1
|
Endomorphin-2- and Neurotensin- Based Chimeric Peptide Attenuates Airway Inflammation in Mouse Model of Nonallergic Asthma. Int J Mol Sci 2019; 20:ijms20235935. [PMID: 31779093 PMCID: PMC6929018 DOI: 10.3390/ijms20235935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022] Open
Abstract
We examined anti-inflammatory potency of hybrid peptide-PK20, composed of neurotensin (NT) and endomorphin-2 (EM-2) pharmacophores in a murine model of non-atopic asthma induced by skin sensitization with 2,4-dinitrofluorobenzene and intratracheal challenge of cognate hapten. Mice received intraperitoneally PK20, equimolar mixture of its structural elements (MIX), dexamethasone (DEX), or NaCl. Twenty-four hours following hapten challenge, the measurements of airway responsiveness to methacholine were taken. Bronchoalveolar lavage (BALF) and lungs were collected for further analyses. Treatment with PK20, similarly to dexamethasone, reduced infiltration of inflammatory cells, concentration of mouse mast cell protease, IL-1β, IL-12p40, IL-17A, CXCL1, RANTES in lungs and IL-1α, IL-2, IL-13, and TNF-α in BALF. Simple mixture of NT and EM-2 moieties was less potent. PK20, DEX, and MIX significantly decreased malondialdehyde level and secretory phospholipase 2 activity in lungs. Intensity of NF-κB immunoreactivity was diminished only after PK20 and DEX treatments. Neither PK20 nor mixture of its pharmacophores were as effective as DEX in alleviating airway hyperresponsiveness. PK20 effectively inhibited hapten-induced inflammation and mediator and signaling pathways in a manner seen with dexamethasone. Improved anti-inflammatory potency of the hybrid over the mixture of its moieties shows its preponderance and might pose a promising tool in modulating inflammation in asthma.
Collapse
|
2
|
Kaczyńska K, Zając D, Wojciechowski P, Kogut E, Szereda-Przestaszewska M. Neuropeptides and breathing in health and disease. Pulm Pharmacol Ther 2017; 48:217-224. [PMID: 29223509 DOI: 10.1016/j.pupt.2017.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/20/2017] [Accepted: 12/05/2017] [Indexed: 12/18/2022]
Abstract
Regulatory neuropeptides control and regulate breathing in physiological and pathophysiological conditions. While they have been identified in the neurons of major respiratory areas, they can be active not only at the central level, but also at the periphery via chemoreceptors, vagal afferents, or locally within lungs and airways. Some neuropeptides, such as leptin or substance P, are respiratory stimulants; others, such as neurotensin, produce variable effects on respiration depending on the site of application. Some neuropeptides have been implicated in pathological states, such as obstructive sleep apnea or asthma. This article provides a concise review of the possible role and functions of several selected neuropeptides in the process of breathing in health and disease and in lung pathologies.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.
| | - Dominika Zając
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Wojciechowski
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Ewelina Kogut
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
3
|
Joks R, Bluth MH. Clinical Toxicology and Its Relevance to Asthma and Atopy. Clin Lab Med 2016; 36:795-801. [PMID: 27842794 DOI: 10.1016/j.cll.2016.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Although both the prevalence of asthma and the prescription drug use, notably the opiate analgesic class, epidemics are increasing, there is a complex interplay between both disorders, with both protective and exacerbating factors involved in the effect of opiates on asthma pathogenesis and clinical severity. This review examines the airway effects, both immunologic and neurologic, of opiates, which may interact and result in protection or exacerbation of asthma.
Collapse
Affiliation(s)
- Rauno Joks
- SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | - Martin H Bluth
- Department of Pathology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; Consolidated Laboratory Management Systems, 24555 Southfield Road, Southfield, MI 48075, USA
| |
Collapse
|
4
|
Association between obesity and asthma - epidemiology, pathophysiology and clinical profile. Nutr Res Rev 2016; 29:194-201. [PMID: 27514726 DOI: 10.1017/s0954422416000111] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Obesity is a risk factor for asthma, and obese asthmatics have lower disease control and increased symptom severity. Several putative links have been proposed, including genetics, mechanical restriction of the chest and the intake of corticosteroids. The most consistent evidence, however, comes from studies of cytokines produced by the adipose tissue called adipokines. Adipokine imbalance is associated with both proinflammatory status and asthma. Although reverse causation has been proposed, it is now acknowledged that obesity precedes asthma symptoms. Nevertheless, prenatal origins of both conditions complicate the search for causality. There is a confirmed role of neuro-immune cross-talk mediating obesity-induced asthma, with leptin playing a key role in these processes. Obesity-induced asthma is now considered a distinct asthma phenotype. In fact, it is one of the most important determinants of asthma phenotypes. Two main subphenotypes have been distinguished. The first phenotype, which affects adult women, is characterised by later onset and is more likely to be non-atopic. The childhood obesity-induced asthma phenotype is characterised by primary and predominantly atopic asthma. In obesity-induced asthma, the immune responses are shifted towards T helper (Th) 1 polarisation rather than the typical atopic Th2 immunological profile. Moreover, obese asthmatics might respond differently to environmental triggers. The high cost of treatment of obesity-related asthma, and the burden it causes for the patients and their families call for urgent intervention. Phenotype-specific approaches seem to be crucial for the success of prevention and treatment.
Collapse
|
5
|
Henderson F, May WJ, Gruber RB, Discala JF, Puskovic V, Young AP, Baby SM, Lewis SJ. Role of central and peripheral opiate receptors in the effects of fentanyl on analgesia, ventilation and arterial blood-gas chemistry in conscious rats. Respir Physiol Neurobiol 2013; 191:95-105. [PMID: 24284037 DOI: 10.1016/j.resp.2013.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/30/2013] [Accepted: 11/18/2013] [Indexed: 11/17/2022]
Abstract
This study determined the effects of the peripherally restricted μ-opiate receptor (μ-OR) antagonist, naloxone methiodide (NLXmi) on fentanyl (25μg/kg, i.v.)-induced changes in (1) analgesia, (2) arterial blood gas chemistry (ABG) and alveolar-arterial gradient (A-a gradient), and (3) ventilatory parameters, in conscious rats. The fentanyl-induced increase in analgesia was minimally affected by a 1.5mg/kg of NLXmi but was attenuated by a 5.0mg/kg dose. Fentanyl decreased arterial blood pH, pO2 and sO2 and increased pCO2 and A-a gradient. These responses were markedly diminished in NLXmi (1.5mg/kg)-pretreated rats. Fentanyl caused ventilatory depression (e.g., decreases in tidal volume and peak inspiratory flow). Pretreatment with NLXmi (1.5mg/kg, i.v.) antagonized the fentanyl decrease in tidal volume but minimally affected the other responses. These findings suggest that (1) the analgesia and ventilatory depression caused by fentanyl involve peripheral μ-ORs and (2) NLXmi prevents the fentanyl effects on ABG by blocking the negative actions of the opioid on tidal volume and A-a gradient.
Collapse
Affiliation(s)
- Fraser Henderson
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ryan B Gruber
- Division of Biology, Galleon Pharmaceuticals, Horsham, PA 19044, USA
| | - Joseph F Discala
- Division of Biology, Galleon Pharmaceuticals, Horsham, PA 19044, USA
| | - Veljko Puskovic
- Division of Biology, Galleon Pharmaceuticals, Horsham, PA 19044, USA
| | - Alex P Young
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Santhosh M Baby
- Division of Biology, Galleon Pharmaceuticals, Horsham, PA 19044, USA
| | - Stephen J Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106-4984, USA.
| |
Collapse
|
6
|
Springer J, Scholz FR, Peiser C, Dinh QT, Fischer A, Quarcoo D, Groneberg DA. Transcriptional down-regulation of suppressor of cytokine signaling (SOCS)-3 in chronic obstructive pulmonary disease. J Occup Med Toxicol 2013; 8:29. [PMID: 24138793 PMCID: PMC4015747 DOI: 10.1186/1745-6673-8-29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 10/10/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Tobacco is a leading environmental factor in the initiation of respiratory diseases and causes chronic obstructive pulmonary disease (COPD). Suppressor of cytokine signaling (SOCS) family members are involved in the pathogenesis of many inflammatory diseases and SOCS-3 has been shown to play an important role in the regulation, onset and maintenance of airway allergic inflammation indicating that SOCS-3 displays a potential therapeutic target for anti-inflammatory respiratory drugs development. Since chronic obstructive pulmonary disease (COPD) is also characterized by inflammatory changes and airflow limitation, the present study assessed the transcriptional expression of SOCS-3 in COPD. METHODS Real-time PCR was performed to assess quantitative changes in bronchial biopsies of COPD patients in comparison to unaffected controls. RESULTS SOCS-3 was significantly down-regulated in COPD at the transcriptional level while SOCS-4 and SOCS-5 displayed no change. CONCLUSIONS It can be concluded that the presently observed inhibition of SOCS-3 mRNA expression may be related to the dysbalance of cytokine signaling observed in COPD.
Collapse
Affiliation(s)
- Jochen Springer
- Allergy-Centre-Charité, Pneumology and Immunology, Charité – Unversitätsmedizin Berlin, Free University and Humboldt University, Berlin D-13353, Germany
- Division of Applied Cachexia Research, Dept. of Medicine, Charité – Unversitätsmedizin Berlin, Free University and Humboldt-University, Berlin D-13353, Germany
| | - Frank R Scholz
- Department of Hematology and Oncology, Charité – Unversitätsmedizin Berlin, Free University and Humboldt University, Berlin D-13353, Germany
| | - Christian Peiser
- Allergy-Centre-Charité, Pneumology and Immunology, Charité – Unversitätsmedizin Berlin, Free University and Humboldt University, Berlin D-13353, Germany
| | - Q Thai Dinh
- Department of Respiratory Medicine, Medical School of Hannover, Hannover D-30625, Germany
| | - Axel Fischer
- Allergy-Centre-Charité, Pneumology and Immunology, Charité – Unversitätsmedizin Berlin, Free University and Humboldt University, Berlin D-13353, Germany
| | - David Quarcoo
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe-University, Frankfurt 60590, Germany
| | - David A Groneberg
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe-University, Frankfurt 60590, Germany
| |
Collapse
|
7
|
Singh SR, Sullo N, D'Agostino B, Brightling CE, Lambert DG. The effects of nociceptin peptide (N/OFQ)-receptor (NOP) system activation in the airways. Peptides 2013; 39:36-46. [PMID: 23123316 DOI: 10.1016/j.peptides.2012.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/17/2012] [Accepted: 10/22/2012] [Indexed: 11/20/2022]
Abstract
The heptadecapeptide nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand for the N/OFQ peptide (NOP) receptor. It is cleaved from a larger precursor identified as prepronociceptin (ppN/OFQ). NOP is a member of the seven transmembrane-spanning G-protein coupled receptor (GPCR) family. ppN/OFQ and NOP receptors are widely distributed in different human tissues. Asthma is a complex heterogeneous disease characterized by variable airflow obstruction, bronchial hyper-responsiveness and chronic airway inflammation. Limited therapeutic effectiveness of currently available asthma therapies warrants identification of new drug compounds. Evidence from animal studies suggests that N/OFQ modulates airway contraction and inflammation. Interestingly up regulation of the N/OFQ-NOP system reduces airway hyper-responsiveness. In contrast, inflammatory cells central to the inflammatory response in asthma may be both sources of N/OFQ and respond to NOP activation. Hence paradoxical dysregulation of the N/OFQ-NOP system may potentially play an important role in regulating airway inflammation and airway tone. To date there is no data on N/OFQ-NOP expression in the human airways. Therefore, the potential role of N/OFQ-NOP system in asthma is unknown. This review focuses on its physiological effects within airways and potential value as a novel asthma therapy.
Collapse
Affiliation(s)
- Shailendra R Singh
- Department of Cardiovascular Sciences (Pharmacology and Therapeutics Group), Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester Royal Infirmary, Leicester, UK.
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Regan PM, Dave RS, Datta PK, Khalili K. Epigenetics of µ-opioid receptors: intersection with HIV-1 infection of the central nervous system. J Cell Physiol 2012; 227:2832-41. [PMID: 22034138 DOI: 10.1002/jcp.24004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The abuse of intravenous drugs, such as heroin, has become a major public health concern due to the increased risk of HIV-1 infection. Opioids such as heroin were originally identified and subsequently abused for their analgesic effects. However, many investigations have found additional effects of opioids, including regulation of the immune system. As such, chronic opioid abuse has been shown to promote HIV-1 pathogenesis and facilitate HIV-1-associated neurocognitive dysfunction. Clinical opioids, such as morphine and methadone, as well as illicit opioids, such as heroin, exert their effects primarily through interactions with the µ-opioid receptor (MOR). However, the mechanisms by which opioids enhance neurocognitive dysfunction through MOR-mediated signaling pathways are not completely understood. New findings in the regulation of MOR expression, particularly epigenetic and transcriptional regulation as well as alternative splicing, sheds new insights into possible mechanisms of HIV-1 and opiate synergy. In this review, we identify mechanisms regulating MOR expression and propose novel mechanisms by which opioids and HIV-1 may modulate this regulation. Additionally, we suggest that differential regulation of newly identified MOR isoforms by opioids and HIV-1 has functional consequence in enhancing HIV-1 neurocognitive dysfunction.
Collapse
Affiliation(s)
- Patrick M Regan
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
10
|
Abstract
INTRODUCTION Although endomorphins-1 (EM-1; H-Tyr-Pro-Phe-Trp-NH(2)) and -2 (EM-2; H-Tyr-Pro-Phe-Phe-NH(2)) are primarily considered agonists for the μ-opioid receptor (MOR), systematic alterations to specific residues provided antagonists and ligands with mixed μ/δ-opioid properties, suitable for application to health-related topics. While the application of endomorphins as antinociceptive agents and numerous biological endpoints were experimentally delineated in laboratory animals and in vitro, clinical use is currently absent. However, structural alterations provide enhanced stability; formation of MOR antagonists or mixed and dual μ/δ-acting ligands could find considerable therapeutic potential. AREAS COVERED This review attempts to succinctly provide insight on the development and bioactivity of endomorphin analogues during the past decade. Rational design approaches will focus on the engineering of endomorphin agonists, antagonists and mixed ligands for their application as a multi-target ligand. EXPERT OPINION Aside from alleviating pain, EM analogues open new horizons in the treatment of medical syndromes involving neural reward mechanisms and extraneural regulation effects on homeostasis. Highly selective MOR antagonists may be promising to reduce inflammation, attenuate addiction to drugs and excess consumption of high-caloric food, ameliorate alcoholism, affect the immune system and combat opioid bowel dysfunction.
Collapse
Affiliation(s)
- Lawrence H Lazarus
- National Institute of Environmental Health Sciences, Laboratory of Toxicology and Pharmacology, 111 South TW Alexander Drive, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
11
|
Yu Y, Wang X, Cui Y, Fan YZ, Liu J, Wang R. Abnormal modulation of cholinergic neurotransmission by endomorphin 1 and endomorphin 2 in isolated bronchus of type 1 diabetic rats. Peptides 2006; 27:2770-7. [PMID: 16901587 DOI: 10.1016/j.peptides.2006.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/05/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
To assess whether diabetes alters the regulatory effects of mu-opioid receptor (MOR) agonists on the cholinergic bronchoconstriction, we investigated the inhibitory effects of endomorphins (EMs) on the electrical field stimulation (EFS)-induced cholinergic bronchoconstriction in type 1 diabetic rats. At 4 weeks after the onset of diabetes, both the EFS- and exogenous acetylcholine (ACh)-induced bronchoconstriction in diabetes in vitro were greater than those in non-diabetes rats. Furthermore, endomorphin 1 (EM1) and endomorphin 2 (EM2) inhibited the response to EFS in diabetic rat isolated bronchus in a concentration- and frequency-dependent manner, which is in agreement with that in non-diabetes. However, the inhibitory effects of EMs on the EFS-induced bronchoconstriction in diabetes were significantly weaker than those in non-diabetes. Both EM1 and EM2 (1 microM) had no effect on the contractile response to exogenous ACh, indicating a prejunctional effect. Furthermore, the inhibitory effect on the EFS-induced bronchoconstriction was blocked by naloxone (10 microM). Eight weeks after the induction of diabetes, both the EFS- and exogenous ACh-induced bronchoconstrictions in diabetes were further enhanced compared to those in short-time (4 weeks) diabetic rats. Moreover, the inhibitory effects of EMs on the EFS-induced bronchoconstriction were further attenuated. These results suggest that dysfunction of presynaptic inhibitory modulation through opioid receptor by EMs may take place in the bronchus of diabetic rats.
Collapse
Affiliation(s)
- Ye Yu
- Department of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | |
Collapse
|
12
|
Yu Y, Cui Y, Wang X, Fan YZ, Liu J, Yan X, Wang R. Endomorphin1 and endomorphin2, endogenous potent inhibitors of electrical field stimulation (EFS)-induced cholinergic contractions of rat isolated bronchus. Peptides 2006; 27:1846-51. [PMID: 16564113 DOI: 10.1016/j.peptides.2006.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/05/2006] [Accepted: 01/09/2006] [Indexed: 10/24/2022]
Abstract
In the present study, we determined whether endomorphin1 (EM1) and endomorphin2 (EM2), selective endogenous mu-opioid receptor (MOR) agonists, inhibited the response to EFS in rat isolated bronchus in a concentration- and frequency-dependent manner. EM1 (1 microM) produced significant inhibition at relatively low frequencies (< 5 Hz) (74.02 +/- 5.53%, 56.16 +/- 10.24% and 37.64 +/- 5.92% inhibition at 1, 2 and 4 Hz, respectively, p < 0.05 versus control), but no significant inhibition at 8, 16, 32 and 64 Hz (17.15 +/- 9.4%, 14.51 +/- 4.23%, 9.11 +/- 2.38% and 5.93 +/- 3.5%, respectively, p > 0.05 versus control). Similar modulations were observed in response to EM2 (1 microM). It is therefore considered that the inhibition effects of EM1 and EM2 may take place at frequencies under physiological conditions. Furthermore, EM1 and EM2 (0.01-10 microM) induced inhibition of cholinergic constriction in a dose-dependent manner at 1, 2 and 4 Hz. The inhibitory effect on EFS was blocked by the opioid receptor antagonist naloxone (10 microM), indicating that opioid receptors were involved. Neither EM1 nor EM2 (1 microM) had an effect on the contractile response to exogenous acetylcholine, indicating a prejunctional effect. All the results indicate that EM1 and EM2 are potent inhibitors of EFS-induced cholinergic bronchoconstriction. These also imply that EM1 and EM2 may modulate cholinergic bronchoconstriction under physiological conditions and that these tetrapeptides could have therapeutic potential in the treatment of airway diseases.
Collapse
Affiliation(s)
- Ye Yu
- Department of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
13
|
Wagner U, Staats P, Fehmann HC, Fischer A, Welte T, Groneberg DA. Analysis of airway secretions in a model of sulfur dioxide induced chronic obstructive pulmonary disease (COPD). J Occup Med Toxicol 2006; 1:12. [PMID: 16759388 PMCID: PMC1559628 DOI: 10.1186/1745-6673-1-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 06/07/2006] [Indexed: 01/08/2023] Open
Abstract
Hypersecretion and chronic phlegm are major symptoms of chronic obstructive pulmonary disease (COPD) but animal models of COPD with a defined functional hypersecretion have not been established so far. To identify an animal model of combined morphological signs of airway inflammation and functional hypersecretion, rats were continuously exposed to different levels of sulfur dioxide (SO2, 5 ppm, 10 ppm, 20 ppm, 40 ppm, 80 ppm) for 3 (short-term) or 20–25 (long-term) days. Histology revealed a dose-dependent increase in edema formation and inflammatory cell infiltration in short-term-exposed animals. The submucosal edema was replaced by fibrosis after long-term-exposure. The basal secretory activity was only significantly increased in the 20 ppm group. Also, stimulated secretion was significantly increased only after exposure to 20 ppm. BrdU-assays and AgNOR-analysis demonstrated cellular metaplasia and glandular hypertrophy rather than hyperplasia as the underlying morphological correlate of the hypersecretion. In summary, SO2-exposure can lead to characteristic airway remodeling and changes in mucus secretion in rats. As only long-term exposure to 20 ppm leads to a combination of hypersecretion and airway inflammation, only this mode of exposure should be used to mimic human COPD. Concentrations less or higher than 20 ppm or short term exposure do not induce the respiratory symptom of hypersecretion. The present model may be used to characterize the effects of new compounds on mucus secretion in the background of experimental COPD.
Collapse
Affiliation(s)
- Ulrich Wagner
- Department of Medicine, Pulmonary and Critical Care Division, Philipps-University, Baldingerstr., D-35043 Marburg, Germany
- Department of Medicine/Respiratory Medicine, Klinik Löwenstein, Geißhölzle 62, D-74245 Löwenstein, Germany
| | - Petra Staats
- Department of Medicine, Pulmonary and Critical Care Division, Philipps-University, Baldingerstr., D-35043 Marburg, Germany
| | - Hans-Christoph Fehmann
- Department of Medicine, Pulmonary and Critical Care Division, Philipps-University, Baldingerstr., D-35043 Marburg, Germany
| | - Axel Fischer
- Allergy-Centre-Charité, Otto-Heubner-Centre, Pneumology and Immunology, Charité – Universitätsmedizin Berlin, Free and Humboldt-University Berlin, Augustenburger Platz 1 OR-1, D-13353 Berlin, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Carl-Neuberg-Str. 1 OE 6870, D-30625 Hannover, Germany
| | - David A Groneberg
- Department of Respiratory Medicine, Hannover Medical School, Carl-Neuberg-Str. 1 OE 6870, D-30625 Hannover, Germany
- Institute of Occupational Medicine, Charité – Universitätsmedizin Berlin, Free and Humboldt-University Berlin, Ostpreussendamm 111, D-12207 Berlin, Germany
| |
Collapse
|
14
|
Abstract
Endomorphin (EM)-1 and EM-2 are tetrapeptides located within the mammalian central nervous system and immune tissues, with high affinity and specificity for micro-opioid receptors. Most of the literature has focused on the analgesic properties of EM-1 and EM-2 in animal models of neuropathic or neurogenic pain, but there is persuasive evidence emerging that EMs can also exert potent anti-inflammatory effects in both acute and chronic peripheral inflammation. The purpose of this review is to present and evaluate the evidence for anti-inflammatory properties of EM-1 and EM-2 with a view to their potential for use in chronic human inflammatory disease. Distribution of EMs within the immune system and functional roles as immunomodulatory agents are summarized and discussed. Possible milestones to be met revolve around issues of peptide stability, biodegradability problems and optimal route and method of delivery. The potential for delivery of a low-cost drug with both peripheral anti-inflammatory and analgesic properties, effective in low doses, and targeted to the site of inflammation, should focus our attention on further development of EMs as potent therapeutic agents in chronic inflammation.
Collapse
Affiliation(s)
- David S Jessop
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, LINE, University of Bristol, Bristol, UK.
| |
Collapse
|
15
|
Dinh QT, Groneberg DA, Peiser C, Mingomataj E, Joachim RA, Witt C, Arck PC, Klapp BF, Fischer A. Substance P expression in TRPV1 and trkA-positive dorsal root ganglion neurons innervating the mouse lung. Respir Physiol Neurobiol 2005; 144:15-24. [PMID: 15522699 DOI: 10.1016/j.resp.2004.08.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2004] [Indexed: 11/17/2022]
Abstract
In the present study, the co-localisation of substance P (SP) with the vanilloid receptor TRPV1 and the neurotrophin receptor tyrosine kinase trkA was analysed in airway-specific murine dorsal root ganglion (DRG) neurons. DRG neurons labelled with Fast Blue were predominantly found at the segmental levels T2-T5. Immunoreactivity for the receptor TRPV1 was localized to 12% of Fast Blue labelled DRG neurons. Double-labelling immunohistochemistry revealed that a substantial number of them also co-express SP (7.6 +/- 1.1% (mean +/- S.E.M.)), whereas neurons with immunoreactivity for TRPV1 only were found in 4.4 +/- 1.3% of the retrogradely labelled neuronal population. Further analysis of retrogradely labelled neurons showed that their majority expressed trkA (62.8 +/- 1.4%), neurofilament protein 68-kDa (64.8 +/- 1.5%) or glutamate alone (19.5 +/- 1.9%). SP was always expressed in trkA-positive neurons. Based on the extent of co-localization of SP with the receptors TRPV1 and trkA in DRG airway neurons, the present study indicates that the DRG pathway may have effects on the magnitude of neurogenic inflammation in airway diseases such as asthma.
Collapse
Affiliation(s)
- Q Thai Dinh
- Department of Medicine, Charité, School of Medicine, Humboldt University, Ostring 3, R. 3.0066, Augustenburger Platz 1, Berlin D-13353, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Springer J, Amadesi S, Trevisani M, Harrison S, Dinh QT, McGregor GP, Fischer A, Geppetti P, Groneberg DA. Effects of alpha calcitonin gene-related peptide in human bronchial smooth muscle and pulmonary artery. ACTA ACUST UNITED AC 2005; 118:127-34. [PMID: 15003828 DOI: 10.1016/j.regpep.2003.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 11/14/2003] [Accepted: 11/28/2003] [Indexed: 11/25/2022]
Abstract
Although airway and pulmonary vessel tone are regulated predominantly by cholinergic and adrenergic impulses, biologically active peptides such as calcitonin gene-related peptide (CGRP) may significantly influence human smooth muscle tone in normal and pathophysiological states. In the present study, the expression of CGRP and its receptor CGRPR-1 and the biological effect of the peptide were investigated in human airways and pulmonary arteries. Immunohistochemistry revealed the presence of CGRP in human airway nerves and neuro-epithelial cells, whereas the receptor was found in epithelial cells and smooth muscle myocytes of the bronchi and in pulmonary artery endothelium. On precontracted bronchi (3-4 mm in diameter) alpha-CGRP (0.01-10 nM) caused a concentration-dependent contraction on epithelium-denuded bronchi, whereas no significant effect was recorded in bronchi with intact epithelium. In pulmonary arteries (2-6 mm in diameter), alpha-CGRP caused a concentration-dependent relaxation of endothelium intact and denuded vessels. Pre-treatment with indomethacin, but not with l-NAME, prevented the relaxation induced by alpha-CGRP in pulmonary arteries suggesting that prostaglandins but not nitric oxide (NO) are involved in the intracellular signal transduction pathway. The effects induced by alpha-CGRP in bronchi and vessels were prevented by application of the antagonist CGRP((8-37)). In summary, the present studies examined the biological function of CGRP in human airways and demonstrated a constrictory effect of CGRP only in epithelium-denuded airway smooth muscle indicating an alteration of CGRP airway effects in respiratory tract pathological states with damaged epithelium such as chronic obstructive pulmonary disease or bronchial asthma.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Bronchi/chemistry
- Bronchi/drug effects
- Bronchi/physiology
- Calcitonin Gene-Related Peptide/analysis
- Calcitonin Gene-Related Peptide/pharmacology
- Calcitonin Gene-Related Peptide/physiology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/physiology
- Epithelium/chemistry
- Epithelium/physiology
- Humans
- Immunohistochemistry
- In Vitro Techniques
- Indomethacin/pharmacology
- Muscle Contraction/drug effects
- Muscle Relaxation/drug effects
- Muscle, Smooth/chemistry
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/chemistry
- NG-Nitroarginine Methyl Ester/pharmacology
- Nerve Fibers/chemistry
- Peptide Fragments/pharmacology
- Phenylephrine/pharmacology
- Pulmonary Artery/chemistry
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiology
- Receptors, Calcitonin Gene-Related Peptide/analysis
Collapse
Affiliation(s)
- Jochen Springer
- Departments of Pediatric Pneumology, Biomedical Research Center, Charité School of Medicine, Humboldt-University, Augustenburger Platz 1 OR-1, D-13353 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Groneberg DA, Peiser C, Eynott PR, Welker P, Erbes R, Witt C, Chung KF, Fischer A. Transcriptional down-regulation of neurotrophin-3 in chronic obstructive pulmonary disease. Biol Chem 2005; 386:53-9. [PMID: 15843147 DOI: 10.1515/bc.2005.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) leads to progressive development of airflow limitation and is characterised by cough, mucus hypersecretion and inflammatory changes. These characteristic features of the disease may be modulated by neural mediators such as neurotrophins (NT). Here we examined the expression and transcriptional regulation of neurotrophins in bronchial biopsies of COPD patients and compared the data to control biopsies. Histology revealed characteristic changes in the COPD tissues, including remodelling of the epithelial lining. RT-PCR demonstrated the mRNA expression of neurotrophins in all biopsies. Immunohistochemistry confirmed the expression of different proteins. To assess changes in the transcriptional expression level, quantitative real-time PCR was carried out and revealed differential mRNA expression of neurotrophins, with marked down-regulation of NT-3 mRNA expression and constant levels of nerve growth factor (NGF), brain-derived nerve factor (BDNF), and NT-4/5 mRNA expression. The present data on neurotrophin-specific transcriptional down-regulation of NT-3 in human COPD indicate a pathophysiological role for neurotrophins in COPD.
Collapse
Affiliation(s)
- David A Groneberg
- Otto-Heubner-Centre, Pneumology and Immunology, Free University Berlin and Humboldt-University, D-13353 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fischer A, Wussow A, Cryer A, Schmeck B, Noga O, Zweng M, Peiser C, Dinh QT, Heppt W, Groneberg DA. Neuronal Plasticity in Persistent Perennial Allergic Rhinitis. J Occup Environ Med 2005; 47:20-5. [PMID: 15643155 DOI: 10.1097/01.jom.0000150238.77663.49] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Persistent perennial allergic rhinitis belongs to the most frequent diseases in occupational and environmental medicine. Because the innervation may play a role in the pathogenesis of the disease, the present study analyzed nasal mucosal nerve profiles. METHODS Neuropeptide-containing nerve fibers were examined using immunohistochemistry and related to eosinophil and mast cell numbers. RESULTS In contrast to constant numbers of mast cells, there was a significant increase in the number of eosinophils. Immunohistochemistry for calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP), and neuropeptide tyrosine (NPY) revealed abundant staining of mucosal nerves. Semiquantitative assessment of nerve fiber neuropeptide density demonstrated a significant increase of VIP-positive fibers in rhinitis tissues. CONCLUSIONS The present data indicate a differential regulation of neuropeptide-containing nerve fibers with increased numbers of VIPergic fibers suggesting a modulatory role of the upper airway innervation in perennial allergic rhinitis.
Collapse
Affiliation(s)
- Axel Fischer
- Occupational and Environmental Medicine Research Unit, Division of Allergy Research, Otto-Heubner-Centre, Charité School of Medicine, Free University and Humboldt-University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sestili I, Borioni A, Mustazza C, Rodomonte A, Turchetto L, Sbraccia M, Riitano D, Del Giudice MR. A new synthetic approach of N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl)benzamide (JTC-801) and its analogues and their pharmacological evaluation as nociceptin receptor (NOP) antagonists. Eur J Med Chem 2004; 39:1047-57. [PMID: 15571866 DOI: 10.1016/j.ejmech.2004.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 09/01/2004] [Accepted: 09/06/2004] [Indexed: 11/30/2022]
Abstract
A series of 4-amino-2-methylquinoline and 4-aminoquinazoline derivatives, including the reference NOP antagonist JTC-801, were synthesized by an alternative pathway and their in vitro pharmacological properties were investigated. 3-Substitution of the quinoline ring resulted very critical for affinity. So 3-methyl derivative 4j showed a similar potency compared with the reference 4h while bulky lipophilic or electron withdrawing groups in the same position strongly decreased affinity. Structural and conformational requirements for affinity were outlined by NOE NMR and computational methods and suggestions for a pharmacophore model design were provided.
Collapse
Affiliation(s)
- Isabella Sestili
- Dipartimento del Farmaco, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Groneberg DA, Folkerts G, Peiser C, Chung KF, Fischer A. Neuropeptide Y (NPY). Pulm Pharmacol Ther 2004; 17:173-80. [PMID: 15219262 DOI: 10.1016/j.pupt.2004.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 04/08/2004] [Accepted: 04/19/2004] [Indexed: 10/26/2022]
Abstract
Neuropeptides such as neuropeptide Y (NPY) have long been proposed to play a role in the pathogenesis of inflammatory diseases. NPY is a 36 amino acid neuropeptide which participates in the regulation of a large number of physiological and pathophysiological processes in the cardiorespiratory system, immune system, nervous system and endocrine system. Serum levels of NPY are increased during exacerbations of asthma, whereas the number of NPY-immunoreactive nerves in the airways remains constant in the airways of patients with inflammatory airway diseases such asthma or rhinitis. Next to a role in the regulation of glandular activity, NPY exerts a major influence on humoral and cellular immune functions. In this respect, NPY is known to modulate potent immunological effects such as immune cell distribution, T helper cell differentiation, mediator release, or natural killer cell activation. In addition to these direct effects, NPY also acts as an immunomodulator by influencing the effects of a variety of other neurotransmitters. Whereas the peptide has been focused for therapeutic options in the central nervous system, a potential use in the treatment of pulmonary inflammatory disorders has not been revealed so far due to the complex pulmonary effects of NPY. However, since selective antagonists and agonists and gene-depleted animals for the different receptors are now available, NPY may be of value for future strategies in airway nerve modulation.
Collapse
Affiliation(s)
- David A Groneberg
- Division of Allergy Research, Department of Pediatric Pneumology and Immunology, Charité School of Medicine, Free University and Humboldt-University, Berlin, Germany.
| | | | | | | | | |
Collapse
|
21
|
Groneberg DA, Chung KF. Models of chronic obstructive pulmonary disease. Respir Res 2004; 5:18. [PMID: 15522115 PMCID: PMC533858 DOI: 10.1186/1465-9921-5-18] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 11/02/2004] [Indexed: 11/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major global health problem and is predicted to become the third most common cause of death by 2020. Apart from the important preventive steps of smoking cessation, there are no other specific treatments for COPD that are as effective in reversing the condition, and therefore there is a need to understand the pathophysiological mechanisms that could lead to new therapeutic strategies. The development of experimental models will help to dissect these mechanisms at the cellular and molecular level. COPD is a disease characterized by progressive airflow obstruction of the peripheral airways, associated with lung inflammation, emphysema and mucus hypersecretion. Different approaches to mimic COPD have been developed but are limited in comparison to models of allergic asthma. COPD models usually do not mimic the major features of human COPD and are commonly based on the induction of COPD-like lesions in the lungs and airways using noxious inhalants such as tobacco smoke, nitrogen dioxide, or sulfur dioxide. Depending on the duration and intensity of exposure, these noxious stimuli induce signs of chronic inflammation and airway remodelling. Emphysema can be achieved by combining such exposure with instillation of tissue-degrading enzymes. Other approaches are based on genetically-targeted mice which develop COPD-like lesions with emphysema, and such mice provide deep insights into pathophysiological mechanisms. Future approaches should aim to mimic irreversible airflow obstruction, associated with cough and sputum production, with the possibility of inducing exacerbations.
Collapse
Affiliation(s)
- David A Groneberg
- Pneumology and Immunology, Otto-Heubner-Centre, Charité School of Medicine, Free University and Humboldt-University, Berlin, Germany
| | - K Fan Chung
- Thoracic Medicine, National Heart & Lung Institute, Imperial College, London, UK
| |
Collapse
|
22
|
Groneberg DA, Witt H, Adcock IM, Hansen G, Springer J. Smads as intracellular mediators of airway inflammation. Exp Lung Res 2004; 30:223-50. [PMID: 15195555 DOI: 10.1080/01902140490276320] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-beta (TGF-beta) plays an important role in the pathogenesis of allergic asthma and other airway diseases. Signals from the activated TGF-beta receptor complex are transduced to the nucleus of airway cells by Smad proteins, which represent a family of transcription factors that have recently been implicated to play a major role as intracellular mediators of inflammation. The Smad family consists of the receptor-regulated Smads, a common pathway Smad, and inhibitory Smads. Receptor-regulated Smads (R-Smads) are phosphorylated by the TGF-beta type Ireceptor. They include Smad2 and Smad3, which are recognized by TGF-beta and activin receptors, and Smads 1, 5, 8, and 9, which are recognized by bone morphogenetic protein (BMP) receptors. Smad4 is a common pathway Smad, which is also defined as cooperating Smad (co-Smad) and is not phosphorylated by the TGF-beta type I receptor. Inhibitory Smads(anti-Smads) include Smad6 and Smad7, which down-regulate TGF-beta signaling. To date, the Smads are the only TGF-beta receptor substrates with a demonstrated ability to propagate signals and with regard to the growing number of investigations of Smad-mediated effects in the airways, Smads may prove to be an important target for future development of new therapeutic strategies for asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- David A Groneberg
- Division of Allergy Research, Department of Pediatric Pneumology and Immunology, Charité Campus-Virchow, Humboldt-University, Berlin, Germany.
| | | | | | | | | |
Collapse
|
23
|
Heppt W, Dinh QT, Cryer A, Zweng M, Noga O, Peiser C, Melvan M, Witt C, Fischer A, Groneberg DA. Phenotypic alteration of neuropeptide-containing nerve fibres in seasonal intermittent allergic rhinitis. Clin Exp Allergy 2004; 34:1105-10. [PMID: 15248857 DOI: 10.1111/j.1365-2222.2004.01990.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is the most common allergic disease affecting the respiratory tract. Next to inflammatory changes, the airway innervation plays an important modulatory role in the pathogenesis of the disease. OBJECTIVE To examine the participation of different neuropeptides in the human nasal mucosa of intermittent (seasonal) AR tissues in the allergic season. METHODS Immunohistochemistry for substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and neuropeptide tyrosine (NPY) was related to the characterization of inflammatory cells in tissues of patients with seasonal AR (n=18). RESULTS While there was a significant increase in the number of eosinophils present if compared with a control group, no changes occurred in mast cell numbers. Immunostaining was abundantly found in different nerve fibre populations of both groups. SP expression was significantly increased in mucosal nerve fibres of patients with intermittent (seasonal) AR. Also, significantly increased numbers of VIP- and NPY-immunoreactive nerve fibres were found in biopsies of rhinitis patients in comparison with sections of normal human nasal mucosa. In contrast, CGRP expression did not change significantly. CONCLUSION The increase of neuropeptide expression in mucosal nerve fibres indicates a major role of the autonomous mucosal innervation in the pathophysiology of intermittent (seasonal) AR.
Collapse
Affiliation(s)
- W Heppt
- Department of Otorhinolaryngology, Karlsruhe Teaching Hospital, University of Freiburg, Karlsruhe, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
There are currently no effective treatments for controlling the cough response with an acceptable therapeutic ratio. However, several new mechanisms have been identified which may lead to the development of new drugs.
Collapse
Affiliation(s)
- M G Belvisi
- Respiratory Pharmacology Group, Department of Cardiothoracic Surgery, Faculty of Medicine, Imperial College at the National Heart & Lung Institute, London, UK.
| | | |
Collapse
|
25
|
Groneberg DA, Bielory L, Fischer A, Bonini S, Wahn U. Animal models of allergic and inflammatory conjunctivitis. Allergy 2003; 58:1101-13. [PMID: 14616119 DOI: 10.1046/j.1398-9995.2003.00326.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Allergic eye diseases are complex inflammatory conditions of the conjunctiva with an increasing prevalence and incidence. The diseases are often concomitant with other allergic diseases such as allergic rhinitis, atopic dermatitis and allergic asthma. Despite the disabling and prominent symptoms of ocular allergies, they are less well studied and further insights into the molecular basics are still required. To establish new therapeutic approaches and assess immunological mechanisms, animal models of ocular allergies have been developed in the past years. The major forms of allergic ocular diseases, seasonal and perennial allergic conjunctivitis, vernal and atopic keratoconjunctivitis and giant papillary conjunctivitis, each have different pathophysiological and immunological components. In contrast to these distinct entities, the current animal models are based on the sensitization against a small number of allergens such as ovalbumin, ragweed pollen or major cat allergens and consecutive challenge. Different animal species have been used so far. Starting with guinea-pig models of allergic conjunctivitis to assess pharmacological aspects, new models including rats and mice have been developed which mimic major features of ocular allergy. The presently preferred species for the investigation of the immunological basis of the disease is represented by murine models of allergic conjunctivitis. In the future, combined ocular, nasal and aerosolic challenges with allergens may provide a model of allergy that encompasses simultaneously the target organs eye, nose and airways with conjunctivitis, rhinitis and asthma.
Collapse
Affiliation(s)
- D A Groneberg
- Department of Pediatric Pneumology and Immunology, Charité Campus-Virchow, Humboldt-University Berlin, Germany
| | | | | | | | | |
Collapse
|
26
|
Abstract
Sensory neuropeptides have been proposed to play a key role in the pathogenesis of a number of respiratory diseases such as asthma, chronic obstructive pulmonary disease or chronic cough. Next to prominent neuropeptides such as tachykinins or vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP) has long been suggested to participate in airway physiology and pathophysiology. CGRP is a 37 amino-acid peptide which is expressed by nerve fibers projecting to the airways and by pulmonary neuroendocrine cells. The most prominent effects of CGRP in the airways are vasodilatation and in a few instances bronchoconstriction. A further pulmonary effect of CGRP is the induction of eosinophil migration and the stimulation of beta-integrin-mediated T cell adhesion to fibronectin at the site of inflammation. By contrast, CGRP inhibits macrophage secretion and the capacity of macrophages to activate T-cells, indicating a potential anti-inflammatory effect. Due to the complex pulmonary effects of CGRP with bronchoconstriction and vasodilatation and diverse immunomodulatory actions, potential anti-asthma drugs based on this peptide have not been established so far. However, targeting the effects of CGRP may be of value for future strategies in nerve modulation.
Collapse
Affiliation(s)
- Jochen Springer
- Division of Allergy Research, Department of Pediatric Pneumology and Immunology, Charité Campus-Virchow, Humboldt-University Berlin, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
27
|
Zaveri N. Peptide and nonpeptide ligands for the nociceptin/orphanin FQ receptor ORL1: research tools and potential therapeutic agents. Life Sci 2003; 73:663-78. [PMID: 12801588 PMCID: PMC3848886 DOI: 10.1016/s0024-3205(03)00387-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 17-amino acid neuropeptide nociceptin/Orphanin FQ (N/OFQ) was recently identified as the endogenous ligand for the opioid receptor-like (ORL1) receptor, a fourth member of the classical mu, delta, and kappa opioid receptor family. Although ORL1 clearly belongs to the opioid receptor family, it does not bind classical opiates and the ORL1-N/OFQ system has pharmacological actions distinct from the opioid receptor system. This new ligand-receptor system has generated active interest in the opioid community because of its wide distribution and involvement in a myriad of neurological pathways. The past two years have witnessed tremendous advances in the design and discovery of very potent and selective peptide and nonpeptide agonist and antagonist ligands at ORL1. These discoveries have facilitated the understanding of the role of the ORL1-N/OFQ system in a variety of processes such as pain modulation, anxiety, food intake, learning, memory, neurotransmitter release, reward pathways, and tolerance development. The ORL1 receptor therefore represents a new molecular target for the design of novel agents for anxiety, analgesia, and drug addiction. Indeed, there is tremendous interest in the pharmaceutical industry in the development of nonpeptide ligands such as the potent ORL1 agonist, Ro 64-6198, as anxiolytics and the ORL1 antagonist JTC-801 as novel analgesics. This review presents an overview of the various peptide and nonpeptide ORL1 ligands with an emphasis on their potential therapeutic utility in various human disorders.
Collapse
Affiliation(s)
- Nurulain Zaveri
- Biosciences Division, Drug Discovery, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA.
| |
Collapse
|
28
|
Wang L, Tiniakov RL, Yeates DB. Peripheral opioidergic regulation of the tracheobronchial mucociliary transport system. J Appl Physiol (1985) 2003; 94:2375-83. [PMID: 12611768 DOI: 10.1152/japplphysiol.00741.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that, in the airway mucosa, opioids are inhibitory neural modulators that cause an increase in net water absorption in the airway mucosa (as in the gut). Changes in bidirectional water fluxes across ovine tracheal mucosa in response to basolateral application of the opioid peptides beta-endorphin, dynorphin A-(1-8), and [d-Ala(2), d-Leu(5)]-enkephalin (DADLE) were measured. beta-Endorphin and dynorphin A-(1-8) decreased luminal-to-basolateral water fluxes, and dynorphin A-(1-8) and DADLE increased basolateral-to-luminal water flux. These responses were electroneutral. In seven beagle dogs, administration of aerosolized beta-endorphin (1 mg) to the tracheobronchial airways decreased the clearance of radiotagged particles from the bronchi in 1 h from 34.7 to 22.0% (P < 0.001). Naloxone abrogated the beta-endorphin-induced changes in vitro and in vivo. Contrary to our hypothesis, the opioid-induced changes in water fluxes would all lead to a predictable increase in airway surface fluid. The beta-endorphin-induced increases in airway fluid together with reduced bronchial mucociliary clearance may produce procongestive responses when opioids are administered as antitussives.
Collapse
Affiliation(s)
- Lian Wang
- Departments of Medicine and Bioengineering University of Illinois at Chicago, and Veterans Affairs Health Care System, West Side, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
29
|
Jessop DS. Neuropeptides: modulators of immune responses in health and disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 52:67-91. [PMID: 12498101 DOI: 10.1016/s0074-7742(02)52006-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- David S Jessop
- University Research Center for Neuroendocrinology, University of Bristol, Bristol BS2 8HW, United Kingdom
| |
Collapse
|
30
|
Abstract
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
31
|
|