1
|
Liu Y, Wang X, Zhen Z, Yu Y, Qiu Y, Xiang W. GRP78 regulates milk biosynthesis and the proliferation of bovinemammaryepithelial cells through the mTOR signaling pathway. Cell Mol Biol Lett 2019; 24:57. [PMID: 31660059 PMCID: PMC6805561 DOI: 10.1186/s11658-019-0181-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glucose-regulated protein 78 (GRP78) is a member of the HSP70 protein family and a key endoplasmic reticulum chaperone. It has been revealed to play important roles both in the maturation, folding and transport of proteins and in cellproliferation. However, its involvement in milk biosynthesis or the proliferation of bovine primary mammary epithelial cells (BMECs) has yet to be established. METHODS The expressions of GRP78 in BMECs stimulated with methionine, leucine, estrogen and prolactin were determined using western blotting and immunofluorescence assays. To explore the function of GRP78 in BMECs, the protein was overexpressed or knocked down, respectively using an overexpression vector or an siRNA mixture transfected into cells cultured in vitro. Flow cytometry was used to analyze cell proliferation and cell activity. The contents of lactose and triglyceride (TG) secreted from the treated BMECs were measured using lactose and TG assay kits, respectively. Western blotting analysis was used to measure the β-casein content and the protein levels of the signaling molecules known to be involved in milk biosynthesis and cell proliferation. RESULTS GRP78overexpression significantly stimulated milk protein and milk fat synthesis, enhanced cell proliferation, positively regulated the phosphorylation of mammalian target of rapamycin (mTOR), and increased the amount of protein of cyclinD1andsterol regulatory element-binding protein 1c (SREBP-1c). GRP78 knockdown after siRNA transfection had the opposite effects. We further found that GRP78 was located in the cytoplasm of BMECs, and that stimulating methionine, leucine, estrogen and prolactin expression led to a significant increase in the protein expression of GRP78 in BMECs. CONCLUSIONS These data reveal that GRP78 is an important regulator of milk biosynthesis and the proliferation of BMECs through the mTOR signaling pathway.
Collapse
Affiliation(s)
- Ying Liu
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | | | - Zhen Zhen
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | - Yanbo Yu
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | - Youwen Qiu
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| | - Wensheng Xiang
- The Key Laboratory of Dairy Science of Education Ministry, Heilongjiang Province, China
| |
Collapse
|
2
|
Yoon YR, Lee TG, Choi MH, Shin SW, Ko YG, Rhyu IJ, Kim DH, Seong JK, Baik JH. Glucose-regulated protein 78 binds to and regulates the melanocortin-4 receptor. Exp Mol Med 2018; 50:1-14. [PMID: 30209265 PMCID: PMC6135830 DOI: 10.1038/s12276-018-0144-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/10/2018] [Accepted: 06/01/2018] [Indexed: 11/09/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) belongs to the G protein-coupled receptor (GPCR) family and plays an essential role in the control of energy homeostasis. Here, we identified a novel MC4R-interacting protein, glucose-regulated protein 78 (GRP78), from a pulldown assay using hypothalamic protein extracts and the third intracellular loop of MC4R. We found that MC4R interacted with GRP78 in both the cytosol and at the cell surface and that this interaction increased when MC4R was internalized in the presence of the agonist melanotan-II (MTII). Downregulation of GRP78 using a short interfering RNA approach attenuated MTII-mediated receptor internalization. Reduction in GRP78 expression during tunicamycin-induced endoplasmic reticulum stress also suppressed MTII-mediated internalization of MC4R and cAMP-mediated transcriptional activity. Furthermore, lentiviral-mediated short hairpin RNA knockdown of endogenous GRP78 in the paraventricular nucleus (PVN) of the hypothalamus resulted in an increase in body weight in mice fed a high-fat diet. These results suggest that GRP78 in the PVN binds to MC4R and may have a chaperone-like role in the regulation of MC4R trafficking and signaling.
Collapse
Affiliation(s)
- Ye Ran Yoon
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Tae-Gul Lee
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Mi-Hyun Choi
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Seung Woo Shin
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Young-Gyu Ko
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, South Korea.,Department of Medical Sciences, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Dong-Hoon Kim
- Department of Medical Sciences, College of Medicine, Korea University, Seoul, 02841, South Korea.,Department of Pharmacology, College of Medicine, Korea University, Seoul, 02841, South Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Institute for Veterinary Science, and BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, South Korea.,Interdisciplinary Program for Bioinformatics, Program for Cancer Biology, and Bio MAX Institute, Seoul National University, Seoul, South Korea
| | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, Seoul, 02841, South Korea. .,Department of Medical Sciences, College of Medicine, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
3
|
Ali I, Shah SZA, Jin Y, Li ZS, Ullah O, Fang NZ. Reactive oxygen species-mediated unfolded protein response pathways in preimplantation embryos. J Vet Sci 2017; 18:1-9. [PMID: 28057903 PMCID: PMC5366292 DOI: 10.4142/jvs.2017.18.1.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/28/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022] Open
Abstract
Excessive production of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress-mediated responses are critical to embryonic development in the challenging in vitro environment. ROS production increases during early embryonic development with the increase in protein requirements for cell survival and growth. The ER is a multifunctional cellular organelle responsible for protein folding, modification, and cellular homeostasis. ER stress is activated by a variety of factors including ROS. Such stress leads to activation of the adaptive unfolded protein response (UPR), which restores homeostasis. However, chronic stress can exceed the toleration level of the ER, resulting in cellular apoptosis. In this review, we briefly describe the generation and impact of ROS in preimplantation embryo development, the ROS-mediated activation mechanism of the UPR via the ER, and the subsequent activation of signaling pathways following ER stress in preimplantation embryos.
Collapse
Affiliation(s)
- Ihsan Ali
- Laboratory of Animal Genetic Breeding and Reproduction, Agriculture College of Yanbian University, Yanji 133002, China
| | - Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agro Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yi Jin
- Laboratory of Animal Genetic Breeding and Reproduction, Agriculture College of Yanbian University, Yanji 133002, China
| | - Zhong-Shu Li
- Laboratory of Animal Genetic Breeding and Reproduction, Agriculture College of Yanbian University, Yanji 133002, China
| | - Obaid Ullah
- Laboratory of Animal Genetic Breeding and Reproduction, Agriculture College of Yanbian University, Yanji 133002, China
| | - Nan-Zhu Fang
- Laboratory of Animal Genetic Breeding and Reproduction, Agriculture College of Yanbian University, Yanji 133002, China
| |
Collapse
|
4
|
Lam IF, Huang M, Chang MDT, Yao PW, Chou YT, Ng SK, Tsai YL, Lin YC, Zhang YF, Yang XY, Lai YK. Identification of anti-HBV activities in Paeonia suffruticosa Andr. using GRP78 as a drug target on Herbochip ®. Chin Med 2017; 12:11. [PMID: 28450884 PMCID: PMC5402670 DOI: 10.1186/s13020-017-0132-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 04/17/2017] [Indexed: 01/29/2023] Open
Abstract
Background Herbochip® technology is a high throughput drug screening platform in a reverse screening manner, in which potential chemical leads in herbal extracts are immobilized and drug target proteins can be used as probes for screening process [BMC Complementary and Alternative Medicine (2015) 15:146]. While herbal medicines represent an ideal reservoir for drug screenings, here a molecular chaperone GRP78 is demonstrated to serve as a potential target for antiviral drug discovery. Methods We cloned and expressed a truncated but fully functional form of human GRP78 (hGRP781-508) and used it as a probe for anti-HBV drug screening on herbochips. In vitro cytotoxicity and in vitro anti-HBV activity of the herbal extracts were evaluated by MTT and ELISA assays, respectively. Finally, anti-HBV activity was confirmed by in vivo assay using DHBV DNA levels in DHBV-infected ducklings as a model. Results Primary screenings using GRP78 on 40 herbochips revealed 11 positives. Four of the positives, namely Dioscorea bulbifera, Lasiosphaera fenzlii, Paeonia suffruticosa and Polygonum cuspidatum were subjected to subsequent assays. None of the above extracts was cytotoxic to AML12 cells, but P. cuspidatum extract (PCE) was found to be cytotoxic to HepG2 2.2.15 cells. Both PCE and P. suffruticosa extract (PSE) suppressed secretion of HBsAg and HBeAg in HepG2 2.2.15 cells. The anti-HBV activity of PSE was further confirmed in vivo. Conclusion We have demonstrated that GRP78 is a valid probe for anti-HBV drug screening on herbochips. We have also shown that PSE, while being non-cytotoxic, possesses in vitro and in vivo anti-HBV activities. Taken together, our data suggest that PSE may be a potential anti-HBV agent for therapeutic use. Electronic supplementary material The online version of this article (doi:10.1186/s13020-017-0132-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iao-Fai Lam
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Min Huang
- Yunnan Baiyao-Herbcopoeia Laboratory Inc., 51 Xi-Ba Road, Kunming, Yunnan China
| | - Margaret Dah-Tysr Chang
- Institute of Molecular and Cellular Biology and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Wun Yao
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Ting Chou
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Sim-Kun Ng
- Institute of Molecular and Cellular Biology and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Lin Tsai
- Institute of Molecular and Cellular Biology and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chang Lin
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Feng Zhang
- School of Life Science, Yunnan Normal University, Kunming, Yunnan China
| | - Xiao-Yuan Yang
- Yunnan Baiyao-Herbcopoeia Laboratory Inc., 51 Xi-Ba Road, Kunming, Yunnan China
| | - Yiu-Kay Lai
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.,Yunnan Baiyao-Herbcopoeia Laboratory Inc., 51 Xi-Ba Road, Kunming, Yunnan China
| |
Collapse
|
5
|
ER Chaperone BiP/GRP78 Is Required for Myelinating Cell Survival and Provides Protection during Experimental Autoimmune Encephalomyelitis. J Neurosci 2016; 35:15921-33. [PMID: 26631473 DOI: 10.1523/jneurosci.0693-15.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Myelinating cells synthesize large amounts of membrane protein through the secretory pathway, which makes these cells particularly sensitive to perturbations of the endoplasmic reticulum (ER). Ig binding protein (BiP), also known as glucose-regulated protein 78 (GRP78), is a critical ER chaperone that also plays a pivotal role in controlling the cellular response to ER stress. To examine the potential importance of BiP to myelinating cells, we used a conditional knock-out approach to BiP gene inactivation in oligodendrocytes during development, in adulthood, and in response to experimental autoimmune encephalomyelitis (EAE), an animal model of the inflammatory demyelinating disorder multiple sclerosis (MS). During development, mice lacking functional BiP gene expression in oligodendrocytes developed tremors and ataxia and died before reaching maturity. When BiP gene inactivation in oligodendrocytes was initiated in adulthood, the mice displayed severe neurological symptoms including tremors and hind-limb paralysis. The inactivation of BiP in oligodendrocytes during development or in adulthood resulted in oligodendrocyte loss and corresponding severe myelin abnormalities. Mice heterozygous for the oligodendrocyte-specific inactivation of BiP, which were phenotypically normal without evidence of neuropathology, displayed an exacerbated response to EAE that correlated with an increased loss of oligodendrocytes. Furthermore, mice in which the BiP gene was specifically inactivated in developing Schwann cells displayed tremor that progressed to hindlimb paralysis, which correlated with diminished numbers of myelinating Schwann cells and severe PNS hypomyelination. These studies demonstrate that BiP is critical for myelinating cell survival and contributes to the protective response of oligodendrocyte against inflammatory demyelination.
Collapse
|
6
|
Gopal U, Gonzalez-Gronow M, Pizzo SV. Activated α2-Macroglobulin Regulates Transcriptional Activation of c-MYC Target Genes through Cell Surface GRP78 Protein. J Biol Chem 2016; 291:10904-15. [PMID: 27002159 DOI: 10.1074/jbc.m115.708131] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 12/25/2022] Open
Abstract
Activated α2-macroglobulin (α2M*) signals predominantly through cell surface GRP78 (CS-GRP78) to promote proliferation and survival of cancer cells; however, the molecular mechanism remains obscure. c-MYC is an essential transcriptional regulator that controls cell proliferation. We hypothesize that α2M*/CS-GRP78-evoked key signaling events are required for transcriptional activation of c-MYC target genes. Activation of CS-GRP78 by α2M* requires ligation of the GRP78 primary amino acid sequence (Leu(98)-Leu(115)). After stimulation with α2M*, CS-GRP78 signaling activates 3-phosphoinositide-dependent protein kinase-1 (PDK1) to induce phosphorylation of PLK1, which in turn induces c-MYC transcription. We demonstrate that PLK1 binds directly to c-MYC and promotes its transcriptional activity by phosphorylating Ser(62) Moreover, activated c-MYC is recruited to the E-boxes of target genes FOSL1 and ID2 by phosphorylating histone H3 at Ser(10) In addition, targeting the carboxyl-terminal domain of CS-GRP78 with a mAb suppresses transcriptional activation of c-MYC target genes and impairs cell proliferation. This work demonstrates that α2M*/CS-GRP78 acts as an upstream regulator of the PDK1/PLK1 signaling axis to modulate c-MYC transcription and its target genes, suggesting a therapeutic strategy for targeting c-MYC-associated malignant progression.
Collapse
Affiliation(s)
- Udhayakumar Gopal
- From the Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| | - Mario Gonzalez-Gronow
- From the Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| | - Salvatore Vincent Pizzo
- From the Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
7
|
Selection and identification of ligand peptides targeting a model of castrate-resistant osteogenic prostate cancer and their receptors. Proc Natl Acad Sci U S A 2015; 112:3776-81. [PMID: 25762070 DOI: 10.1073/pnas.1500128112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We performed combinatorial peptide library screening in vivo on a novel human prostate cancer xenograft that is androgen-independent and induces a robust osteoblastic reaction in bonelike matrix and soft tissue. We found two peptides, PKRGFQD and SNTRVAP, which were enriched in the tumors, targeted the cell surface of androgen-independent prostate cancer cells in vitro, and homed to androgen receptor-null prostate cancer in vivo. Purification of tumor homogenates by affinity chromatography on these peptides and subsequent mass spectrometry revealed a receptor for the peptide PKRGFQD, α-2-macroglobulin, and for SNTRVAP, 78-kDa glucose-regulated protein (GRP78). These results indicate that GRP78 and α-2-macroglobulin are highly active in osteoblastic, androgen-independent prostate cancer in vivo. These previously unidentified ligand-receptor systems should be considered for targeted drug development against human metastatic androgen-independent prostate cancer.
Collapse
|
8
|
Shi W, Xu G, Wang C, Sperber SM, Chen Y, Zhou Q, Deng Y, Zhao H. Heat shock 70-kDa protein 5 (Hspa5) is essential for pronephros formation by mediating retinoic acid signaling. J Biol Chem 2015; 290:577-89. [PMID: 25398881 PMCID: PMC4281759 DOI: 10.1074/jbc.m114.591628] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/09/2014] [Indexed: 12/17/2022] Open
Abstract
Heat shock 70-kDa protein 5 (Hspa5), also known as binding immunoglobulin protein (Bip) or glucose-regulated protein 78 (Grp78), belongs to the heat shock protein 70 kDa family. As a multifunctional protein, it participates in protein folding and calcium homeostasis and serves as an essential regulator of the endoplasmic reticulum (ER) stress response. It has also been implicated in signal transduction by acting as a receptor or co-receptor residing at the plasma membrane. Its function during embryonic development, however, remains largely elusive. In this study, we used morpholino antisense oligonucleotides (MOs) to knock down Hspa5 activity in Xenopus embryos. In Hspa5 morphants, pronephros formation was strongly inhibited with the reduction of pronephric marker genes Lim homeobox protein 1 (lhx1), pax2, and β1 subunit of Na/K-ATPase (atp1b1). Pronephros tissue was induced in vitro by treating animal caps with all-trans-retinoic acid and activin. Depletion of Hspa5 in animal caps, however, blocked the induction of pronephros as well as reduced the expression of retinoic acid (RA)-responsive genes, suggesting that knockdown of Hspa5 attenuated RA signaling. Knockdown of Hspa5 in animal caps resulted in decreased expression of lhx1, a transcription factor directly regulated by RA signaling and essential for pronephros specification. Co-injection of Hspa5MO with lhx1 mRNA partially rescued the phenotype induced by Hspa5MO. These results suggest that the RA-Lhx1 signaling cascade is involved in Hspa5MO-induced pronephros malformation. This study shows that Hspa5, a key regulator of the unfolded protein response, plays an essential role in pronephros formation, which is mediated in part through RA signaling during early embryonic development.
Collapse
Affiliation(s)
- Weili Shi
- From the Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Gang Xu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, China
| | - Chengdong Wang
- From the Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Steven M Sperber
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574
| | - Yonglong Chen
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and
| | - Qin Zhou
- Division of Molecular Nephrology and Creative Training Center for Undergraduates, Ministry of Education Key Laboratory of Laboratory Medicine Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Deng
- Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China,
| | - Hui Zhao
- From the Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China,
| |
Collapse
|
9
|
Galligan JJ, Fritz KS, Backos DS, Shearn CT, Smathers RL, Jiang H, MacLean KN, Reigan PR, Petersen DR. Oxidative stress-mediated aldehyde adduction of GRP78 in a mouse model of alcoholic liver disease: functional independence of ATPase activity and chaperone function. Free Radic Biol Med 2014; 73:411-20. [PMID: 24924946 PMCID: PMC4395467 DOI: 10.1016/j.freeradbiomed.2014.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/05/2014] [Accepted: 06/02/2014] [Indexed: 01/23/2023]
Abstract
Pathogenesis in alcoholic liver disease (ALD) is complicated and multifactorial but clearly involves oxidative stress and inflammation. Currently, conflicting reports exist regarding the role of endoplasmic reticulum (ER) stress in the etiology of ALD. The glucose-regulated protein 78 (GRP78) is the ER homolog of HSP70 and plays a critical role in the cellular response to ER stress by serving as a chaperone assisting protein folding and by regulating the signaling of the unfolded protein response (UPR). Comprising three functional domains, an ATPase, a peptide-binding, and a lid domain, GRP78 folds nascent polypeptides via the substrate-binding domain. Earlier work has indicated that the ATPase function of GRP78 is intrinsically linked and essential to its chaperone activity. Previous work in our laboratory has indicated that GRP78 and the UPR are not induced in a mouse model of ALD but that GRP78 is adducted by the lipid electrophiles 4-hydroxynonenal (4-HNE) and 4-oxononenal (4-ONE) in vivo. As impairment of GRP78 has the potential to contribute to pathogenesis in ALD, we investigated the functional consequences of aldehyde adduction on GRP78 function. Identification of 4-HNE and 4-ONE target residues in purified human GRP78 revealed a marked propensity for Lys and His adduction within the ATPase domain and a relative paucity of adduct formation within the peptide-binding domain. Consistent with these findings, we observed a concomitant dose-dependent decrease in ATP-binding and ATPase activity without any discernible impairment of chaperone function. Collectively, our data indicate that ATPase activity is not essential for GRP78-mediated chaperone activity and is consistent with the hypothesis that ER stress does not play a primary initiating role in the early stages of ALD.
Collapse
Affiliation(s)
- James J Galligan
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Donald S Backos
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Colin T Shearn
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rebecca L Smathers
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hua Jiang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth N MacLean
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Philip R Reigan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dennis R Petersen
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
10
|
Gonzalez-Gronow M, Gomez CF, de Ridder GG, Ray R, Pizzo SV. Binding of tissue-type plasminogen activator to the glucose-regulated protein 78 (GRP78) modulates plasminogen activation and promotes human neuroblastoma cell proliferation in vitro. J Biol Chem 2014; 289:25166-76. [PMID: 25059665 DOI: 10.1074/jbc.m114.589341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The glucose-regulated protein 78 (GRP78) is a plasminogen (Pg) receptor on the cell surface. In this study, we demonstrate that GRP78 also binds the tissue-type plasminogen activator (t-PA), which results in a decrease in K(m) and an increase in the V(max) for both its amidolytic activity and activation of its substrate, Pg. This results in accelerated Pg activation when GRP78, t-PA, and Pg are bound together. The increase in t-PA activity is the result of a mechanism involving a t-PA lysine-dependent binding site in the GRP78 amino acid sequence (98)LIGRTWNDPSVQQDIKFL(115). We found that GRP78 is expressed on the surface of neuroblastoma SK-N-SH cells where it is co-localized with the voltage-dependent anion channel (VDAC), which is also a t-PA-binding protein in these cells. We demonstrate that both Pg and t-PA serve as a bridge between GRP78 and VDAC bringing them together to facilitate Pg activation. t-PA induces SK-N-SH cell proliferation via binding to GRP78 on the cell surface. Furthermore, Pg binding to the COOH-terminal region of GRP78 stimulates cell proliferation via its microplasminogen domain. This study confirms previous findings from our laboratory showing that GRP78 acts as a growth factor-like receptor and that its association with t-PA, Pg, and VDAC on the cell surface may be part of a system controlling cell growth.
Collapse
Affiliation(s)
- Mario Gonzalez-Gronow
- From the Department of Biological Sciences, Laboratory of Environmental Neurotoxicology Faculty of Medicine, Universidad Católica del Norte, Coquimbo 1781421, Chile and the Department of Pathology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Cristian Farias Gomez
- From the Department of Biological Sciences, Laboratory of Environmental Neurotoxicology Faculty of Medicine, Universidad Católica del Norte, Coquimbo 1781421, Chile and
| | - Gustaaf G de Ridder
- the Department of Pathology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Rupa Ray
- the Department of Pathology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Salvatore V Pizzo
- the Department of Pathology, Duke University, Medical Center, Durham, North Carolina 27710
| |
Collapse
|
11
|
Lin P, Chen F, Yang Y, Song Y, Li X, Lan X, Jin Y, Wang A. GRP78 expression and immunohistochemical localization in the female reproductive tract of mice. Theriogenology 2012; 78:1824-9. [DOI: 10.1016/j.theriogenology.2012.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 07/14/2012] [Accepted: 07/19/2012] [Indexed: 10/27/2022]
|
12
|
A murine monoclonal antibody directed against the carboxyl-terminal domain of GRP78 suppresses melanoma growth in mice. Melanoma Res 2012; 22:225-35. [PMID: 22495669 DOI: 10.1097/cmr.0b013e32835312fd] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The HSP70 family member GRP78 is a selective tumor marker upregulated on the surface of many tumor cell types, including melanoma, where it acts as a growth factor receptor-like protein. Receptor-recognized forms of the proteinase inhibitor α2-macroglobulin (α2M*) are the best-characterized ligands for GRP78, but in melanoma and other cancer patients, autoantibodies arise against the NH2-terminal domain of GRP78 that react with tumor cell-surface GRP78. This causes the activation of signaling cascades that are proproliferative and antiapoptotic. Antibodies directed against the COOH-terminal domain of GRP78, however, upregulate p53-mediated proapoptotic signaling, leading to cell death. Here, we describe the binding characteristics, cell signaling properties, and downstream cellular effects of three novel murine monoclonal antibodies. The NH2-terminal domain-reactive antibody, N88, mimics α2M* as a ligand and drives PI 3-kinase-dependent activation of Akt and the subsequent stimulation of cellular proliferation in vitro. The COOH-terminal domain-reactive antibody, C38, acts as an antagonist of both α2M* and N88, whereas another, C107, directly induces apoptosis in vitro. In a murine B16F1 melanoma flank tumor model, we demonstrate the acceleration of tumor growth by treatment with N88, whereas C107 significantly slowed tumor growth whether administered before (P<0.005) or after (P<0.05) tumor implantation.
Collapse
|
13
|
Ray R, de Ridder GG, Eu JP, Paton AW, Paton JC, Pizzo SV. The Escherichia coli subtilase cytotoxin A subunit specifically cleaves cell-surface GRP78 protein and abolishes COOH-terminal-dependent signaling. J Biol Chem 2012; 287:32755-69. [PMID: 22851173 DOI: 10.1074/jbc.m112.399808] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
GRP78, a molecular chaperone with critical endoplasmic reticulum functions, is aberrantly expressed on the surface of cancer cells, including prostate and melanoma. Here it functions as a pro-proliferative and anti-apoptotic signaling receptor via NH(2)-terminal domain ligation. Auto-antibodies to this domain may appear in cancer patient serum where they are a poor prognostic indicator. Conversely, GRP78 COOH-terminal domain ligation is pro-apoptotic and anti-proliferative. There is no method to disrupt cell-surface GRP78 without compromising the total GRP78 pool, making it difficult to study cell-surface GRP78 function. We studied six cell lines representing three cancer types. One cell line per group expresses high levels of cell-surface GRP78, and the other expresses low levels (human hepatoma: Hep3B and HepG2; human prostate cancer: PC3 and 1-LN; murine melanoma: B16F0 and B16F1). We investigated the effect of Escherichia coli subtilase cytoxin catalytic subunit (SubA) on GRP78. We report that SubA specifically cleaves cell-surface GRP78 on HepG2, 1-LN, and B16F1 cells without affecting intracellular GRP78. B16F0 cells (GRP78(low)) have lower amounts of cleaved cell-surface GRP78. SubA has no effect on Hep3B and PC3 cells. The predicted 28-kDa GRP78 COOH-terminal fragment is released into the culture medium by SubA treatment, and COOH-terminal domain signal transduction is abrogated, whereas pro-proliferative signaling mediated through NH(2)-terminal domain ligation is unaffected. These experiments clarify cell-surface GRP78 topology and demonstrate that the COOH-terminal domain is necessary for pro-apoptotic signal transduction occurring upon COOH-terminal antibody ligation. SubA is a powerful tool to specifically probe the functions of cell-surface GRP78.
Collapse
Affiliation(s)
- Rupa Ray
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
14
|
Weng WC, Lee WT, Hsu WM, Chang BE, Lee H. Role of glucose-regulated Protein 78 in embryonic development and neurological disorders. J Formos Med Assoc 2011; 110:428-37. [PMID: 21742246 DOI: 10.1016/s0929-6646(11)60064-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/26/2011] [Accepted: 05/05/2011] [Indexed: 12/12/2022] Open
Abstract
Glucose-regulated protein 78 (GRP78) is an important chaperone protein that is predominantly expressed in the endoplasmic reticulum. The multifunctional roles of GRP78 in protein folding, endoplasmic reticulum calcium binding, cytoprotection, and anti-apoptosis, as well as its function as a receptor on the cell surface, disclose its major involvement in physiological and numerous pathological conditions. Recent advances in mouse models targeting GRP78 allele have revealed the essential roles of GRP78 in development and neurological disorders, as well as accurate neural migration and neuroprotection. This review of correlation between GRP78 and embryogenesis and neurological disorders provides further directions for investigation, as well as potential therapeutics for clinical use.
Collapse
Affiliation(s)
- Wen-Chin Weng
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei
| | | | | | | | | |
Collapse
|
15
|
Changes in oligosaccharide chains of autoantibodies to GRP78 expressed during progression of malignant melanoma stimulate melanoma cell growth and survival. Melanoma Res 2011; 21:323-34. [PMID: 21597391 DOI: 10.1097/cmr.0b013e3283471042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A correlation between expression of the glucose-regulated protein of 78 kDa (GRP78) in malignant melanoma tumors and poor patient survival is well established. In this study, in addition to demonstrating the expression of GRP78 in tumor tissue, we investigated the immune response against GRP78 in a group of patients with different progression stages of malignant melanoma. Furthermore, we analyzed the glycosylation status of GRP78 immunoglobulin (Ig) G autoantibodies at these stages and evaluated their capacities to affect the protein B-dependent protein kinase signaling pathway and unfolded protein response signaling mechanisms, all known to promote malignant melanoma cell proliferation and survival. We found that progression of disease correlates not only with enhanced expression of GRP78 in the tumor but also with an increase in GRP78 autoantibody serum titers in these patients. We also found that the glycosylation status of anti-GRP78 IgG changes as the disease progresses. The anti-GRP78 IgG is abnormally glycosylated in the Fc region and asymmetrically glycosylated in the Fab region. We demonstrate that hyperglycosylated anti-GRP78 IgGs stimulate cell proliferation through protein B-dependent protein kinase signaling pathways. They also mimic the effects of α2-macroglobulin on the upregulation of GRP78 and X-box binding protein 1, activating transcription factor 6 α, and serine/threonine-protein kinase/endoribonuclease precursor α as endoplasmic reticulum stress biomarkers and show no effect on expression or activation of caspases 3, 9, or 12. In conclusion, the anti-GRP78 IgG autoantibodies downregulate apoptosis and activate unfolded protein response mechanisms, which are essential to promote melanoma cell growth and survival.
Collapse
|
16
|
de Ridder GG, Gonzalez-Gronow M, Ray R, Pizzo SV. Autoantibodies against cell surface GRP78 promote tumor growth in a murine model of melanoma. Melanoma Res 2011; 21:35-43. [PMID: 21164368 PMCID: PMC3116076 DOI: 10.1097/cmr.0b013e3283426805] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Autoantibodies that react with GRP78 expressed on the cell-surface of many tumor cell lines occur in the sera of patients with prostate cancer, melanoma, and ovarian cancer. These autoantibodies are a negative prognostic factor in prostate cancer and, when purified, stimulate tumor cell proliferation in vitro. It is unclear, however, whether these immunoglobulin Gs are merely a biomarker, or whether they actually promote the tumor growth in vivo. We immunized C57Bl/6 mice with recombinant GRP78 and then implanted the B16F1 murine melanoma cell line as flank tumors. We used the antisera from these mice for in-vitro cell signaling and proliferation assays. The immunodominant epitope in patients with cancer was well represented in the antibody repertoire of these immunized mice. We observed significantly accelerated tumor growth, and shortened survival in GRP78-immunized mice compared with controls. Furthermore, antisera from these mice, and purified anti-GRP78 immunoglobulin G from similarly immunized mice, stimulate Akt phosphorylation and proliferation in B16F1 and human DM6 melanoma cells in culture. These studies show a causal link between a humoral response to GRP78 and the progression of cancer in a murine melanoma model. They support the hypothesis that such autoantibodies are involved in the progression of human cancers and are not simply a biomarker. As GRP78 is present on the surface of many types of cancer cells, this hypothesis has broad clinical and therapeutic implications.
Collapse
Affiliation(s)
| | | | - Rupa Ray
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | - Salvatore V. Pizzo
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
17
|
Okamura M, Takano Y, Hiramatsu N, Hayakawa K, Yao J, Paton AW, Paton JC, Kitamura M. Suppression of cytokine responses by indomethacin in podocytes: a mechanism through induction of unfolded protein response. Am J Physiol Renal Physiol 2008; 295:F1495-503. [PMID: 18799549 DOI: 10.1152/ajprenal.00602.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We found that, in murine podocytes, expression of monocyte chemoattractant protein 1 ( MCP- 1) in response to TNF-α was suppressed by indomethacin but not by ibuprofen. This anti-inflammatory potential was correlated with induction of 78-kDa glucose-regulated protein ( GRP78), a marker of unfolded protein response (UPR). Indomethacin, but not ibuprofen, also triggered expression of CHOP, another endogenous indicator of UPR, as well as repression of endoplasmic reticulum stress-responsive alkaline phosphatase, an exogenous indicator of UPR. Like ibuprofen, other nonsteroidal anti-inflammatory drugs including aspirin and sulindac also did not induce UPR, indicating that the induction of UPR by indomethacin was independent of cyclooxygenase inhibition. The induction of UPR by indomethacin was observed similarly in other cells including mesangial cells and tubular epithelial cells. In tumor necrosis factor (TNF)-α-treated cells, suppression of MCP-1 by indomethacin was inversely correlated with induction of UPR, and other inducers of UPR including tunicamycin, thapsigargin, and A23187 reproduced the suppressive effect. Reporter assays showed that indomethacin as well as thapsigargin attenuated activation of NF-κB by TNF-α, and it was associated with enhanced degradation of TNF receptor-associated factor 2 (TRAF2) and blunted degradation of IκBβ. Subsequent experiments revealed that acute ablation of GRP78 protein by AB5 subtilase cytotoxin caused reinforcement of MCP-1 induction and NF-κB activation by TNF-α and that transfection with GRP78 significantly suppressed the cytokine-induced activation of NF-κB. These results suggested that indomethacin suppressed the response of podocytes to TNF-α via UPR and that UPR-triggered induction of GRP78 and degradation of TRAF2 may be responsible, at least in part, for the suppressive effect of indomethacin.
Collapse
|
18
|
Endo S, Hiramatsu N, Hayakawa K, Okamura M, Kasai A, Tagawa Y, Sawada N, Yao J, Kitamura M. Geranylgeranylacetone, an inducer of the 70-kDa heat shock protein (HSP70), elicits unfolded protein response and coordinates cellular fate independently of HSP70. Mol Pharmacol 2007; 72:1337-48. [PMID: 17702888 DOI: 10.1124/mol.107.039164] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Geranylgeranylacetone (GGA), an antiulcer agent, has the ability to induce 70-kDa heat shock protein (HSP70) in various cell types and to protect cells from apoptogenic insults. However, little is known about effects of GGA on other HSP families of molecules. We found that, at concentrations >/=100 microM, GGA caused selective expression of 78-kDa glucose-regulated protein (GRP78), an HSP70 family member inducible by endoplasmic reticulum (ER) stress, without affecting the level of HSP70 in various cell types. Induction of ER stress by GGA was also evidenced by expression of another endogenous marker, CCAAT/enhancer-binding protein-homologous protein (CHOP); decreased activity of ER stress-responsive alkaline phosphatase; and unfolded protein response (UPR), including activation of the activating transcription factor 6 (ATF6) pathway and the inositol-requiring ER-to-nucleus signal kinase 1-X-box-binding protein 1 (IRE1-XBP1) pathway. Incubation of mesangial cells with GGA caused significant apoptosis, which was attenuated by transfection with inhibitors of caspase-12 (i.e., a dominant-negative mutant of caspase-12 and MAGE-3). Dominant-negative suppression of IRE1 or XBP1 significantly attenuated apoptosis without affecting the levels of CHOP and GRP78. Inhibition of c-Jun NH(2)-terminal kinase, the molecule downstream of IRE1, by 1,9-pyrazoloanthrone (SP600125) did not improve cell survival. Blockade of ATF6 by 4-(2-aminoethyl) benzenesulfonyl fluoride enhanced apoptosis by GGA, and it was correlated with attenuated induction of both GRP78 and CHOP. Overexpression of GRP78 or dominant-negative inhibition of CHOP significantly attenuated GGA-induced apoptosis. These results suggested that GGA triggers both proapoptotic (IRE1-XBP1, ATF6-CHOP) and antiapoptotic (ATF6-GRP78) UPR and thereby coordinates cellular fate even without induction of HSP70.
Collapse
Affiliation(s)
- Satoshi Endo
- Department of Molecular Signaling, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Shimokato 1110, Chuo, Yamanashi 409-3898, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gonzalez-Gronow M, Kaczowka SJ, Payne S, Wang F, Gawdi G, Pizzo SV. Plasminogen structural domains exhibit different functions when associated with cell surface GRP78 or the voltage-dependent anion channel. J Biol Chem 2007; 282:32811-20. [PMID: 17848573 DOI: 10.1074/jbc.m703342200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Both the voltage-dependent anion channel and the glucose-regulated protein 78 have been identified as plasminogen kringle 5 receptors on endothelial cells. In this study, we demonstrate that kringle 5 binds to a region localized in the N-terminal domain of the glucose-regulated protein 78, whereas microplasminogen does so through the C-terminal domain of the glucose-regulated protein 78. Both plasminogen fragments induce Ca(2+) signaling cascades; however, kringle 5 acts through voltage-dependent anion channel and microplasminogen does so via the glucose-regulated protein 78. Because trafficking of voltage-dependent anion channel to the cell surface is associated with heat shock proteins, we investigated a possible association between voltage-dependent anion channel and glucose-regulated protein 78 on the surface of 1-LN human prostate tumor cells. We demonstrate that these proteins co-localize, and changes in the expression of the glucoseregulated protein 78 affect the expression of voltage-dependent anion channel. To differentiate the functions of these receptor proteins, either when acting singly or as a complex, we employed human hexokinase I as a specific ligand for voltage-dependent anion channel, in addition to kringle 5. We show that kringle 5 inhibits 1-LN cell proliferation and promotes caspase-7 activity by a mechanism that requires binding to cell surface voltage-dependent anion channel and is inhibited by human hexokinase I.
Collapse
|
20
|
Luo S, Mao C, Lee B, Lee AS. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol Cell Biol 2006; 26:5688-97. [PMID: 16847323 PMCID: PMC1592753 DOI: 10.1128/mcb.00779-06] [Citation(s) in RCA: 363] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
GRP78, also known as BiP, is a central regulator of endoplasmic reticulum (ER) homeostasis due to its multiple functional roles in protein folding, ER calcium binding, and controlling of the activation of transmembrane ER stress sensors. ER stress induction of GRP78/BiP represents a major prosurvival arm of the unfolded protein response (UPR). However, the physiological role of GRP78 in development is not known. Using a transgenic approach, we discovered that the Grp78 promoter is activated in both the trophectoderm and inner cell mass (ICM) of embryos at embryonic day 3.5 via a mechanism requiring the ER stress elements. To reveal the function of the GRP78 in vivo, we created a tri-loxP Grp78 mutant allele, which was further crossed with EIIA-cre to create a knockout allele. The Grp78+/- mice, which express 50% of the wild-type level of the GRP78 protein, are viable. Interestingly, the heterozygous Grp78 cells up-regulate the ER proteins GRP94 and protein disulfide isomerase at both the transcript and protein levels, while other UPR targets such as CHOP and XBP-1 are not affected. Further studies revealed that mouse embryonic fibroblasts from Grp78+/- mice are capable of responding to ER stress. However, Grp78-/- embryos that are completely devoid of GRP78 lead to peri-implantation lethality. These embryos do not hatch from the zona pellucida in vitro, fail to grow in culture, and exhibit proliferation defects and a massive increase in apoptosis in the ICM, which is the precursor of embryonic stem cells. These findings provide the first evidence that GRP78 is essential for embryonic cell growth and pluripotent cell survival.
Collapse
Affiliation(s)
- Shengzhan Luo
- Department of Biochemistry and Molecular Biology and the USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089-9176, USA
| | | | | | | |
Collapse
|
21
|
Lamb HK, Mee C, Xu W, Liu L, Blond S, Cooper A, Charles IG, Hawkins AR. The affinity of a major Ca2+ binding site on GRP78 is differentially enhanced by ADP and ATP. J Biol Chem 2006; 281:8796-805. [PMID: 16418174 DOI: 10.1074/jbc.m503964200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GRP78 is a major protein regulated by the mammalian endoplasmic reticulum stress response, and up-regulation has been shown to be important in protecting cells from challenge with cytotoxic agents. GRP78 has ATPase activity, acts as a chaperone, and interacts specifically with other proteins, such as caspases, as part of a mechanism regulating apoptosis. GRP78 is also reported to have a possible role as a Ca2+ storage protein. In order to understand the potential biological effects of Ca2+ and ATP/ADP binding on the biology of GRP78, we have determined its ligand binding properties. We show here for the first time that GRP78 can bind Ca2+, ATP, and ADP, each with a 1:1 stoichiometry, and that the binding of cation and nucleotide is cooperative. These observations do not support the hypothesis that GRP78 is a dynamic Ca2+ storage protein. Furthermore, we demonstrate that whereas Mg2+ enhances GRP78 binding to ADP and ATP to the same extent, Ca2+ shows a differential enhancement. In the presence of Ca2+, the KD for ATP is lowered approximately 11-fold, and the KD for ADP is lowered around 930-fold. The KD for Ca2+ is lowered approximately 40-fold in the presence of ATP and around 880-fold with ADP. These findings may explain the biological requirement for a nucleotide exchange factor to remove ADP from GRP78. Taken together, our data suggest that the Ca2+-binding property of GRP78 may be part of a signal transduction pathway that modulates complex interactions between GRP78, ATP/ADP, secretory proteins, and caspases, and this ultimately has important consequences for cell viability.
Collapse
Affiliation(s)
- Heather K Lamb
- Institute of Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gozal E, Gozal D, Pierce WM, Thongboonkerd V, Scherzer JA, Sachleben LR, Brittian KR, Guo SZ, Cai J, Klein JB. Proteomic analysis of CA1 and CA3 regions of rat hippocampus and differential susceptibility to intermittent hypoxia. J Neurochem 2002; 83:331-45. [PMID: 12423243 DOI: 10.1046/j.1471-4159.2002.01134.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The CA1 and CA3 regions of the hippocampus markedly differ in their susceptibility to hypoxia in general, and more particularly to the intermittent hypoxia that characterizes sleep apnea. Proteomic approaches were used to identify proteins differentially expressed in the CA1 and CA3 regions of the rat hippocampus and to assess changes in protein expression following a 6-h exposure to intermittent hypoxia (IH). Ninety-nine proteins were identified, and 15 were differentially expressed in the CA1 and the CA3 regions. Following IH, 32 proteins in the CA1 region and only 7 proteins in the more resistant CA3 area were up-regulated. Hypoxia-regulated proteins in the CA1 region included structural proteins, proteins related to apoptosis, primarily chaperone proteins, and proteins involved in cellular metabolic pathways. We conclude that IH-mediated CA1 injury results from complex interactions between pathways involving increased metabolism, induction of stress-induced proteins and apoptosis, and, ultimately, disruption of structural proteins and cell integrity. These findings provide initial insights into mechanisms underlying differences in susceptibility to hypoxia in neural tissue, and may allow for future delineation of interventional strategies aiming to enhance neuronal adaptation to IH.
Collapse
Affiliation(s)
- Evelyne Gozal
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky 40204, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kroczynska B, Blond SY. Cloning and characterization of a new soluble murine J-domain protein that stimulates BiP, Hsc70 and DnaK ATPase activity with different efficiencies. Gene 2001; 273:267-74. [PMID: 11595173 DOI: 10.1016/s0378-1119(01)00583-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hsp70s perform many functions in the cell through their ATPase activity that is stimulated by a genuine partner that contains a highly conserved so called J-domain. Here we report the cloning and characterization of a new J-domain protein named MmDjC7. The complete cDNA encodes a putative soluble 22 kDa protein that contains a conserved J-domain, but lacks the G/F- and C-rich regions found in the bacterial Escherichia coli DnaJ. Northern analysis revealed that mmDjC7 mRNA (0.9 kb) is most abundant in the heart and liver tissues. Recombinant hexahistidine tagged MmDjC7 (25 kDa) was efficiently expressed in E. coli and purified to homogeneity. MmDjC7 stimulates the ATPase activity of murine BiP, Hsc70 and E. coli DnaK, albeit with very different molar ratios that vary from 1:2 (for BiP/MmDjC7) to 1:10 (for DnaK/MmDjC7). MmDjC7 thus appears to be a new J-domain protein that can possibly interact with more than one Hsp70.
Collapse
Affiliation(s)
- B Kroczynska
- Department of Medicinal Chemistry and Pharmacognosy, Molecular Biology Research Building, University of Illinois at Chicago, USA
| | | |
Collapse
|