1
|
Bianco PR. The mechanism of action of the SSB interactome reveals it is the first OB-fold family of genome guardians in prokaryotes. Protein Sci 2021; 30:1757-1775. [PMID: 34089559 PMCID: PMC8376408 DOI: 10.1002/pro.4140] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022]
Abstract
The single-stranded DNA binding protein (SSB) is essential to all aspects of DNA metabolism in bacteria. This protein performs two distinct, but closely intertwined and indispensable functions in the cell. SSB binds to single-stranded DNA (ssDNA) and at least 20 partner proteins resulting in their regulation. These partners comprise a family of genome guardians known as the SSB interactome. Essential to interactome regulation is the linker/OB-fold network of interactions. This network of interactions forms when one or more PXXP motifs in the linker of SSB bind to an OB-fold in a partner, with interactome members involved in competitive binding between the linker and ssDNA to their OB-fold. Consequently, when linker-binding occurs to an OB-fold in an interactome partner, proteins are loaded onto the DNA. When linker/OB-fold interactions occur between SSB tetramers, cooperative ssDNA-binding results, producing a multi-tetrameric complex that rapidly protects the ssDNA. Within this SSB-ssDNA complex, there is an extensive and dynamic network of linker/OB-fold interactions that involves multiple tetramers bound contiguously along the ssDNA lattice. The dynamic behavior of these tetramers which includes binding mode changes, sliding as well as DNA wrapping/unwrapping events, are likely coupled to the formation and disruption of linker/OB-fold interactions. This behavior is essential to facilitating downstream DNA processing events. As OB-folds are critical to the essence of the linker/OB-fold network of interactions, and they are found in multiple interactome partners, the SSB interactome is classified as the first family of prokaryotic, oligosaccharide/oligonucleotide binding fold (OB-fold) genome guardians.
Collapse
MESH Headings
- Amino Acid Motifs
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding, Competitive
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Gene Regulatory Networks
- Genome, Bacterial
- Klebsiella pneumoniae/chemistry
- Klebsiella pneumoniae/genetics
- Klebsiella pneumoniae/metabolism
- Models, Molecular
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Oligosaccharides/chemistry
- Oligosaccharides/metabolism
- Protein Binding
- Protein Conformation
- Protein Interaction Mapping
- Protein Multimerization
Collapse
Affiliation(s)
- Piero R. Bianco
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
2
|
Olszewski M, Balsewicz J, Nowak M, Maciejewska N, Cyranka-Czaja A, Zalewska-Piątek B, Piątek R, Kur J. Characterization of a Single-Stranded DNA-Binding-Like Protein from Nanoarchaeum equitans--A Nucleic Acid Binding Protein with Broad Substrate Specificity. PLoS One 2015; 10:e0126563. [PMID: 25973760 PMCID: PMC4431734 DOI: 10.1371/journal.pone.0126563] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/03/2015] [Indexed: 11/18/2022] Open
Abstract
Background SSB (single-stranded DNA-binding) proteins play an essential role in all living cells and viruses, as they are involved in processes connected with ssDNA metabolism. There has recently been an increasing interest in SSBs, since they can be applied in molecular biology techniques and analytical methods. Nanoarchaeum equitans, the only known representative of Archaea phylum Nanoarchaeota, is a hyperthermophilic, nanosized, obligatory parasite/symbiont of Ignicoccus hospitalis. Results This paper reports on the ssb-like gene cloning, gene expression and characterization of a novel nucleic acid binding protein from Nanoarchaeum equitans archaeon (NeqSSB-like protein). This protein consists of 243 amino acid residues and one OB fold per monomer. It is biologically active as a monomer like as SSBs from some viruses. The NeqSSB-like protein displays a low sequence similarity to the Escherichia coli SSB, namely 10% identity and 29% similarity, and is the most similar to the Sulfolobus solfataricus SSB (14% identity and 32% similarity). The NeqSSB-like protein binds to ssDNA, although it can also bind mRNA and, surprisingly, various dsDNA forms, with no structure-dependent preferences as evidenced by gel mobility shift assays. The size of the ssDNA binding site, which was estimated using fluorescence spectroscopy, is 7±1 nt. No salt-dependent binding mode transition was observed. NeqSSB-like protein probably utilizes a different model for ssDNA binding than the SSB proteins studied so far. This protein is highly thermostable; the half-life of the ssDNA binding activity is 5 min at 100°C and melting temperature (Tm) is 100.2°C as shown by differential scanning calorimetry (DSC) analysis. Conclusion NeqSSB-like protein is a novel highly thermostable protein which possesses a unique broad substrate specificity and is able to bind all types of nucleic acids.
Collapse
Affiliation(s)
- Marcin Olszewski
- Gdańsk University of Technology, Chemical Faculty, Department of Molecular Biotechnology and Microbiology, 80–233, Gdańsk, Poland
- * E-mail:
| | - Jan Balsewicz
- Gdańsk University of Technology, Chemical Faculty, Department of Molecular Biotechnology and Microbiology, 80–233, Gdańsk, Poland
| | - Marta Nowak
- Gdańsk University of Technology, Chemical Faculty, Department of Molecular Biotechnology and Microbiology, 80–233, Gdańsk, Poland
| | - Natalia Maciejewska
- Gdańsk University of Technology, Chemical Faculty, Department of Molecular Biotechnology and Microbiology, 80–233, Gdańsk, Poland
| | - Anna Cyranka-Czaja
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, 50–138, Wrocław, Poland
| | - Beata Zalewska-Piątek
- Gdańsk University of Technology, Chemical Faculty, Department of Molecular Biotechnology and Microbiology, 80–233, Gdańsk, Poland
| | - Rafał Piątek
- Gdańsk University of Technology, Chemical Faculty, Department of Molecular Biotechnology and Microbiology, 80–233, Gdańsk, Poland
| | - Józef Kur
- Gdańsk University of Technology, Chemical Faculty, Department of Molecular Biotechnology and Microbiology, 80–233, Gdańsk, Poland
| |
Collapse
|
3
|
Olszewski M, Nowak M, Cyranka-Czaja A, Kur J. Identification and characterization of single-stranded DNA-binding protein from the facultative psychrophilic bacteria Pseudoalteromonas haloplanktis. Microbiol Res 2013; 169:139-47. [PMID: 23953921 DOI: 10.1016/j.micres.2013.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/09/2013] [Accepted: 07/16/2013] [Indexed: 11/18/2022]
Abstract
Single-stranded DNA-binding protein (SSB) plays an important role in DNA metabolism such as DNA replication, repair, and recombination, and is essential for cell survival. This study reports on the ssb-like gene cloning, gene expression and characterization of a single-stranded DNA-binding protein of Pseudoalteromonas haloplanktis (PhaSSB) and is the first report of such a protein from psychrophilic microorganism. PhaSSB possesses a high sequence similarity to Escherichia coli SSB (48% identity and 57% similarity) and has the longest amino acid sequence (244 amino acid residues) of all the known bacterial SSBs with one OB-fold per monomer. An analysis of purified PhaSSB by means of chemical cross-linking experiments, sedimentation analysis and size exclusion chromatography revealed a stable tetramer in solution. Using EMSA, we characterized the stoichiometry of PhaSSB complexed with a series of ssDNA homopolymers, and the size of the binding site was determined as being approximately 35 nucleotides long. In fluorescence titrations, the occluded site size of PhaSSB on poly(dT) is 34 nucleotides per tetramer under low-salt conditions (2mM NaCl), but increases to 54-64 nucleotides at higher-salt conditions (100-300mM NaCl). This suggests that PhaSSB undergoes a transition between ssDNA binding modes, which is observed for EcoSSB. The binding properties of PhaSSB investigated using SPR technology revealed that the affinity of PhaSSB to ssDNA is typical of SSB proteins. The only difference in the binding mode of PhaSSB to ssDNA is a faster association phase, when compared to EcoSSB, though compensated by faster dissociation rate. When analyzed by differential scanning calorimetry (DSC), the melting temperature (Tm) was determined as 63 °C, which is only a few degrees lower than for EcoSSB.
Collapse
Affiliation(s)
- Marcin Olszewski
- Department of Microbiology, Chemical Faculty, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Marta Nowak
- Department of Microbiology, Chemical Faculty, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Anna Cyranka-Czaja
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, ul. Tamka 2, 50-138 Wrocław, Poland
| | - Józef Kur
- Department of Microbiology, Chemical Faculty, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
4
|
Abstract
Surface plasmon resonance (SPR) is a widely employed technique for studying protein-protein interactions. Here, we describe a method for the analysis of single-stranded DNA binding protein (SSB)-heterologous protein interactions by SPR. This method avoids several pitfalls often associated with SPR, particularly difficulties in immobilizing the protein while still allowing for facile regeneration of the sensor chip surface for subsequent experiments. Essentially, the method entails immobilizing a biotinylated single-stranded DNA oligo onto the chip surface, which is then bound by SSB prior to analyte addition to the SSB-coated chip. This allows for rapid qualitative and detailed quantitative analysis of both equilibrium and kinetic parameters of the SSB-protein interaction.
Collapse
Affiliation(s)
- Asher N Page
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
5
|
Bichara M, Meier M, Wagner J, Cordonnier A, Lambert IB. Postreplication repair mechanisms in the presence of DNA adducts in Escherichia coli. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 727:104-22. [DOI: 10.1016/j.mrrev.2011.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 02/02/2023]
|
6
|
Bichara M, Fuchs RPP, Cordonnier A, Lambert IB. Preferential post-replication repair of DNA lesions situated on the leading strand of plasmids inEscherichia coli. Mol Microbiol 2009; 71:305-14. [PMID: 19017273 DOI: 10.1111/j.1365-2958.2008.06527.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marc Bichara
- Université Strasbourg 1, Institut Gillbert Laustrait, CNRS-UMR 7175. Boulevard Sebastien Brant, BP 10413, F-67412 Illkirch-Cedex, France.
| | | | | | | |
Collapse
|
7
|
Fujii S, Isogawa A, Fuchs RP. RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis. EMBO J 2006; 25:5754-63. [PMID: 17139245 PMCID: PMC1698908 DOI: 10.1038/sj.emboj.7601474] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 10/26/2006] [Indexed: 11/08/2022] Open
Abstract
When the replication fork moves through the template DNA containing lesions, daughter-strand gaps are formed opposite lesion sites. These gaps are subsequently filled-in either by translesion synthesis (TLS) or by homologous recombination. RecA filaments formed within these gaps are key intermediates for both of the gap-filling pathways. For instance, Pol V, the major lesion bypass polymerase in Escherichia coli, requires a functional interaction with the tip of the RecA filament. Here, we show that all three recombination mediator proteins RecFOR are needed to build a functionally competent RecA filament that supports efficient Pol V-mediated TLS in the presence of ssDNA-binding protein (SSB). A positive contribution of RecF protein to Pol V lesion bypass is demonstrated. When Pol III and Pol V are both present, Pol III imparts a negative effect on Pol V-mediated lesion bypass that is counteracted by the combined action of RecFOR and SSB. Mutations in recF, recO or recR gene abolish induced mutagenesis in E. coli.
Collapse
Affiliation(s)
- Shingo Fujii
- Genome Instability and Carcinogenesis, CNRS FRE2931, Marseille, France
| | - Asako Isogawa
- Genome Instability and Carcinogenesis, CNRS FRE2931, Marseille, France
| | - Robert P Fuchs
- Genome Instability and Carcinogenesis, CNRS FRE2931, Marseille, France
- Genome Instability and Carcinogenesis, CRNS, FRE 2931, 31, chemin Joseph Aiguier, 13402 Marseille cedex 20, 13402, France. Tel.: +33 4 9116 4271; Fax: +33 4 9116 4168; E-mail:
| |
Collapse
|
8
|
Gharizadeh B, Eriksson J, Nourizad N, Nordström T, Nyrén P. Improvements in Pyrosequencing technology by employing Sequenase polymerase. Anal Biochem 2005; 330:272-80. [PMID: 15203333 DOI: 10.1016/j.ab.2004.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Indexed: 11/24/2022]
Abstract
Pyrosequencing is a DNA sequencing technique based on the bioluminometric detection of inorganic pyrophosphate, which is released when nucleotides are incorporated into a target DNA. Since the technique is based on an enzymatic cascade, the choice of enzymes is a critical factor for efficient performance of the sequencing reaction. In this study we have analyzed the performance of an alternative DNA polymerase, Sequenase, on the sequencing performance of the Pyrosequencing technology. Compared to the Klenow fragment of DNA polymerase I, Sequenase could read through homopolymeric regions with more than five T bases. In addition, Sequenase reduces remarkably interference from primer-dimers and loop structures that give rise to false sequence signals. By using Sequenase, synchronized extensions and longer reads can be obtained on challenging templates, thereby opening new avenues for applications of Pyrosequencing technology.
Collapse
Affiliation(s)
- Baback Gharizadeh
- Stanford Genome Technology Center, Stanford University, 855 California Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | |
Collapse
|
9
|
Eriksson J, Gharizadeh B, Nourizad N, Nyrén P. 7-Deaza-2'-deoxyadenosine-5'-triphosphate as an alternative nucleotide for the pyrosequencing technology. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 23:1583-94. [PMID: 15620097 DOI: 10.1081/ncn-200031402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A new adenosine nucleotide analog suitable for the Pyrosequencing method is presented. The new analog, 7-deaza-2'-deoxyadenosine-5'-triphosphate (c7dATP), has virtually the same low substrate specificity for luciferase as the currently used analog, 2'-deoxyadenosine-5'-O-(1-thiotriphosphate) (dATPalphaS). The inhibitory effect dATPalphaS displays on the nucleotide degrading activity of apyrase was reduced significantly by substituting the c7dATP for the dATPalphaS. Both analogs show high stability after long time storage at + 8 degrees C. Furthermore, with the new nucleotide a read length of up to 100 bases was obtained for several templates from fungi, bacteria and viruses.
Collapse
Affiliation(s)
- Jonas Eriksson
- Department of Biotechnology, SCFAB (Stockholm Centre for Physics, Astronomy, and Biotechnology), KTH (Royal Institute of Technology), Stockholm, Sweden
| | | | | | | |
Collapse
|
10
|
Hultin E, Käller M, Ahmadian A, Lundeberg J. Competitive enzymatic reaction to control allele-specific extensions. Nucleic Acids Res 2005; 33:e48. [PMID: 15767273 PMCID: PMC1065263 DOI: 10.1093/nar/gni048] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Here, we present a novel method for SNP genotyping based on protease-mediated allele-specific primer extension (PrASE), where the two allele-specific extension primers only differ in their 3′-positions. As reported previously [Ahmadian,A., Gharizadeh,B., O'Meara,D., Odeberg,J. and Lundeberg,J. (2001), Nucleic Acids Res., 29, e121], the kinetics of perfectly matched primer extension is faster than mismatched primer extension. In this study, we have utilized this difference in kinetics by adding protease, a protein-degrading enzyme, to discriminate between the extension reactions. The competition between the polymerase activity and the enzymatic degradation yields extension of the perfectly matched primer, while the slower extension of mismatched primer is eliminated. To allow multiplex and simultaneous detection of the investigated single nucleotide polymorphisms (SNPs), each extension primer was given a unique signature tag sequence on its 5′ end, complementary to a tag on a generic array. A multiplex nested PCR with 13 SNPs was performed in a total of 36 individuals and their alleles were scored. To demonstrate the improvements in scoring SNPs by PrASE, we also genotyped the individuals without inclusion of protease in the extension. We conclude that the developed assay is highly allele-specific, with excellent multiplex SNP capabilities.
Collapse
Affiliation(s)
| | | | - Afshin Ahmadian
- To whom correspondence should be addressed. Tel: +46 8 5537 8333; Fax: +46 8 5537 8481;
| | | |
Collapse
|
11
|
Edmondson AC, Song D, Alvarez LA, Wall MK, Almond D, McClellan DA, Maxwell A, Nielsen BL. Characterization of a mitochondrially targeted single-stranded DNA-binding protein in Arabidopsis thaliana. Mol Genet Genomics 2005; 273:115-22. [PMID: 15744502 DOI: 10.1007/s00438-004-1106-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 12/14/2004] [Indexed: 11/30/2022]
Abstract
A gene encoding a predicted mitochondrially targeted single-stranded DNA binding protein (mtSSB) was identified in the Arabidopsis thaliana genome sequence. This gene (At4g11060) codes for a protein of 201 amino acids, including a 28-residue putative mitochondrial targeting transit peptide. Protein sequence alignment shows high similarity between the mtSSB protein and single-stranded DNA binding proteins (SSB) from bacteria, including residues conserved for SSB function. Phylogenetic analysis indicates a close relationship between this protein and other mitochondrially targeted SSB proteins. The predicted targeting sequence was fused with the GFP coding region, and the organellar localization of the expressed fusion protein was determined. Specific targeting to mitochondria was observed in in-vitro import experiments and by transient expression of a GFP fusion construct in Arabidopsis leaves after microprojectile bombardment. The mature mtSSB coding region was overexpressed in Escherichia coli and the protein was purified for biochemical characterization. The purified protein binds single-stranded, but not double-stranded, DNA. MtSSB stimulates the homologous strand-exchange activity of E. coli RecA. These results indicate that mtSSB is a functional homologue of the E. coli SSB, and that it may play a role in mitochondrial DNA recombination.
Collapse
Affiliation(s)
- Andrew C Edmondson
- Department of Microbiology and Molecular Biology, Brigham Young University, 775 WIDB, Provo, UT, 84602, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cho SH, Loewen PC, Marquardt RR. A plasmid DNA encoding chicken interleukin-6 and Escherichia coli K88 fimbrial protein FaeG stimulates the production of anti-K88 fimbrial antibodies in chickens. Poult Sci 2005; 83:1973-8. [PMID: 15615009 DOI: 10.1093/ps/83.12.1973] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immunization using a plasmid to deliver an encoded protein for expression in situ as the antigen is a promising technology. A plasmid encoding the enterotoxigenic Escherichia coli K88 fimbrial protein FaeG when injected into chickens stimulates the production of antibodies against the fimbrial protein, similar to what has been observed in mice. The efficacy of a genetic adjuvant on fimbrial antibody production was tested by introducing the gene for chicken interleukin-6 in tandem with the faeG gene. Expression of both the fimbrial FaeG protein and chicken interleukin-6 protein was confirmed in COS-M6 cells. Slightly higher antiFaeG antibody titer in chickens was obtained compared with immunization with the plasmid encoding FaeG alone, especially at 10 (19%, P < 0.05) and 12 (27%, P < 0.05) wk, respectively, after the secondary immunization. Elevated antiFaeG antibody titer induced by chicken interleukin-6 and FaeG proteins expressed jointly persisted longer than when induced by FaeG protein alone. This is the first report of an avian cytokine enhancing an immune response, and confirms that coexpression of the antigen and adjuvant from a plasmid delivered by DNA immunization is an effective protocol.
Collapse
Affiliation(s)
- S H Cho
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | |
Collapse
|
13
|
Ehn M, Nourizad N, Bergström K, Ahmadian A, Nyrén P, Lundeberg J, Hober S. Toward pyrosequencing on surface-attached genetic material by use of DNA-binding luciferase fusion proteins. Anal Biochem 2004; 329:11-20. [PMID: 15136162 DOI: 10.1016/j.ab.2004.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Indexed: 10/26/2022]
Abstract
Mutation detection and single-nucleotide polymorphism genotyping require screening of large samples of materials and therefore the importance of high-throughput DNA analysis techniques is significant. Pyrosequencing is a four-enzyme bioluminometric DNA sequencing technology based on the sequencing-by-synthesis principle. Currently, the technique is limited to simultaneous analysis of 96 or 384 samples. Earlier, attempts to increase the sample capacity were made using micromachined filter chamber arrays where parallel analyses of nanoliter samples could be monitored in real time. We have developed a strategy for specific immobilization of the light-producing enzyme luciferase to the DNA template within a reaction chamber. By this approach, luciferase is genetically fused to a DNA-binding protein (Klenow polymerase or Escherichia coli single-stranded DNA-binding (SSB) protein) and to a purification handle (Z(basic)). The proteins are produced in E. coli and purified using cation and anion exchange chromatography with removal of Z(basic). The produced proteins have been analyzed using an assay for complete primer extension of DNA templates immobilized on magnetic beads detected by pyrosequencing chemistry. Results from these experiments show that the proteins bind selectively to the immobilized DNA and that their enzymatic domains were active. Z(basic)-SSB-luciferase produced the highest signal in this assay and was further exploited as enzymatic reagent for DNA sequencing.
Collapse
Affiliation(s)
- Maria Ehn
- Department of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
14
|
Singleton SF, Simonette RA, Sharma NC, Roca AI. Intein-mediated affinity-fusion purification of the Escherichia coli RecA protein. Protein Expr Purif 2002; 26:476-88. [PMID: 12460773 DOI: 10.1016/s1046-5928(02)00571-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The RecA protein of Escherichia coli plays important roles in homologous recombination, recombinational DNA repair, and SOS induction. Because its functions are conserved among the phylogenetic kingdoms, RecA investigations have provided a paradigm for understanding these biological processes. The RecA protein has been overproduced in E. coli and purified using a variety of purification schemes requiring multiple, time-intensive steps. The purification schemes share a dependence on appropriate RecA structure and/or function at one or more steps. In this report, we used a modified protein splicing element (intein) and a chitin-binding domain, fused to the C-terminus of RecA, to facilitate a one-step affinity purification of RecA protein without modification of the native protein sequence. Following the single chromatographic step, RecA protein that is greater than 95% physical purity at a concentration of greater than microM was obtained. The protein displays in vitro activities that are identical to those of protein isolated using classical procedures. The purification strategy described here promises to yield mutant RecA proteins in sufficient quantity for rigorous biophysical characterization without dependence on intrinsic RecA function.
Collapse
Affiliation(s)
- Scott F Singleton
- Department of Chemistry, Rice University, P.O. Box 1892 MS 65, Houston, TX 77251-1892, USA.
| | | | | | | |
Collapse
|
15
|
Abstract
We have assembled references of 700 articles published in 2001 that describe work performed using commercially available optical biosensors. To illustrate the technology's diversity, the citation list is divided into reviews, methods and specific applications, as well as instrument type. We noted marked improvements in the utilization of biosensors and the presentation of kinetic data over previous years. These advances reflect a maturing of the technology, which has become a standard method for characterizing biomolecular interactions.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
16
|
Dabrowski S, Olszewski M, Piatek R, Kur J. Novel thermostable ssDNA-binding proteins from Thermus thermophilus and T. aquaticus-expression and purification. Protein Expr Purif 2002; 26:131-8. [PMID: 12356480 DOI: 10.1016/s1046-5928(02)00504-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Single-stranded DNA-binding proteins (SSBs) play essential roles in DNA replication, recombination, and repair in bacteria, archaea, and eukarya. We report here the identification, expression, and purification of the SSB-like proteins of the thermophilic bacteria Thermus thermophilus and T. aquaticus. The nucleotide (nt) sequence revealed that T. thermophilus SSB (TthSSB) and T. aquaticus (TaqSSB) consist of 264 and 266 amino acids, respectively, and have a molecular weight of 29.87 and 30.03kDa, respectively. The homology between these protein, is very high-82% identity and 90% similarity. They are the largest known prokaryotic SSB proteins. TthSSB and TaqSSB monomers have two putative ssDNA-binding sequences: N-terminal (located in the region from amino acids 1 to 123) and C-terminal (located between amino acids 124 and 264 or 266 in TthSSB and TaqSSB, respectively). PCR-derived DNA fragment containing the complete structural gene for TthSSB or TaqSSB protein was cloned into an expression vector. The clones expressing SSB-like proteins were selected and cloned DNA fragments were verified to be authentic by sequencing several clones. The purification was carried out using reduction of contamination by the host protein with heat treatment, followed by QAE-cellulose and ssDNA-cellulose column chromatography. We found our expression and purification system to be quite convenient and efficient, and will use it for production of thermostable SSB-proteins for crystallography study. We have applied the use of TthSSB and TaqSSB protein to increase the amplification efficiency with a number of diverse templates. The use of SSB protein may prove to be generally applicable in improving the PCR efficiency.
Collapse
Affiliation(s)
- Slz Dabrowski
- Department of Microbiology, Technical University of Gdańsk, ul. G. Narutowicza 11/12, 80-952, Gdańsk, Poland
| | | | | | | |
Collapse
|
17
|
Ehn M, Ahmadian A, Nilsson P, Lundeberg J, Hober S. Escherichia coli single-stranded DNA-binding protein, a molecular tool for improved sequence quality in pyrosequencing. Electrophoresis 2002; 23:3289-99. [PMID: 12373756 DOI: 10.1002/1522-2683(200210)23:19<3289::aid-elps3289>3.0.co;2-#] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pyrosequencing is a four-enzyme bioluminometric DNA sequencing technique based on a DNA sequencing by synthesis principle. Currently, the technique is limited to analysis of short DNA sequences exemplified by single-nucleotide polymorphism analysis. In order to expand the field for pyrosequencing, the read length needs to be improved and efforts have been made to purify reaction components as well as add single-stranded DNA-binding protein (SSB) to the pyrosequencing reaction. In this study, we have performed a systematic effort to analyze the effects of SSB by comparing the pyrosequencing result of 103 independent complementary DNA (cDNA) clones. More detailed information about the cause of low quality sequences on templates with different characteristics was achieved by thorough analysis of the pyrograms. Also, real-time biosensor analysis was performed on individual cDNA clones for investigation of primer annealing and SSB binding on these templates. Results from these studies indicate that templates with high performance in pyrosequencing without SSB possess efficient primer annealing and low SSB affinity. Alternative strategies to improve the performance in pyrosequencing by increasing the primer-annealing efficiency have also been evaluated.
Collapse
Affiliation(s)
- Maria Ehn
- Department of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | | | | | | |
Collapse
|