1
|
Gérard FCA, Bourhis JM, Mas C, Branchard A, Vu DD, Varhoshkova S, Leyrat C, Jamin M. Structure and Dynamics of the Unassembled Nucleoprotein of Rabies Virus in Complex with Its Phosphoprotein Chaperone Module. Viruses 2022; 14:v14122813. [PMID: 36560817 PMCID: PMC9786881 DOI: 10.3390/v14122813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
As for all non-segmented negative RNA viruses, rabies virus has its genome packaged in a linear assembly of nucleoprotein (N), named nucleocapsid. The formation of new nucleocapsids during virus replication in cells requires the production of soluble N protein in complex with its phosphoprotein (P) chaperone. In this study, we reconstituted a soluble heterodimeric complex between an armless N protein of rabies virus (RABV), lacking its N-terminal subdomain (NNT-ARM), and a peptide encompassing the N0 chaperon module of the P protein. We showed that the chaperone module undergoes a disordered-order transition when it assembles with N0 and measured an affinity in the low nanomolar range using a competition assay. We solved the crystal structure of the complex at a resolution of 2.3 Å, unveiling the details of the conserved interfaces. MD simulations showed that both the chaperon module of P and RNA-mediated polymerization reduced the ability of the RNA binding cavity to open and close. Finally, by reconstituting a complex with full-length P protein, we demonstrated that each P dimer could independently chaperon two N0 molecules.
Collapse
Affiliation(s)
- Francine C. A. Gérard
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Jean-Marie Bourhis
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Caroline Mas
- Integrated Structural Biology Grenoble (ISBG), Université Grenoble Alpes, CNRS, CEA, EMBL, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Anaïs Branchard
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Duc Duy Vu
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Sylvia Varhoshkova
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
- Correspondence: (C.L.); (M.J.)
| | - Marc Jamin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
- Correspondence: (C.L.); (M.J.)
| |
Collapse
|
2
|
Genoyer E, Kulej K, Hung CT, Thibault PA, Azarm K, Takimoto T, Garcia BA, Lee B, Lakdawala S, Weitzman MD, López CB. The Viral Polymerase Complex Mediates the Interaction of Viral Ribonucleoprotein Complexes with Recycling Endosomes during Sendai Virus Assembly. mBio 2020; 11:e02028-20. [PMID: 32843550 PMCID: PMC7448285 DOI: 10.1128/mbio.02028-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/20/2022] Open
Abstract
Paramyxoviruses are negative-sense single-stranded RNA viruses that comprise many important human and animal pathogens, including human parainfluenza viruses. These viruses bud from the plasma membrane of infected cells after the viral ribonucleoprotein complex (vRNP) is transported from the cytoplasm to the cell membrane via Rab11a-marked recycling endosomes. The viral proteins that are critical for mediating this important initial step in viral assembly are unknown. Here, we used the model paramyxovirus, murine parainfluenza virus 1, or Sendai virus (SeV), to investigate the roles of viral proteins in Rab11a-driven virion assembly. We previously reported that infection with SeV containing high levels of copy-back defective viral genomes (DVGs) (DVG-high SeV) generates heterogenous populations of cells. Cells enriched in full-length (FL) virus produce viral particles containing standard or defective viral genomes, while cells enriched in DVGs do not, despite high levels of defective viral genome replication. Here, we took advantage of this heterogenous cell phenotype to identify proteins that mediate interaction of vRNPs with Rab11a. We examined the roles of matrix protein and nucleoprotein and determined that their presence is not sufficient to drive interaction of vRNPs with recycling endosomes. Using a combination of mass spectrometry and comparative analyses of protein abundance and localization in DVG-high and FL-virus-high (FL-high) cells, we identified viral polymerase complex component protein L and, specifically, its cofactor C as interactors with Rab11a. We found that accumulation of L and C proteins within the cell is the defining feature that differentiates cells that proceed to viral egress from cells containing viruses that remain in replication phases.IMPORTANCE Paramyxoviruses are members of a family of viruses that include a number of pathogens imposing significant burdens on human health. In particular, human parainfluenza viruses are an important cause of pneumonia and bronchiolitis in children for which there are no vaccines or directly acting antivirals. These cytoplasmic replicating viruses bud from the plasma membrane and co-opt cellular endosomal recycling pathways to traffic viral ribonucleoprotein complexes from the cytoplasm to the membrane of infected cells. The viral proteins required for viral engagement with the recycling endosome pathway are still not known. Here, we used the model paramyxovirus Sendai virus, or murine parainfluenza virus 1, to investigate the role of viral proteins in this initial step of viral assembly. We found that the viral polymerase components large protein L and accessory protein C are necessary for engagement with recycling endosomes. These findings are important in identifying viral proteins as potential targets for development of antivirals.
Collapse
Affiliation(s)
- Emmanuelle Genoyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katarzyna Kulej
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chuan Tien Hung
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Patricia A Thibault
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristopher Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Seema Lakdawala
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Falk K, Batts WN, Kvellestad A, Kurath G, Wiik-Nielsen J, Winton JR. Molecular characterisation of Atlantic salmon paramyxovirus (ASPV): a novel paramyxovirus associated with proliferative gill inflammation. Virus Res 2008; 133:218-27. [PMID: 18304670 DOI: 10.1016/j.virusres.2008.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/11/2008] [Accepted: 01/12/2008] [Indexed: 10/22/2022]
Abstract
Atlantic salmon paramyxovirus (ASPV) was isolated in 1995 from gills of farmed Atlantic salmon suffering from proliferative gill inflammation. The complete genome sequence of ASPV was determined, revealing a genome 16,968 nucleotides in length consisting of six non-overlapping genes coding for the nucleo- (N), phospho- (P), matrix- (M), fusion- (F), haemagglutinin-neuraminidase- (HN) and large polymerase (L) proteins in the order 3'-N-P-M-F-HN-L-5'. The various conserved features related to virus replication found in most paramyxoviruses were also found in ASPV. These include: conserved and complementary leader and trailer sequences, tri-nucleotide intergenic regions and highly conserved transcription start and stop signal sequences. The P gene expression strategy of ASPV was like that of the respiro-, morbilli- and henipaviruses, which express the P and C proteins from the primary transcript and edit a portion of the mRNA to encode V and W proteins. Sequence similarities among various features related to virus replication, pairwise comparisons of all deduced ASPV protein sequences with homologous regions from other members of the family Paramyxoviridae, and phylogenetic analyses of these amino acid sequences suggested that ASPV was a novel member of the sub-family Paramyxovirinae, most closely related to the respiroviruses.
Collapse
Affiliation(s)
- K Falk
- National Veterinary Institute, Section for Fish Health, P.O. Box 8156 Dep., N-0033 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
4
|
|
5
|
Parida S, Mahapatra M, Kumar S, Das SC, Baron MD, Anderson J, Barrett T. Rescue of a chimeric rinderpest virus with the nucleocapsid protein derived from peste-des-petits-ruminants virus: use as a marker vaccine. J Gen Virol 2007; 88:2019-2027. [PMID: 17554036 PMCID: PMC2885620 DOI: 10.1099/vir.0.82913-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 03/19/2007] [Indexed: 11/18/2022] Open
Abstract
The nucleocapsid (N) protein of all morbilliviruses has a highly conserved central region that is thought to interact with and encapsidate the viral RNA. The C-terminal third of the N protein is highly variable among morbilliviruses and is thought to be located on the outer surface and to be available to interact with other viral proteins such as the phosphoprotein, the polymerase protein and the matrix protein. Using reverse genetics, a chimeric rinderpest virus (RPV)/peste-des-petits-ruminants virus (PPRV) was rescued in which the RPV N gene open reading frame had been replaced with that of PPRV (RPV-PPRN). The chimeric virus maintained efficient replication in cell culture. Cattle vaccinated with this chimeric vaccine showed no adverse reaction and were protected from subsequent challenge with wild-type RPV, indicating it to be a safe and efficacious vaccine. The carboxyl-terminal variable region of the rinderpest N protein was cloned and expressed in Escherichia coli. The expressed protein was used to develop an indirect ELISA that could clearly differentiate between RPV- and PPRV-infected animals. The possibility of using this virus as a marker vaccine in association with a new diagnostic ELISA in the rinderpest eradication programme is discussed.
Collapse
Affiliation(s)
- Satya Parida
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Madhuchhanda Mahapatra
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Sai Kumar
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Subash C Das
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Michael D Baron
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - John Anderson
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Thomas Barrett
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| |
Collapse
|
6
|
de Breyne S, Stalder R, Curran J. Intracellular processing of the Sendai virus C' protein leads to the generation of a Y protein module: structure-functional implications. FEBS Lett 2005; 579:5685-90. [PMID: 16219307 DOI: 10.1016/j.febslet.2005.09.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 09/12/2005] [Accepted: 09/19/2005] [Indexed: 11/21/2022]
Abstract
The Sendai virus "C-proteins" (C', C, Y1 and Y2) are a nested set of non-structural proteins. The shorter Y proteins arise in vivo both by de novo translation initiation and by proteolytic processing of C'. In this paper, we demonstrate that C' but not C (differing only by 11 N-terminal amino acid) serves as an efficient substrate for intracellular processing. However, processing can be mimicked in vitro by the addition of endopeptidases. Under conditions of limited proteolysis we observed that in a fraction of the C' protein the Y region exists as a proteinase resistant core. This core was conserved in the C protein. We propose that C' functions as a Pro-protein delivering the Y module to a specific intracellular location.
Collapse
Affiliation(s)
- Sylvain de Breyne
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School (CMU), Switzerland
| | | | | |
Collapse
|
7
|
de Leeuw OS, Koch G, Hartog L, Ravenshorst N, Peeters BPH. Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein. J Gen Virol 2005; 86:1759-1769. [PMID: 15914855 DOI: 10.1099/vir.0.80822-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virulence of Newcastle disease virus (NDV) is mainly determined by the amino acid sequence surrounding the fusion (F) protein cleavage site, since host proteases that cleave the F protein of virulent strains are present in more tissues than those that cleave the F protein of non-virulent strains. Nevertheless, comparison of NDV strains that carry exactly the same F protein cleavage site shows that significant differences in virulence still exist. For instance, virulent field strain Herts/33 with the F cleavage site 112RRQRRF117 had an intracerebral pathogenicity index of 1.88 compared with 1.28 for strain NDFLtag, which has the same cleavage site. This implies that additional factors contribute to virulence. After generating an infectious clone of Herts/33 (FL-Herts), we were able to map the location of additional virulence factors by exchanging sequences between FL-Herts and NDFLtag. The results showed that, in addition to the F protein cleavage site, the haemagglutinin-neuraminidase (HN) protein also contributed to virulence. The effect of the HN protein on virulence was most prominent after intravenous inoculation. Interestingly, both the stem region and the globular head of the HN protein seem to be involved in determining virulence.
Collapse
Affiliation(s)
- Olav S de Leeuw
- Wageningen University and Research Centre, Animal Sciences Group, Division of Infectious Diseases, 8200 AB Lelystad, The Netherlands
| | - Guus Koch
- Central Institute for Animal Disease Control, PO Box 2004, 8203 AA Lelystad, The Netherlands
| | - Leo Hartog
- Central Institute for Animal Disease Control, PO Box 2004, 8203 AA Lelystad, The Netherlands
| | - Niek Ravenshorst
- Wageningen University and Research Centre, Animal Sciences Group, Division of Infectious Diseases, 8200 AB Lelystad, The Netherlands
| | - Ben P H Peeters
- Wageningen University and Research Centre, Animal Sciences Group, Division of Infectious Diseases, 8200 AB Lelystad, The Netherlands
| |
Collapse
|
8
|
Buchholz UJ, Biacchesi S, Pham QN, Tran KC, Yang L, Luongo CL, Skiadopoulos MH, Murphy BR, Collins PL. Deletion of M2 gene open reading frames 1 and 2 of human metapneumovirus: effects on RNA synthesis, attenuation, and immunogenicity. J Virol 2005; 79:6588-97. [PMID: 15890897 PMCID: PMC1112115 DOI: 10.1128/jvi.79.11.6588-6597.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The M2 gene of human metapneumovirus (HMPV) contains two overlapping open reading frames (ORFs), M2-1 and M2-2. The expression of separate M2-1 and M2-2 proteins from these ORFs was confirmed, and recombinant HMPVs were recovered in which expression of M2-1 and M2-2 was ablated individually or together [rdeltaM2-1, rdeltaM2-2, and rdeltaM2(1+2)]. Each M2 mutant virus directed efficient multicycle growth in Vero cells. The ability to recover HMPV lacking M2-1 contrasts with human respiratory syncytial virus, for which M2-1 is an essential transcription factor. Expression of the downstream HMPV M2-2 ORF was not reduced when translation of the upstream M2-1 ORF was silenced, indicating that it is initiated separately. The rdeltaM2-2 mutants exhibited a two- to fivefold increase in the accumulation of mRNA, normalized to the genome template, suggesting that M2-2 has a role in regulating RNA synthesis. Replication and immunogenicity were tested in hamsters. Animals infected intranasally with rdeltaM2-1 or rdeltaM2(1+2) did not have recoverable virus in the lungs or nasal turbinates on days 3 or 5 postinfection and did not develop HMPV-neutralizing serum antibodies or resistance to HMPV challenge. Thus, M2-1 appears to be essential for significant virus replication in vivo. In animals infected with rdeltaM2-2, virus was recovered from only 1 of 12 animals and only in the nasal turbinates on a single day. However, all of the animals developed a high titer of HMPV-neutralizing serum antibodies and were highly protected against challenge with wild-type HMPV. The HMPV rdeltaM2-2 virus is a promising and highly attenuated HMPV vaccine candidate.
Collapse
Affiliation(s)
- Ursula J Buchholz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8007, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Peeters B, Verbruggen P, Nelissen F, de Leeuw O. The P gene of Newcastle disease virus does not encode an accessory X protein. J Gen Virol 2004; 85:2375-2378. [PMID: 15269379 DOI: 10.1099/vir.0.80160-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many paramyxoviruses encode non-essential accessory proteins that are involved in the regulation of virus replication and inhibition of cellular antiviral responses. It has been suggested that the P gene mRNA of Newcastle disease virus (NDV) encodes an accessory protein – the so-called X protein – by translation initiation at a conserved in-frame AUG codon at position 120. Using a monoclonal antibody that specifically detected the P and X proteins, it was shown that an accessory X protein was not expressed in NDV-infected cells. Recombinant NDV strains in which the AUG was changed into a GCC (Ala) or GUC (Val) codon were viable but showed a reduction in virulence, probably because the amino acid change affected the function of the P and/or V protein.
Collapse
Affiliation(s)
- Ben Peeters
- Division of Infectious Diseases, Animal Sciences Group, Wageningen University and Research Centre, PO Box 65, NL-8200 AB Lelystad, The Netherlands
| | - Paul Verbruggen
- Division of Infectious Diseases, Animal Sciences Group, Wageningen University and Research Centre, PO Box 65, NL-8200 AB Lelystad, The Netherlands
| | - Frank Nelissen
- Division of Infectious Diseases, Animal Sciences Group, Wageningen University and Research Centre, PO Box 65, NL-8200 AB Lelystad, The Netherlands
| | - Olav de Leeuw
- Division of Infectious Diseases, Animal Sciences Group, Wageningen University and Research Centre, PO Box 65, NL-8200 AB Lelystad, The Netherlands
| |
Collapse
|
10
|
de Breyne S, Monney RS, Curran J. Proteolytic processing and translation initiation: two independent mechanisms for the expression of the Sendai virus Y proteins. J Biol Chem 2004; 279:16571-80. [PMID: 14739274 DOI: 10.1074/jbc.m312391200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The four Sendai virus C-proteins (C', C, Y1, and Y2) represent an N-terminal nested set of non-structural proteins whose expression modulates both the readout of the viral genome and the host cell response. In particular, they modulate the innate immune response by perturbing the signaling of type 1 interferons. The initiation codons for the four C-proteins have been mapped in vitro, and it has been proposed that the Y proteins are initiated by ribosomal shunting. A number of mutations were reported that significantly enhanced Y expression, and this was attributed to increased shunt-mediated initiation. However, we demonstrate that this arises due to enhanced proteolytic processing of C', an event that requires its very N terminus. Curiously, although Y expression in vitro is mediated almost exclusively by initiation, Y proteins in vivo can arise both by translation initiation and processing of the C' protein. To our knowledge this is the first example of two apparently independent pathways leading to the expression of the same polypeptide chain. This dual pathway explains several features of Y expression.
Collapse
Affiliation(s)
- Sylvain de Breyne
- Department of Microbiology and Molecular Medicine, The University of Geneva Medical School (Centre Médicale Universitaire), 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
11
|
Garcin D, Marq JB, Strahle L, le Mercier P, Kolakofsky D. All four Sendai Virus C proteins bind Stat1, but only the larger forms also induce its mono-ubiquitination and degradation. Virology 2002; 295:256-65. [PMID: 12033784 DOI: 10.1006/viro.2001.1342] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sendai virus infection strongly induces interferon (IFN) production and has recently been shown to interdict the subsequent IFN signaling through the Jak/Stat pathway. This anti-IFN activity of SeV is due to its "C" proteins, a nested set of four proteins (C', C, Y1, Y2) that carry out a nested set of functions in countering the innate immune response. We previously reported that all four C proteins interact with Stat1 to prevent IFN signaling through the Jak/Stat pathway. Nevertheless, only the longer C proteins reduced Stat1 levels and prevented IFN from inducing an antiviral (VSV) state, or apoptosis, in IFN-competent murine cells. Here, we investigate the mechanism by which the various C proteins differentially affect the host antiviral defenses. All four C proteins were found to physically associate with Stat1 during cell culture infections, and in vitro in the absence of other viral gene products (as evidenced by co-immunoprecipitation). In addition, the inability of a null mutant (C(F170S)) to bind Stat1 suggests that this interaction is physiologically relevant. We have also shown that the proteasomal inhibitor MG132 can prevent the C protein-induced dismantling of the antiviral (VSV) state in murine cells; thus, the turnover of Stat1 correlates with the C protein-mediated counteraction of the antiviral (VSV) state. The C protein-induced instability of Stat1 was accompanied by a clear increase in the level of mono-ubiquinated Stat1, an unexpected hallmark of protein degradation. Finally, we show that a rSeV with mutant C proteins but wild-type Y proteins (CDelta10-15, that does not counteract the endogenous antiviral (VSV) state of MEFs even though their C proteins bind Stat1 and prevent its activity) is also unable to decrease bulk Stat1 levels or to increase the level of ubiquinated Stat1.
Collapse
Affiliation(s)
- Dominique Garcin
- Department of Genetics and Microbiology, University of Geneva School of Medicine, CMU, 9 Ave de Champel, CH1211, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Garcin D, Curran J, Itoh M, Kolakofsky D. Longer and shorter forms of Sendai virus C proteins play different roles in modulating the cellular antiviral response. J Virol 2001; 75:6800-7. [PMID: 11435558 PMCID: PMC114406 DOI: 10.1128/jvi.75.15.6800-6807.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sendai virus (SeV) C gene codes for a nested set of four C proteins that carry out several functions, including the modulation of viral RNA synthesis and countering of the cellular antiviral response. Using mutant C genes (and in particular a C gene with a deletion of six amino acids present only in the larger pair of C proteins) and recombinant SeV carrying these mutant C genes, we find that the nested set of C proteins carry out a nested set of functions. All of the C proteins interdict interferon (IFN) signaling to IFN-stimulated genes (ISGs) and prevent pY701-Stat1 formation. However, only the larger C proteins can induce STAT1 instability, prevent IFN from inducing an antiviral state, or prevent programmed cell death. Remarkably, interdiction of IFN signaling to ISGs and the absence of pY701-Stat1 formation did not prevent IFN-alpha from inducing an anti-Vesicular stomatitis virus (VSV) state. It is possible that IFN-alpha signaling to induce an anti-VSV state can occur independently of the well-established Jak/Stat/ISGF3 pathway and that it is this parallel pathway that is targeted by the longer C proteins.
Collapse
Affiliation(s)
- D Garcin
- Department of Genetics and Microbiology, University of Geneva School of Medicine, CH1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
13
|
Takeuchi K, Komatsu T, Yokoo J, Kato A, Shioda T, Nagai Y, Gotoh B. Sendai virus C protein physically associates with Stat1. Genes Cells 2001; 6:545-57. [PMID: 11442634 DOI: 10.1046/j.1365-2443.2001.00442.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The P/C gene of the Sendai virus (SeV), a member of the family Paramyxoviridae, encodes C protein, which plays a crucial role in counteracting the antiviral effect of interferon (IFN). The C protein blocks IFN signalling to prevent the activation of IFN stimulated genes. However, its underlying molecular mechanism remains to be defined. RESULTS Signal transducer and activator of transcription 1 (Stat1) is a critical component of IFN-alpha/beta and IFN-gamma signalling. We found that both unphosphorylated Stat1 and tyrosine-phosphorylated (pY) Stat1 were present in a form of aberrant high molecular weight complexes (HMWCs) of over 2 MDa in infected cell extracts under low-salt conditions. Of recombinant vaccinia viruses carrying each SeV gene, only those expressing the C gene induced Stat1-HMWC. SeV infected cell extracts further displayed an in vitro ability to convert the pY-Stat1 homodimer to pY-Stat1-HMWC. This cell extract activity was not seen after removal of the C protein from the extracts. C protein was therefore involved in the formation of HMWCs. The HMWCs decomposed into smaller complexes in a high-salt buffer, and under this stringent (high-salt) condition, as well as a physiological (isotonic) condition, both unphosphorylated Stat1 and pY-Stat1 were co-precipitated with anti-C antibody. CONCLUSION The C protein physically associates with Stat1. This suggests that SeV C protein directly targets Stat1 for inhibitory control on the transcriptional activation of IFN stimulated genes.
Collapse
Affiliation(s)
- K Takeuchi
- Department of Microbiology, Fukui Medical University, Shimoaizuki 23-3, Matsuoka-cho, Yoshida-gun, Fukui 910-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Garcin D, Curran J, Kolakofsky D. Sendai virus C proteins must interact directly with cellular components to interfere with interferon action. J Virol 2000; 74:8823-30. [PMID: 10982324 PMCID: PMC102076 DOI: 10.1128/jvi.74.19.8823-8830.2000] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2000] [Accepted: 06/20/2000] [Indexed: 01/01/2023] Open
Abstract
Sendai virus (SeV) infection of interferon (IFN)-competent cells is one of the most efficient ways of inducing IFN production. Virus replication is nevertheless largely unaffected, since SeV infection also interfers with IFN action, a prerequisite for the establishment of an antiviral state. This property has been mapped by reverse genetics to the viral C gene, which is also known to act as a promoter-specific inhibitor of viral RNA synthesis. Using luciferase reporter plasmids containing IFN-responsive promoters, we have found that all four C proteins effectively interdict IFN signaling when expressed independently of SeV infection. The C proteins must therefore interact directly with cellular components to carry this out. The C gene in the context of an SeV infection was also found to induce STAT1 instability in some cells, whereas in other cells it apparently acts to prevent the synthesis of STAT1 in response to the virus infection or IFN treatment. The SeV C proteins appear to act in at least two ways to counteract the IFN induced by SeV infection.
Collapse
Affiliation(s)
- D Garcin
- Department of Genetics and Microbiology, University of Geneva School of Medicine, CH1211 Geneva, Switzerland
| | | | | |
Collapse
|
15
|
Abstract
Molecular studies on the replication of paramyxoviruses have undergone a revolution in recent years due to the development of techniques that permit the manipulation of their genomes as cDNA. This has led to new information on the structure-function organization of the viral proteins involved in genome expression, as well as dissection of the cis-acting template sequences that regulate transcription and replication. Studies using recombinant viruses have also provided new insights into the role of the accessory proteins (V, C, M1/M2) in both for virus growth in cultured cells and pathogenesis in animals.
Collapse
Affiliation(s)
- J Curran
- Department of Genetics and Microbiology, University of Geneva Medical School (CMU), Switzerland
| | | |
Collapse
|
16
|
Garcin D, Latorre P, Kolakofsky D. Sendai virus C proteins counteract the interferon-mediated induction of an antiviral state. J Virol 1999; 73:6559-65. [PMID: 10400752 PMCID: PMC112739 DOI: 10.1128/jvi.73.8.6559-6565.1999] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/1999] [Accepted: 05/05/1999] [Indexed: 11/20/2022] Open
Abstract
We have studied the relationship between the Sendai virus (SeV) C proteins (a nested set of four proteins initiated at different start codons) and the interferon (IFN)-mediated antiviral response in IFN-competent cells in culture. SeV strains containing wild-type or various mutant C proteins were examined for their ability (i) to induce an antiviral state (i.e., to prevent the growth of vesicular stomatitis virus [VSV] following a period of SeV infection), (ii) to induce the elevation of Stat1 protein levels, and (iii) to prevent IFN added concomitant with the SeV infection from inducing an antiviral state. We find that expression of the wild-type C gene and, specifically, the AUG114-initiated C protein prevents the establishment of an antiviral state: i.e., cells infected with wild-type SeV exhibited little or no increase in Stat1 levels and were permissive for VSV replication, even in the presence of exogenous IFN. In contrast, in cells infected with SeV lacking the AUG114-initiated C protein or containing a single amino acid substitution in the C protein, the level of Stat1 increased and VSV replication was inhibited. The prevention of the cellular IFN-mediated antiviral response appears to be a key determinant of SeV pathogenicity.
Collapse
Affiliation(s)
- D Garcin
- Department of Genetics and Microbiology, University of Geneva School of Medicine, CMU, CH1211 Geneva, Switzerland
| | | | | |
Collapse
|
17
|
Hausmann S, Garcin D, Morel AS, Kolakofsky D. Two nucleotides immediately upstream of the essential A6G3 slippery sequence modulate the pattern of G insertions during Sendai virus mRNA editing. J Virol 1999; 73:343-51. [PMID: 9847338 PMCID: PMC103839 DOI: 10.1128/jvi.73.1.343-351.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Editing of paramyxovirus P gene mRNAs occurs cotranscriptionally and functions to fuse an alternate downstream open reading frame to the N-terminal half of the P protein. G residues are inserted into a short G run contained within a larger purine run (AnGn) in this process, by a mechanism whereby the transcribing polymerase stutters (i.e., reads the same template cytosine more than once). Although Sendai virus (SeV) and bovine parainfluenza virus type 3 (bPIV3) are closely related, the G insertions in their P mRNAs are distributed differently. SeV predominantly inserts a single G residue within the G run of the sequence 5' AACAAAAAAGGG, whereas bPIV3 inserts one to six G's at roughly equal frequency within the sequence 5' AUUAAAAAAGGGG (differences are underlined). We have examined how the cis-acting editing sequence determines the number of G's inserted, both in a transfected cell system using minigenome analogues and by generating recombinant viruses. We found that the presence of four rather than three G's in the purine run did not affect the distribution of G insertions. However, when the underlined AC of the SeV sequence was replaced by the UU found in bPIV3, the editing phenotype from both the minigenome and the recombinant virus resembled that found in natural bPIV3 infections (i.e., a significant fraction of the mRNAs contained two to six G insertions). The two nucleotides located just upstream of the polypurine tract are thus key determinants of the editing phenotype of these viruses. Moreover, the minimum number of A residues that will promote SeV editing phenotype is six but can be reduced to five when the upstream AC is replaced by UU. A model for how the upstream dinucleotide controls the insertion phenotype is presented.
Collapse
Affiliation(s)
- S Hausmann
- Department of Genetics and Microbiology, University of Geneva School of Medicine, CH1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
18
|
Latorre P, Cadd T, Itoh M, Curran J, Kolakofsky D. The various Sendai virus C proteins are not functionally equivalent and exert both positive and negative effects on viral RNA accumulation during the course of infection. J Virol 1998; 72:5984-93. [PMID: 9621061 PMCID: PMC110403 DOI: 10.1128/jvi.72.7.5984-5993.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/1998] [Accepted: 04/07/1998] [Indexed: 02/07/2023] Open
Abstract
Recombinant Sendai viruses were prepared which cannot express their Cprime, C, or Cprime plus C proteins due to mutation of their respective start codons ([Cprime-minus], [C-minus] and [double mutant], respectively). The [Cprime-minus] and [C-minus] stocks were similar to that of wild-type (wt) virus in virus titer and plaque formation, whereas the double-mutant stock had a much-reduced PFU or 50% egg infective dose/particle ratio and produced very small plaques. Relative to the wt virus infection, the [Cprime-minus] and [C-minus] infections of BHK cells resulted in significantly greater accumulation of viral RNAs, consistent with the known inhibitory effects of the Cprime and C proteins. The double-mutant infection, in contrast, was delayed in its accumulation of viral RNAs; however, once accumulation started, overaccumulation quickly occurred, as in the single-mutant infections. Our results suggest that the Cprime and C proteins both provide a common positive function early in infection, so that only the double mutant undergoes delayed RNA accumulation and exhibits the highly debilitated phenotype. Later in infection, the same proteins appear to act as inhibitors of RNA accumulation. In infections of mice, [Cprime-minus] was found to be as virulent as wt virus whereas [C-minus] was highly attenuated. These results suggest that the Cprime and C proteins cannot be functionally equivalent, since C can replace Cprime for virulence in mice whereas Cprime cannot replace C.
Collapse
Affiliation(s)
- P Latorre
- Department of Genetics and Microbiology, University of Geneva School of Medicine, CH1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|