS Microbiol Rev 2021; 45:fuab031. [PMID: 34104956 PMCID: PMC8632786 DOI: 10.1093/femsre/fuab031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The arms race between (bacterio)phages and their hosts is a recognised hot spot for genome evolution. Indeed, phages and their components have historically paved the way for many molecular biology techniques and biotech applications. Further exploration into their complex lifestyles has revealed that phages are often parasitised by distinct types of hyperparasitic mobile genetic elements. These so-called phage satellites exploit phages to ensure their own propagation and horizontal transfer into new bacterial hosts, and their prevalence and peculiar lifestyle has caught the attention of many researchers. Here, we review the parasite-host dynamics of the known phage satellites, their genomic organisation and their hijacking mechanisms. Finally, we discuss how these elements can be repurposed for diverse biotech applications, kindling a new catalogue of exciting tools for microbiology and synthetic biology.
Collapse
Affiliation(s)
- Rodrigo Ibarra-Chávez
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Rafael Pinilla-Redondo
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Jia M, Geornaras I, Martin JN, Belk KE, Yang H. Comparative Whole Genome Analysis of Escherichia coli O157:H7 Isolates From Feedlot Cattle to Identify Genotypes Associated With the Presence and Absence of stx Genes. Front Microbiol 2021; 12:647434. [PMID: 33868205 PMCID: PMC8046923 DOI: 10.3389/fmicb.2021.647434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/28/2021] [Indexed: 11/13/2022] Open
Abstract
A comparative whole genome analysis was performed on three newly sequenced Escherichia coli O157:H7 strains with different stx profiles, previously isolated from feedlot cattle [C1-010 (stx1-, stx2c+), C1-057 (stx-), and C1-067 (stx1+, stx2a+)], as well as five foodborne outbreak strains and six stx-negative strains from NCBI. Phylogenomic analysis demonstrated that the stx2c-carrying C1-010 and stx-negative C1-057 strains were grouped with the six NCBI stx-negative E. coli O157:H7 strains in Cluster 1, whereas the stx2a-carrying C1-067 and five foodborne outbreak strains were clustered together in Cluster 2. Based on different clusters, we selected the three newly sequenced strains, one stx2a-carrying strain, and the six NCBI stx-negative strains and identify their prophages at the stx insertion sites. All stx-carrying prophages contained both the three Red recombination genes (exo, bet, gam) and their repressor cI. On the other hand, the majority of the stx-negative prophages carried only the three Red recombination genes, but their repressor cI was absent. In the absence of the repressor cI, the consistent expression of the Red recombination genes in prophages might result in more frequent gene exchanges, potentially increasing the probability of the acquisition of stx genes. We further investigated each of the 10 selected E. coli O157:H7 strains for their respective unique metabolic pathway genes. Seven unique metabolic pathway genes in the two stx2a-carrying strains and one in the single stx2c-carrying and seven stx-negative strains were found to be associated with an upstream insertion sequence 629 within a conserved region among these strains. The presence of more unique metabolic pathway genes in stx2a-carrying E. coli O157:H7 strains may potentially increase their competitiveness in complex environments, such as feedlot cattle. For the stx2c-carrying and stx-negative E. coli O157:H7 strains, the fact that they were grouped into the same phylogenomic cluster and had the same unique metabolic pathway genes suggested that they may also share closely related evolutionary pathways. As a consequence, gene exchange between them is more likely to occur. Results from this study could potentially serve as a basis to help develop strategies to reduce the prevalence of pathogenic E. coli O157:H7 in livestock and downstream food production environments.
Collapse
Affiliation(s)
- Mo Jia
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Ifigenia Geornaras
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Jennifer N Martin
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Keith E Belk
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hua Yang
- Center for Meat Safety and Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
7
|
Luque A, Benler S, Lee DY, Brown C, White S. The Missing Tailed Phages: Prediction of Small Capsid Candidates. Microorganisms 2020; 8:E1944. [PMID: 33302408 PMCID: PMC7762592 DOI: 10.3390/microorganisms8121944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/17/2022] Open
Abstract
Tailed phages are the most abundant and diverse group of viruses on the planet. Yet, the smallest tailed phages display relatively complex capsids and large genomes compared to other viruses. The lack of tailed phages forming the common icosahedral capsid architectures T = 1 and T = 3 is puzzling. Here, we extracted geometrical features from high-resolution tailed phage capsid reconstructions and built a statistical model based on physical principles to predict the capsid diameter and genome length of the missing small-tailed phage capsids. We applied the model to 3348 isolated tailed phage genomes and 1496 gut metagenome-assembled tailed phage genomes. Four isolated tailed phages were predicted to form T = 3 icosahedral capsids, and twenty-one metagenome-assembled tailed phages were predicted to form T < 3 capsids. The smallest capsid predicted was a T = 4/3 ≈ 1.33 architecture. No tailed phages were predicted to form the smallest icosahedral architecture, T = 1. We discuss the feasibility of the missing T = 1 tailed phage capsids and the implications of isolating and characterizing small-tailed phages for viral evolution and phage therapy.
Collapse
Affiliation(s)
- Antoni Luque
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; (D.Y.L.); (C.B.)
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
| | - Sean Benler
- National Center for Biotechnology Information (NCBI), Bethesda, MD 20894, USA;
| | - Diana Y. Lee
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; (D.Y.L.); (C.B.)
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Colin Brown
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; (D.Y.L.); (C.B.)
- Department of Physics, San Diego State University, San Diego, CA 92182, USA
| | - Simon White
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|
8
|
Hornung BVH, Kuijper EJ, Smits WK. An in silico survey of Clostridioides difficile extrachromosomal elements . Microb Genom 2020; 5. [PMID: 31526450 PMCID: PMC6807378 DOI: 10.1099/mgen.0.000296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Gram-positive enteropathogen Clostridioides difficile (Clostridium difficile) is the major cause of healthcare-associated diarrhoea and is also an important cause of community-acquired infectious diarrhoea. Considering the burden of the disease, many studies have employed whole-genome sequencing of bacterial isolates to identify factors that contribute to virulence and pathogenesis. Though extrachromosomal elements (ECEs) such as plasmids are important for these processes in other bacteria, the few characterized plasmids of C. difficile have no relevant functions assigned and no systematic identification of plasmids has been carried out to date. Here, we perform an in silico analysis of publicly available sequence data to show that ~13 % of all C. difficile strains contain ECEs, with 1–6 elements per strain. Our approach identifies known plasmids (e.g. pCD6, pCD630 and cloning plasmids) and six novel putative plasmid families. Our study shows that plasmids are abundant and may encode functions that are relevant for C. difficile physiology. The newly identified plasmids may also form the basis for the construction of novel cloning plasmids for C. difficile that are compatible with existing tools.
Collapse
Affiliation(s)
- Bastian V H Hornung
- Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands
| | - Ed J Kuijper
- Netherlands Centre for One Health, The Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Netherlands Centre for One Health, The Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300RC, Leiden, The Netherlands.,Centre for Microbial Cell Biology, Leiden, The Netherlands
| |
Collapse
|
9
|
Prophages contribute to genome plasticity of Klebsiella pneumoniae and may involve the chromosomal integration of ARGs in CG258. Genomics 2020; 112:998-1010. [DOI: 10.1016/j.ygeno.2019.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/21/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022]
|
10
|
Mitarai N. How pirate phage interferes with helper phage: Comparison of the two distinct strategies. J Theor Biol 2019; 486:110096. [PMID: 31786182 DOI: 10.1016/j.jtbi.2019.110096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 11/26/2022]
Abstract
Pirate phages use the structural proteins encoded by unrelated helper phages to propagate. The best-studied example is the pirate P4 and helper P2 of coliphages, and it has been known that the Staphylococcus aureus pathogenicity islands (SaPIs) that can encode virulence factors act as pirate phages, too. When alone in the host, the pirate phages act as a prophage, but when the helper phage gene is also in the same host cell, the pirate phage has ability to exploit the helper phages structural proteins to produce pirate phage particles and spread, interfering with the helper phage production. The known helper phages in these systems are temperate phages. Interestingly, the interference of the pirate phage to the helper phage occurs in a different manner between the SaPI-helper system and the P4-P2 system. SaPIs cannot lyse a helper lysogen upon infection, while when a helper phage lyse a SaPI lysogen, most of the phage particles produced are the SaPI particles. On the contrary, in the P4-P2 system, a pirate phage P4 can lyse a helper P2 lysogen to produce mostly the P4 particles, while when P2 phage lyses a P4 lysogen, most of the produced phages are the P2 particles. Here, the consequences of these different strategies in the pirate and helper phage spreading among uninfected host is analyzed by using mathematical models. It is found that SaPI's strategy interferes with the helper phage spreading significantly more than the P4's strategy, because SaPI interferes with the helper phage's main reproduction step, while P4 interferes only by forcing the helper lysogens to lyse. However, the interference is found to be weaker in the spatially structured environment than in the well-mixed environment. This is because, in the spatial setting, the system tends to self-organize so that the helper phages take over the front of propagation due to the need of helper phage for the pirate phage spreading.
Collapse
Affiliation(s)
- Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, 2100-DK, Denmark.
| |
Collapse
|
11
|
Dokland T. Molecular Piracy: Redirection of Bacteriophage Capsid Assembly by Mobile Genetic Elements. Viruses 2019; 11:v11111003. [PMID: 31683607 PMCID: PMC6893505 DOI: 10.3390/v11111003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/21/2023] Open
Abstract
Horizontal transfer of mobile genetic elements (MGEs) is a key aspect of the evolution of bacterial pathogens. Transduction by bacteriophages is especially important in this process. Bacteriophages—which assemble a machinery for efficient encapsidation and transfer of genetic material—often transfer MGEs and other chromosomal DNA in a more-or-less nonspecific low-frequency process known as generalized transduction. However, some MGEs have evolved highly specific mechanisms to take advantage of bacteriophages for their own propagation and high-frequency transfer while strongly interfering with phage production—“molecular piracy”. These mechanisms include the ability to sense the presence of a phage entering lytic growth, specific recognition and packaging of MGE genomes into phage capsids, and the redirection of the phage assembly pathway to form capsids with a size more appropriate for the size of the MGE. This review focuses on the process of assembly redirection, which has evolved convergently in many different MGEs from across the bacterial universe. The diverse mechanisms that exist suggest that size redirection is an evolutionarily advantageous strategy for many MGEs.
Collapse
Affiliation(s)
- Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35242, USA.
| |
Collapse
|
12
|
Liu X, Tang K, Zhang D, Li Y, Liu Z, Yao J, Wood TK, Wang X. Symbiosis of a P2‐family phage and deep‐sea
Shewanella putrefaciens. Environ Microbiol 2019; 21:4212-4232. [DOI: 10.1111/1462-2920.14781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/12/2019] [Accepted: 08/13/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Dali Zhang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhe Liu
- Guangdong Provincial Center for Disease Control and Prevention Guangdong Provincial Institute of Public Health Guangzhou 511430 China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
| | - Thomas K. Wood
- Department of Chemical Engineering Pennsylvania State University University Park PA 16802‐4400 USA
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
13
|
Berjón-Otero M, Koslová A, Fischer MG. The dual lifestyle of genome-integrating virophages in protists. Ann N Y Acad Sci 2019; 1447:97-109. [PMID: 31162694 DOI: 10.1111/nyas.14118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 01/03/2023]
Abstract
DNA viruses with efficient host genome integration capability were unknown in eukaryotes until recently. The discovery of virophages, satellite-like DNA viruses that depend on lytic giant viruses that infect protists, revealed a genetically diverse group of viruses with high genome mobility. Virophages can act as strong inhibitors of their associated giant viruses, and the resulting beneficial effects on their unicellular hosts resemble a population-based antiviral defense mechanism. By comparing various aspects of genome-integrating virophages, in particular the virophage mavirus, with other mobile genetic elements and parasite-derived defense mechanisms in eukaryotes and prokaryotes, we show that virophages share many features with other host-parasite systems. Yet, the dual lifestyle exhibited by mavirus remains unprecedented among eukaryotic DNA viruses, with potentially far-reaching ecological and evolutionary consequences for the host.
Collapse
Affiliation(s)
- Mónica Berjón-Otero
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Anna Koslová
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Matthias G Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
14
|
Liang J, Kou Z, Qin S, Chen Y, Li Z, Li C, Duan R, Hao H, Zha T, Gu W, Huang Y, Xiao M, Jing H, Wang X. Novel Yersinia enterocolitica Prophages and a Comparative Analysis of Genomic Diversity. Front Microbiol 2019; 10:1184. [PMID: 31191498 PMCID: PMC6548840 DOI: 10.3389/fmicb.2019.01184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Yersinia enterocolitica is a major agent of foodborne diseases worldwide. Prophage plays an important role in the genetic evolution of the bacterial genome. Little is known about the genetic information about prophages in the genome of Y. enterocolitica, and no pathogenic Y. enterocolitica prophages have been described. In this study, we induced and described the genomes of six prophages from pathogenic Y. enterocolitica for the first time. Phylogenetic analysis based on whole genome sequencing revealed that these novel Yersinia phages are genetically distinct from the previously reported phages, showing considerable genetic diversity. Interestingly, the prophages induced from O:3 and O:9 Y. enterocolitica showed different genomic sequences and morphology but highly conserved among the same serotype strains, which classified into two diverse clusters. The three long-tailed Myoviridae prophages induced from serotype O:3 Y. enterocolitica were highly conserved, shared ≥99.99% identity and forming genotypic cluster A; the three Podoviridae prophages induced from the serotype O:9 strains formed cluster B, also shared more than 99.90% identity with one another. Cluster A was most closely related to O:5 non-pathogenic Y. enterocolitica prophage PY54 (61.72% identity). The genetic polymorphism of these two kinds of prophages and highly conserved among the same serotype strains, suggested a possible shared evolutionary past for these phages: originated from distinct ancestors, and entered pathogenic Y. enterocolitica as extrachromosomal genetic components during evolution when facing selective pressure. These results are critically important for further understanding of phage roles in host physiology and the pathology of disease.
Collapse
Affiliation(s)
- Junrong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Zengqiang Kou
- Shandong Provincial Centre for Disease Control and Prevention, Jinan, China
| | - Shuai Qin
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yuhuang Chen
- Shenzhen Nanshan Maternity and Child Heath Care Hospital, Shenzhen, China
| | - Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Chuchu Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.,Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Zhenjiang, China
| | - Ran Duan
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Huijing Hao
- Chang Ping Women and Children Health Care Hospital, Beijing, China
| | - Tao Zha
- Wuhu Municipal Centre for Disease Control and Prevention, Wuhu, China
| | - Wenpeng Gu
- Yunnan Provincial Centre for Disease Control and Prevention, Kunming, China
| | - Yuanming Huang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Meng Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xin Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases - Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| |
Collapse
|
15
|
Molenda O, Tang S, Lomheim L, Gautam VK, Lemak S, Yakunin AF, Maxwell KL, Edwards EA. Extrachromosomal circular elements targeted by CRISPR-Cas in Dehalococcoides mccartyi are linked to mobilization of reductive dehalogenase genes. ISME JOURNAL 2018; 13:24-38. [PMID: 30104577 DOI: 10.1038/s41396-018-0254-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 01/12/2023]
Abstract
Dehalococcoides mccartyi are obligate organohalide-respiring bacteria that play an important detoxifying role in the environment. They have small genomes (~1.4 Mb) with a core region interrupted by two high plasticity regions (HPRs) containing dozens of genes encoding reductive dehalogenases involved in organohalide respiration. The genomes of eight new strains of D. mccartyi were closed from metagenomic data from a related set of enrichment cultures, bringing the total number of genomes to 24. Two of the newly sequenced strains and three previously sequenced strains contain CRISPR-Cas systems. These D. mccartyi CRISPR-Cas systems were found to primarily target prophages and genomic islands. The genomic islands were identified either as integrated into D. mccartyi genomes or as circular extrachromosomal elements. We observed active circularization of the integrated genomic island containing vcrABC operon encoding the dehalogenase (VcrA) responsible for the transformation of vinyl chloride to non-toxic ethene. We interrogated archived DNA from established enrichment cultures and found that the CRISPR array acquired three new spacers in 11 years. These data provide a glimpse into dynamic processes operating on the genomes distinct to D. mccartyi strains found in enrichment cultures and provide the first insights into possible mechanisms of lateral DNA exchange in D. mccartyi.
Collapse
Affiliation(s)
- Olivia Molenda
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | | | - Line Lomheim
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Vasu K Gautam
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sofia Lemak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada. .,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Koonin EV. Viruses and mobile elements as drivers of evolutionary transitions. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0442. [PMID: 27431520 PMCID: PMC4958936 DOI: 10.1098/rstb.2015.0442] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2016] [Indexed: 12/22/2022] Open
Abstract
The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of ‘public goods’. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host–parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions. This article is part of the themed issue ‘The major synthetic evolutionary transitions’.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
17
|
Abstract
Almost all cellular life forms are hosts to diverse genetic parasites with various levels of autonomy including plasmids, transposons and viruses. Theoretical modeling of the evolution of primordial replicators indicates that parasites (cheaters) necessarily evolve in such systems and can be kept at bay primarily via compartmentalization. Given the (near) ubiquity, abundance and diversity of genetic parasites, the question becomes pertinent: are such parasites intrinsic to life? At least in prokaryotes, the persistence of parasites is linked to the rate of horizontal gene transfer (HGT). We mathematically derive the threshold value of the minimal transfer rate required for selfish element persistence, depending on the element duplication and loss rates as well as the cost to the host. Estimation of the characteristic gene duplication, loss and transfer rates for transposons, plasmids and virus-related elements in multiple groups of diverse bacteria and archaea indicates that most of these rates are compatible with the long term persistence of parasites. Notably, a small but non-zero rate of HGT is also required for the persistence of non-parasitic genes. We hypothesize that cells cannot tune their horizontal transfer rates to be below the threshold required for parasite persistence without experiencing highly detrimental side-effects. As a lower boundary to the minimum DNA transfer rate that a cell can withstand, we consider the process of genome degradation and mutational meltdown of populations through Muller's ratchet. A numerical assessment of this hypothesis suggests that microbial populations cannot purge parasites while escaping Muller's ratchet. Thus, genetic parasites appear to be virtually inevitable in cellular organisms.
Collapse
Affiliation(s)
- Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| | - Pere Puigbò
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda Present address: Department of Biology, University of Turku, Finland
| | - Alexander E Lobkovsky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda
| |
Collapse
|
18
|
Nee S. The evolutionary ecology of molecular replicators. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160235. [PMID: 27853598 PMCID: PMC5108948 DOI: 10.1098/rsos.160235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/01/2016] [Indexed: 05/12/2023]
Abstract
By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology.
Collapse
Affiliation(s)
- Sean Nee
- Author for correspondence: Sean Nee e-mail:
| |
Collapse
|
19
|
Bellas CM, Anesio AM, Barker G. Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions. Front Microbiol 2015; 6:656. [PMID: 26191051 PMCID: PMC4490671 DOI: 10.3389/fmicb.2015.00656] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/16/2015] [Indexed: 01/07/2023] Open
Abstract
Microbial communities in glacial ecosystems are diverse, active, and subjected to strong viral pressures and infection rates. In this study we analyse putative virus genomes assembled from three dsDNA viromes from cryoconite hole ecosystems of Svalbard and the Greenland Ice Sheet to assess the potential hosts and functional role viruses play in these habitats. We assembled 208 million reads from the virus-size fraction and developed a procedure to select genuine virus scaffolds from cellular contamination. Our curated virus library contained 546 scaffolds up to 230 Kb in length, 54 of which were circular virus consensus genomes. Analysis of virus marker genes revealed a wide range of viruses had been assembled, including bacteriophages, cyanophages, nucleocytoplasmic large DNA viruses and a virophage, with putative hosts identified as Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes, eukaryotic algae and amoebae. Whole genome comparisons revealed the majority of circular genome scaffolds (CGS) formed 12 novel groups, two of which contained multiple phage members with plasmid-like properties, including a group of phage-plasmids possessing plasmid-like partition genes and toxin-antitoxin addiction modules to ensure their replication and a satellite phage-plasmid group. Surprisingly we also assembled a phage that not only encoded plasmid partition genes, but a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas adaptive bacterial immune system. One of the spacers was an exact match for another phage in our virome, indicating that in a novel use of the system, the lysogen was potentially capable of conferring immunity on its bacterial host against other phage. Together these results suggest that highly novel and diverse groups of viruses are present in glacial environments, some of which utilize very unusual life strategies and genes to control their replication and maintain a long-term relationship with their hosts.
Collapse
Affiliation(s)
- Christopher M Bellas
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol Bristol, UK
| | - Alexandre M Anesio
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol Bristol, UK
| | - Gary Barker
- Cereal Genomics, School of Biological Sciences, University of Bristol Bristol, UK
| |
Collapse
|
20
|
Suzuki Y, Kubota H, Sato'o Y, Ono H, Kato R, Sadamasu K, Kai A, Kamata Y. Identification and characterization of novel Staphylococcus aureus
pathogenicity islands encoding staphylococcal enterotoxins originating from staphylococcal food poisoning isolates. J Appl Microbiol 2015; 118:1507-20. [DOI: 10.1111/jam.12786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Suzuki
- Department of Veterinary Medicine; Faculty of Agriculture; Iwate University; Morioka City Iwate Japan
- The United Graduate School of Veterinary Sciences; Gifu University; Gifu City Gifu Japan
- Department of Microbiology; Tokyo Metropolitan Institute of Public Health; Shinjuku-ku Tokyo Japan
| | - H. Kubota
- Department of Microbiology; Tokyo Metropolitan Institute of Public Health; Shinjuku-ku Tokyo Japan
| | - Y. Sato'o
- Department of Bacteriology; Hiroshima University Graduate School of Biomedical and Health Sciences; Hiroshima City Hiroshima Japan
| | - H.K. Ono
- Department of Microbiology and Immunology; Hirosaki University Graduate School of Medicine; Hirosaki City Aomori Japan
| | - R. Kato
- Department of Microbiology; Tokyo Metropolitan Institute of Public Health; Shinjuku-ku Tokyo Japan
| | - K. Sadamasu
- Department of Microbiology; Tokyo Metropolitan Institute of Public Health; Shinjuku-ku Tokyo Japan
| | - A. Kai
- Department of Microbiology; Tokyo Metropolitan Institute of Public Health; Shinjuku-ku Tokyo Japan
| | - Y. Kamata
- Department of Veterinary Medicine; Faculty of Agriculture; Iwate University; Morioka City Iwate Japan
- The United Graduate School of Veterinary Sciences; Gifu University; Gifu City Gifu Japan
| |
Collapse
|
21
|
Lossouarn J, Nesbø CL, Mercier C, Zhaxybayeva O, Johnson MS, Charchuck R, Farasin J, Bienvenu N, Baudoux AC, Michoud G, Jebbar M, Geslin C. ‘Ménage à trois’: a selfish genetic element uses a virus to propagate withinThermotogales. Environ Microbiol 2015; 17:3278-88. [DOI: 10.1111/1462-2920.12783] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Julien Lossouarn
- Université de Bretagne Occidentale (UBO, UEB); Institut Universitaire Européen de la Mer (IUEM) - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- CNRS; IUEM - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer; UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); Technopôle Pointe du diablea; F-29280 Plouzané France
| | - Camilla L. Nesbø
- CEES; Department of Biology; University of Oslo; Oslo 0316 Norway
- Department of Biological Sciences; University of Alberta; Edmonton AB T6G2R3 Canada
| | - Coraline Mercier
- Université de Bretagne Occidentale (UBO, UEB); Institut Universitaire Européen de la Mer (IUEM) - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- CNRS; IUEM - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer; UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); Technopôle Pointe du diablea; F-29280 Plouzané France
| | - Olga Zhaxybayeva
- Department of Biological Sciences; Dartmouth College; Hanover NH 03755 USA
| | - Milo S. Johnson
- Department of Biological Sciences; Dartmouth College; Hanover NH 03755 USA
| | | | - Julien Farasin
- Université de Bretagne Occidentale (UBO, UEB); Institut Universitaire Européen de la Mer (IUEM) - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- CNRS; IUEM - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer; UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); Technopôle Pointe du diablea; F-29280 Plouzané France
| | - Nadège Bienvenu
- Université de Bretagne Occidentale (UBO, UEB); Institut Universitaire Européen de la Mer (IUEM) - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- CNRS; IUEM - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer; UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); Technopôle Pointe du diablea; F-29280 Plouzané France
| | - Anne-Claire Baudoux
- Sorbonne Universités; UPMC Univ Paris 06; Paris 75005 France
- UMR 7144; Equipe DIPO; Station Biologique de Roscoff; Roscoff 29680 France
- CNRS; UMR 7144; Adaptation et Diversité en Milieu Marin; Station Biologique de Roscoff; Roscoff 29680 France
| | - Grégoire Michoud
- Université de Bretagne Occidentale (UBO, UEB); Institut Universitaire Européen de la Mer (IUEM) - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- CNRS; IUEM - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer; UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); Technopôle Pointe du diablea; F-29280 Plouzané France
| | - Mohamed Jebbar
- Université de Bretagne Occidentale (UBO, UEB); Institut Universitaire Européen de la Mer (IUEM) - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- CNRS; IUEM - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer; UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); Technopôle Pointe du diablea; F-29280 Plouzané France
| | - Claire Geslin
- Université de Bretagne Occidentale (UBO, UEB); Institut Universitaire Européen de la Mer (IUEM) - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- CNRS; IUEM - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer; UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); Technopôle Pointe du diablea; F-29280 Plouzané France
| |
Collapse
|
22
|
Barquist L, Langridge GC, Turner DJ, Phan MD, Turner AK, Bateman A, Parkhill J, Wain J, Gardner PP. A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium. Nucleic Acids Res 2013; 41:4549-64. [PMID: 23470992 PMCID: PMC3632133 DOI: 10.1093/nar/gkt148] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Salmonella Typhi and Typhimurium diverged only ∼50 000 years ago, yet have very different host ranges and pathogenicity. Despite the availability of multiple whole-genome sequences, the genetic differences that have driven these changes in phenotype are only beginning to be understood. In this study, we use transposon-directed insertion-site sequencing to probe differences in gene requirements for competitive growth in rich media between these two closely related serovars. We identify a conserved core of 281 genes that are required for growth in both serovars, 228 of which are essential in Escherichia coli. We are able to identify active prophage elements through the requirement for their repressors. We also find distinct differences in requirements for genes involved in cell surface structure biogenesis and iron utilization. Finally, we demonstrate that transposon-directed insertion-site sequencing is not only applicable to the protein-coding content of the cell but also has sufficient resolution to generate hypotheses regarding the functions of non-coding RNAs (ncRNAs) as well. We are able to assign probable functions to a number of cis-regulatory ncRNA elements, as well as to infer likely differences in trans-acting ncRNA regulatory networks.
Collapse
Affiliation(s)
- Lars Barquist
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Molecular piracy is a biological phenomenon in which one replicon (the pirate) uses the structural proteins encoded by another replicon (the helper) to package its own genome and thus allow its propagation and spread. Such piracy is dependent on a complex web of interactions between the helper and the pirate that occur at several levels, from transcriptional control to macromolecular assembly. The best characterized examples of molecular piracy are from the E. coli P2/P4 system and the S. aureus SaPI pathogenicity island/helper system. In both of these cases, the pirate element is mobilized and packaged into phage-like transducing particles assembled from proteins supplied by a helper phage that belongs to the Caudovirales order of viruses (tailed, dsDNA bacteriophages). In this review we will summarize and compare the processes that are involved in molecular piracy in these two systems.
Collapse
Affiliation(s)
- Gail E. Christie
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, PO Box 980678, Richmond, VA 23298-0678, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, 845 19th St South BBRB 311, Birmingham, AL 35294 USA
| |
Collapse
|
24
|
Provirophages and transpovirons as the diverse mobilome of giant viruses. Proc Natl Acad Sci U S A 2012; 109:18078-83. [PMID: 23071316 DOI: 10.1073/pnas.1208835109] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A distinct class of infectious agents, the virophages that infect giant viruses of the Mimiviridae family, has been recently described. Here we report the simultaneous discovery of a giant virus of Acanthamoeba polyphaga (Lentille virus) that contains an integrated genome of a virophage (Sputnik 2), and a member of a previously unknown class of mobile genetic elements, the transpovirons. The transpovirons are linear DNA elements of ~7 kb that encompass six to eight protein-coding genes, two of which are homologous to virophage genes. Fluorescence in situ hybridization showed that the free form of the transpoviron replicates within the giant virus factory and accumulates in high copy numbers inside giant virus particles, Sputnik 2 particles, and amoeba cytoplasm. Analysis of deep-sequencing data showed that the virophage and the transpoviron can integrate in nearly any place in the chromosome of the giant virus host and that, although less frequently, the transpoviron can also be linked to the virophage chromosome. In addition, integrated fragments of transpoviron DNA were detected in several giant virus and Sputnik genomes. Analysis of 19 Mimivirus strains revealed three distinct transpovirons associated with three subgroups of Mimiviruses. The virophage, the transpoviron, and the previously identified self-splicing introns and inteins constitute the complex, interconnected mobilome of the giant viruses and are likely to substantially contribute to interviral gene transfer.
Collapse
|
25
|
Swanson MM, Reavy B, Makarova KS, Cock PJ, Hopkins DW, Torrance L, Koonin EV, Taliansky M. Novel bacteriophages containing a genome of another bacteriophage within their genomes. PLoS One 2012; 7:e40683. [PMID: 22815791 PMCID: PMC3398947 DOI: 10.1371/journal.pone.0040683] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/14/2012] [Indexed: 11/24/2022] Open
Abstract
A novel bacteriophage infecting Staphylococus pasteuri was isolated during a screen for phages in Antarctic soils. The phage named SpaA1 is morphologically similar to phages of the family Siphoviridae. The 42,784 bp genome of SpaA1 is a linear, double-stranded DNA molecule with 3' protruding cohesive ends. The SpaA1 genome encompasses 63 predicted protein-coding genes which cluster within three regions of the genome, each of apparently different origin, in a mosaic pattern. In two of these regions, the gene sets resemble those in prophages of Bacillus thuringiensis kurstaki str. T03a001 (genes involved in DNA replication/transcription, cell entry and exit) and B. cereus AH676 (additional regulatory and recombination genes), respectively. The third region represents an almost complete genome (except for the short terminal segments) of a distinct bacteriophage, MZTP02. Nearly the same gene module was identified in prophages of B. thuringiensis serovar monterrey BGSC 4AJ1 and B. cereus Rock4-2. These findings suggest that MZTP02 can be shuttled between genomes of other bacteriophages and prophages, leading to the formation of chimeric genomes. The presence of a complete phage genome in the genome of other phages apparently has not been described previously and might represent a 'fast track' route of virus evolution and horizontal gene transfer. Another phage (BceA1) nearly identical in sequence to SpaA1, and also including the almost complete MZTP02 genome within its own genome, was isolated from a bacterium of the B. cereus/B. thuringiensis group. Remarkably, both SpaA1 and BceA1 phages can infect B. cereus and B. thuringiensis, but only one of them, SpaA1, can infect S. pasteuri. This finding is best compatible with a scenario in which MZTP02 was originally contained in BceA1 infecting Bacillus spp, the common hosts for these two phages, followed by emergence of SpaA1 infecting S. pasteuri.
Collapse
Affiliation(s)
- Maud M. Swanson
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Brian Reavy
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter J. Cock
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | | | - Lesley Torrance
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | | |
Collapse
|
26
|
Dearborn AD, Laurinmaki P, Chandramouli P, Rodenburg CM, Wang S, Butcher SJ, Dokland T. Structure and size determination of bacteriophage P2 and P4 procapsids: function of size responsiveness mutations. J Struct Biol 2012; 178:215-24. [PMID: 22508104 DOI: 10.1016/j.jsb.2012.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/22/2012] [Accepted: 04/02/2012] [Indexed: 02/02/2023]
Abstract
Bacteriophage P4 is dependent on structural proteins supplied by a helper phage, P2, to assemble infectious virions. Bacteriophage P2 normally forms an icosahedral capsid with T=7 symmetry from the gpN capsid protein, the gpO scaffolding protein and the gpQ portal protein. In the presence of P4, however, the same structural proteins are assembled into a smaller capsid with T=4 symmetry. This size determination is effected by the P4-encoded protein Sid, which forms an external scaffold around the small P4 procapsids. Size responsiveness (sir) mutants in gpN fail to assemble small capsids even in the presence of Sid. We have produced large and small procapsids by co-expression of gpN with gpO and Sid, respectively, and applied cryo-electron microscopy and three-dimensional reconstruction methods to visualize these procapsids. gpN has an HK97-like fold and interacts with Sid in an exposed loop where the sir mutations are clustered. The T=7 lattice of P2 has dextro handedness, unlike the laevo lattices of other phages with this fold observed so far.
Collapse
Affiliation(s)
- Altaira D Dearborn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Structure-function analysis of the SaPIbov1 replication origin in Staphylococcus aureus. Plasmid 2012; 67:183-90. [PMID: 22281159 DOI: 10.1016/j.plasmid.2012.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 11/20/2022]
Abstract
The SaPIs and their relatives are phage satellites and are unique among the known bacterial pathogenicity islands in their ability to replicate autonomously. They possess a phage-like replicon, which is organized as two sets of iterons arrayed symmetrically to flank an AT-rich region that is driven to melt by the binding of a SaPI-specific initiator (Rep) to the flanking iterons. Extensive deletion analysis has revealed that Rep can bind to a single iteron, generating a simple shift in a gel mobility assay; when bound on both sides, a second retarded band is seen, suggesting independent binding. Binding to both sites of the ori is necessary but not sufficient to melt the AT-rich region and initiate replication. For these processes, virtually the entire origin must be present. Since SaPI replication can be initiated on linear DNA, it is suggested that bilateral binding may be necessary to constrain the intervening DNA to enable Rep-driven melting.
Collapse
|
28
|
Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Adv Virus Res 2012; 83:219-98. [PMID: 22748812 PMCID: PMC3461333 DOI: 10.1016/b978-0-12-394438-2.00006-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sonja Blasche
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albrecht von Brunn
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Ludwig-Maximilians-Universität, München, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ian Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas–Austin, Austin, Texas, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
29
|
Abstract
All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.
Collapse
|
30
|
Villarreal LP. Viral ancestors of antiviral systems. Viruses 2011; 3:1933-58. [PMID: 22069523 PMCID: PMC3205389 DOI: 10.3390/v3101933] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/01/2011] [Accepted: 10/10/2011] [Indexed: 02/06/2023] Open
Abstract
All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
31
|
Ackermann HW, Krisch HM, Comeau AM. Morphology and genome sequence of phage ϕ1402: A dwarf myovirus of the predatory bacterium Bdellovibrio bacteriovorus. BACTERIOPHAGE 2011; 1:138-142. [PMID: 22164347 DOI: 10.4161/bact.1.3.15769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 11/19/2022]
Abstract
Phages are among the simplest biological entities known and simultaneously the most numerous and ubiquitous members of the biosphere. Among the three families of tailed dsDNA phages, the Myoviridae have the most structurally sophisticated tails which are capable of contraction, unlike the simpler tails of the Podoviridae and Siphoviridae. Such "nanomachines" tails are involved in both efficient phage adsorption and genome injection. Their structural complexity probably necessitates multistep morphogenetic pathways, involving non-structural components, to correctly assemble the structural constituents. For reasons probably related, at least in part, to such morphological intricacy, myoviruses tend to have larger genomes than simpler phages. As a consequence, there are no well-characterized myoviruses with a size of less than 40 kb. Here we report on the characterization and sequencing of the 23,931 bp genome of the dwarf myovirus ϕ1402 of Bdellovibrio bacteriovorus. Our genomic analysis shows that ϕ1402 differs substantially from all other known phages and appears to be the smallest known autonomous myovirus.
Collapse
Affiliation(s)
- Hans-W Ackermann
- Department of Microbiology; Faculty of Medicine; Laval University; Québec, QC Canada
| | | | | |
Collapse
|
32
|
Napolitano MG, Almagro-Moreno S, Boyd EF. Dichotomy in the evolution of pathogenicity island and bacteriophage encoded integrases from pathogenic Escherichia coli strains. INFECTION GENETICS AND EVOLUTION 2011; 11:423-36. [DOI: 10.1016/j.meegid.2010.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 11/29/2022]
|
33
|
Clark KB. Origins of learned reciprocity in solitary ciliates searching grouped ‘courting’ assurances at quantum efficiencies. Biosystems 2010; 99:27-41. [DOI: 10.1016/j.biosystems.2009.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 08/11/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
|
34
|
Rosario K, Nilsson C, Lim YW, Ruan Y, Breitbart M. Metagenomic analysis of viruses in reclaimed water. Environ Microbiol 2009; 11:2806-20. [PMID: 19555373 DOI: 10.1111/j.1462-2920.2009.01964.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reclaimed water use is an important component of sustainable water resource management. However, there are concerns regarding pathogen transport through this alternative water supply. This study characterized the viral community found in reclaimed water and compared it with viruses in potable water. Reclaimed water contained 1000-fold more virus-like particles than potable water, having approximately 10(8) VLPs per millilitre. Metagenomic analyses revealed that most of the viruses in both reclaimed and potable water were novel. Bacteriophages dominated the DNA viral community in both reclaimed and potable water, but reclaimed water had a distinct phage community based on phage family distributions and host representation within each family. Eukaryotic viruses similar to plant pathogens and invertebrate picornaviruses dominated RNA metagenomic libraries. Established human pathogens were not detected in reclaimed water viral metagenomes, which contained a wealth of novel single-stranded DNA and RNA viruses related to plant, animal and insect viruses. Therefore, reclaimed water may play a role in the dissemination of highly stable viruses. Information regarding viruses present in reclaimed water but not in potable water can be used to identify new bioindicators of water quality. Future studies will need to investigate the infectivity and host range of these viruses to evaluate the impacts of reclaimed water use on human and ecosystem health.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida, St. Petersburg, Florida, USA
| | | | | | | | | |
Collapse
|
35
|
Yamaguchi Y, Inouye M. mRNA interferases, sequence-specific endoribonucleases from the toxin-antitoxin systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:467-500. [PMID: 19215780 DOI: 10.1016/s0079-6603(08)00812-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Escherichia coli contains a large number of suicide or toxin genes, whose expression leads to cell growth arrest and eventual cell death. One such toxin, MazF, is an ACA-specific endoribonuclease, termed "mRNA interferase."E. coli contains other mRNA interferases with different sequence specificities, which are considered to play important roles in growth regulation under stress conditions, and also in eliminating stress-damaged cells from a population. Recently, MazF homologues with 5-base recognition sequences have been identified, for example, those from Mycobacterium tuberculosis. These sequences are significantly underrepresented in the genes for protein families playing a role in the immunity and pathogenesis of M. tuberculosis. An mRNA interferase in Myxococcus xanthus is essential for programmed cell death during fruiting body formation. We propose that mRNA interferases play roles not only in cell growth regulation and programmed cell death, but also in regulation of specific gene expression (either positively or negatively) in bacteria.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
36
|
Terzano S, Oliva I, Forti F, Sala C, Magnoni F, Dehò G, Ghisotti D. Bacteriophage P4 sut1: a mutation suppressing transcription termination. J Gen Virol 2007; 88:1041-1047. [PMID: 17325379 DOI: 10.1099/vir.0.82605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the Escherichia coli satellite phage P4, transcription starting from PLE is prevalently controlled via premature termination at several termination sites. We identified a spontaneous mutation, P4 sut1 (suppression of termination), in the natural stop codon of P4 orf151 that, by elongating translation, suppresses transcription termination at the downstream t151
site. Both the translational and the transcriptional profile of P4 sut1 differed from those of P4 wild-type. First of all, P4 sut1 did not express Orf151, but a higher molecular mass protein, compatible with the 303 codon open reading frame generated by the fusion of orf151, cnr and the intervening 138 nt. Moreover, after infection of E. coli, the mutant expressed a very low amount of the 1.3 and 1.7 kb transcripts originating at PLE and PLL promoters, respectively, and terminating at the intracistronic t151
site, whereas correspondingly higher amounts of the 4.1 and 4.5 kb RNAs arising from the same promoters and covering the entire operon were detected. Thus the sut1 mutation converts a natural stop codon into a sense codon, suppresses a natural intracistronic termination site and leads to overexpression of the downstream cnr and α genes. This correlates with the inability of P4 sut1 to propagate in the plasmid state. By cloning different P4 DNA fragments, we mapped the t151
transcription termination site within the 7633–7361 region between orf151 and gene cnr. A potential stem–loop structure, resembling the structure of a Rho-independent termination site, was predicted by mfold sequence analysis at 7414–7385.
Collapse
Affiliation(s)
- Susanna Terzano
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Ilaria Oliva
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Francesca Forti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Claudia Sala
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Francesca Magnoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Gianni Dehò
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Daniela Ghisotti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
37
|
Bahl MI, Hansen LH, Sørensen SJ. Impact of conjugal transfer on the stability of IncP-1 plasmid pKJK5 in bacterial populations. FEMS Microbiol Lett 2007; 266:250-6. [PMID: 17132149 DOI: 10.1111/j.1574-6968.2006.00536.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The intrinsic stability of IncP-1 plasmid pKJK5 was assessed in both an Escherichia coli and a Kluyvera sp. population maintained in bacterial mats and in liquid nutrient broth without selective pressure. A fluorescence tagging/flow cytometry approach was used to detect and quantify plasmid loss from populations harboring either conjugation-proficient or -deficient pKJK5 derivatives. The results show that the plasmid's ability to conjugate plays an important role in its stable maintenance in populations of both species. This effect was most pronounced in dense bacterial populations and to a far lesser extent during growth in liquid broth. Furthermore, conjugation-proficient plasmids were able to spread infectiously in the bacterial mats initiated with various ratios of plasmid-harboring cells, resulting in a nearly exclusively plasmid-harboring population.
Collapse
Affiliation(s)
- Martin Iain Bahl
- Department of Microbiology, University of Copenhagen, Sølvgade, Copenhagen K, Denmark
| | | | | |
Collapse
|
38
|
Pedersen M, Hammer K. Mutational analysis of the activator of late transcription, Alt, in the lactococcal bacteriophage TP901-1. Arch Virol 2006; 152:305-20. [PMID: 17066250 DOI: 10.1007/s00705-006-0851-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
An activator protein, Alt, synthesized during the early state of lytic infection is required for transcription of the late operon in the lactococcal phage TP901-1. In order to identify amino acid residues in the Alt protein required for activation of the TP901-1 late promoter, P(late), hydroxylamine mutagenesis was performed, resulting in almost saturating mutagenesis of alt. Twenty-three different non-functional alt alleles containing one, and in one case two amino acid exchanges were isolated and analyzed. Eight of the twenty-three mutant proteins were still able to activate the P(late) promoter to some extent. Our results show that alt encodes a protein of 16.7 kDa and that the last fourteen amino acids in the C-terminal part of the protein are required for activation of the P(late) promoter. By combining sequence analysis with experimental data we suggest that the C-terminal half of the Alt protein contains a helix-turn-helix-like motif involved in DNA binding. We also propose that the C-terminal half of the Alt protein may be involved in interactions with the bacterial RNA polymerase, whereas the N-terminal half of the protein is proposed to be important for the overall protein structure.
Collapse
Affiliation(s)
- M Pedersen
- Technical University of Denmark, Biocentrum-DTU, Lyngby, Denmark.
| | | |
Collapse
|
39
|
Magnoni F, Sala C, Forti F, Dehò G, Ghisotti D. DNA replication in phage P4: characterization of replicon II. Plasmid 2006; 56:216-22. [PMID: 16908062 DOI: 10.1016/j.plasmid.2006.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 06/28/2006] [Accepted: 06/29/2006] [Indexed: 11/19/2022]
Abstract
The genetic element P4 propagates in its host Escherichia coli both as a satellite phage and as a plasmid. Two partially overlapping replicons coexist, namely replicon I and replicon II. The former is composed of two sites, ori1 and crr, and depends on P4 alpha gene product for replication. The P4 alpha protein has primase and helicase activities, and binds specifically to both ori1 and crr. Replicon II is composed of two sites, ori2 and crr, and its replication also depends on P4 alpha primase and helicase activities. In replicon II, the alpha protein binds only crr. Here we show that for replicon II the relative orientation of ori2 and crr is essential for replication to occur. Furthermore we delimit ori2 to a 22 bp region (6234-6255), internal to the alpha gene, sufficient for replicon II replication. We mutagenized this region and identified two mutants, which carry one and two base substitutions, respectively, that prevent replicon II replication. In electrophoretic mobility shift experiments of ori2, ori1, and crr DNA fragments with E. coli extracts, ori2 was not shifted, whereas both ori1 and crr were specifically bound, suggesting that other host protein(s), beside P4 alpha, are able to bind to these cis essential regions. Apparently, no binding to ori2 could be identified, thus suggesting that neither alpha nor other bacterial proteins specifically bind to this region.
Collapse
Affiliation(s)
- Francesca Magnoni
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
40
|
Abstract
Bacteriophages (prokaryotic viruses) are favourite model systems to study DNA replication in prokaryotes, and provide examples for every theoretically possible replication mechanism. In addition, the elucidation of the intricate interplay of phage-encoded replication factors with 'host' factors has always advanced the understanding of DNA replication in general. Here we review bacteriophage replication based on the long-standing observation that in most known phage genomes the replication genes are arranged as modules. This allows us to discuss established model systems--f1/fd, phiX174, P2, P4, lambda, SPP1, N15, phi29, T7 and T4--along with those numerous phages that have been sequenced but not studied experimentally. The review of bacteriophage replication mechanisms and modules is accompanied by a compendium of replication origins and replication/recombination proteins (available as supplementary material online).
Collapse
|
41
|
Wang S, Chang JR, Dokland T. Assembly of bacteriophage P2 and P4 procapsids with internal scaffolding protein. Virology 2006; 348:133-40. [PMID: 16457867 DOI: 10.1016/j.virol.2005.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 10/17/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
Assembly of the E. coli bacteriophage P2 into an icosahedral capsid with T = 7 symmetry is dependent on the gpN capsid protein, the gpQ connector protein and the gpO internal scaffolding protein. In the presence of the P4-encoded protein Sid, the same proteins are assembled into a smaller capsid with T = 4 symmetry. Although gpO has long been expected to act as an internal scaffolding protein, it has not been possible to produce P2 procapsids efficiently in vitro or in vivo due to a failure to express gpO at high levels. In this study, we find that full-length gpO undergoes proteolytic degradation within 1 h of induction of expression. However, a truncated version of gpO lacking the N-terminal 25 amino acids (Odelta25) is stably expressed at high levels and is able to direct the formation of P2 size procapsids. In the presence of Sid, Odelta25 is incorporated into P4 procapsids, showing that Sid overrides the effect of gpO on capsid size determination.
Collapse
Affiliation(s)
- Sifang Wang
- Department of Microbiology, University of Alabama at Birmingham, 845 19th St South, BBRB 311, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
42
|
Ziegelin G, Tegtmeyer N, Lurz R, Hertwig S, Hammerl J, Appel B, Lanka E. The repA gene of the linear Yersinia enterocolitica prophage PY54 functions as a circular minimal replicon in Escherichia coli. J Bacteriol 2005; 187:3445-54. [PMID: 15866931 PMCID: PMC1111997 DOI: 10.1128/jb.187.10.3445-3454.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Yersinia enterocolitica prophage PY54 replicates as a linear DNA molecule with covalently closed ends. For replication of a circular PY54 minimal replicon that has been derived from a linear minireplicon, two phage-encoded loci are essential in Escherichia coli: (i) the reading frame of the replication initiation gene repA and (ii) its 212-bp origin located within the 3' portion of repA. The RepA protein acts in trans on the origin since we have physically separated the PY54 origin and repA onto a two-plasmid origin test system. For this trans action, the repA 3' end carrying the origin is dispensable. Mutagenesis by alanine scan demonstrated that the motifs for primase and for nucleotide binding present in the protein are essential for RepA activity. The replication initiation functions of RepA are replicon specific. The replication initiation proteins DnaA, DnaG, and DnaB of the host are unable to promote origin replication in the presence of mutant RepA proteins that carry single residue exchanges in these motifs. The proposed origins of the known related hairpin prophages PY54, N15, and PKO2 are all located toward the 3' end of the corresponding repA genes, where several structure elements are conserved. Origin function depends on the integrity of these elements.
Collapse
|
43
|
Bishop AL, Baker S, Jenks S, Fookes M, Gaora PO, Pickard D, Anjum M, Farrar J, Hien TT, Ivens A, Dougan G. Analysis of the hypervariable region of the Salmonella enterica genome associated with tRNA(leuX). J Bacteriol 2005; 187:2469-82. [PMID: 15774890 PMCID: PMC1065210 DOI: 10.1128/jb.187.7.2469-2482.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The divergence of Salmonella enterica and Escherichia coli is estimated to have occurred approximately 140 million years ago. Despite this evolutionary distance, the genomes of these two species still share extensive synteny and homology. However, there are significant differences between the two species in terms of genes putatively acquired via various horizontal transfer events. Here we report on the composition and distribution across the Salmonella genus of a chromosomal region designated SPI-10 in Salmonella enterica serovar Typhi and located adjacent to tRNA(leuX). We find that across the Salmonella genus the tRNA(leuX) region is a hypervariable hot spot for horizontal gene transfer; different isolates from the same S. enterica serovar can exhibit significant variation in this region. Many P4 phage, plasmid, and transposable element-associated genes are found adjacent to tRNA(leuX) in both Salmonella and E. coli, suggesting that these mobile genetic elements have played a major role in driving the variability of this region.
Collapse
Affiliation(s)
- Anne L Bishop
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Thomson N, Baker S, Pickard D, Fookes M, Anjum M, Hamlin N, Wain J, House D, Bhutta Z, Chan K, Falkow S, Parkhill J, Woodward M, Ivens A, Dougan G. The role of prophage-like elements in the diversity of Salmonella enterica serovars. J Mol Biol 2004; 339:279-300. [PMID: 15136033 DOI: 10.1016/j.jmb.2004.03.058] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 03/19/2004] [Accepted: 03/22/2004] [Indexed: 10/26/2022]
Abstract
The Salmonella enterica serovar Typhi CT18 (S.Typhi) chromosome harbours seven distinct prophage-like elements, some of which may encode functional bacteriophages. In silico analyses were used to investigate these regions in S.Typhi CT18, and ultimately compare these integrated bacteriophages against 40 other Salmonella isolates using DNA microarray technology. S.Typhi CT18 contains prophages that show similarity to the lambda, Mu, P2 and P4 bacteriophage families. When compared to other S.Typhi isolates, these elements were generally conserved, supporting a clonal origin of this serovar. However, distinct variation was detected within a broad range of Salmonella serovars; many of the prophage regions are predicted to be specific to S.Typhi. Some of the P2 family prophage analysed have the potential to carry non-essential "cargo" genes within the hyper-variable tail region, an observation that suggests that these bacteriophage may confer a level of specialisation on their host. Lysogenic bacteriophages therefore play a crucial role in the generation of genetic diversity within S.enterica.
Collapse
Affiliation(s)
- Nicholas Thomson
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Calì S, Spoldi E, Piazzolla D, Dodd IB, Forti F, Dehò G, Ghisotti D. Bacteriophage P4 Vis protein is needed for prophage excision. Virology 2004; 322:82-92. [PMID: 15063119 DOI: 10.1016/j.virol.2004.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 01/12/2004] [Accepted: 01/16/2004] [Indexed: 11/21/2022]
Abstract
Upon infection of its host Escherichia coli, satellite bacteriophage P4 can integrate its genome into the bacterial chromosome by Int-mediated site-specific recombination between the attP and the attB sites. The opposite event, excision, may either occur spontaneously or be induced by a superinfecting P2 helper phage. In this work, we demonstrate that the product of the P4 vis gene, a regulator of the P4 late promoters P(LL) and P(sid), is needed for prophage excision. This conclusion is supported by the following evidence: (i) P4 mutants carrying either a frameshift mutation or a deletion of the vis gene were unable to excise both spontaneously or upon P2 phage superinfection; (ii) expression of the Vis protein from a plasmid induced P4 prophage excision; (iii) excision depended on a functional integrase (Int) protein, thus suggesting that Vis is involved in the formation of the excision complex, rather than in the excision recombination event per se; (iv) Vis protein bound P4 DNA in the attP region at two distinct boxes (Box I and Box II), located between the int gene and the attP core region, and caused bending of the bound DNA. Furthermore, we mapped by primer extension the 5' end of the int transcript and found that ectopic expression of Vis reduced its signal intensity, suggesting that Vis is also involved in negative regulation of the int promoter.
Collapse
Affiliation(s)
- Simona Calì
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhang J, Zhang Y, Zhu L, Suzuki M, Inouye M. Interference of mRNA function by sequence-specific endoribonuclease PemK. J Biol Chem 2004; 279:20678-84. [PMID: 15024022 DOI: 10.1074/jbc.m314284200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, programmed cell death is mediated through the system called "addiction module," which consists of a pair of genes encoding a stable toxin and a labile antitoxin. The pemI-pemK system is an addiction module present on plasmid R100. It helps to maintain the plasmid by post-segregational killing in E. coli population. Here we demonstrate that purified PemK, the toxin encoded by the pemI-pemK addiction module, inhibits protein synthesis in an E. coli cell-free system, whereas the addition of PemI, the antitoxin against PemK, resumes the protein synthesis. Further studies reveal that PemK is a sequence-specific endoribonuclease that cleaves mRNAs to inhibit protein synthesis, whereas PemI blocks the endoribonuclease activity of PemK. PemK cleaves only single-stranded RNA preferentially at the 5' or 3' side of the A residue in the "UAH" sequences (where H is C, A, or U). Upon induction, PemK cleaves cellular mRNAs to effectively block protein synthesis in E. coli. The pemK homologue genes have been identified on the genomes of a wide range of bacteria. We propose that PemK and its homologues form a novel endoribonuclease family that interferes with mRNA function by cleaving cellular mRNAs in a sequence-specific manner.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
47
|
Regonesi ME, Briani F, Ghetta A, Zangrossi S, Ghisotti D, Tortora P, Dehò G. A mutation in polynucleotide phosphorylase from Escherichia coli impairing RNA binding and degradosome stability. Nucleic Acids Res 2004; 32:1006-17. [PMID: 14963263 PMCID: PMC373403 DOI: 10.1093/nar/gkh268] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polynucleotide phosphorylase (PNPase), a 3' to 5' exonuclease encoded by pnp, plays a key role in Escherichia coli RNA decay. The enzyme, made of three identical 711 amino acid subunits, may also be assembled in the RNA degradosome, a heteromultimeric complex involved in RNA degradation. PNPase autogenously regulates its expression by promoting the decay of pnp mRNA, supposedly by binding at the 5'-untranslated leader region of an RNase III-processed form of this transcript. The KH and S1 RNA-binding domains at the C-terminus of the protein (amino acids 552-711) are thought to be involved in pnp mRNA recognition. Here we show that a G454D substitution in E.coli PNPase impairs autogenous regulation whereas it does not affect the catalytic activities of the enzyme. Although the mutation maps outside of the KH and S1 RNA-binding domains, analysis of the mutant protein revealed a defective RNA binding, thus suggesting that other determinants may be involved in PNPase-RNA interactions. The mutation also caused a looser association with the degradosome and an abnormal electrophoretic mobility in native gels. The latter feature suggests an altered structural conformation of PNPase, which may account for the properties of the mutant protein.
Collapse
Affiliation(s)
- Maria Elena Regonesi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Hertwig S, Klein I, Schmidt V, Beck S, Hammerl JA, Appel B. Sequence analysis of the genome of the temperate Yersinia enterocolitica phage PY54. J Mol Biol 2003; 331:605-22. [PMID: 12899832 DOI: 10.1016/s0022-2836(03)00763-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The temperate Yersinia phage PY54 belongs to the unusual group of phages that replicate as linear plasmids with covalently closed ends. Besides Escherichia coli phage N15, PY54 is the only member of this group to be identified. We have determined the complete sequence (46,339 bp) of the PY54 genome. Bioinformatic analyses revealed 67 open reading frames (ORFs) with good coding potential located on both DNA strands. The comparison of the deduced PY54 gene products with known proteins encoded by other phages and bacteria along with functional studies have enabled us to assign the possible functions of 25 ORFs. In the left arm of the PY54 genome, we identified a number of ORFs that obviously code for head and tail proteins. Furthermore, this part of the phage genome contains genes probably involved in plasmid partitioning. Regarding the predicted gene functions and gene order, the PY54 and N15 left arms are similar. However, there are only weak DNA homologies and, in contrast to N15, the Yersinia phage harbours only a few ORFs related to genes found in lambdoid phages. The PY54 right arm comprises mainly regulatory genes as well as genes important for plasmid replication, DNA methylation, and host cell lysis. Out of 36 deduced products of the right arm, 13 revealed strongest database homologies to N15 proteins, of which the protelomerase and the Rep protein are exclusively homologous to their N15 counterparts. A number of PY54 genes essential for the lytic or lysogenic cycle were identified by functional analysis and characterization of phage mutants. In order to study transcription during the lytic and lysogenic stage, we analysed 34 PY54 ORFs by reverse transcriptase (RT)-PCR. The phage transcription patterns in lysogenic bacteria and at the late lytic stage of infection are nearly identical. The reasons for this finding are spontaneous release of phages during lysogeny and a high rate of phages that lysogenize their Yersinia host upon infection.
Collapse
Affiliation(s)
- Stefan Hertwig
- Department of Biological Safety, Robert Koch-Institut, D-13353 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Geslin C, Le Romancer M, Erauso G, Gaillard M, Perrot G, Prieur D. PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, "Pyrococcus abyssi". J Bacteriol 2003; 185:3888-94. [PMID: 12813083 PMCID: PMC161591 DOI: 10.1128/jb.185.13.3888-3894.2003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the first virus-like particle of a hyperthermophilic euryarchaeote which was discovered in a strain of "Pyrococcus abyssi" previously characterized in our laboratory. This particle, named PAV1, is lemon-shaped (120 nm x 80 nm), with a short tail terminated by fibers, and resembles the virus SSV1, the type member of the Fuselloviridae, isolated from Sulfolobus shibatae. Sensitivity of the virus-like particle to organic solvents and detergents suggested that the envelope of PAV1 may contain lipids in addition to proteins. It contains a double-stranded circular DNA of 18 kb which is also present in high copy number in a free form in the host cytoplasm. No integrated form of the PAV1 genome could be detected in the host chromosome. Under standard growth conditions, the host cells continuously release PAV1 particles into the culture supernatant without spontaneous lysis, with a maximum reached in the late stationary phase. UV, gamma irradiation, treatment with mitomycin C, and various physiological stresses had no effect on PAV1 production. Screening of a large number of Thermococcales isolates did not permit to find a sensitive host. These results suggest that PAV1 persists in the host strain in a stable carrier state rather than a prophage.
Collapse
Affiliation(s)
- C Geslin
- Université de Bretagne Occidentale, CNRS UMR 6539, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | | | | | | | | | | |
Collapse
|
50
|
Faruque SM, Zhu J, Kamruzzaman M, Mekalanos JJ. Examination of diverse toxin-coregulated pilus-positive Vibrio cholerae strains fails to demonstrate evidence for Vibrio pathogenicity island phage. Infect Immun 2003; 71:2993-9. [PMID: 12761075 PMCID: PMC155729 DOI: 10.1128/iai.71.6.2993-2999.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major virulence factors of toxigenic Vibrio cholerae are cholera toxin, which is encoded by a lysogenic filamentous bacteriophage (CTXPhi), and toxin-coregulated pilus (TCP), an essential colonization factor that is also the receptor for CTXPhi. The genes involved in the biosynthesis of TCP reside in a pathogenicity island, which has been reported to correspond to the genome of another filamentous phage (designated VPIPhi) and to encode functions necessary for the production of infectious VPIPhi particles. We examined 46 V. cholerae strains having diverse origins and carrying different genetic variants of the TCP island for the production of the VPIPhi and CTXPhi in different culture conditions, including induction of prophages with mitomycin C and UV irradiation. Although 9 of 10 V. cholerae O139 strains and 12 of 15 toxigenic El Tor strains tested produced extracellular CTXPhi, none of the 46 TCP-positive strains produced detectable VPIPhi in repeated assays, which detected as few as 10 particles of a control CTX phage per ml. These results contradict the previous report regarding VPIPhi-mediated horizontal transfer of the TCP genes and suggest that the TCP island is unable to support the production of phage particles. Further studies are necessary to understand the mechanism of horizontal transfer of the TCP island.
Collapse
Affiliation(s)
- Shah M Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | | | | | | |
Collapse
|