1
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Lopez-Bujanda ZA, Hadavi SH, Ruiz De Porras V, Martínez-Balibrea E, Dallos MC. Chemotactic signaling pathways in prostate cancer: Implications in the tumor microenvironment and as potential therapeutic targets. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:162-205. [PMID: 39260936 DOI: 10.1016/bs.ircmb.2024.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Prostate cancer (PCa) stands as a significant global health concern, ranking among the leading causes of cancer deaths in men. While there are several treatment modalities for localized PCa, metastatic castration-resistant PCa (mCRPC) remains incurable. Despite therapeutic advancements showing promise in mCRPC, their impact on overall survival has been limited. This chapter explores the process by which tumors form, reviews our current understanding of PCa progression to mCRPC, and addresses the challenges of boosting anti-tumor immune responses in these tumors. It specifically discusses how chemotactic signaling affects the tumor microenvironment and its role in immune evasion and cancer progression. The chapter further examines the rationale of directly or indirectly targeting these pathways as adjuvant therapies for mCRPC, highlighting recent pre-clinical and clinical studies currently underway. The discussion emphasizes the potential of targeting specific chemokines and chemokine receptors as combination therapies with mainstream treatments for PCa and mCRPC to maximize long-term survival for this deadly disease.
Collapse
Affiliation(s)
- Zoila A Lopez-Bujanda
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, United States.
| | - Shawn H Hadavi
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Vicenç Ruiz De Porras
- Badalona Applied Research Group of Oncology (B-ARGO), Catalan Institute of Oncology, Badalona, BCN, Spain; CARE program, Germans Trias i Pujol Research Institute (IGTP), Badalona, BCN, Spain
| | - Eva Martínez-Balibrea
- CARE program, Germans Trias i Pujol Research Institute (IGTP), Badalona, BCN, Spain; ProCURE Program, Catalan Institute of Oncology, Badalona, BCN, Spain
| | - Matthew C Dallos
- Memorial Solid Tumor Group, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
3
|
Rismanbaf A. Improving targeted small molecule drugs to overcome chemotherapy resistance. Cancer Rep (Hoboken) 2024; 7:e1945. [PMID: 37994401 PMCID: PMC10809209 DOI: 10.1002/cnr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Conventional cancer treatments face the challenge of therapeutic resistance, which causes poor treatment outcomes. The use of combination therapies can improve treatment results in patients and is one of the solutions to overcome this challenge. Chemotherapy is one of the conventional treatments that, due to the non-targeted and lack of specificity in targeting cancer cells, can cause serious complications in the short and long-term for patients by damaging healthy cells. Also, the employment of a wide range of strategies for chemotherapy resistance by cancer cells, metastasis, and cancer recurrence create serious problems to achieve the desired results of chemotherapy. Accordingly, targeted therapies can be used as a combination treatment with chemotherapy to both cause less damage to healthy cells, which as a result, they reduce the side effects of chemotherapy, and by targeting the factors that cause therapeutic challenges, can improve the results of chemotherapy in patients. RECENT FINDINGS Small molecules are one of the main targeted therapies that can be used for diverse targets in cancer treatment due to their penetration ability and characteristics. However, small molecules in cancer treatment are facing obstacles that a better understanding of cancer biology, as well as the mechanisms and factors involved in chemotherapy resistance, can lead to the improvement of this type of major targeted therapy. CONCLUSION In this review article, at first, the challenges that lead to not achieving the desired results in chemotherapy and how cancer cells can be resistant to chemotherapy are examined, and at the end, research areas are suggested that more focusing on them, can lead to the improvement of the results of using targeted small molecules as an adjunctive treatment for chemotherapy in the conditions of chemotherapy resistance and metastasis of cancer cells.
Collapse
Affiliation(s)
- Amirhossein Rismanbaf
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
4
|
Huynh D, Winter P, Märkl F, Endres S, Kobold S. Beyond direct killing-novel cellular immunotherapeutic strategies to reshape the tumor microenvironment. Semin Immunopathol 2023; 45:215-227. [PMID: 36167831 PMCID: PMC10121530 DOI: 10.1007/s00281-022-00962-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
The clinical use of cellular immunotherapies is gaining momentum and the number of approved indications is steadily increasing. One class of cellular therapies-chimeric antigen receptor (CAR)-modified T cells-has achieved impressive results in distinct blood cancer indications. These existing cellular therapies treating blood cancers face significant relapse rates, and their application beyond hematology has been underwhelming, especially in solid oncology. Major reasons for resistance source largely in the tumor microenvironment (TME). The TME in fact functionally suppresses, restricts, and excludes adoptive immune cells, which limits the efficacy of cellular immunotherapies from the onset. Many promising efforts are ongoing to adapt cellular immunotherapies to address these obstacles, with the aim of reshaping the tumor microenvironment to ameliorate function and to achieve superior efficacy against both hematological and solid malignancies.
Collapse
Affiliation(s)
- Duc Huynh
- Department of Medicine IV, Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Pia Winter
- Department of Medicine IV, Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Florian Märkl
- Department of Medicine IV, Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337, Munich, Germany
| | - Stefan Endres
- Department of Medicine IV, Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337, Munich, Germany
- Einheit Für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, Research Center for Environmental Health (HMGU), Neuherberg, Germany
- German Center for Translational Cancer Research (DKTK), partner site Munich, Heidelberg, Germany
| | - Sebastian Kobold
- Department of Medicine IV, Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337, Munich, Germany.
- Einheit Für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, Research Center for Environmental Health (HMGU), Neuherberg, Germany.
- German Center for Translational Cancer Research (DKTK), partner site Munich, Heidelberg, Germany.
| |
Collapse
|
5
|
Frouin E, Alleyrat C, Godet J, Karayan-Tapon L, Sinson H, Morel F, Lecron JC, Favot L. The M2 macrophages infiltration of sebaceous tumors is linked to the aggressiveness of tumors but not to the mismatch repair pathway. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04629-x. [PMID: 36763173 DOI: 10.1007/s00432-023-04629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
PURPOSE The immune microenvironment of sebaceous neoplasms (SNs) has been poorly explored, especially in benign lesions, and never correlated to the mismatch repair (MMR) status. METHODS We conducted an immuno-histological study to analyze the immune microenvironment of SNs. A tissue microarray was constructed including sebaceous adenomas (SAs), sebaceomas (Ss) and sebaceous carcinomas (SCs) to performed immuno-histological analysis of T cells, B cells, macrophages, dendritic cells, and expression of Programmed Death-1 (PD-1) and Programmed Death Ligand 1 (PD-L1). An automatized count was performed using the QuPath® software. Composition of the cellular microenvironment was compared to the aggressiveness, the MMR status, and to Muir-Torre syndrome (MTS). RESULTS We included 123 SNs (43 SAs, 19 Ss and 61 SCs) for which 71.5% had a dMMR phenotype. A higher infiltration of macrophages (CD68 +) of M2 phenotype (CD163 +) and dendritic cells (CD11c +) was noticed in SCs compared to benign SNs (SAs and Ss). Programmed cell death ligand-1 but not PD-1 was expressed by more immune cells in SCs compared to benign SNs. No difference in the immune cell composition regarding the MMR status, or to MTS was observed. CONCLUSION In SNs, M2 macrophages and dendritic cells infiltrates are associated with the progression and the malignant transformation of tumors. High PD-L1 expression in immune cells in SCs is an argument for the use of immunotherapy by anti-PD1 or PD-L1 in metastatic patients. The lack of correlation between the composition of immune cells in SNs and the MMR status emphasizes the singularity of SNs among MMR-associated malignancies.
Collapse
Affiliation(s)
- Eric Frouin
- Pathology Department, University Hospital of Poitiers, Poitiers, France. .,LITEC, Université de Poitiers, Poitiers, France.
| | - Camille Alleyrat
- Plateforme Méthodologie Biostatistiques, Data-Management, University Hospital of Poitiers, 86073, Poitiers, France
| | - Julie Godet
- Pathology Department, University Hospital of Poitiers, Poitiers, France
| | - Lucie Karayan-Tapon
- ProDiCeT, Université de Poitiers, Poitiers, France.,Department of Cancer Biology, CHU de Poitiers, University Hospital of Poitiers, Poitiers, France
| | - Hélinie Sinson
- Pathology Department, University Hospital of Poitiers, Poitiers, France
| | | | - Jean-Claude Lecron
- LITEC, Université de Poitiers, Poitiers, France.,Department of Immunology and Inflammation, University Hospital of Poitiers, Poitiers, France
| | - Laure Favot
- LITEC, Université de Poitiers, Poitiers, France
| |
Collapse
|
6
|
Codrici E, Popescu ID, Tanase C, Enciu AM. Friends with Benefits: Chemokines, Glioblastoma-Associated Microglia/Macrophages, and Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms23052509. [PMID: 35269652 PMCID: PMC8910233 DOI: 10.3390/ijms23052509] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common primary intracranial tumor and has the greatest prevalence of all brain tumors. Treatment resistance and tumor recurrence in GBM are mostly explained by considerable alterations within the tumor microenvironment, as well as extraordinary cellular and molecular heterogeneity. Soluble factors, extracellular matrix components, tissue-resident cell types, resident or newly recruited immune cells together make up the GBM microenvironment. Regardless of many immune cells, a profound state of tumor immunosuppression is supported and developed, posing a considerable hurdle to cancer cells' immune-mediated destruction. Several studies have suggested that various GBM subtypes present different modifications in their microenvironment, although the importance of the microenvironment in treatment response has yet to be determined. Understanding the microenvironment and how it changes after therapies is critical because it can influence the remaining invasive GSCs and lead to recurrence. This review article sheds light on the various components of the GBM microenvironment and their roles in tumoral development, as well as immune-related biological processes that support the interconnection/interrelationship between different cell types. Also, we summarize the current understanding of the modulation of soluble factors and highlight the dysregulated inflammatory chemokine/specific receptors cascades/networks and their significance in tumorigenesis, cancer-related inflammation, and metastasis.
Collapse
Affiliation(s)
- Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Ionela-Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| |
Collapse
|
7
|
Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. J Control Release 2022; 343:564-583. [DOI: 10.1016/j.jconrel.2022.01.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022]
|
8
|
Subtil B, Cambi A, Tauriello DVF, de Vries IJM. The Therapeutic Potential of Tackling Tumor-Induced Dendritic Cell Dysfunction in Colorectal Cancer. Front Immunol 2021; 12:724883. [PMID: 34691029 PMCID: PMC8527179 DOI: 10.3389/fimmu.2021.724883] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed malignancy and the second leading cause of cancer-related deaths worldwide. Locally advanced and metastatic disease exhibit resistance to therapy and are prone to recurrence. Despite significant advances in standard of care and targeted (immuno)therapies, the treatment effects in metastatic CRC patients have been modest. Untreatable cancer metastasis accounts for poor prognosis and most CRC deaths. The generation of a strong immunosuppressive tumor microenvironment (TME) by CRC constitutes a major hurdle for tumor clearance by the immune system. Dendritic cells (DCs), often impaired in the TME, play a critical role in the initiation and amplification of anti-tumor immune responses. Evidence suggests that tumor-mediated DC dysfunction is decisive for tumor growth and metastasis initiation, as well as for the success of immunotherapies. Unravelling and understanding the complex crosstalk between CRC and DCs holds promise for identifying key mechanisms involved in tumor progression and spread that can be exploited for therapy. The main goal of this review is to provide an overview of the current knowledge on the impact of CRC-driven immunosuppression on DCs phenotype and functionality, and its significance for disease progression, patient prognosis, and treatment response. Moreover, present knowledge gaps will be highlighted as promising opportunities to further understand and therapeutically target DC dysfunction in CRC. Given the complexity and heterogeneity of CRC, future research will benefit from the use of patient-derived material and the development of in vitro organoid-based co-culture systems to model and study DCs within the CRC TME.
Collapse
Affiliation(s)
- Beatriz Subtil
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daniele V. F. Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
9
|
Zheng X, Jin W, Wang S, Ding H. Progression on the Roles and Mechanisms of Tumor-Infiltrating T Lymphocytes in Patients With Hepatocellular Carcinoma. Front Immunol 2021; 12:729705. [PMID: 34566989 PMCID: PMC8462294 DOI: 10.3389/fimmu.2021.729705] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/17/2021] [Indexed: 12/20/2022] Open
Abstract
Primary liver cancer (PLC) is one of the most common malignancies in China, where it ranks second in mortality and fifth in morbidity. Currently, liver transplantation, hepatic tumor resection, radiofrequency ablation, and molecular-targeted agents are the major treatments for hepatocellular carcinoma (HCC). Overall, HCC has a poor survival rate and a high recurrence rate. Tumor-infiltrating lymphocytes (TILs) have been discovered to play essential roles in the development, prognosis, and immunotherapy treatment of HCC. As the major component cells of TILs, T cells are also proved to show antitumor and protumor effects in HCC. Foxp3+, CD8+, CD3+, and CD4+ T lymphocytes are the broadly studied subgroups of TILs. This article reviews the roles and mechanisms of different tumor-infiltrating T lymphocyte subtypes in HCC.
Collapse
Affiliation(s)
- Xiaoqin Zheng
- Department of Gastrointestinal and Hepatology, Beijing You’An Hospital, Capital Medical University, Beijing, China
| | - Wenjie Jin
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Shanshan Wang
- Beijing Institute of Hepatology, Beijing You’An Hospital, Capital Medical University, Beijing, China
| | - Huiguo Ding
- Department of Gastrointestinal and Hepatology, Beijing You’An Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Shi Y, Xie TX, Leach DG, Wang B, Young S, Osman AA, Sikora AG, Ren X, Hartgerink JD, Myers JN, Rangel R. Local Anti-PD-1 Delivery Prevents Progression of Premalignant Lesions in a 4NQO-Oral Carcinogenesis Mouse Model. Cancer Prev Res (Phila) 2021; 14:767-778. [PMID: 34021022 DOI: 10.1158/1940-6207.capr-20-0607] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/21/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022]
Abstract
Although the principle of systemic treatment to prevent the progression of oral premalignant lesions (OPL) has been demonstrated, there remains a lack of consensus about an optimal approach that balances clinical efficacy with toxicity concerns. Recent advances in cancer therapy using approaches targeting the tumor immune microenvironment (TIME) including immune-checkpoint inhibitors indicate that these agents have significant clinically activity against different types of cancers, including oral cancer, and therefore they may provide an effective oral cancer prevention strategy for patients with OPLs. Our past work showed that systemic delivery of a monoclonal antibody to the programmed death receptor 1 (PD-1) immune checkpoint can inhibit the progression of OPLs to oral cancer in a syngeneic murine oral carcinogenesis model. Here we report a novel approach of local delivery of a PD-1 immune-checkpoint inhibitor loaded using a hydrogel, which significantly reduces the progression of OPLs to carcinomas. In addition, we detected a significant infiltration of regulatory T cells associated with oral lesions with p53 mutation, and a severe loss of expression of STING, which correlated with a decreased infiltration of dendritic cells in the oral lesions. However, a single local dose of PD-1 inhibitor was found to restore stimulator of interferon response cGAMP interactor 1 (STING) and CD11c expression and increase the infiltration of CD8+ T cells into the TIME irrespective of the p53 mutational status. Overall, we provide evidence for the potential clinical value of local delivery of biomaterials loaded with anti-PD-1 antibodies to prevent malignant progression of OPLs. PREVENTION RELEVANCE: Oral cancer is an aggressive disease, with an overall survival rate of 50%. Preinvasive histologic abnormalities such as tongue dysplasia represent an early stage of oral cancer; however, there are no treatments to prevent oral carcinoma progression. Here, we combined biomaterials loaded with an immunotherapeutic agent preventing oral cancer progression.
Collapse
Affiliation(s)
- Yewen Shi
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong-Xin Xie
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David G Leach
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, Texas
| | - Bingbing Wang
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Abdullah A Osman
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew G Sikora
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoyong Ren
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jeffrey D Hartgerink
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, Texas
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roberto Rangel
- Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
11
|
Decipher the Glioblastoma Microenvironment: The First Milestone for New Groundbreaking Therapeutic Strategies. Genes (Basel) 2021; 12:genes12030445. [PMID: 33804731 PMCID: PMC8003887 DOI: 10.3390/genes12030445] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Despite the combination of novel therapeutical approaches, it remains a deadly malignancy with an abysmal prognosis. GBM is a polymorphic tumour from both molecular and histological points of view. It consists of different malignant cells and various stromal cells, contributing to tumour initiation, progression, and treatment response. GBM’s microenvironment is multifaceted and is made up of soluble factors, extracellular matrix components, tissue-resident cell types (e.g., neurons, astrocytes, endothelial cells, pericytes, and fibroblasts) together with resident (e.g., microglia) or recruited (e.g., bone marrow-derived macrophages) immune cells. These latter constitute the so-called immune microenvironment, accounting for a substantial GBM’s tumour volume. Despite the abundance of immune cells, an intense state of tumour immunosuppression is promoted and developed; this represents the significant challenge for cancer cells’ immune-mediated destruction. Though literature data suggest that distinct GBM’s subtypes harbour differences in their microenvironment, its role in treatment response remains obscure. However, an in-depth investigation of GBM’s microenvironment may lead to novel therapeutic opportunities to improve patients’ outcomes. This review will elucidate the GBM’s microenvironment composition, highlighting the current state of the art in immunotherapy approaches. We will focus on novel strategies of active and passive immunotherapies, including vaccination, gene therapy, checkpoint blockade, and adoptive T-cell therapies.
Collapse
|
12
|
McDonnell AM, Currie AJ, Brown M, Kania K, Wylie B, Cleaver A, Lake R, Robinson BWS. Tumor cells, rather than dendritic cells, deliver antigen to the lymph node for cross-presentation. Oncoimmunology 2021; 1:840-846. [PMID: 23162751 PMCID: PMC3489739 DOI: 10.4161/onci.20493] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is widely accepted that generation of tumor specific CD8+ T-cell responses occur via cross-priming; however the source of tumor antigen for this event is unknown. We examined the source and form of tumor antigen required for cross-presentation in the local lymph node (LN) using a syngeneic mouse tumor model expressing a marker antigen. We found that cross-presentation of this model tumor antigen in the LN is dependent on continuous traffic of antigen from the tumor site, but without any detectable migration of tumor resident dendritic cells (DCs). Instead, small numbers of tumor cells metastasize to local LNs where they are exposed to a localized CTL attack, resulting in delivery of tumor antigen into the cross-presentation pathway.
Collapse
Affiliation(s)
- Alison M McDonnell
- School of Medicine and Pharmacology; The University of Western Australia; Crawley, Australia ; National Centre for Asbestos Related Diseases; The University of Western Australia; Crawley, Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Li W, Liu K, Chen Y, Zhu M, Li M. Role of Alpha-Fetoprotein in Hepatocellular Carcinoma Drug Resistance. Curr Med Chem 2021; 28:1126-1142. [PMID: 32729413 DOI: 10.2174/0929867327999200729151247] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/04/2020] [Accepted: 07/11/2020] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major type of primary liver cancer and a major cause of cancer-related deaths worldwide because of its high recurrence rate and poor prognosis. Surgical resection is currently the major treatment measure for patients in the early and middle stages of the disease. Because due to late diagnosis, most patients already miss the opportunity for surgery upon disease confirmation, conservative chemotherapy (drug treatment) remains an important method of comprehensive treatment for patients with middle- and late-stage liver cancer. However, multidrug resistance (MDR) in patients with HCC severely reduces the treatment effect and is an important obstacle to chemotherapeutic success. Alpha-fetoprotein (AFP) is an important biomarker for the diagnosis of HCC. The serum expression levels of AFP in many patients with HCC are increased, and a persistently increased AFP level is a risk factor for HCC progression. Many studies have indicated that AFP functions as an immune suppressor, and AFP can promote malignant transformation during HCC development and might be involved in the process of MDR in patients with liver cancer. This review describes drug resistance mechanisms during HCC drug treatment and reviews the relationship between the mechanism of AFP in HCC development and progression and HCC drug resistance.
Collapse
Affiliation(s)
- Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Yi Chen
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, China
| |
Collapse
|
14
|
Chang M, Hou Z, Wang M, Li C, Lin J. Recent Advances in Hyperthermia Therapy-Based Synergistic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004788. [PMID: 33289219 DOI: 10.1002/adma.202004788] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Indexed: 06/12/2023]
Abstract
The past decades have witnessed hyperthermia therapy (HTT) as an emerging strategy against malignant tumors. Nanomaterial-based photothermal therapy (PTT) and magnetic hyperthermia (MHT), as highly effective and noninvasive treatment models, offer advantages over other strategies in the treatment of different types of tumors. However, both PTT and MHT cannot completely cure cancer due to recurrence and distal metastasis. In recent years, cancer immunotherapy has attracted widespread attention owing to its capability to activate the body's own natural defense to identify, attack, and eradicate cancer cells. Significant efforts have been devoted to studying the activated immune responses caused by hyperthermia-ablated tumors. In this article, the synergistic mechanism of HTT in immunotherapy, including immunogenic cell death and reversal of the immunosuppressive tumor microenvironment is discussed. The reports of the combination of HTT or HTT-based multimodal therapy with immunotherapy, including immunoadjuvant exploitation, immune checkpoint blockade therapy, and adoptive cellular immunotherapy are summarized. As highlighted, these strategies could achieve synergistically enhanced therapeutic outcomes against both primary tumors and metastatic lesions, prevent cancer recurrence, and prolong the survival period. Finally, current challenges and prospective developments in HTT-synergized immunotherapy are also reviewed.
Collapse
Affiliation(s)
- Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, 511436, P. R. China
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
15
|
Fan J, Han J, Li J, Gu A, Yin D, Song F, Wang L, Yi Y. The expression and function of immunoglobulin-like transcript 4 in dendritic cells from patients with hepatocellular carcinoma. Hum Immunol 2020; 81:714-725. [PMID: 33228921 DOI: 10.1016/j.humimm.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
Due to their easy availability and expansion in vitro, monocyte-derived dendritic cells (moDCs) are most frequently used for tumor vaccination. Immunoglobulin-like transcript 4 (ILT4), as inhibitory receptor, has been reported to be related to DC tolerance. However, the influence of ILT4 for DC tolerance in hepatocellular carcinoma (HCC) patients has not been illustrated. In this research, we explored the expression of ILT4 on moDCs from HCC patients and its effect on moDC function. We demonstrated that the expression of ILT4 on mature DCs (mDCs) was higher in the peripheral blood from HCC patients than in that from healthy donors. The levels of cytokines IL-1β and IL-6 secreted by mDCs from both HCC patients and healthy controls, stimulated by anti-ILT4 agonistic mAb, were decreased. In contrast, the levels of IL-10 and IL-23 were upregulated. In addition, ILT4, triggered by anti-ILT4 agonistic mAb, could reduce allogeneic T cell proliferation stimulated by the mDCs. Moreover, ILT4 triggered by anti-ILT4 agonistic mAb could also reduce the ability of the mDCs to stimulate tumor cell antigen-specific autologous CD4+ T cells (production of IFN-γ) and CD8+ T cells (production of IFN-γ and IL-2). Furthermore, ILT4 expression impaired the cytotoxicity of autologous T cells induced by the mDCs against the HCC tumor cell line SMMC-7721. Our data revealed that the high expression of ILT4 promoted the immune tolerance of DCs, resulting in an inefficiency of the T cell response, a process that is exacerbated in HCC patients.
Collapse
Affiliation(s)
- Jing Fan
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China
| | - Jianbo Han
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China
| | - Jiayan Li
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China
| | - Aidong Gu
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China
| | - Fangnan Song
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China
| | - Lili Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China.
| | - Yongxiang Yi
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China; Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China.
| |
Collapse
|
16
|
Raggi F, Bosco MC. Targeting Mononuclear Phagocyte Receptors in Cancer Immunotherapy: New Perspectives of the Triggering Receptor Expressed on Myeloid Cells (TREM-1). Cancers (Basel) 2020; 12:cancers12051337. [PMID: 32456204 PMCID: PMC7281211 DOI: 10.3390/cancers12051337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory cells are major players in the onset of cancer. The degree of inflammation and type of inflammatory cells in the tumor microenvironment (TME) are responsible for tilting the balance between tumor progression and regression. Cancer-related inflammation has also been shown to influence the efficacy of conventional therapy. Mononuclear phagocytes (MPs) represent a major component of the inflammatory circuit that promotes tumor progression. Despite their potential to activate immunosurveillance and exert anti-tumor responses, MPs are subverted by the tumor to support its growth, immune evasion, and spread. MP responses in the TME are dictated by a network of stimuli integrated through the cross-talk between activatory and inhibitory receptors. Alterations in receptor expression/signaling can create excessive inflammation and, when chronic, promote tumorigenesis. Research advances have led to the development of new therapeutic strategies aimed at receptor targeting to induce a tumor-infiltrating MP switch from a cancer-supportive toward an anti-tumor phenotype, demonstrating efficacy in different human cancers. This review provides an overview of the role of MP receptors in inflammation-mediated carcinogenesis and discusses the most recent updates regarding their targeting for immunotherapeutic purposes. We focus in particular on the TREM-1 receptor, a major amplifier of MP inflammatory responses, highlighting its relevance in the development and progression of several types of inflammation-associated malignancies and the promises of its inhibition for cancer immunotherapy.
Collapse
|
17
|
Lee JH, Choi SY, Jung NC, Song JY, Seo HG, Lee HS, Lim DS. The Effect of the Tumor Microenvironment and Tumor-Derived Metabolites on Dendritic Cell Function. J Cancer 2020; 11:769-775. [PMID: 31949478 PMCID: PMC6959009 DOI: 10.7150/jca.38785] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) have a critical effect on the outcome of adaptive immune responses against growing tumors. Recent studies on the metabolism on DCs provide new insights on the functioning of these critical controllers of innate and adaptive immunity. DCs within the tumor microenvironment (TME) often exist in an inactive state, which is thought to limit the adaptive immune response elicited by the growing tumor. Tumor-derived factors in the TME are known to suppress DC activation and result in functional alterations in DC phenotype. We are now beginning to appreciate that many of these factors can also induce changes in immune cell metabolism. In this review, we discuss the functional alternation of DC phenotype by tumor metabolites.
Collapse
Affiliation(s)
- Jun-Ho Lee
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea.,Pharos Vaccine Inc., 545 Dunchon-daero, Jungwon-gu, Seongnam, Gyeonggi-do 13215, Republic of Korea
| | - So-Yeon Choi
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
| | - Nam-Chul Jung
- Pharos Vaccine Inc., 545 Dunchon-daero, Jungwon-gu, Seongnam, Gyeonggi-do 13215, Republic of Korea
| | - Jie-Young Song
- Department of Radiation Cancer Sciences, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Republic of Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Soo Lee
- Pharos Vaccine Inc., 545 Dunchon-daero, Jungwon-gu, Seongnam, Gyeonggi-do 13215, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
18
|
Gulubova M. Myeloid and Plasmacytoid Dendritic Cells and Cancer - New Insights. Open Access Maced J Med Sci 2019; 7:3324-3340. [PMID: 31949539 PMCID: PMC6953922 DOI: 10.3889/oamjms.2019.735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) use effective mechanisms to combat antigens and to bring about adaptive immune responses through their ability to stimulate näive T cells. At present, four major cell types are categorised as DCs: Classical or conventional (cDCs), Plasmacytoid (pDCs), Langerhans cells (LCs), and monocyte-derived DCs (Mo-DCs). It was suggested that pDCs, CD1c+ DCs and CD141+ DCs in humans are equivalent to mouse pDCs, CD11b+ DCs and CD8α+ DCs, respectively. Human CD141+ DCs compared to mouse CD8α+ DCs have remarkable functional and transcriptomic similarities. Characteristic markers, transcription factors, toll-like receptors, T helpers (Th) polarisation, cytokines, etc. of DCs are discussed in this review. Major histocompatibility complex (MHC) I and II antigen presentation, cross-presentation and Th polarisation are defined, and the dual role of DCs in the tumour is discussed. Human DCs are the main immune cells that orchestrate the immune response in the tumour microenvironment.
Collapse
Affiliation(s)
- Maya Gulubova
- Department of General and Clinical Pathology, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
19
|
Sauter A, Yi DH, Li Y, Roersma S, Appel S. The Culture Dish Surface Influences the Phenotype and Cytokine Production of Human Monocyte-Derived Dendritic Cells. Front Immunol 2019; 10:2352. [PMID: 31632415 PMCID: PMC6783514 DOI: 10.3389/fimmu.2019.02352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Monocyte-derived dendritic cells (moDC) are an important scientific and clinical source of functional dendritic cells (DC). However, the optimization of the generation process has to date mainly been limited to the variation of soluble factors. In this study, we investigated the impact of the cell culture dish surface on phenotype and cytokine profile. We compared a standard cell culture dish to a non-adherent culture dish for two immunogenic maturation conditions, two tolerogenic conditions, and an unstimulated control. Phenotype, cytokine profile and T cell stimulatory capacity were determined after a 3-day culture. Light microscopy revealed an increase in homotypic cluster formation correlated with the use of non-adherent surfaces, which could be reduced by using blocking antibodies against CD18. All surface markers analyzed showed moderate to strong differences depending on the culture dish surface, including significantly decreased expression of key maturation markers such as CD80, CD86, and CCR7 as well as PD-L1 on cells stimulated with the Jonuleit cytokine cocktail cultured on a non-adherent surface. Significant differences in the secretion of many cytokines were observed, especially for cells stimulated with LPS, with over 10-fold decreased secretion of IL-10, IL12-p40, and TNF-α from the cells cultured on the non-adherent surface. All immunogenic moDC populations showed similar capacity to induce antigen-specific T cells. These results provide evidence that the DC phenotype depends on the surface used during moDC generation. This has important implications for the optimization of DC-based immunotherapy development and underlines that the local surrounding can interfere with the final DC population beyond the soluble factors.
Collapse
Affiliation(s)
| | - Dag Heiro Yi
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Yayan Li
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sabine Roersma
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
20
|
Sprooten J, Agostinis P, Garg AD. Type I interferons and dendritic cells in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:217-262. [PMID: 31810554 DOI: 10.1016/bs.ircmb.2019.06.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type I interferons (IFNs) facilitate cancer immunosurveillance, antitumor immunity and antitumor efficacy of conventional cell death-inducing therapies (chemotherapy/radiotherapy) as well as immunotherapy. Moreover, it is clear that dendritic cells (DCs) play a significant role in aiding type I IFN-driven immunity. Owing to these antitumor properties several immunotherapies involving, or inducing, type I IFNs have received considerable clinical attention, e.g., recombinant IFNα2 or agonists targeting pattern recognition receptor (PRR) pathways like Toll-like receptors (TLRs), cGAS-STING or RIG-I/MDA5/MAVS. A series of preclinical and clinical evidence concurs that the success of anticancer therapy hinges on responsiveness of both cancer cells and DCs to type I IFNs. In this article, we discuss this link between type I IFNs and DCs in the context of cancer biology, with particular attention to mechanisms behind type I IFN production, their impact on DC driven anticancer immunity, and the implications of this for cancer immunotherapy, including DC-based vaccines.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Unleashing Tumour-Dendritic Cells to Fight Cancer by Tackling Their Three A's: Abundance, Activation and Antigen-Delivery. Cancers (Basel) 2019; 11:cancers11050670. [PMID: 31091774 PMCID: PMC6562396 DOI: 10.3390/cancers11050670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Recent advances in cancer immunotherapy have mainly focused on re-activating T-cell responses against cancer cells. However, both priming and activation of effector T-cell responses against cancer-specific antigens require cross-talk with dendritic cells (DCs), which are responsible for the capturing, processing and presentation of tumour-(neo)antigens to T cells. DCs consequently constitute an essential target in efforts to generate therapeutic immunity against cancer. This review will discuss recent research that is unlocking the cancer-fighting potential of tumour-infiltrating DCs. First, the complexity of DCs in the tumour microenvironment regarding the different subsets and the difficulty of translating mouse data into equivalent human data will be briefly touched upon. Mainly, possible solutions to problems currently faced in DC-based cancer treatments will be discussed, including their infiltration into tumours, activation strategies, and antigen delivery methods. In this way, we hope to put together a broad picture of potential synergistic therapies that could be implemented to harness the full capacity of tumour-infiltrating DCs to stimulate anti-tumour immune responses in patients.
Collapse
|
22
|
Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol 2019; 9:3176. [PMID: 30719026 PMCID: PMC6348254 DOI: 10.3389/fimmu.2018.03176] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DC) are professional antigen presenting cells, uniquely able to induce naïve T cell activation and effector differentiation. They are, likewise, involved in the induction and maintenance of immune tolerance in homeostatic conditions. Their phenotypic and functional heterogeneity points to their great plasticity and ability to modulate, according to their microenvironment, the acquired immune response and, at the same time, makes their precise classification complex and frequently subject to reviews and improvement. This review will present general aspects of the DC physiology and classification and will address their potential and actual uses in the management of human disease, more specifically cancer, as therapeutic and monitoring tools. New combination treatments with the participation of DC will be also discussed.
Collapse
Affiliation(s)
- Thiago A Patente
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana P Pinho
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Aline A Oliveira
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela C M Evangelista
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patrícia C Bergami-Santos
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José A M Barbuto
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Discipline of Molecular Medicine, Department of Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Basler L, Kowalczyk A, Heidenreich R, Fotin-Mleczek M, Tsitsekidis S, Zips D, Eckert F, Huber SM. Abscopal effects of radiotherapy and combined mRNA-based immunotherapy in a syngeneic, OVA-expressing thymoma mouse model. Cancer Immunol Immunother 2018; 67:653-662. [PMID: 29335856 PMCID: PMC11028190 DOI: 10.1007/s00262-018-2117-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Tumor metastasis and immune evasion present major challenges of cancer treatment. Radiotherapy can overcome immunosuppressive tumor microenvironments. Anecdotal reports suggest abscopal anti-tumor immune responses. This study assesses abscopal effects of radiotherapy in combination with mRNA-based cancer vaccination (RNActive®). METHODS C57BL/6 mice were injected with ovalbumin-expressing thymoma cells into the right hind leg (primary tumor) and left flank (secondary tumor) with a delay of 4 days. Primary tumors were irradiated with 3 × 2 Gy, while secondary tumors were shielded. RNA and combined treatment groups received mRNA-based RNActive® vaccination. RESULTS Radiotherapy and combined radioimmunotherapy significantly delayed primary tumor growth with a tumor control in 15 and 53% of mice, respectively. In small secondary tumors, radioimmunotherapy significantly slowed growth rate compared to vaccination (p = 0.002) and control groups (p = 0.01). Cytokine microarray analysis of secondary tumors showed changes in the cytokine microenvironment, even in the non-irradiated contralateral tumors after combination treatment. CONCLUSION Combined irradiation and immunotherapy is able to induce abscopal responses, even with low, normofractionated radiation doses. Thus, the combination of mRNA-based vaccination with irradiation might be an effective regimen to induce systemic anti-tumor immunity.
Collapse
Affiliation(s)
- Lucas Basler
- Department of Radiation Oncology, University of Tübingen, Rämistrasse 100, 8091, Tübingen, Germany.
- Department of Radiation Oncology, University Hospital Zürich, Zurich, Switzerland.
| | - Aleksandra Kowalczyk
- CureVac AG, Tübingen, Germany
- Boehringer-Ingelheim, Birkendorferstr. 85, 88397, Biberach an der Riss, Germany
| | | | | | - Savas Tsitsekidis
- Department of Radiation Oncology, University of Tübingen, Rämistrasse 100, 8091, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University of Tübingen, Rämistrasse 100, 8091, Tübingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University of Tübingen, Rämistrasse 100, 8091, Tübingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tübingen, Rämistrasse 100, 8091, Tübingen, Germany
| |
Collapse
|
24
|
Upadhyay S, Sharma N, Gupta KB, Dhiman M. Role of immune system in tumor progression and carcinogenesis. J Cell Biochem 2018; 119:5028-5042. [PMID: 29327370 DOI: 10.1002/jcb.26663] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Tumor micro-environment has potential to customize the behavior of the immune cell according to their need. In immune-eliminating phase, immune cells eliminate transformed cells but after tumor establishment innate and adaptive immune cells synergistically provide shelter as well as fulfill their requirement that helps in progression. In between eliminating and establishment phase, equilibrium and escaping phase regulate the immune cells response. During immune-escaping, (1) the antigenic response generated is either inadequate, or focused entirely on tolerance, and (2) immune response generated is specific and effective, but the tumor skips immune recognition. In this review, we are discussing the critical role of immune cells and their cytokines before and after the establishment of tumor which might play a critical role during immunotherapy.
Collapse
Affiliation(s)
- Shishir Upadhyay
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Nidhi Sharma
- Department of Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Kunj Bihari Gupta
- Department of Biochemistry and Microbial Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Biochemistry and Microbial Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
25
|
Zhang P, Hu X, Liu B, Liu Z, Liu C, Cai J, Gao F, Cui J, Li B, Yang Y. Effects of 12C6+ Heavy Ion Radiation on Dendritic Cells Function. Med Sci Monit 2018. [PMID: 29525808 PMCID: PMC5859670 DOI: 10.12659/msm.906221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Carbon ion radiotherapy has been shown to be more effective in cancer radiotherapy than photon irradiation. Influence of carbon ion radiation on cancer microenvironment is very important for the outcomes of radiotherapy. Tumor-infiltrating dendritic cells (DCs) play critical roles in cancer antigen processing and antitumor immunity. However, there is scant literature covering the effects of carbon ion radiation on DCs. In this study, we aimed to uncover the impact of carbon ion irradiation on bone marrow derived DCs. Material/Methods Bone marrow cells were co-cultured with GM-CSF and IL-4 for seven days, and the population of DCs was confirmed with flow cytometry. We used an Annexin V and PI staining method to detect cell apoptosis. Endocytosis assay of DCs was determined by using a flow cytometry method. DCs migration capacity was tested by a Transwell method. We also used ELISA assay and western blotting assay to examine the cytokines and protein expression, respectively. Results Our data showed that carbon ion radiation induced apoptosis in both immature and mature DCs. After irradiation, the endocytosis and migration capacity of DCs was also impaired. Interestingly, carbon irradiation triggered a burst of IFN-γ and IL-12 in LPS or CpG treated DCs, which provide novel insights into the combination of immunotherapy and carbon ion radiotherapy. Finally, we found that carbon ion irradiation induced apoptosis and migration suppression was p38 dependent. Conclusions Our present study demonstrated that carbon ion irradiation induced apoptosis in DCs, and impaired DCs function mainly through the p38 signaling pathway. Carbon ion irradiation also triggered anti-tumor cytokines secretion. This work provides novel information of carbon ion radiotherapy in DCs, and also provides new insights on the combination of immune adjuvant and carbon ion radiotherapy.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China (mainland)
| | - Xuguang Hu
- Department of Gastrointestinal Surgery, Changhai Hospital, Shanghai, China (mainland)
| | - Bin Liu
- Medical Imaging Department of PLA 546 Hospital, Malan, Xinjiang, China (mainland)
| | - Zhe Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China (mainland)
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China (mainland)
| | - Jianming Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China (mainland)
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China (mainland)
| | - Jianguo Cui
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China (mainland)
| | - Bailong Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China (mainland)
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China (mainland)
| |
Collapse
|
26
|
Wenbo L, Wang J. Uncovering the underlying mechanism of cancer tumorigenesis and development under an immune microenvironment from global quantification of the landscape. J R Soc Interface 2018; 14:rsif.2017.0105. [PMID: 28659412 DOI: 10.1098/rsif.2017.0105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022] Open
Abstract
The study of the cancer-immune system is important for understanding tumorigenesis and the development of cancer and immunotherapy. In this work, we build a comprehensive cancer-immune model including both cells and cytokines to uncover the underlying mechanism of cancer immunity based on landscape topography. We quantify three steady-state attractors, normal state, low cancer state and high cancer state, for the innate immunity and adaptive immunity of cancer. We also illustrate the cardinal inhibiting cancer immunity interactions and promoting cancer immunity interactions through global sensitivity analysis. We simulate tumorigenesis and the development of cancer and classify these into six stages. The characteristics of the six stages can be classified further into three groups. These correspond to the escape, elimination and equilibrium phases in immunoediting, respectively. Under specific cell-cell interactions strength oscillations emerge. We found that tumorigenesis and cancer recovery processes may need to go through cancer-immune oscillation, which consumes more energy. Based on the cancer-immune landscape, we predict three types of cells and two types of cytokines for cancer immunotherapy as well as combination immunotherapy. This landscape framework provides a quantitative way to understand the underlying mechanisms of the interplay between cancer and the immune system for cancer tumorigenesis and development.
Collapse
Affiliation(s)
- Li Wenbo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, People's Republic of China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, People's Republic of China .,Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, USA.,Department of Physics, State University of New York at Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
27
|
Vassiliadis S. Premature Immunosenescence Impairs Immune Surveillance Allowing the Endometriotic Stem Cell to Migrate: The Cytokine Profile as a Common Denominator. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/228402651000200103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
While endometriosis, one of the most common reasons for infertility, remains a multifactorial condition and its exact cause highly speculative, there are data pointing to novel pathways of disease initiation which involve a stem cell and its ability to migrate and implant after it differentiates into an endometriotic stem cell. Thus, the mechanisms conferring immune surveillance, which would also normally expel the mesenchymal endometriotic cell, impairing its migration and implantation, appear to be negatively influenced by a state of endometriotic premature immunosenescence. This interplay between the two immunological mechanisms and endometriosis is influenced by a number of common factors having an active role in the host's protection process that inhibits harmful diseases and maintains cellular homeostasis. It appears more than coincidental that production/inhibition of IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-15, IL-18, TNF-α, VEGF, ICAM-1, and the number of Tolllike receptors is the same in immunosenescent states and in conditions with reduced immune surveillance, while the same variations are recorded in endometriotic patients. It is probable that these are common to all process signals, guide the endometriotic stem cell and dictate its fate according to the stochastic, transdifferentiation (plasticity) or deterministic model to become capable of migration and tissue invasion. It is currently unknown whether the pathway taken by the hemopoietic stem cell to become endometriotic represents a normal or aberrant route of development. This prompts research into its isolation and in vitro study of its behavior in order to reveal its potential function and role in endometriosis. (Journal of Endometriosis 2010; 2: 7–18)
Collapse
|
28
|
Basler L, Andratschke N, Ehrbar S, Guckenberger M, Tanadini-Lang S. Modelling the immunosuppressive effect of liver SBRT by simulating the dose to circulating lymphocytes: an in-silico planning study. Radiat Oncol 2018; 13:10. [PMID: 29357886 PMCID: PMC5778751 DOI: 10.1186/s13014-018-0952-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Background Tumor immune-evasion and associated failure of immunotherapy can potentially be overcome by radiotherapy, which however also has detrimental effects on tumor-infiltrating and circulating lymphocytes (CL). We therefore established a model to simulate the radiation-dose delivered to CL. Methods A MATLAB-model was established to quantify the CL-dose during SBRT of liver metastases by considering the factors: hepatic blood-flow, −velocity and transition-time of individual hepatic segments, as well as probability-based recirculation. The effects of intra-hepatic tumor-location and size, fractionation and treatment planning parameters (VMAT, 3DCRT, photon-energy, dose-rate and beam-on-time) were analyzed. A threshold dose ≥0.5Gy was considered inactivating CL and CL0.5 (%) is the proportion of inactivated CL. Results Mean liver dose was mostly influenced by treatment-modality, whereas CL0.5 was mostly influenced by beam-on-time. 3DCRT and VMAT (10MV-FFF) resulted in lowest CL0.5 values of 16 and 19%. Metastasis location influenced CL0.5, with a mean of 19% for both apical and basal and 31% for the central location. PTV-volume significantly increased CL0.5 from 27 to 67% (10MV-FFF) and from 31 to 98% (6MV-FFF) for PTV-volumes ranging from 14cm3 to 268cm3. Conclusion A simulation-model was established, quantifying the strong effects of treatment-technique, tumor-location and tumor-volume on dose to CL with potential implications for immune-optimized treatment-planning in the future. Electronic supplementary material The online version of this article (doi: 10.1186/s13014-018-0952-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L Basler
- University Hospital Zurich, Department of Radiation Oncology, University of Zurich, Rämistrasse 100, CH 8091, Zürich, Switzerland.
| | - N Andratschke
- University Hospital Zurich, Department of Radiation Oncology, University of Zurich, Rämistrasse 100, CH 8091, Zürich, Switzerland
| | - S Ehrbar
- University Hospital Zurich, Department of Radiation Oncology, University of Zurich, Rämistrasse 100, CH 8091, Zürich, Switzerland
| | - M Guckenberger
- University Hospital Zurich, Department of Radiation Oncology, University of Zurich, Rämistrasse 100, CH 8091, Zürich, Switzerland
| | - S Tanadini-Lang
- University Hospital Zurich, Department of Radiation Oncology, University of Zurich, Rämistrasse 100, CH 8091, Zürich, Switzerland
| |
Collapse
|
29
|
Ng SP, Zelikoff JT. Tumor Challenges in Immunotoxicity Testing. Methods Mol Biol 2018; 1803:169-180. [PMID: 29882139 DOI: 10.1007/978-1-4939-8549-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Syngeneic murine tumor models have been widely used by researchers to assess changes in tumor susceptibility associated with exposure to toxicants. Two common tumor models used to define host resistance against transplanted tumors in vivo are EL4 mouse lymphoma cells (established from a lymphoma induced in a C57BL/6 mouse by 9,10-dimethyl-1,2-benzanthracene) and B16F10 mouse melanoma cells (derived through variant selection from a B16 melanoma arising spontaneously in C57BL/6 mice). While C57BL/6 mice are commonly used as the syngeneic host for these tumor models, other mouse strains such as B6C3F1 (C57BL/6 × C3H) can also be used. Tumor challenge of the host can be done by subcutaneous (sc) or intravenous (iv) injection, depending upon whether the effects are to be examined on local tumor development or experimental/artificial metastasis. Materials and methodologies for injection of both tumor cell models are described in detail in the subsequent sections.
Collapse
Affiliation(s)
- Sheung P Ng
- DuPont Haskell Global Centers for Health Sciences, Newark, DE, USA
| | - Judith T Zelikoff
- Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY, USA.
| |
Collapse
|
30
|
Momtaz S, Niaz K, Maqbool F, Abdollahi M, Rastrelli L, Nabavi SM. STAT3 targeting by polyphenols: Novel therapeutic strategy for melanoma. Biofactors 2017; 43:347-370. [PMID: 27896891 DOI: 10.1002/biof.1345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/17/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
Melanoma or malignant melanocytes appear with the low incidence rate, but very high mortality rate worldwide. Epidemiological studies suggest that polyphenolic compounds contribute for prevention or treatment of several cancers particularly melanoma. Such findings motivate to dig out novel therapeutic strategies against melanoma, including research toward the development of new chemotherapeutic and biologic agents that can target the tumor cells by different mechanisms. Recently, it has been found that signal transducer and activator of transcription 3 (STAT3) is activated in many cancer cases surprisingly. Different evidences supply the aspect that STAT3 activation plays a vital role in the metastasis, including proliferation of cells, survival, invasion, migration, and angiogenesis. This significant feature plays a vital role in various cellular processes, such as cell proliferation and survival. Here, we reviewed the mechanisms of the STAT3 pathway regulation and their role in promoting melanoma. Also, we have evaluated the emerging data on polyphenols (PPs) specifically their contribution in melanoma therapies with an emphasis on their regulatory/inhibitory actions in relation to STAT3 pathway and current progress in the development of phytochemical therapeutic techniques. An understanding of targeting STAT3 by PPs brings an opportunity to melanoma therapy. © 2016 BioFactors, 43(3):347-370, 2017.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Kamal Niaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Faheem Maqbool
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Jia H, Zhao T, Zou D, Jia X, Gao J, Song X. Therapeutic Injection of a C-Type CpG ODN Induced an Antitumor Immune Response in C57/BL6 Mice of Orthotopically Transplanted Hepatocellular Carcinoma. Oncol Res 2017; 23:321-6. [PMID: 27131318 PMCID: PMC7838720 DOI: 10.3727/096504016x14570992647041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synthetic CpG oligodeoxynucleotides (ODNs), as TLR9 agonists, have been found to play a possible role in antitumor effect. In order to determine the effect of YW002, known as a C-type CpG ODN, on the treatment of hepatocellular carcinoma (HCC), which is one of the most aggressive carcinomas, we chose to inject YW002 at the doses of 12.5 µg and 25 µg per mouse 7 days post-tumor challenge. The survival rate of mice was recorded every day. On day 14 postinjection, five mice in each group were bled and randomly sacrificed. The level of IFN-γ or TNF-α in the serum was detected and lymphocyte infiltration in the tumor tissue; the ratios of CD8+ T cells and CD4+ T cells in the spleen of mice were also analyzed. The results indicated that treatment with YW002 could raise the survival rate and delay tumor growth in the mice with orthotopically transplanted HCC. Furthermore, the treatment improved the antitumor immune response through increasing the T-cell infiltration in tumor and the ratio of CD4+, CD8+, and NK cells in the spleen. In addition, the concentration of IFN-γ was raised, and the level of TGF-β was depressed. Our data suggested that CpG ODN might be a proper medicament in a monotherapeutic regimen for treatment of HCC.
Collapse
Affiliation(s)
- Huijie Jia
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | | | | | | | | | | |
Collapse
|
32
|
Tang M, Diao J, Cattral MS. Molecular mechanisms involved in dendritic cell dysfunction in cancer. Cell Mol Life Sci 2017; 74:761-776. [PMID: 27491428 PMCID: PMC11107728 DOI: 10.1007/s00018-016-2317-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DC) play a pivotal role in the tumor microenvironment (TME). As the primary antigen-presenting cells in the tumor, DCs modulate anti-tumor responses by regulating the magnitude and duration of infiltrating cytotoxic T lymphocyte responses. Unfortunately, due to the immunosuppressive nature of the TME, as well as the inherent plasticity of DCs, tumor DCs are often dysfunctional, a phenomenon that contributes to immune evasion. Recent progresses in our understanding of tumor DC biology have revealed potential molecular targets that allow us to improve tumor DC immunogenicity and cancer immunotherapy. Here, we review the molecular mechanisms that drive tumor DC dysfunction. We discuss recent advances in our understanding of tumor DC ontogeny, tumor DC subset heterogeneity, and factors in the tumor microenvironment that affect DC recruitment, differentiation, and function. Finally, we describe potential strategies to optimize tumor DC function in the context of cancer therapy.
Collapse
Affiliation(s)
- Michael Tang
- Toronto General Hospital Research Institute, University Health Network, Peter Munk Building, 11-173, 585 University Ave., Toronto, ON, M5G 2N2, Canada
| | - Jun Diao
- Toronto General Hospital Research Institute, University Health Network, Peter Munk Building, 11-173, 585 University Ave., Toronto, ON, M5G 2N2, Canada
| | - Mark S Cattral
- Toronto General Hospital Research Institute, University Health Network, Peter Munk Building, 11-173, 585 University Ave., Toronto, ON, M5G 2N2, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
33
|
Melzer MK, Lopez-Martinez A, Altomonte J. Oncolytic Vesicular Stomatitis Virus as a Viro-Immunotherapy: Defeating Cancer with a "Hammer" and "Anvil". Biomedicines 2017; 5:E8. [PMID: 28536351 PMCID: PMC5423493 DOI: 10.3390/biomedicines5010008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/17/2022] Open
Abstract
Oncolytic viruses have gained much attention in recent years, due, not only to their ability to selectively replicate in and lyse tumor cells, but to their potential to stimulate antitumor immune responses directed against the tumor. Vesicular stomatitis virus (VSV), a negative-strand RNA virus, is under intense development as an oncolytic virus due to a variety of favorable properties, including its rapid replication kinetics, inherent tumor specificity, and its potential to elicit a broad range of immunomodulatory responses to break immune tolerance in the tumor microenvironment. Based on this powerful platform, a multitude of strategies have been applied to further improve the immune-stimulating potential of VSV and synergize these responses with the direct oncolytic effect. These strategies include: 1. modification of endogenous virus genes to stimulate interferon induction; 2. virus-mediated expression of cytokines or immune-stimulatory molecules to enhance anti-tumor immune responses; 3. vaccination approaches to stimulate adaptive immune responses against a tumor antigen; 4. combination with adoptive immune cell therapy for potentially synergistic therapeutic responses. A summary of these approaches will be presented in this review.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Arturo Lopez-Martinez
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Jennifer Altomonte
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
34
|
The tumour microenvironment harbours ontogenically distinct dendritic cell populations with opposing effects on tumour immunity. Nat Commun 2016; 7:13720. [PMID: 28008905 PMCID: PMC5196231 DOI: 10.1038/ncomms13720] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022] Open
Abstract
Various steady state and inflamed tissues have been shown to contain a heterogeneous DC population consisting of developmentally distinct subsets, including cDC1s, cDC2s and monocyte-derived DCs, displaying differential functional specializations. The identification of functionally distinct tumour-associated DC (TADC) subpopulations could prove essential for the understanding of basic TADC biology and for envisaging targeted immunotherapies. We demonstrate that multiple mouse tumours as well as human tumours harbour ontogenically discrete TADC subsets. Monocyte-derived TADCs are prominent in tumour antigen uptake, but lack strong T-cell stimulatory capacity due to NO-mediated immunosuppression. Pre-cDC-derived TADCs have lymph node migratory potential, whereby cDC1s efficiently activate CD8+ T cells and cDC2s induce Th17 cells. Mice vaccinated with cDC2s displayed a reduced tumour growth accompanied by a reprogramming of pro-tumoural TAMs and a reduction of MDSCs, while cDC1 vaccination strongly induces anti-tumour CTLs. Our data might prove important for therapeutic interventions targeted at specific TADC subsets or their precursors. Dendritic cells are antigen-presenting cells consisting of distinct subsets originating from different lineages. Here, the authors identify the subsets of dendritic cells populating the tumour tissue in both mice and humans and find they have opposing functions in regulating the anti-tumour immune response.
Collapse
|
35
|
Agnihotri N, Mehta K. Transglutaminase-2: evolution from pedestrian protein to a promising therapeutic target. Amino Acids 2016; 49:425-439. [PMID: 27562794 DOI: 10.1007/s00726-016-2320-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022]
Abstract
The ability of cancer cells to metastasize represents the most devastating feature of cancer. Currently, there are no specific biomarkers or therapeutic targets that can be used to predict the risk or to treat metastatic cancer. Many recent reports have demonstrated elevated expression of transglutaminase 2 (TG2) in multiple drug-resistant and metastatic cancer cells. TG2 is a multifunctional protein mostly known for catalyzing Ca2+-dependent -acyl transferase reaction to form protein crosslinks. Besides this transamidase activity, many Ca2+-independent and non-enzymatic activities of TG2 have been identified. Both, the enzymatic and non-enzymatic activities of TG2 have been implicated in diverse pathophysiological processes such as wound healing, cell growth, cell survival, extracellular matrix modification, apoptosis, and autophagy. Tumors have been frequently referred to as 'wounds that never heal'. Based on the observation that TG2 plays an important role in wound healing and inflammation is known to facilitate cancer growth and progression, we discuss the evidence that TG2 can reprogram inflammatory signaling networks that play fundamental roles in cancer progression. TG2-regulated signaling bestows on cancer cells the ability to proliferate, to resist cell death, to invade, to reprogram glucose metabolism and to metastasize, the attributes that are considered important hallmarks of cancer. Therefore, inhibiting TG2 may offer a novel therapeutic approach for managing and treatment of metastatic cancer. Strategies to inhibit TG2-regulated pathways will also be discussed.
Collapse
Affiliation(s)
- Navneet Agnihotri
- Department of Experimental Therapeutics, Unit 1950, University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA. .,Department of Biochemistry, Panjab University, Sector 14, Chandigarh, 110 014, India.
| | - Kapil Mehta
- Department of Experimental Therapeutics, Unit 1950, University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA. .,MolQ Personalized Medicine, 4505 Maple Street, Bellaire, TX, 77401, USA.
| |
Collapse
|
36
|
Differential Effects of Viscum album Preparations on the Maturation and Activation of Human Dendritic Cells and CD4⁺ T Cell Responses. Molecules 2016; 21:molecules21070912. [PMID: 27428940 PMCID: PMC6273690 DOI: 10.3390/molecules21070912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 02/01/2023] Open
Abstract
Extracts of Viscum album (VA); a semi-parasitic plant, are frequently used in the complementary therapy of cancer and other immunological disorders. Various reports show that VA modulates immune system and exerts immune-adjuvant activities that might influence tumor regression. Currently, several therapeutic preparations of VA are available and hence an insight into the mechanisms of action of different VA preparations is necessary. In the present study, we performed a comparative study of five different preparations of VA on maturation and activation of human dendritic cells (DCs) and ensuing CD4+ T cell responses. Monocyte-derived human DCs were treated with VA Qu Spez, VA Qu Frf, VA M Spez, VA P and VA A. Among the five VA preparations tested VA Qu Spez, a fermented extract with a high level of lectins, significantly induced DC maturation markers CD83, CD40, HLA-DR and CD86, and secretion of pro-inflammatory cytokines such as IL-6, IL-8, IL-12 and TNF-α. Furthermore, analysis of T cell cytokines in DC-T cell co-culture revealed that VA Qu Spez significantly stimulated IFN-γ secretion without modulating regulatory T cells and other CD4+ T cytokines IL-4, IL-13 and IL-17A. Our study thus delineates differential effects of VA preparations on DC maturation; function and T cell responses.
Collapse
|
37
|
Chen K, Wang JM, Yuan R, Yi X, Li L, Gong W, Yang T, Li L, Su S. Tissue-resident dendritic cells and diseases involving dendritic cell malfunction. Int Immunopharmacol 2016; 34:1-15. [PMID: 26906720 PMCID: PMC4818737 DOI: 10.1016/j.intimp.2016.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/05/2016] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) control immune responses and are central to the development of immune memory and tolerance. DCs initiate and orchestrate immune responses in a manner that depends on signals they receive from microbes and cellular environment. Although DCs consist mainly of bone marrow-derived and resident populations, a third tissue-derived population resides the spleen and lymph nodes (LNs), different subsets of tissue-derived DCs have been identified in the blood, spleen, lymph nodes, skin, lung, liver, gut and kidney to maintain the tolerance and control immune responses. Tissue-resident DCs express different receptors for microbe-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs), which were activated to promote the production of pro- or anti-inflammatory cytokines. Malfunction of DCs contributes to diseases such as autoimmunity, allergy, and cancer. It is therefore important to update the knowledge about resident DC subsets and diseases associated with DC malfunction.
Collapse
Affiliation(s)
- Keqiang Chen
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0910, USA.
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Ruoxi Yuan
- Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0910, USA
| | - Xiang Yi
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Liangzhu Li
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Wanghua Gong
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Tianshu Yang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liwu Li
- Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0910, USA
| | - Shaobo Su
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
38
|
Roeser JC, Leach SD, McAllister F. Emerging strategies for cancer immunoprevention. Oncogene 2015; 34:6029-39. [PMID: 26364615 PMCID: PMC11073473 DOI: 10.1038/onc.2015.98] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 12/13/2022]
Abstract
The crucial role of the immune system in the formation and progression of tumors has been widely accepted. On one hand, the surveillance role of the immune system plays an important role in endogenous tumor prevention, but on the other hand, in some special circumstances such as in chronic inflammation, the immune system can actually contribute to the formation and progression of tumors. In recent years, there has been an explosion of novel targeted immunotherapies for advanced cancers. In the present manuscript, we explore known and potential various types of cancer prevention strategies and focus on nonvaccine-based cancer preventive strategies targeting the immune system at the early stages of tumorigenesis.
Collapse
Affiliation(s)
| | - Steven D. Leach
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Florencia McAllister
- Department of Clinical Cancer Prevention. The University of Texas MD Anderson Cancer Center. Houston, TX
| |
Collapse
|
39
|
Chao PZ, Hsieh MS, Cheng CW, Hsu TJ, Lin YT, Lai CH, Liao CC, Chen WY, Leung TK, Lee FP, Lin YF, Chen CH. Dendritic cells respond to nasopharygeal carcinoma cells through annexin A2-recognizing DC-SIGN. Oncotarget 2015; 6:159-70. [PMID: 25402728 PMCID: PMC4381585 DOI: 10.18632/oncotarget.2700] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/06/2014] [Indexed: 01/23/2023] Open
Abstract
Dendritic cells (DCs) play an essential role in immunity and are used in cancer immunotherapy. However, these cells can be tuned by tumors with immunosuppressive responses. DC-specific intercellular adhesion molecule 3-Grabbing Nonintegrin (DC-SIGN), a C-type lectin expressed on DCs, recognizes certain carbohydrate structures which can be found on cancer cells. Nasopharyngeal carcinoma (NPC) is an epithelial cell-derived malignant tumor, in which immune response remains unclear. This research is to reveal the molecular link on NPC cells that induces the immunosuppressive responses in DCs. In this article, we report identification of annexin A2 (ANXA2) on NPC cells as a ligand for DC-SIGN on DCs. N-linked mannose-rich glycan on ANXA2 may mediate the interaction. ANXA2 was abundantly expressed in NPC, and knockdown of ANXA2 suppressed NPC xenograft in mice, suggesting a crucial role of ANXA2 in NPC growth. Interaction with NPC cells caused DC-SIGN activation in DCs. Consequently DC maturation and the proinflammatory interleukin (IL)-12 production were inhibited, and the immunosuppressive IL-10 production was promoted. Blockage of either DC-SIGN or ANXA2 eliminated the production of IL-10 from DCs. This report suggests that suppression of ANXA2 at its expression or glycosylation on NPC may improve DC-mediated immunotherapy for the tumor.
Collapse
Affiliation(s)
- Pin-Zhir Chao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Department of Otolaryngology, Shuang-Ho Hospital, New Taipei, Taiwan
| | - Ming-Shium Hsieh
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. Department of Orthopedics, En Chu Kong Hospital, New Taipei, Taiwan
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tin-Jui Hsu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yun-Tien Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chang-Hao Lai
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Pathology, Wan Fang Hospital, Taipei, Taiwan
| | - Ting-Kai Leung
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Fei-Peng Lee
- Department of Otolaryngology, Head and Neck Surgery, Wan-Fang Medical Center, Taipei, Taiwan
| | - Yung-Feng Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chien-Ho Chen
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
40
|
Immature myeloid cells and tolerogenic cytokine profile in lung adenocarcinoma metastatic lymph nodes assessed by endobronchial ultrasound. Tumour Biol 2015; 37:953-61. [DOI: 10.1007/s13277-015-3885-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/03/2015] [Indexed: 01/15/2023] Open
|
41
|
Toma M, Wehner R, Kloß A, Hübner L, Fodelianaki G, Erdmann K, Füssel S, Zastrow S, Meinhardt M, Seliger B, Brech D, Noessner E, Tonn T, Schäkel K, Bornhäuser M, Bachmann MP, Wirth MP, Baretton G, Schmitz M. Accumulation of tolerogenic human 6-sulfo LacNAc dendritic cells in renal cell carcinoma is associated with poor prognosis. Oncoimmunology 2015; 4:e1008342. [PMID: 26155414 DOI: 10.1080/2162402x.2015.1008342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) essentially contribute to the induction and regulation of innate and adaptive immunity. Based on these important properties, DCs may profoundly influence tumor progression in patients. However, little is known about the role of distinct human DC subsets in primary tumors and their impact on clinical outcome. In the present study, we investigated the characteristics of human 6-sulfo LacNAc (slan) DCs in clear cell renal cell carcinoma (ccRCC). slanDCs have been shown to display various tumor-directed properties and to accumulate in tumor-draining lymph nodes from patients. When evaluating 263 ccRCC and 227 tumor-free tissue samples, we found increased frequencies of slanDCs in ccRCC tissues compared to tumor-free tissues. slanDCs were also detectable in the majority of 24 metastatic lymph nodes and 67 distant metastases from ccRCC patients. Remarkably, a higher density of slanDCs was significantly associated with a reduced progression-free, tumor-specific or overall survival of ccRCC patients. Tumor-infiltrating slanDCs displayed an immature phenotype expressing interleukin-10. ccRCC cells efficiently impaired slanDC-induced T-cell proliferation and programming as well as natural killer (NK) cell activation. In conclusion, these findings indicate that higher slanDC numbers in ccRCC tissues are associated with poor prognosis. The induction of a tolerogenic phenotype in slanDCs leading to an insufficient activation of innate and adaptive antitumor immunity may represent a novel immune escape mechanism of ccRCC. These observations may have implications for the design of therapeutic strategies that harness tumor-directed functional properties of DCs against ccRCC.
Collapse
Key Words
- CTLs, cytotoxic T cells
- DCs, dendritic cells
- FCS, fetal calf serum
- HLA, human leukocyte antigen
- IFNγ, interferonγ
- IL, interleukin
- ILT, immunoglobulin-like transcript
- LPS, lipopolysaccharide
- NK cells, natural killer cells
- PBMCs, peripheral blood mononuclear cells
- PMA, phorbol myristate acetate
- T cells
- TMAs, tissue microarrays
- TNF-α, tumor necrosis factor-α
- Th1 cells, T helper type I cells
- ccRCC, clear cell renal cell carcinoma
- dendritic cells
- renal cell carcinoma
- slan, 6-sulfo LacNAc
- tumor immunology
- tumor microenvironment
Collapse
Affiliation(s)
- Marieta Toma
- Institute of Pathology; University Hospital of Dresden ; Dresden, Germany
| | - Rebekka Wehner
- Institute of Immunology; Medical Faculty; TU Dresden ; Dresden, Germany
| | - Anja Kloß
- Institute of Immunology; Medical Faculty; TU Dresden ; Dresden, Germany
| | - Linda Hübner
- Institute of Immunology; Medical Faculty; TU Dresden ; Dresden, Germany
| | - Georgia Fodelianaki
- Institute of Immunology; Medical Faculty; TU Dresden ; Dresden, Germany ; Center for Regenerative Therapies Dresden ; Dresden, Germany
| | - Kati Erdmann
- Department of Urology; University Hospital of Dresden ; Dresden, Germany
| | - Susanne Füssel
- Department of Urology; University Hospital of Dresden ; Dresden, Germany
| | - Stefan Zastrow
- Department of Urology; University Hospital of Dresden ; Dresden, Germany
| | - Matthias Meinhardt
- Institute of Pathology; University Hospital of Dresden ; Dresden, Germany
| | - Barbara Seliger
- Institute for Medical Immunology; Martin Luther University Halle-Wittenberg ; Halle (Saale), Germany
| | - Dorothee Brech
- Institute of Molecular Immunology; Helmholtz Center Munich; German Research Center for Environmental Health Munich ; Munich, Germany
| | - Elfriede Noessner
- Institute of Molecular Immunology; Helmholtz Center Munich; German Research Center for Environmental Health Munich ; Munich, Germany
| | - Torsten Tonn
- Center for Regenerative Therapies Dresden ; Dresden, Germany ; German Red Cross Blood Service ; Dresden, Germany ; German Cancer Consortium (DKTK) ; Dresden, Germany ; German Cancer Research Center (DKFZ) ; Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology; University Hospital of Heidelberg ; Heidelberg, Germany
| | - Martin Bornhäuser
- Center for Regenerative Therapies Dresden ; Dresden, Germany ; German Cancer Consortium (DKTK) ; Dresden, Germany ; German Cancer Research Center (DKFZ) ; Heidelberg, Germany ; Department of Medicine I; University Hospital of Dresden ; Dresden, Germany
| | - Michael P Bachmann
- Center for Regenerative Therapies Dresden ; Dresden, Germany ; German Cancer Consortium (DKTK) ; Dresden, Germany ; German Cancer Research Center (DKFZ) ; Heidelberg, Germany ; Department of Radioimmunology; Institute of Radiopharmaceutical Cancer Research; Helmholtz Center Dresden-Rossendorf ; Dresden, Germany
| | - Manfred P Wirth
- Department of Urology; University Hospital of Dresden ; Dresden, Germany ; German Cancer Consortium (DKTK) ; Dresden, Germany ; German Cancer Research Center (DKFZ) ; Heidelberg, Germany
| | - Gustavo Baretton
- Institute of Pathology; University Hospital of Dresden ; Dresden, Germany ; German Cancer Consortium (DKTK) ; Dresden, Germany ; German Cancer Research Center (DKFZ) ; Heidelberg, Germany
| | - Marc Schmitz
- Institute of Immunology; Medical Faculty; TU Dresden ; Dresden, Germany ; Center for Regenerative Therapies Dresden ; Dresden, Germany ; German Cancer Consortium (DKTK) ; Dresden, Germany ; German Cancer Research Center (DKFZ) ; Heidelberg, Germany
| |
Collapse
|
42
|
Abstract
Current mainstays in cancer treatment such as chemotherapy, radiation therapy, hormonal manipulation, and even targeted therapies such as Trastuzumab (herceptin) for breast cancer or Iressa (gefitinib) for non-small cell lung cancer among others are limited by lack of efficacy, cellular resistance, and toxicity. Dose escalation and combination therapies designed to overcome resistance and increase efficacy are limited by a narrow therapeutic index. Oncolytic viruses are one such group of new biological therapeutics that appears to have a wide spectrum of anticancer activity with minimal human toxicity. Since the malignant phenotype of tumors is the culmination of multiple mutations that occur in genes eventually leading to aberrant signaling pathways, oncolytic viruses either natural or engineered specifically target tumor cells taking advantage of this abnormal cellular signaling for their replication. Reovirus is one such naturally occurring double-stranded RNA virus that exploits altered signaling pathways (including Ras) in a myriad of cancers. The ability of reovirus to infect and lyse tumors under in vitro, in vivo, and ex vivo conditions has been well documented previously by us and others. The major mechanism of reovirus oncolysis of cancer cells has been shown to occur through apoptosis with autophagy taking place during this process in certain cancers. In addition, the synergistic antitumor effects of reovirus in combination with radiation or chemotherapy have also been demonstrated for reovirus resistant and moderately sensitive tumors. Recent progress in our understanding of viral immunology in the tumor microenvironment has diverted interest in exploring immunologic mechanisms to overcome resistance exhibited by chemotherapeutic drugs in cancer. Thus, currently several investigations are focusing on immune potentiating of reovirus for maximal tumor targeting. This chapter therefore has concentrated on immunologic cell death induction with reovirus as a novel approach to cancer therapy used under in vitro and in vivo conditions, as well as in a clinical setting. Reovirus phase I clinical trials have shown indications of efficacy, and several phase II/III trials are ongoing at present. Reovirus's extensive preclinical efficacy, replication competency, and low toxicity profile in humans have placed it as an attractive anticancer therapeutic for ongoing clinical testing that are highlighted in this chapter.
Collapse
|
43
|
Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2014; 1:1111-1134. [PMID: 23170259 PMCID: PMC3494625 DOI: 10.4161/onci.21494] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) occupy a central position in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the elicitation of potent cellular and humoral immunity. Accordingly, DCs are involved in the etiology of conditions as diverse as infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. During the last decade, several methods have been developed to load DCs with tumor-associated antigens, ex vivo or in vivo, in the attempt to use them as therapeutic anticancer vaccines that would elicit clinically relevant immune responses. While this has not always been the case, several clinical studies have demonstrated that DC-based anticancer vaccines are capable of activating tumor-specific immune responses that increase overall survival, at least in a subset of patients. In 2010, this branch of clinical research has culminated with the approval by FDA of a DC-based therapeutic vaccine (sipuleucel-T, Provenge®) for use in patients with asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. Intense research efforts are currently dedicated to the identification of the immunological features of patients that best respond to DC-based anticancer vaccines. This knowledge may indeed lead to personalized combination strategies that would extend the benefit of DC-based immunotherapy to a larger patient population. In addition, widespread enthusiasm has been generated by the results of the first clinical trials based on in vivo DC targeting, an approach that holds great promises for the future of DC-based immunotherapy. In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating DC-based interventions for cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pusztaszeri MP, Faquin WC, Sadow PM. Tumor-Associated Inflammatory Cells in Thyroid Carcinomas. Surg Pathol Clin 2014; 7:501-14. [PMID: 26837551 DOI: 10.1016/j.path.2014.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The complex interactions between immune cells and tumor cells in cancer play a major role in tumor development and subsequent patient outcomes. Different types of tumor-associated inflammatory cells (TAICs), such as dendritic cells, macrophages, lymphocytes, and mast cells, have been recognized for many years in several tumors; however, the role of TAICs in cancer is still not completely understood. This review article focuses on the major types of TAICs, including their general role in cancer and, more specifically, their role and distribution in thyrocyte-derived carcinomas.
Collapse
Affiliation(s)
- Marc P Pusztaszeri
- Department of Pathology, Geneva University Hospital, 1 Michel-Servet St, Geneva, GE 1211, Switzerland.
| | - William C Faquin
- Department of Pathology, Massachusetts General Hospital, Warren 219, 55 Fruit Street, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Peter M Sadow
- Department of Pathology, Massachusetts General Hospital, Warren 219, 55 Fruit Street, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| |
Collapse
|
45
|
Green TL, Santos MF, Ejaeidi AA, Craft BS, Lewis RE, Cruse JM. Toll-like receptor (TLR) expression of immune system cells from metastatic breast cancer patients with circulating tumor cells. Exp Mol Pathol 2014; 97:44-8. [PMID: 24836676 DOI: 10.1016/j.yexmp.2014.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022]
Abstract
The risk posed by breast cancer represents a complex interaction among factors affecting tumor immunity of the host. Toll-like receptors (TLRs) are members of the innate immune system and generally function to attract host immune cells upon activation. However, the good intentions of TLRs are sometimes not transferred to positive long-term effects, due to their involvement in exacerbating inflammatory effects and even contributing to continued inflammation. Chronic inflammatory states are considered to favor an increased predisposition to cancer, with continuous activation of inflammatory cytokines and other hallmarks of inflammation exerting a deleterious effect. Circulating tumor cells (CTCs) are neoplastic cells present in the peripheral blood circulation that have been found to be an indicator of disease progression and long-term survival. In the present study, we examined the expression of TLRs on dendritic cells, which play a major role in eliciting anti-tumor immunity, in metastatic breast cancer patients with CTCs. Flow cytometric data showed significant differences between circulating tumor cell (CTC) positive patients and CTC negative patients in their expression of TLR2 by CD8 positive cytotoxic T cells and TLR2, TLR4, TLR3, and TLR8 by CD11c positive dendritic cells (p<0.05). Expression of TLR2, TLR4, and TLR8 was increased in CTC positive patients, whereas TLR3 expression was decreased in the dendritic cell population.
Collapse
Affiliation(s)
- Taryn L Green
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Mark F Santos
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ahmed A Ejaeidi
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Barbara S Craft
- Division of Oncology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Robert E Lewis
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Julius M Cruse
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
46
|
Fluorescent-tilmanocept for tumor margin analysis in the mouse model. J Surg Res 2014; 190:528-34. [PMID: 24923630 DOI: 10.1016/j.jss.2014.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/22/2014] [Accepted: 05/02/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Dendritic cells (DC) are localized in close proximity to cancer cells in many well-known tumors, and thus maybe a useful target for tumor margin assessment. MATERIALS AND METHODS [(99m)Tc]- cyanine 7 (Cy7)-tilmanocept was synthesized and in vitro binding assays to bone marrow-derived DC were performed. Fifteen mice, implanted with either 4T1 mouse mammary or K1735 mouse melanoma tumors, were administered 1.0 nmol of [(99m)Tc]-Cy7-tilmanocept via tail vein injection. After fluorescence imaging 1 or 2 h after injection, the tumor, muscle, and blood were assayed for radioactivity to calculate percent-injected dose. Digital images of the tumors after immunohistochemical staining for DC were analyzed to determine DC density. RESULTS In vitro binding demonstrated subnanomolar affinity of [(99m)Tc]-Cy7-tilmanocept to DC (KA = 0.31 ± 0.11 nM). After administration of [(99m)Tc]-Cy7-tilmanocept, fluorescence imaging showed a 5.5-fold increase in tumor signal as compared with preinjection images and a 3.3-fold difference in fluorescence activity when comparing the tumor with the surgical bed after tumor excision. Immunohistochemical staining analysis demonstrated that DC density positively correlated with tumor percent of injected dose per gram (r = 0.672, P = 0.03), and higher DC density was observed at the periphery versus center of the tumor (186 ± 54 K versus 64 ± 16 K arbitrary units, P = 0.001). CONCLUSIONS [(99m)Tc]-Cy7-tilmanocept exhibits in vitro and in vivo tumor-specific binding to DC and maybe useful as a tumor margin targeting agent.
Collapse
|
47
|
Naujoks M, Weiß J, Riedel T, Hömberg N, Przewoznik M, Noessner E, Röcken M, Mocikat R. Alterations of costimulatory molecules and instructive cytokines expressed by dendritic cells in the microenvironment of an endogenous mouse lymphoma. Cancer Immunol Immunother 2014; 63:491-9. [PMID: 24638151 PMCID: PMC11029135 DOI: 10.1007/s00262-014-1538-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
Costimulatory surface molecules and instructive cytokines expressed by dendritic cells (DCs) determine the outcome of an immune response. In malignant disease, DCs are often functionally compromised. In most tumors studied so far, the deficient induction of effective T cell responses has been associated with a blockade of DC maturation, but little has been known on DCs infiltrating malignant B cell lymphoma. Here, we investigated for the first time the phenotypic and functional status of DCs in B cell lymphoma, and we analyzed the network of DCs, tumor cells, natural killer (NK) cells and cytokines present in the tumor micromilieu. Therefor, we used an endogenous myc-transgenic mouse lymphoma model, because transplanted tumor cells foster an IFN-γ-driven Th1 antitumor response rather than an immunosuppressive environment, which is observed in autochthonous neoplasias. Lymphoma-infiltrating DCs showed a mature phenotype and a Th2-inducing cytokine pattern. This situation is in contrast to most human malignancies and mouse models described. Cellular contacts between DCs and tumor cells, which involved CD62L on the lymphoma, caused upregulation of costimulatory molecules, whereas IL-10 primarily derived from lymphoma cells induced an IL-12/IL-10 shift in DCs. Thus, alteration of costimulatory molecules and instructive cytokines was mediated by distinct mechanisms. Normal NK cells were able to additionally modulate DC maturation but this effect was absent in the lymphoma environment where IFN-γ production by NK cells was severely impaired. These data are relevant for establishing novel immunotherapeutic approaches against B cell lymphoma.
Collapse
Affiliation(s)
- Marcella Naujoks
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, Marchioninistr. 25, 81377 Munich, Germany
| | - Jakob Weiß
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, Marchioninistr. 25, 81377 Munich, Germany
| | - Tanja Riedel
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, Marchioninistr. 25, 81377 Munich, Germany
| | - Nadine Hömberg
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, Marchioninistr. 25, 81377 Munich, Germany
| | - Margarethe Przewoznik
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, Marchioninistr. 25, 81377 Munich, Germany
| | - Elfriede Noessner
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, Marchioninistr. 25, 81377 Munich, Germany
| | - Martin Röcken
- Department of Dermatology, Eberhard-Karls-Universität, Tübingen, Germany
| | - Ralph Mocikat
- Institut für Molekulare Immunologie, Helmholtz-Zentrum München, Marchioninistr. 25, 81377 Munich, Germany
| |
Collapse
|
48
|
Yuan Y, Duff ML, Sammons DL, Wu S. Retrospective chart review of skin cancer presence in the wide excisions. World J Clin Cases 2014; 2:52-56. [PMID: 24653985 PMCID: PMC3955800 DOI: 10.12998/wjcc.v2.i3.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/21/2014] [Accepted: 02/20/2014] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate cancer cell absence or presence in wide excision after biopsy of squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) patients.
METHODS: 200 patients (100 BCC and 100 SCC) from the same dermatology clinic, who had positive margin upon biopsy, were selected from a computer generated randomized report. All selected patients had wide excision following biopsy. To determine the correlation of gender, age distribution and cancer absence, BCC and SCC cases were separated based on excision-cancer absent or present after wide excision. χ2 tests, Fisher’s exact tests were used to analyze the ratio of male to female between excision-cancer absent and excision-cancer present patients, while Mann-Whitney U test were used to compare the age distribution in the two groups. Statistical analyses were performed using SPSS version 16.0 for Windows.
RESULTS: Our retrospective chart review of the patients showed that cancer cells were absent in 49% of BCC patients (n = 100) and 64% of SCC patients (n = 100) who had previously had positive margins upon biopsy. Gender analysis showed the ratio of male to female (M/F) in the BCC arm was significantly higher compared with the SCC arm in those with excision-cancer absent (2.06 vs 0.66; P = 0.004; χ2 test). But M/F of excision-cancer absent and excision-cancer present in neither BCC nor SCC patients was statistically significant. Age adjustment showed no significant difference between excision-cancer absent and excision-cancer present in BCC and SCC patients. Nevertheless, in excision-cancer absent cases, the age distribution showed that the BCC patients were younger than SCC patients (average age 67 vs 74; P < 0.001; Mann-Whitney U test). In addition, our data also indicated that in the patient group of 71-80 years old, there were more SCC patients who showed excision-cancer absence (67.6% vs 39.4%; P = 0.02; χ2 test).
CONCLUSION: Our study indicates that approximately 50% or more of BCC and SCC patients with positive margins found on biopsies did not have cancer cells present at the time of wide excisions.
Collapse
|
49
|
Carrascal MA, Severino PF, Guadalupe Cabral M, Silva M, Ferreira JA, Calais F, Quinto H, Pen C, Ligeiro D, Santos LL, Dall'Olio F, Videira PA. Sialyl Tn-expressing bladder cancer cells induce a tolerogenic phenotype in innate and adaptive immune cells. Mol Oncol 2014; 8:753-65. [PMID: 24656965 DOI: 10.1016/j.molonc.2014.02.008] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/15/2022] Open
Abstract
Despite the wide acceptance that glycans are centrally implicated in immunity, exactly how they contribute to the tilt immune response remains poorly defined. In this study, we sought to evaluate the impact of the malignant phenotype-associated glycan, sialyl-Tn (STn) in the function of the key orchestrators of the immune response, the dendritic cells (DCs). In high grade bladder cancer tissue, the STn antigen is significantly overexpressed and correlated with the increased expression of ST6GALNAC1 sialyltransferase. Bladder cancer tissue presenting elevated expression of ST6GALNAC1 showed a correlation with increased expression of CD1a, a marker for bladder immature DCs and showed concomitant low levels of Th1-inducing cytokines IL-12 and TNF-α. In vitro, human DCs co-incubated with STn(+) bladder cancer cells, had an immature phenotype (MHC-II(low), CD80(low) and CD86(low)) and were unresponsive to further maturation stimuli. When contacting with STn(+) cancer cells, DCs expressed significantly less IL-12 and TNF-α. Consistent with a tolerogenic DC profile, T cells that were primed by DCs pulsed with antigens derived from STn(+) cancer cells were not activated and showed a FoxP3(high) IFN-γ(low) phenotype. Blockade of STn antigens and of STn(+) glycoprotein, CD44 and MUC1, in STn(+) cancer cells was able to lower the induction of tolerance and DCs become more mature. Overall, our data suggest that STn-expressing cancer cells impair DC maturation and endow DCs with a tolerogenic function, limiting their capacity to trigger protective anti-tumour T cell responses. STn antigens and, in particular, STn(+) glycoproteins are potential targets for circumventing tumour-induced tolerogenic mechanisms.
Collapse
Affiliation(s)
- Mylène A Carrascal
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paulo F Severino
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Department of Experimental, Clinical and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - M Guadalupe Cabral
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Mariana Silva
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - José Alexandre Ferreira
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal; Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Fernando Calais
- Centro Hospitalar de Lisboa Central, EPE - Serviço de Anatomia Patológica, Lisbon, Portugal
| | - Hermínia Quinto
- Centro Hospitalar de Lisboa Central, EPE - Serviço de Anatomia Patológica, Lisbon, Portugal
| | - Cláudia Pen
- Centro Hospitalar de Lisboa Central, EPE - Serviço de Anatomia Patológica, Lisbon, Portugal
| | - Dário Ligeiro
- Centro de Histocompatibilidade do Sul, Lisboa, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal; Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - Fabio Dall'Olio
- Department of Experimental, Clinical and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Paula A Videira
- CEDOC, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
50
|
Della Bella S, Clerici M, Villa ML. Disarming dendritic cells: a tumor strategy to escape from immune control? Expert Rev Clin Immunol 2014; 3:411-22. [DOI: 10.1586/1744666x.3.3.411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|