1
|
Ma C, Yang M, Zhou W, Guo S, Zhang H, Gong J, Zhang XE, Li F. The RNA Landscape of In Vivo-Assembled MS2 Virus-Like Particles as mRNA Carriers Reveals RNA Contamination from Host Viruses. NANO LETTERS 2025; 25:3038-3044. [PMID: 39932477 PMCID: PMC11869999 DOI: 10.1021/acs.nanolett.4c04541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Virus-like particles (VLPs) are attractive systems for packaging and delivering therapeutic RNA molecules in vaccine development, protein replacement therapy, and gene editing. Different VLPs carrying target functional RNA have been biosynthesized and demonstrated for biomedical purposes. However, little attention has been paid to what other types of RNA, besides the target RNA, are encapsulated into VLPs, leading to a lack of knowledge of the landscape of RNA cargoes. In this work, we engineered the widely used MS2 VLPs to encapsulate a model cargo mRNA in yeast, with the packaging efficiency and specificity being quantitatively tuned by the copy number of packaging signals. Transcriptome sequencing of the RNA in the VLPs revealed RNA contamination from the hosts and host viruses. This study highlights the necessity of precise VLP and cargo design and a clear background of production hosts to ensure specificity and safety.
Collapse
Affiliation(s)
- Chun Ma
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengsi Yang
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Songxin Guo
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Jun Gong
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian-En Zhang
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- Faculty
of Synthetic Biology, Shenzhen University
of Advanced Technology, Shenzhen 518107, China
| | - Feng Li
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Grybchuk D, Kostygov AY, Yurchenko V. Analysis of Leishbuviridae from Trypanosomatids. Methods Mol Biol 2025; 2893:151-167. [PMID: 39671036 DOI: 10.1007/978-1-0716-4338-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Over the last decade, considerable progress has been made in unraveling RNA virus diversity. This has contributed to our understanding of the evolution of these viruses, which include emerging zoonotic human pathogens. Current success has been greatly facilitated by the development of next-generation sequencing platforms instrumental for meta-transcriptomic studies. However, due to the rapid evolution of RNA viruses, there are numerous "blind spots" waiting to be explored; one of those is the RNA virome of unicellular eukaryotes. Here, we present the pipeline, which has been successfully used to characterize various types of RNA viruses, including Leishbuviridae (Bunyaviricetes, Hareavirales) in the parasitic flagellates of the family Trypanosomatidae. The pipeline relies on axenic in vitro cell culture and double-stranded RNA enrichment, followed by direct RNA-sequencing. A detailed procedure description starting from the initial total RNA preparation to the final assembly of the viral segments is provided.
Collapse
Affiliation(s)
- Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| |
Collapse
|
3
|
Santos YS, Vidal AH, Abreu EFM, Nogueira I, Faleiro FG, Lacorte CC, Melo FL, de Araújo Campos M, de Rezende RR, Morgan T, Varsani A, Alfenas-Zerbini P, Ribeiro SG. Detection and molecular characterization of a novel mitovirus associated with Passiflora edulis Sims. Arch Virol 2024; 169:190. [PMID: 39222118 DOI: 10.1007/s00705-024-06115-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Mitoviruses are cryptic capsidless viruses belonging to the family Mitoviridae that replicate and are maintained in the mitochondria of fungi. Complete mitovirus-like sequences were recently assembled from plant transcriptome data and plant leaf tissue samples. Passion fruit (Passiflora spp.) is an economically important crop for numerous tropical and subtropical countries worldwide, and many virus-induced diseases impact its production. From a large-scale genomic study targeting viruses infecting Passiflora spp. in Brazil, we detected a de novo-assembled contig with similarity to other plant-associated mitoviruses. The contig is ∼2.6 kb long, with a single open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRP). This contig has been named "passion fruit mitovirus-like 1" (PfMv1). An alignment of the predicted amino acid sequence of the RdRP of PfMv1 and those of other plant-associated mitoviruses revealed the presence of the six conserved motifs of mitovirus RdRPs. PfMv1 has 79% coverage and 50.14% identity to Humulus lupulus mitovirus 1. Phylogenetic analysis showed that PfMV1 clustered with other plant-associated mitoviruses in the genus Duamitovirus. Using RT-PCR, we detected a PfMv1-derived fragment, but no corresponding DNA was identified, thus excluding the possibility that this is an endogenized viral-like sequence. This is the first evidence of a replicating mitovirus associated with Passiflora edulis, and it should be classified as a member of a new species, for which we propose the name "Duamitovirus passiflorae".
Collapse
Affiliation(s)
- Yam Sousa Santos
- Centro de Educação e Saúde, Universidade Federal de Campina Grande, Cuité, PB, 58175-000, Brazil
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil
| | - Andreza Henrique Vidal
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil
- Instituto de Ciências Biológicas-IB, PPG BIOMOL, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | | | - Isadora Nogueira
- Instituto de Ciências Biológicas-IB, PPG BIOMOL, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | | | | | - Fernando L Melo
- Instituto de Ciências Biológicas-IB, PPG BIOMOL, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | | | - Rafael Reis de Rezende
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil
| | - Tulio Morgan
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil
| | - Arvind Varsani
- The Bio design Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Poliane Alfenas-Zerbini
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil.
| | | |
Collapse
|
4
|
Yu D, Wang Q, Song W, Kang Y, Lei Y, Wang Z, Chen Y, Huai D, Wang X, Liao B, Yan L. Characterization of Two Novel Single-Stranded RNA Viruses from Agroathelia rolfsii, the Causal Agent of Peanut Stem Rot. Viruses 2024; 16:854. [PMID: 38932147 PMCID: PMC11209298 DOI: 10.3390/v16060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Peanut stem rot is a soil-borne disease caused by Agroathelia rolfsii. It occurs widely and seriously affects the peanut yield in most peanut-producing areas. The mycoviruses that induce the hypovirulence of some plant pathogenic fungi are potential resources for the biological control of fungal diseases in plants. Thus far, few mycoviruses have been found in A. rolfsii. In this study, two mitoviruses, namely, Agroathelia rolfsii mitovirus 1 (ArMV1) and Agroathelia rolfsii mitovirus 2 (ArMV2), were identified from the weakly virulent A. rolfsii strain GP3-1, and they were also found in other A. rolfsii isolates. High amounts of ArMV1 and ArMV2in the mycelium could reduce the virulence of A. rolfsii strains. This is the first report on the existence of mitoviruses in A. rolfsii. The results of this study may provide insights into the classification and evolution of mitoviruses in A. rolfsii and enable the exploration of the use of mycoviruses as biocontrol agents for the control of peanut stem rot.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Boshou Liao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agricultural and Rural Affairs, Wuhan 430062, China; (D.Y.); (Q.W.); (W.S.); (Y.K.); (Y.L.); (Z.W.); (Y.C.); (D.H.); (X.W.)
| | - Liying Yan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agricultural and Rural Affairs, Wuhan 430062, China; (D.Y.); (Q.W.); (W.S.); (Y.K.); (Y.L.); (Z.W.); (Y.C.); (D.H.); (X.W.)
| |
Collapse
|
5
|
Zhou K, Zhang F, Deng Y. Comparative Analysis of Viromes Identified in Multiple Macrofungi. Viruses 2024; 16:597. [PMID: 38675938 PMCID: PMC11054281 DOI: 10.3390/v16040597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Macrofungi play important roles in the soil elemental cycle of terrestrial ecosystems. Fungal viruses are common in filamentous fungi, and some of them can affect the growth and development of hosts. However, the composition and evolution of macrofungal viruses are understudied. In this study, ninety strains of Trametes versicolor, Coprinellus micaceus, Amanita strobiliformis, and Trametes hirsuta were collected in China. Four mixed pools were generated by combining equal quantities of total RNA from each strain, according to the fungal species, and then subjected to RNA sequencing. The sequences were assembled, annotated, and then used for phylogenetic analysis. Twenty novel viruses or viral fragments were characterized from the four species of macrofungi. Based on the phylogenetic analysis, most of the viral contigs were classified into ten viral families or orders: Barnaviridae, Benyviridae, Botourmiaviridae, Deltaflexiviridae, Fusariviridae, Hypoviridae, Totiviridae, Mitoviridae, Mymonaviridae, and Bunyavirales. Of these, ambi-like viruses with circular genomes were widely distributed among the studied species. Furthermore, the number and overall abundance of viruses in these four species of macrofungi (Basidiomycota) were found to be much lower than those in broad-host phytopathogenic fungi (Ascomycota: Sclerotinia sclerotiorum, and Botrytis cinerea). By employing metatranscriptomic analysis in this study, for the first time, we demonstrated the presence of multiple mycoviruses in Amanita strobiliformis, Coprinellus micaceus, Trametes hirsute, and Trametes versicolor, significantly contributing to research on mycoviruses in macrofungi.
Collapse
Affiliation(s)
- Kang Zhou
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang 236037, China
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang 236037, China
| | - Fan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Deng
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| |
Collapse
|
6
|
Lopez-Jimenez J, Herrera J, Alzate JF. Expanding the knowledge frontier of mitoviruses in Cannabis sativa. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105523. [PMID: 37940011 DOI: 10.1016/j.meegid.2023.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Mitoviruses were initially known for their presence in the mitochondria of fungi and were considered exclusive to these organisms. However, recent studies have shown that they are also present in a large number of plant species. Despite the potential impact that mitoviruses might have on the mitochondria of plant cells, there is a lack of information about these ancient RNA viruses, especially within the Cannabaceae family. Cannabis sativa has been in the spotlight in recent years due to the growing industrial applications of plant derivatives, such as fiber and secondary metabolites. Given the importance of Cannabis in today's agriculture, our study aimed to expand the knowledge frontier of Mitoviruses in C. sativa by increasing the number of reference genomes of CasaMV1 available in public databases and representing a larger number of crops in countries where its industrial-scale growth is legalized. To achieve this goal, we used transcriptomics to sequence the first mitoviral genomes of Colombian crops and analyzed RNA-seq datasets available in the SRA databank. Additionally, the evolutionary analysis performed using the mitovirus genomes revealed two main lineages of CasaMV1, termed CasaMV1_L1 and CasaMV1_L2. These mitoviral lineages showed strong clustering based on the geographic location of the crops and differential expression intensities.
Collapse
Affiliation(s)
- Juliana Lopez-Jimenez
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia
| | - Jorge Herrera
- Fábrica de Plantas y Semillas de Antioquia S.A.S. - FASPLAN, El Carmen de Viboral, Antioquia, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica CNSG, Sede de Investigación Universitaria-SIU, Universidad de Antioquia, Medellín, Colombia; Fábrica de Plantas y Semillas de Antioquia S.A.S. - FASPLAN, El Carmen de Viboral, Antioquia, Colombia; Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
7
|
Alvarez-Quinto R, Grinstead S, Jones R, Mollov D. Complete genome sequence of a new mitovirus associated with walking iris (Trimezia northiana). Arch Virol 2023; 168:273. [PMID: 37845386 DOI: 10.1007/s00705-023-05901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/31/2023] [Indexed: 10/18/2023]
Abstract
The complete genome sequence of a new member of the family Mitoviridae was obtained from walking iris (Trimezia northiana (Schneev.) Ravenna by high-throughput sequencing. This is the first putative mitovirus identified in a monocotyledonous plant. The new mitovirus was tentatively named "walking iris virus 1" (WIV1). The complete genome of WIV1 is 2,858 nt in length with a single ORF encoding a viral replicase (RdRp). The highest level of amino acid sequence identity was 45% to Beta vulgaris mitovirus 1. In the viral replicase, a conserved protein domain for mitovirus RNA-dependent RNA polymerase and six highly conserved motifs were detected, consistent with other members of the family Mitoviridae. Phylogenetic inferences placed WIV1 among members of the genus Duamitovirus (family Mitoviridae) in a monophyletic clade with other plant mitoviruses. Sequence comparison and phylogenetic analysis support the classification of WIV1 as a new member of the genus Duamitovirus (family Mitoviridae).
Collapse
Affiliation(s)
- Robert Alvarez-Quinto
- Department of Botany and Plant Pathology, Oregon State University, Cordley Hall, 2701 SW Campus Way, Corvallis, OR, 97333, USA
| | - Samuel Grinstead
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, MD, 20705, USA
| | - Richard Jones
- Genetic Improvement for Fruits & Vegetables Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Dimitre Mollov
- USDA-ARS, National Germplasm Resources Laboratory, Beltsville, MD, 20705, USA.
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR, 97330, USA.
| |
Collapse
|
8
|
Six Novel Mycoviruses Containing Positive Single-Stranded RNA and Double-Stranded RNA Genomes Co-Infect a Single Strain of the Rhizoctoniasolani AG-3 PT. Viruses 2022; 14:v14040813. [PMID: 35458543 PMCID: PMC9025235 DOI: 10.3390/v14040813] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
Six novel mycoviruses that collectively represent the mycovirome of Rhizoctonia solani anastomosis group (AG)-3 PT strain ZJ-2H, which causes potato black scurf, were identified through metatranscriptome sequencing and putatively designated as Rhizoctonia solani fusarivirus 4 [RsFV4, positive single-stranded RNA (+ssRNA)], Rhizoctonia solani fusarivirus 5 (RsFV5, +ssRNA), Rhizoctonia solani mitovirus 40 (RsMV40, +ssRNA), Rhizoctonia solani partitivirus 10 [RsPV10, double-stranded RNA (dsRNA)], Rhizoctonia solani partitivirus 11 (RsPV11, dsRNA), and Rhizoctonia solani RNA virus 11 (RsRV11, dsRNA). Whole genome sequences of RsFV4, RsMV40, RsPV10, RsPV11, and RsRV11, as well as a partial genome sequence of RsFV5, were obtained. The 3'- and 5'- untranslated regions of the five mycoviruses with complete genome sequences were folded into stable stem-loop or panhandle secondary structures. RsFV4 and RsFV5 are most closely related to Rhizoctonia solani fusarivirus 1 (RsFV1), however, the first open reading frame (ORF) of RsFV4 and RsFV5 encode a hypothetical protein that differs from the first ORF of RsFV1, which encodes a helicase. We confirmed that RsPV10 and RsPV11 assemble into the spherical virus particles (approximately 30 nm in diameter) that were extracted from strain ZJ-2H. This is the first report that +ssRNA and dsRNA viruses co-infect a single strain of R. solani AG-3 PT.
Collapse
|
9
|
Chen Z, Chen L, Anane RF, Wang Z, Gao L, Li S, Wen G, Yu D, Zhao M. Complete genome sequence of a novel mitovirus detected in Paris polyphylla var. yunnanensis. Arch Virol 2022; 167:645-650. [PMID: 35037104 DOI: 10.1007/s00705-021-05339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Paris mitovirus 1 (ParMV1) is a positive-sense RNA virus that was detected in diseased Paris polyphylla var. yunnanensis plants in Wenshan, Yunnan. The complete genome sequence of ParMV1 is 2,751 nucleotides in length, and the genome structure is typical of mitoviruses. The ParMV1 genome has a single open reading frame (ORF; nt 358-2,637) that encodes an RNA-dependent RNA polymerase (RdRp) with a predicted molecular mass of 86.42 kDa. ParMV1 contains six conserved motifs (Ι-VΙ) that are unique to mitoviruses. The 5' and 3' termini of the genome are predicted to have a stable secondary structure, with the reverse complementary sequence forming a panhandle structure. Comparative genome analysis revealed that the RdRp of ParMV1 shares 23.1-40.6% amino acid (aa) and 32.3-45.7% nucleotide (nt) sequence identity with those of other mitoviruses. Phylogenetic analysis based on RdRp aa sequences showed that ParMV1 clusters with mitoviruses and hence should be considered a new member of the genus Mitovirus in the family Mitoviridae. This is the first report of a novel mitovirus infecting Paris polyphylla var. yunnanensis.
Collapse
Affiliation(s)
- Zeli Chen
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Lu Chen
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Rex Frimpong Anane
- Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China.,State Key Laboratory for Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, 650223, Yunnan, China
| | - Zhe Wang
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Like Gao
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Shangyun Li
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Guosong Wen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China.,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China
| | - Daihong Yu
- Plant Protection and Quarantine Station of Yuanjiang County, Yuxi, 653300, Yunnan, China
| | - Mingfu Zhao
- Key Laboratory for Agricultural Biodiversity for Pest Management of China, Ministry of Education, Yunnan Agricultural University, No. 95, Jinhei Road, Panlong District, Kunming, 650201, Yunnan, China. .,Research & Development Center for Health Product, College of Agronomy and Biotechnology, Yunnan Agricultural University, 32 Jiaochang Donglu, Kunming, 650201, Yunnan, China.
| |
Collapse
|
10
|
Wang Q, Zou Q, Dai Z, Hong N, Wang G, Wang L. Four Novel Mycoviruses from the Hypovirulent Botrytis cinerea SZ-2-3y Isolate from Paris polyphylla: Molecular Characterisation and Mitoviral Sequence Transboundary Entry into Plants. Viruses 2022; 14:v14010151. [PMID: 35062353 PMCID: PMC8777694 DOI: 10.3390/v14010151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
A hypovirulent SZ-2-3y strain isolated from diseased Paris polyphylla was identified as Botrytis cinerea. Interestingly, SZ-2-3y was coinfected with a mitovirus, two botouliviruses, and a 3074 nt fusarivirus, designated Botrytis cinerea fusarivirus 8 (BcFV8); it shares an 87.2% sequence identity with the previously identified Botrytis cinerea fusarivirus 6 (BcFV6). The full-length 2945 nt genome sequence of the mitovirus, termed Botrytis cinerea mitovirus 10 (BcMV10), shares a 54% sequence identity with Fusarium boothii mitovirus 1 (FbMV1), and clusters with fungus mitoviruses, plant mitoviruses and plant mitochondria; hence BcMV10 is a new Mitoviridae member. The full-length 2759 nt and 2812 nt genome sequences of the other two botouliviruses, named Botrytis cinerea botoulivirus 18 and 19 (BcBoV18 and 19), share a 40% amino acid sequence identity with RNA-dependent RNA polymerase protein (RdRp), and these are new members of the Botoulivirus genus of Botourmiaviridae. Horizontal transmission analysis showed that BcBoV18, BcBoV19 and BcFV8 are not related to hypovirulence, suggesting that BcMV10 may induce hypovirulence. Intriguingly, a partial BcMV10 sequence was detected in cucumber plants inoculated with SZ-2-3y mycelium or pXT1/BcMV10 agrobacterium. In conclusion, we identified a hypovirulent SZ-2-3y fungal strain from P. polyphylla, coinfected with four novel mycoviruses that could serve as potential biocontrol agents. Our findings provide evidence of cross-kingdom mycoviral sequence transmission.
Collapse
Affiliation(s)
- Qiong Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, College of Plant Protection, Hainan University, Ministry of Education, Haikou 570100, China;
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.W.); (Q.Z.); (N.H.); (G.W.)
- Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-8728-2130; Fax: +86-27-8738-4670
| |
Collapse
|
11
|
Mizutani Y, Chiba Y, Urayama SI, Tomaru Y, Hagiwara D, Kimura K. Detection and Characterization of RNA Viruses in Red Macroalgae (Bangiaceae) and Their Food Product (Nori Sheets). Microbes Environ 2022; 37:ME21084. [PMID: 35691910 PMCID: PMC9763034 DOI: 10.1264/jsme2.me21084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/30/2022] [Indexed: 01/05/2023] Open
Abstract
Persistent RNA viruses, which have been suggested to form symbiotic relationships with their hosts, have been reported to occur in eukaryotes, such as plants, fungi, and algae. Based on empirical findings, these viruses may also be present in commercially cultivated macroalgae. Accordingly, the present study aimed to screen red macroalgae (family Bangiaceae conchocelis and Neopyropia yezoensis thallus) and processed nori sheets (N. yezoensis) for persistent RNA viruses using fragmented and primer-ligated dsRNA sequencing (FLDS) and targeted reverse transcription PCR (RT-PCR). A Totiviridae-related virus was detected in the conchocelis of Neoporphyra haitanensis, which is widely cultivated in China, while two Mitoviridae-related viruses were found in several conchocelis samples and all N. yezoensis-derived samples (thallus and nori sheets). Mitoviridae-related viruses in N. yezoensis are widespread among cultivated species and not expected to inhibit host growth. Mitoviridae-related viruses were also detected in several phylogenetically distant species in the family Bangiaceae, which suggests that these viruses persisted and coexist in the family Bangiaceae over a long period of time. The present study is the first to report persistent RNA viruses in nori sheets and their raw materials.
Collapse
Affiliation(s)
- Yukino Mizutani
- Analytical Research Center for Experimental Sciences, Saga University, Honjo-machi 1, Saga 840–8502, Japan
| | - Yuto Chiba
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki, 305–8577, Japan
| | - Syun-ichi Urayama
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki, 305–8577, Japan
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 2–17–5 Maruishi, Hatsukaichi, Hiroshima 739–0452, Japan
| | - Daisuke Hagiwara
- Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), Department of Life and Environmental Sciences, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki, 305–8577, Japan
| | - Kei Kimura
- Faculty of Agriculture, Saga University, Honjo-machi 1, Saga 840–8502, Japan
| |
Collapse
|
12
|
Shafik K, Umer M, You H, Aboushedida H, Wang Z, Ni D, Xu W. Characterization of a Novel Mitovirus Infecting Melanconiella theae Isolated From Tea Plants. Front Microbiol 2021; 12:757556. [PMID: 34867881 PMCID: PMC8635788 DOI: 10.3389/fmicb.2021.757556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
A dsRNA segment was identified in the fungus Melanconiella theae isolated from tea plants. The complete dsRNA sequence, determined by random cloning together with RACE protocol, is 2,461 bp in length with an AU-rich content (62.37%) and comprises a single ORF of 2,265-nucleotides encoding an RNA-dependent RNA-polymerase (RdRp, 754 amino acids in size). The terminus sequences can fold into predicted stable stem-loop structures. A BLASTX and phylogenetic analysis revealed the dsRNA genome shows similarities with the RdRp sequences of mitoviruses, with the highest identity of 48% with those of grapevine-associated mitovirus 20 and Colletotrichum fructicola mitovirus 1. Our results reveal a novel member, tentatively named Melanconiella theae mitovirus 1 (MtMV1), belongs to the family Mitoviridae. MtMV1 is capsidless as examined by transmission electron microscope, efficiently transmitted through conidia as 100 conidium-generated colonies were analyzed, and easily eliminated by hyphal tipping method combined with green-leaf tea powder. MtMV1 has a genomic sequence obviously divergent from those of most members in the family Mitoviridae and some unique characteristics unreported in known members. This is the first report of a mycovirus infecting Melanconiella fungi to date.
Collapse
Affiliation(s)
- Karim Shafik
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Umer
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huafeng You
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hamdy Aboushedida
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenhua Wang
- Technology Center of Wuhan Customs District, Wuhan, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Wenxing Xu
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Li Y, Sun Y, Yu L, Chen W, Liu H, Yin L, Guang Y, Yang G, Mo X. Complete genome sequence of a novel mitovirus from binucleate Rhizoctonia AG-K strain FAS2909W. Arch Virol 2021; 167:271-276. [PMID: 34773510 DOI: 10.1007/s00705-021-05277-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Abstract
The full-length AU-rich (63.14%) 2,794-nucleotide sequence of Rhizoctonia mitovirus K1 (RMV-K1) isolated from the binucleate AG-K strain FAS2909W was determined. The positive strand of RMV-K1 contains a large open reading frame (ORF) when the fungal mitochondrial genetic code is used. This ORF was predicted to encode an RdRp protein exhibiting the highest sequence identity (41.77%) to Rhizoctonia solani mitovirus 30. Phylogenetic analysis showed that RMV-K1 is a novel member of the genus Mitovirus, family Mitoviridae.
Collapse
Affiliation(s)
- Yanqiong Li
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China.,Yunnan Agricultural University, Kunming, 650201, Yunnan, China.,Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Yang Sun
- Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Lei Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Wurong Chen
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - He Liu
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Lifang Yin
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Yingxia Guang
- College of Agriculture and Life Sciences, Kunming University, Kunming, 650214, Yunnan, China
| | - Genhua Yang
- Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| | - Xiaohan Mo
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China.
| |
Collapse
|
14
|
Wang Z, Neupane A, Feng J, Pedersen C, Lee Marzano SY. Direct Metatranscriptomic Survey of the Sunflower Microbiome and Virome. Viruses 2021; 13:v13091867. [PMID: 34578448 PMCID: PMC8473204 DOI: 10.3390/v13091867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Sunflowers (Helianthus annuus L.) are susceptible to multiple diseases in field production. In this study, we collected diseased sunflower leaves in fields located in South Dakota, USA, for virome investigation. The leaves showed visible symptoms on the foliage, indicating phomopsis and rust infections. To identify the viruses potentially associated with the disease diagnosed, symptomatic leaves were obtained from diseased plants. Total RNA was extracted corresponding to each disease diagnosed to generate libraries for paired-end high throughput sequencing. Short sequencing reads were assembled de novo and the contigs with similarities to viruses were identified by aligning against a custom protein database. We report the discovery of two novel mitoviruses, four novel partitiviruses, one novel victorivirus, and nine novel totiviruses based on similarities to RNA-dependent RNA polymerases and capsid proteins. Contigs similar to bean yellow mosaic virus and Sclerotinia sclerotiorum hypovirulence-associated DNA virus were also detected. To the best of our knowledge, this is the first report of direct metatranscriptomics discovery of viruses associated with fungal infections of sunflowers bypassing culturing. These newly discovered viruses represent a natural genetic resource from which we can further develop potential biopesticide to control sunflower diseases.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (Z.W.); (A.N.); (C.P.)
| | - Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (Z.W.); (A.N.); (C.P.)
| | - Jiuhuan Feng
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA;
| | - Connor Pedersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (Z.W.); (A.N.); (C.P.)
- United States Department of Agriculture-Agricultural Research Service, Toledo, OH 43606, USA
| | - Shin-Yi Lee Marzano
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (Z.W.); (A.N.); (C.P.)
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA;
- United States Department of Agriculture-Agricultural Research Service, Toledo, OH 43606, USA
- Correspondence: ; Tel.: +1-419-530-5053
| |
Collapse
|
15
|
Chen F, Pu Z, Ni H, Wang Y, Yan B. Multiple mycoviruses identified in Pestalotiopsis spp. from Chinese bayberry. Virol J 2021; 18:43. [PMID: 33622359 PMCID: PMC7903649 DOI: 10.1186/s12985-021-01513-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/10/2021] [Indexed: 12/02/2022] Open
Abstract
Background Chinese bayberry (Myrica rubra) is a subtropical fruit crop widely grown in southern China. Twig dieback is a disease of Chinese bayberry caused by Pestalotiopsis spp. and results in great economic losses to Chinese bayberry production. A virus survey was conducted in the population of Pestalotiopsis spp. infecting M. rubra in China. We explored the viral diversity in Pestalotiopsis spp., which may provide resources for further development as biocontrol agents of twig dieback. Methods Strains of Pestalotiopsis spp. were isolated from diseased twigs of M. rubra, and cultured on potato dextrose agar for RNA extraction. The total RNA of each strain was extracted, mixed, and used for RNA sequencing. The resulting sequences were deduplicated, annotated, and then used for phylogenetic analysis. Results Seven novel viruses were characterized from 59 isolates of M. rubra collected from 14 localities in China. Based on the phylogenetic analysis, these viruses were classified into five viral families/orders, Botourmiaviridae, Mitoviridae, Partitiviridae, Tymovirales and Bunyavirales, and one virus, Pestalotiopsis negative-stranded RNA virus 1, which likely belongs to a new viral family. Conclusions Metatranscriptomics analysis showed the presence of various mycoviruses in Pestalotiopsis spp. isolated from M. rubra in China. The genomes of eight putative viruses were identified, seven of which were nearly full-length. Some of these viruses of Pestalotiopsis spp. may have the potential for the biological control of twig dieback of M. rubra. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01513-3.
Collapse
Affiliation(s)
- Fangyong Chen
- Citrus Research Institute of Zhejiang Province, Taizhou, 318026, China.
| | - Zhanxu Pu
- Citrus Research Institute of Zhejiang Province, Taizhou, 318026, China
| | - Haizhi Ni
- Citrus Research Institute of Zhejiang Province, Taizhou, 318026, China
| | - Yin Wang
- Citrus Research Institute of Zhejiang Province, Taizhou, 318026, China
| | - Bangguo Yan
- Citrus Research Institute of Zhejiang Province, Taizhou, 318026, China
| |
Collapse
|
16
|
Liu Y, Zhang L, Esmael A, Duan J, Bian X, Jia J, Xie J, Cheng J, Fu Y, Jiang D, Lin Y. Four Novel Botourmiaviruses Co-Infecting an Isolate of the Rice Blast Fungus Magnaporthe oryzae. Viruses 2020; 12:1383. [PMID: 33287110 PMCID: PMC7761653 DOI: 10.3390/v12121383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
Via virome sequencing, six viruses were detected from Magnaporthe oryzae strains YC81-2, including one virus in the family Tombusviridae, one virus in the family Narnaviridae and four viruses in the family Botourmiaviridae. Since the RNA-dependent RNA polymerase (RdRp) of one botourmiavirus show the highest identity (79%) with Magnaporthe oryzae ourmia-like virus 1 (MOLV1), the virus that was grouped into the genus Magoulivirus was designated as Magnaporthe oryzae botourmiavirus 2 (MOBV2). The three other novel botourmiaviruses were selected for further study. The complete nucleotide sequences of the three botourmiaviruses were determined. Sequence analysis showed that virus 1, virus 2, and virus 3 were 2598, 2385, and 2326 nts in length, respectively. The variable 3' untranslated region (3'-UTR) and 5'-UTR of each virus could be folded into a stable stem-loop secondary structure. Each virus consisted of a unique ORF encoding a putative RdRp. The putative proteins with a conserved GDD motif of RdRp showed the highest sequence similarity to RdRps of viruses in the family Botourmiaviridae. Phylogenetic analysis demonstrated that these viruses were three distinct novel botourmiaviruses, clustered into the Botourmiaviridae family but not belonging to any known genera of this family. Thus, virus 1, virus 2, and virus 3 were designated as Magnaporthe oryzae botourmiavirus 5, 6, and 7 (MOBV5, MOBV6, and MOBV7), respectively. Our results suggest that four distinct botourmiaviruses, MOBV2, MOBV5, MOBV6, and MOBV7, co-infect a single strain of Magnaporthe oryzae, and MOBV5, MOBV6, and MOBV7 are members of three unclassified genera in the family Botourmiaviridae.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (A.E.); (J.J.); (J.X.); (D.J.)
| | - Liyan Zhang
- Institute of Biotechnology, Heilongjiang Academy of Agricultural Sciences, Harbin 150001, China;
| | - Ahmed Esmael
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (A.E.); (J.J.); (J.X.); (D.J.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
- Botany and Microbiology Department, Faculty of Science, Benha University, Qalubiya Governorate, Benha 13511, Egypt
| | - Jie Duan
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Xuefeng Bian
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (A.E.); (J.J.); (J.X.); (D.J.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (A.E.); (J.J.); (J.X.); (D.J.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Jiasen Cheng
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (A.E.); (J.J.); (J.X.); (D.J.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (X.B.); (J.C.); (Y.F.)
| |
Collapse
|
17
|
Torres-Trenas A, Pérez-Artés E. Characterization and Incidence of the First Member of the Genus Mitovirus Identified in the Phytopathogenic Species Fusarium oxysporum. Viruses 2020; 12:v12030279. [PMID: 32138251 PMCID: PMC7150889 DOI: 10.3390/v12030279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
A novel mycovirus named Fusarium oxysporum f. sp. dianthi mitovirus 1 (FodMV1) has been identified infecting a strain of Fusarium oxysporum f. sp. dianthi from Colombia. The genome of FodMV1 is 2313 nt long, and comprises a 172-nt 5’-UTR, a 2025-nt single ORF encoding an RdRp of 675 amino acid residues, and a 113-nt 3´-UTR. Homology BlastX searches identifies FodMV1 as a novel member of the genus Mitovirus in the family Narnaviridae. As the rest of mitoviruses, the genome of FodMV1 presents a high percentage of A+U (58.8%) and contains a number of UGA codons that encode the amino acid tryptophan rather than acting as stop codons as in the universal genetic code. Another common feature with other mitoviruses is that the 5′- and 3′-UTR regions of FodMV1 can be folded into potentially stable stem-loop structures. Result from phylogenetic analysis place FodMV1 in a different clade than the rest of mitoviruses described in other Fusarium spp. Incidence of FodMV1-infections in the collection of F. oxysporum f. sp. dianthi isolates analyzed is relatively high. Of particular interest is the fact that FodMV1 has been detected infecting isolates from two geographical areas as distant as Spain and Colombia.
Collapse
|
18
|
A Novel RNA Virus Related to Sobemoviruses Confers Hypovirulence on the Phytopathogenic Fungus Sclerotinia sclerotiorum. Viruses 2019; 11:v11080759. [PMID: 31426425 PMCID: PMC6722724 DOI: 10.3390/v11080759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023] Open
Abstract
Infection by diverse mycoviruses is a common phenomenon in Sclerotinia sclerotiorum. In this study, the full genome of a single-stranded RNA mycovirus, tentatively named Hubei sclerotinia RNA virus 1 (HuSRV1), was determined in the hypovirulent strain 277 of S. sclerotiorum. The HuSRV1 genome is 4492 nucleotides (nt) long and lacks a poly (A) tail at the 3ˊ- terminus. Sequence analyses showed that the HuSRV1 genome contains four putative open reading frames (ORFs). ORF1a was presumed to encode a protein with a conserved protease domain and a transmembrane domain. This protein is 27% identical to the P2a protein encoded by the subterranean clover mottle virus. ORF1b encodes a protein containing a conserved RNA-dependent RNA polymerase (RdRp) domain, which may be translated into a fusion protein by a -1 ribosome frameshift. This protein is 45.9% identical to P2b encoded by the sowbane mosaic virus. ORF2 was found to encode a putative coat protein, which shares 23% identical to the coat protein encoded by the olive mild mosaic virus. ORF3 was presumed to encode a putative protein with an unknown function. Evolutionary relation analyses indicated that HuSRV1 is related to members within Sobemovirus, but forms a unique phylogenetic branch, suggesting that HuSRV1 represents a new member within Solemoviridae. HuSRV1 virions, approximately 30 nm in diameter, were purified from strain 277. The purified virions were successfully introduced into virulent strain Ep-1PNA367, resulting in a new hypovirulent strain, which confirmed that HuSRV1 confers hypovirulence on S. sclerotiorum.
Collapse
|
19
|
Vainio EJ. Mitoviruses in the conifer root rot pathogens Heterobasidion annosum and H. parviporum. Virus Res 2019; 271:197681. [PMID: 31394105 DOI: 10.1016/j.virusres.2019.197681] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Abstract
Mitoviral infections are highly common among fungi, but so far only one mitovirus has been described in Heterobasidion spp. conifer pathogens. Here, the occurrence of further mitoviruses was investigated using a previously published RNA-Seq dataset for de novo contig assembly. This allowed the identification of two additional mitovirus strains designated as Heterobasidion mitovirus 2 (HetMV2) and HetMV3 with genome lengths of ca. 2.9 and 5.0 kb. Furthermore, the occurrence of similar viruses was screened among a collection of Heterobasidion isolates using RT-PCR. Mitoviruses were detected in six more fungal isolates and two different host species, H. annosum and H. parviporum.
Collapse
Affiliation(s)
- Eeva J Vainio
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland.
| |
Collapse
|
20
|
Three ourmia-like viruses and their associated RNAs in Pyricularia oryzae. Virology 2019; 534:25-35. [DOI: 10.1016/j.virol.2019.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 11/18/2022]
|
21
|
Nibert ML, Debat HJ, Manny AR, Grigoriev IV, De Fine Licht HH. Mitovirus and Mitochondrial Coding Sequences from Basal Fungus Entomophthora muscae. Viruses 2019; 11:E351. [PMID: 30999558 PMCID: PMC6520771 DOI: 10.3390/v11040351] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023] Open
Abstract
Fungi constituting the Entomophthora muscae species complex (members of subphylum Entomophthoromycotina, phylum Zoopagamycota) commonly kill their insect hosts and manipulate host behaviors in the process. In this study, we made use of public transcriptome data to identify and characterize eight new species of mitoviruses associated with several different E. muscae isolates. Mitoviruses are simple RNA viruses that replicate in host mitochondria and are frequently found in more phylogenetically apical fungi (members of subphylum Glomeromyoctina, phylum Mucoromycota, phylum Basidiomycota and phylum Ascomycota) as well as in plants. E. muscae is the first fungus from phylum Zoopagomycota, and thereby the most phylogenetically basal fungus, found to harbor mitoviruses to date. Multiple UGA (Trp) codons are found not only in each of the new mitovirus sequences from E. muscae but also in mitochondrial core-gene coding sequences newly assembled from E. muscae transcriptome data, suggesting that UGA (Trp) is not a rarely used codon in the mitochondria of this fungus. The presence of mitoviruses in these basal fungi has possible implications for the evolution of these viruses.
Collapse
Affiliation(s)
- Max L Nibert
- Department of Microbiology and Program in Virology, Harvard Medical School, Boston, MA 02115, USA.
| | - Humberto J Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba X5020ICA, Argentina.
| | - Austin R Manny
- Department of Microbiology and Program in Virology, Harvard Medical School, Boston, MA 02115, USA.
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA.
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Henrik H De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg, Denmark.
| |
Collapse
|
22
|
Nerva L, Vigani G, Di Silvestre D, Ciuffo M, Forgia M, Chitarra W, Turina M. Biological and Molecular Characterization of Chenopodium quinoa Mitovirus 1 Reveals a Distinct Small RNA Response Compared to Those of Cytoplasmic RNA Viruses. J Virol 2019; 93:e01998-18. [PMID: 30651361 PMCID: PMC6430534 DOI: 10.1128/jvi.01998-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
Indirect evidence of mitochondrial viruses in plants comes from discovery of genomic fragments integrated into the nuclear and mitochondrial DNA of a number of plant species. Here, we report the existence of replicating mitochondrial virus in plants: from transcriptome sequencing (RNA-seq) data of infected Chenopodium quinoa, a plant species commonly used as a test plant in virus host range experiments, among other virus contigs, we could assemble a 2.7-kb contig that had highest similarity to mitoviruses found in plant genomes. Northern blot analyses confirmed the existence of plus- and minus-strand RNA corresponding to the mitovirus genome. No DNA corresponding to the genomic RNA was detected, excluding the endogenization of such virus. We have tested a number of C. quinoa accessions, and the virus was present in a number of commercial varieties but absent from a large collection of Bolivian and Peruvian accessions. The virus could not be transmitted mechanically or by grafting, but it is transmitted vertically through seeds at a 100% rate. Small RNA analysis of a C. quinoa line carrying the mitovirus and infected by alfalfa mosaic virus showed that the typical antiviral silencing response active against cytoplasmic viruses (21- to 22-nucleotide [nt] vsRNA peaks) is not active against CqMV1, since in this specific case the longest accumulating vsRNA length is 16 nt, which is the same as that corresponding to RNA from mitochondrial genes. This is evidence of a distinct viral RNA degradation mechanism active inside mitochondria that also may have an antiviral effect.IMPORTANCE This paper reports the first biological characterization of a bona fide plant mitovirus in an important crop, Chenopodium quinoa, providing data supporting that mitoviruses have the typical features of cryptic (persistent) plant viruses. We, for the first time, demonstrate that plant mitoviruses are associated with mitochondria in plants. In contrast to fungal mitoviruses, plant mitoviruses are not substantially affected by the antiviral silencing pathway, and the most abundant mitovirus small RNA length is 16 nt.
Collapse
Affiliation(s)
- L Nerva
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
| | - G Vigani
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - D Di Silvestre
- Institute for Biomedical Technology, CNR, Segrate, Milan, Italy
| | - M Ciuffo
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
| | - M Forgia
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - W Chitarra
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
- Council for Agricultural Research and Economics-Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
| | - M Turina
- Institute for Sustainable Plant Protection, CNR, Turin, Italy
| |
Collapse
|
23
|
Investigation of Host Range of and Host Defense against a Mitochondrially Replicating Mitovirus. J Virol 2019; 93:JVI.01503-18. [PMID: 30626664 DOI: 10.1128/jvi.01503-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/18/2018] [Indexed: 01/19/2023] Open
Abstract
Mitoviruses (genus Mitovirus, family Narnaviridae) are mitochondrially replicating viruses that have the simplest positive-sense RNA genomes of 2.2 to 4.4 kb with a single open reading frame (ORF) encoding an RNA-dependent RNA polymerase. Cryphonectria parasitica mitovirus 1 (CpMV1) from U.S. strain NB631 of the chestnut blight fungus, Cryphonectria parasitica, was the first virus identified as a mitochondrially replicating virus. Despite subsequent discovery of many other mitoviruses from diverse fungi, no great advances in understanding mitovirus biology have emerged, partly because of the lack of inoculation methods. Here we developed a protoplast fusion-based protocol for horizontal transmission of CpMV1 that entailed fusion of recipient and donor protoplasts, hyphal anastomosis, and single-conidium isolation. This method allowed expansion of the host range to many other C. parasitica strains. Species within and outside the family Cryphonectriaceae, Cryphonectria radicalis and Valsa ceratosperma, also supported the replication of CpMV1 at a level comparable to that in the natural host. No stable maintenance of CpMV1 was observed in Helminthosporium victoriae PCR-based haplotyping of virus-infected fungal strains confirmed the recipient mitochondrial genetic background. Phenotypic comparison between CpMV1-free and -infected isogenic strains revealed no overt effects of the virus. Taking advantage of the infectivity to the standard strain C. parasitica EP155, accumulation levels were compared among antiviral RNA silencing-proficient and -deficient strains in the EP155 background. Comparable accumulation levels were observed among these strains, suggesting the avoidance of antiviral RNA silencing by CpMV1, which is consistent with its mitochondrial replication. Collectively, the results of study provide a foundation to further explore the biology of mitoviruses.IMPORTANCE Capsidless mitoviruses, which are ubiquitously detected in filamentous fungi, have the simplest RNA genomes of 2.2 to 4.4 kb, encoding only RNA-dependent RNA polymerase. Despite their simple genomes, detailed biological characterization of mitoviruses has been hampered by their mitochondrial location within the cell, posing challenges to their experimental introduction and study. Here we developed a protoplast fusion-based protocol for horizontal transfer of the prototype mitovirus, Cryphonectria parasitica mitovirus 1 (CpMV1), which was isolated from strain NB631 of the chestnut blight fungus (Cryphonectria parasitica), a model filamentous fungus for studying virus-host interactions. The host range of CpMV1 has been expanded to many different strains of C. parasitica and different fungal species within and outside the Cryphonectriaceae. Comparison of CpMV1 accumulation among various RNA silencing-deficient and -competent strains showed clearly that the virus was unaffected by RNA silencing. This study provides a solid foundation for further exploration of mitovirus-host interactions.
Collapse
|
24
|
Pinard D, Myburg AA, Mizrachi E. The plastid and mitochondrial genomes of Eucalyptus grandis. BMC Genomics 2019; 20:132. [PMID: 30760198 PMCID: PMC6373115 DOI: 10.1186/s12864-019-5444-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Land plant organellar genomes have significant impact on metabolism and adaptation, and as such, accurate assembly and annotation of plant organellar genomes is an important tool in understanding the evolutionary history and interactions between these genomes. Intracellular DNA transfer is ongoing between the nuclear and organellar genomes, and can lead to significant genomic variation between, and within, species that impacts downstream analysis of genomes and transcriptomes. RESULTS In order to facilitate further studies of cytonuclear interactions in Eucalyptus, we report an updated annotation of the E. grandis plastid genome, and the second sequenced and annotated mitochondrial genome of the Myrtales, that of E. grandis. The 478,813 bp mitochondrial genome shows the conserved protein coding regions and gene order rearrangements typical of land plants. There have been widespread insertions of organellar DNA into the E. grandis nuclear genome, which span 141 annotated nuclear genes. Further, we identify predicted editing sites to allow for the discrimination of RNA-sequencing reads between nuclear and organellar gene copies, finding that nuclear copies of organellar genes are not expressed in E. grandis. CONCLUSIONS The implications of organellar DNA transfer to the nucleus are often ignored, despite the insight they can give into the ongoing evolution of plant genomes, and the problems they can cause in many applications of genomics. Future comparisons of the transcription and regulation of organellar genes between Eucalyptus genotypes may provide insight to the cytonuclear interactions that impact economically important traits in this widely grown lignocellulosic crop species.
Collapse
Affiliation(s)
- Desre Pinard
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028 South Africa
| |
Collapse
|
25
|
Hamid MR, Xie J, Wu S, Maria SK, Zheng D, Assane Hamidou A, Wang Q, Cheng J, Fu Y, Jiang D. A Novel Deltaflexivirus that Infects the Plant Fungal Pathogen, Sclerotinia sclerotiorum, Can Be Transmitted Among Host Vegetative Incompatible Strains. Viruses 2018; 10:295. [PMID: 29857477 PMCID: PMC6024712 DOI: 10.3390/v10060295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 11/17/2022] Open
Abstract
Various mycoviruses have been isolated from Sclerotinia sclerotiorum. Here, we identified a viral RNA sequence contig, representing a novel virus, Sclerotinia sclerotiorum deltaflexivirus 2 (SsDFV2), from an RNA_Seq database. We found that SsDFV2 was harbored in the hypovirulent strain, 228, which grew slowly on potato dextrose agar, produced a few sclerotia, and could not induce typical lesions on detached rapeseed (Brassica napus) leaves. Strain 228 was also infected by Botrytis porri RNA Virus 1 (BpRV1), a virus originally isolated from Botrytis porri. The genome of SsDFV2 comprised 6711 nucleotides, excluding the poly (A) tail, and contained a single large predicted open reading frame encoding a putative viral RNA replicase. Phylogenetic analysis demonstrated that SsDFV2 is closely related to viruses in the family Deltaflexiviridae; however, it also differs significantly from members of this family, suggesting that it may represent a new species. Further we determined that SsDFV2 could be efficiently transmitted to host vegetative incompatible individuals by dual culture. To our best knowledge, this is the first report that a (+) ssRNA mycovirus can overcome the transmission limitations of the vegetative incompatibility system, a phenomenon that may facilitate the potential use of mycoviruses for the control of crop fungal diseases.
Collapse
Affiliation(s)
- Muhammad Rizwan Hamid
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiatao Xie
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Songsong Wu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shahzeen Kanwal Maria
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dan Zheng
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Abdoulaye Assane Hamidou
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qihua Wang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiasen Cheng
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yanping Fu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Daohong Jiang
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
26
|
Nibert ML, Vong M, Fugate KK, Debat HJ. Evidence for contemporary plant mitoviruses. Virology 2018; 518:14-24. [PMID: 29438872 PMCID: PMC6668999 DOI: 10.1016/j.virol.2018.02.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
Abstract
Mitoviruses have small RNA(+) genomes, replicate in mitochondria, and have been shown to infect only fungi to date. For this report, sequences that appear to represent nearly complete plant mitovirus genomes were recovered from publicly available transcriptome data. Twenty of the refined sequences, 2684-2898 nt long and derived from 10 different species of land plants, appear to encompass the complete coding regions of contemporary plant mitoviruses, which furthermore constitute a monophyletic cluster within genus Mitovirus. Complete coding sequences of several of these viruses were recovered from multiple transcriptome (but not genome) studies of the same plant species and also from multiple plant tissues. Crop plants among implicated hosts include beet and hemp. Other new results suggest that such genuine plant mitoviruses were immediate ancestors to endogenized mitovirus elements now widespread in land plant genomes. Whether these mitoviruses are wholly cryptic with regard to plant health remains to be investigated.
Collapse
Affiliation(s)
- Max L Nibert
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Minh Vong
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Karen K Fugate
- Sugarbeet and Potato Research, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Red River Valley Agricultural Research Center, Fargo, ND 58102, USA
| | - Humberto J Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), X5020ICA, Córdoba, Argentina
| |
Collapse
|
27
|
Abstract
Plant-associated fungi are infected by viruses at the incidence rates from a few % to over 90%. Multiple viruses often coinfect fungal hosts, and occasionally alter their phenotypes, but most of the infections are asymptomatic. Phenotypic alterations are grouped into two types: harmful or beneficial to the host fungi. Harmful interactions between viruses and hosts include hypovirulence and/or debilitation that are documented in a number of phytopathogenic fungi, exemplified by the chestnut blight, white root rot, and rapeseed rot fungi. Beneficial interactions are observed in a limited number of plant endophytic and pathogenic fungi where heat tolerance and virulence are enhanced, respectively. Coinfections of fungi provided a platform for discoveries of interesting virus/virus interactions that include synergistic, as in the case for those in plants, and unique antagonistic and mutualistic interactions between unrelated RNA viruses. Also discussed here are coinfection-induced genome rearrangements and frequently observed coinfections by the simplest positive-strand RNA virus, the mitoviruses.
Collapse
Affiliation(s)
- Bradley I Hillman
- Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, United States.
| | - Aulia Annisa
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Japan.
| |
Collapse
|
28
|
Mitovirus UGA(Trp) codon usage parallels that of host mitochondria. Virology 2017; 507:96-100. [PMID: 28431284 DOI: 10.1016/j.virol.2017.04.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 02/02/2023]
Abstract
Mitoviruses replicate in mitochondria of their host fungi. They have small RNA genomes that encompass a single ORF encoding the viral RdRp. Since UGA codons encode Trp in fungal mitochondria, the RdRp ORF of a typical mitovirus includes multiple UGA codons. In some mitoviruses, however, the ORF has no such codons, suggesting that these particular viruses may be under selective pressure to exclude them. In this report, new evidence is presented that host fungi whose mitoviruses have no or few UGA codons are distinctive in also having no or few UGA codons in their core mitochondrial genes. Thus, the relative exclusion of such codons in a subset of mitoviruses appears to reflect most fundamentally that UGA(Trp) is a rare mitochondrial codon in their particular hosts. The fact that UGA(Trp) is a rare mitochondrial codon in many fungi appears not to have been widely discussed to date.
Collapse
|
29
|
Novel mitoviruses in Rhizoctonia solani AG-3PT infecting potato. Fungal Biol 2016; 120:338-50. [DOI: 10.1016/j.funbio.2015.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 11/23/2022]
|
30
|
Bruenn JA, Warner BE, Yerramsetty P. Widespread mitovirus sequences in plant genomes. PeerJ 2015; 3:e876. [PMID: 25870770 PMCID: PMC4393810 DOI: 10.7717/peerj.876] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/13/2015] [Indexed: 11/25/2022] Open
Abstract
The exploration of the evolution of RNA viruses has been aided recently by the discovery of copies of fragments or complete genomes of non-retroviral RNA viruses (Non-retroviral Endogenous RNA Viral Elements, or NERVEs) in many eukaryotic nuclear genomes. Among the most prominent NERVEs are partial copies of the RNA dependent RNA polymerase (RdRP) of the mitoviruses in plant mitochondrial genomes. Mitoviruses are in the family Narnaviridae, which are the simplest viruses, encoding only a single protein (the RdRP) in their unencapsidated viral plus strand. Narnaviruses are known only in fungi, and the origin of plant mitochondrial mitovirus NERVEs appears to be horizontal transfer from plant pathogenic fungi. At least one mitochondrial mitovirus NERVE, but not its nuclear copy, is expressed.
Collapse
Affiliation(s)
- Jeremy A Bruenn
- Department of Biological Sciences, State University of New York at Buffalo , Buffalo, NY , USA
| | - Benjamin E Warner
- Department of Biological Sciences, State University of New York at Buffalo , Buffalo, NY , USA
| | - Pradeep Yerramsetty
- Department of Biological Sciences, State University of New York at Buffalo , Buffalo, NY , USA
| |
Collapse
|
31
|
Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol Mol Biol Rev 2015; 78:278-303. [PMID: 24847023 DOI: 10.1128/mmbr.00049-13] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus "self" that defines the identity of deep, ancient viral lineages. However, several other widespread viral "hallmark genes" encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host.
Collapse
|
32
|
Xu Z, Wu S, Liu L, Cheng J, Fu Y, Jiang D, Xie J. A mitovirus related to plant mitochondrial gene confers hypovirulence on the phytopathogenic fungus Sclerotinia sclerotiorum. Virus Res 2014; 197:127-36. [PMID: 25550075 DOI: 10.1016/j.virusres.2014.12.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 11/17/2022]
Abstract
A double-stranded RNA (dsRNA) segment was isolated from a hypovirulent strain, HC025, of Sclerotinia sclerotiorum. The complete nucleotide sequence of the dsRNA was determined to be 2530 bp in length. Using the fungal mitochondrial genetic code, the positive strand of the dsRNA was found to contain a single large open reading frame (ORF) with the characteristic conserved motifs of the RNA-dependent RNA polymerase (RdRp). BLAST analysis revealed that RdRp shares 74% sequence identity with Sclerotinia sclerotiorum mitovirus 1 (SsMV1/KL-1). The positive strand of the dsRNA could be folded into potentially stable stem-loop structures at both the 5' and 3' terminal sequences. Moreover, the 5' and 3' terminal sequences were inverted complementary sequences and formed a panhandle structure. These results reveal that this dsRNA segment represents the replicative form of a mitovirus that is a strain of SsMV1 from the genus Mitovirus in the family Narnaviridae and was tentatively designated as Sclerotinia sclerotiorum mitovirus 1 (SsMV1/HC025). Sequence comparison and phylogenetic analysis suggest that mitovirus RdRp gene was evolutionarily related to plant mitochondrial genome. Our results demonstrate that SsMV1/HC025 infection exerted obvious effects on host biological properties. Hypovirulence feature and SsMV1/HC025 could be co-transmitted from hypovirulent strains to other virulent strains via hyphal contact. Thus, SsMV1/HC025 related to plant mitochondrial gene confers hypovirulence on S. sclerotiorum.
Collapse
Affiliation(s)
- Zhiyong Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Songsong Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Lijiang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Jiasen Cheng
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Yanping Fu
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China; Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Jiatao Xie
- Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
33
|
Betat H, Long Y, Jackman JE, Mörl M. From end to end: tRNA editing at 5'- and 3'-terminal positions. Int J Mol Sci 2014; 15:23975-98. [PMID: 25535083 PMCID: PMC4284800 DOI: 10.3390/ijms151223975] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 01/29/2023] Open
Abstract
During maturation, tRNA molecules undergo a series of individual processing steps, ranging from exo- and endonucleolytic trimming reactions at their 5'- and 3'-ends, specific base modifications and intron removal to the addition of the conserved 3'-terminal CCA sequence. Especially in mitochondria, this plethora of processing steps is completed by various editing events, where base identities at internal positions are changed and/or nucleotides at 5'- and 3'-ends are replaced or incorporated. In this review, we will focus predominantly on the latter reactions, where a growing number of cases indicate that these editing events represent a rather frequent and widespread phenomenon. While the mechanistic basis for 5'- and 3'-end editing differs dramatically, both reactions represent an absolute requirement for generating a functional tRNA. Current in vivo and in vitro model systems support a scenario in which these highly specific maturation reactions might have evolved out of ancient promiscuous RNA polymerization or quality control systems.
Collapse
Affiliation(s)
- Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Yicheng Long
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, the Ohio State University, Columbus, OH 43210, USA.
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, the Ohio State University, Columbus, OH 43210, USA.
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany.
| |
Collapse
|
34
|
Detection and genetic characterisation of a novel mycovirus in Hymenoscyphus fraxineus, the causal agent of ash dieback. INFECTION GENETICS AND EVOLUTION 2014; 28:78-86. [DOI: 10.1016/j.meegid.2014.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/11/2022]
|
35
|
Chen H, Jin L, Jiang X, Yu Z, Duns GJ, Shao R, Xu W, Chen J. A novel mitovirus from Buergenerula spartinae infecting the invasive species Spartina alterniflora. Virol Sin 2014; 29:257-60. [PMID: 25160761 DOI: 10.1007/s12250-014-3470-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Huihui Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 211816, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen H, Jin L, Jiang X, Yu Z, Duns GJ, Shao R, Xu W, Chen J. A novel mitovirus from Buergenerula spartinae infecting the invasive species Spartina alterniflora. Virol Sin 2014. [PMID: 25116809 DOI: 10.1007/s12250-015-3470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Huihui Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 211816, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Molecular characterisation of novel mitoviruses associated with Sclerotinia sclerotiorum. Arch Virol 2014; 159:3157-60. [PMID: 25034670 DOI: 10.1007/s00705-014-2171-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
Abstract
Seven putative mitoviral genomes, representing four species from three Sclerotinia sclerotiorum isolates, were fully sequenced. The genome lengths ranged from 2438 to 2815 nucleotides. The RNA-dependent RNA polymerase (RdRp) of one genome shared high amino acid (aa) sequence identity (98.5 %) with the previously described Sclerotinia sclerotiorum mitovirus 2 (SsMV2/NZ1) and was provisionally assigned the name SsMV2/14563. The RdRps of three of the genomes with closest aa sequence identity of 78.8-79.3 % to Sclerotinia sclerotiorum mitovirus 1 (SsMV1/KL1) were provisionally considered to represent a new species, and the corresponding virus was named Sclerotinia sclerotiorum mitovirus 5 (SsMV5/11691, SsMV5/14563 and SsMV5/Lu471). The remaining two novel genomes, for which the viruses were provisionally named Sclerotinia sclerotiorum mitovirus 6 (SsMV6/14563 and SsMV6/Lu471) and Sclerotinia sclerotiorum mitovirus 7 (SsMV7/Lu471), showed closest aa sequence identities to Sclerotinia sclerotiorum mitovirus 3 (SsMV3/NZ1; 57.5-57.8 %) and Cryphonectria cubensis mitovirus 1a (CcMV1a; 32 %), respectively. The RdRp proteins of all seven genomes contained the conserved aa sequence motifs (I-IV) previously reported for mitoviruses, and their 5' and 3' untranslated regions (UTRs) have the potential to fold into stem-loop secondary structures.
Collapse
|
38
|
Tromas N, Zwart MP, Forment J, Elena SF. Shrinkage of genome size in a plant RNA virus upon transfer of an essential viral gene into the host genome. Genome Biol Evol 2014; 6:538-50. [PMID: 24558257 PMCID: PMC3971587 DOI: 10.1093/gbe/evu036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 11/12/2022] Open
Abstract
Nonretroviral integrated RNA viruses (NIRVs) are genes of nonretroviral RNA viruses found in the genomes of many eukaryotic organisms. NIRVs are thought to sometimes confer virus resistance, meaning that they could impact spread of the virus in the host population. However, a NIRV that is expressed may also impact the evolution of virus populations within host organisms. Here, we experimentally addressed the evolution of a virus in a host expressing a NIRV using Tobacco etch virus (TEV), a plant RNA virus, and transgenic tobacco plants expressing its replicase, NIb. We found that a virus missing the NIb gene, TEV-ΔNIb, which is incapable of autonomous replication in wild-type plants, had a higher fitness than the full-length TEV in the transgenic plants. Moreover, when the full-length TEV was evolved by serial passages in transgenic plants, we observed genomic deletions within NIb--and in some cases the adjacent cistrons--starting from the first passage. When we passaged TEV and TEV-ΔNIb in transgenic plants, we found mutations in proteolytic sites, but these only occurred in TEV-ΔNIb lineages, suggesting the adaptation of polyprotein processing to altered NIb expression. These results raise the possibility that NIRV expression can indeed induce the deletion of the corresponding genes in the viral genome, resulting in the formation of viruses that are replication defective in hosts that do not express the same NIRV. Moreover, virus genome evolution was contingent upon the deletion of the viral replicase, suggesting NIRV expression could also alter patterns of virus evolution.
Collapse
Affiliation(s)
- Nicolas Tromas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico
| |
Collapse
|
39
|
Negruk V. Mitochondrial Genome Sequence of the Legume Vicia faba. FRONTIERS IN PLANT SCIENCE 2013; 4:128. [PMID: 23675376 PMCID: PMC3646248 DOI: 10.3389/fpls.2013.00128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/19/2013] [Indexed: 05/26/2023]
Abstract
The number of plant mitochondrial genomes sequenced exceeds two dozen. However, for a detailed comparative study of different phylogenetic branches more plant mitochondrial genomes should be sequenced. This article presents sequencing data and comparative analysis of mitochondrial DNA (mtDNA) of the legume Vicia faba. The size of the V. faba circular mitochondrial master chromosome of cultivar Broad Windsor was estimated as 588,000 bp with a genome complexity of 387,745 bp and 52 conservative mitochondrial genes; 32 of them encoding proteins, 3 rRNA, and 17 tRNA genes. Six tRNA genes were highly homologous to chloroplast genome sequences. In addition to the 52 conservative genes, 114 unique open reading frames (ORFs) were found, 36 without significant homology to any known proteins and 29 with homology to the Medicago truncatula nuclear genome and to other plant mitochondrial ORFs, 49 ORFs were not homologous to M. truncatula but possessed sequences with significant homology to other plant mitochondrial or nuclear ORFs. In general, the unique ORFs revealed very low homology to known closely related legumes, but several sequence homologies were found between V. faba, Beta vulgaris, Nicotiana tabacum, Vitis vinifera, and even the monocots Oryza sativa and Zea mays. Most likely these ORFs arose independently during angiosperm evolution (Kubo and Mikami, 2007; Kubo and Newton, 2008). Computational analysis revealed in total about 45% of V. faba mtDNA sequence being homologous to the Medicago truncatula nuclear genome (more than to any sequenced plant mitochondrial genome), and 35% of this homology ranging from a few dozen to 12,806 bp are located on chromosome 1. Apparently, mitochondrial rrn5, rrn18, rps10, ATP synthase subunit alpha, cox2, and tRNA sequences are part of transcribed nuclear mosaic ORFs.
Collapse
|
40
|
Molecular characterization of three mitoviruses co-infecting a hypovirulent isolate of Sclerotinia sclerotiorum fungus. Virology 2013; 441:22-30. [PMID: 23541082 DOI: 10.1016/j.virol.2013.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/27/2012] [Accepted: 03/01/2013] [Indexed: 11/21/2022]
Abstract
Three double-stranded RNAs (dsRNAs) of 2438 nts (A), 2588 nts (B), and 2744 nts (C), from a single isolate of Sclerotinia sclerotiorum were sequenced. All three sequences showed similarity to known mitoviruses, consisting of a single open reading frame (ORF) with the characteristic conserved motifs of RNA-dependent RNA polymerase (RdRp). Mitochondrial malformations and reduced virulence and growth were associated with the presence of the dsRNAs. The terminal sequences of the (+) strand of the three dsRNAs could be folded into stem-loop structures and the inverted terminal complimentary sequences of dsRNA-A potentially form a panhandle structure. Sequence A showed 91.6% aa similarity to the previously described Sclerotinia sclerotiorum mitovirus 2 and was tentatively assigned the acronym SsMV2/NZ1. Sequences B and C showed only 16.4% similarity to each other and 15-48% aa similarity to the previously described mitoviruses and consequently appear to be new mitoviruses.
Collapse
|
41
|
Sequencing and annotation of the Ophiostoma ulmi genome. BMC Genomics 2013; 14:162. [PMID: 23496816 PMCID: PMC3618308 DOI: 10.1186/1471-2164-14-162] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/28/2013] [Indexed: 02/02/2023] Open
Abstract
Background The ascomycete fungus Ophiostoma ulmi was responsible for the initial pandemic of the massively destructive Dutch elm disease in Europe and North America in early 1910. Dutch elm disease has ravaged the elm tree population globally and is a major threat to the remaining elm population. O. ulmi is also associated with valuable biomaterials applications. It was recently discovered that proteins from O. ulmi can be used for efficient transformation of amylose in the production of bioplastics. Results We have sequenced the 31.5 Mb genome of O.ulmi using Illumina next generation sequencing. Applying both de novo and comparative genome annotation methods, we predict a total of 8639 gene models. The quality of the predicted genes was validated using a variety of data sources consisting of EST data, mRNA-seq data and orthologs from related fungal species. Sequence-based computational methods were used to identify candidate virulence-related genes. Metabolic pathways were reconstructed and highlight specific enzymes that may play a role in virulence. Conclusions This genome sequence will be a useful resource for further research aimed at understanding the molecular mechanisms of pathogenicity by O. ulmi. It will also facilitate the identification of enzymes necessary for industrial biotransformation applications.
Collapse
|
42
|
Chang S, Wang Y, Lu J, Gai J, Li J, Chu P, Guan R, Zhao T. The mitochondrial genome of soybean reveals complex genome structures and gene evolution at intercellular and phylogenetic levels. PLoS One 2013; 8:e56502. [PMID: 23431381 PMCID: PMC3576410 DOI: 10.1371/journal.pone.0056502] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/10/2013] [Indexed: 11/19/2022] Open
Abstract
Determining mitochondrial genomes is important for elucidating vital activities of seed plants. Mitochondrial genomes are specific to each plant species because of their variable size, complex structures and patterns of gene losses and gains during evolution. This complexity has made research on the soybean mitochondrial genome difficult compared with its nuclear and chloroplast genomes. The present study helps to solve a 30-year mystery regarding the most complex mitochondrial genome structure, showing that pairwise rearrangements among the many large repeats may produce an enriched molecular pool of 760 circles in seed plants. The soybean mitochondrial genome harbors 58 genes of known function in addition to 52 predicted open reading frames of unknown function. The genome contains sequences of multiple identifiable origins, including 6.8 kb and 7.1 kb DNA fragments that have been transferred from the nuclear and chloroplast genomes, respectively, and some horizontal DNA transfers. The soybean mitochondrial genome has lost 16 genes, including nine protein-coding genes and seven tRNA genes; however, it has acquired five chloroplast-derived genes during evolution. Four tRNA genes, common among the three genomes, are derived from the chloroplast. Sizeable DNA transfers to the nucleus, with pericentromeric regions as hotspots, are observed, including DNA transfers of 125.0 kb and 151.6 kb identified unambiguously from the soybean mitochondrial and chloroplast genomes, respectively. The soybean nuclear genome has acquired five genes from its mitochondrial genome. These results provide biological insights into the mitochondrial genome of seed plants, and are especially helpful for deciphering vital activities in soybean.
Collapse
Affiliation(s)
- Shengxin Chang
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yankun Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiangjie Lu
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Junyi Gai
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jijie Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pu Chu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rongzhan Guan
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Abstract
Members of the virus family Narnaviridae contain the simplest genomes of any RNA virus, ranging from 2.3 to 3.6 kb and encoding only a single polypeptide that has an RNA-dependent RNA polymerase domain. The family is subdivided into two genera based on subcellular location: members of the genus Narnavirus have been found in the yeast Saccharomyces cerevisiae and in the oomycete Phytophthora infestans and are confined to the cytosol, while members of the genus Mitovirus have been found only in filamentous fungi and are found in mitochondria. None identified thus far encodes a capsid protein; like several other RNA viruses of lower eukaryotes, their genomes are confined within lipid vesicles. As more family members are discovered, their importance as genetic elements is becoming evident. The unique association of the genus Mitovirus with mitochondria renders them potentially valuable tools to study biology of lower eukaryotes.
Collapse
|
44
|
Kannoly S, Shao Y, Wang IN. Rethinking the evolution of single-stranded RNA (ssRNA) bacteriophages based on genomic sequences and characterizations of two R-plasmid-dependent ssRNA phages, C-1 and Hgal1. J Bacteriol 2012; 194:5073-9. [PMID: 22821966 PMCID: PMC3430324 DOI: 10.1128/jb.00929-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 07/12/2012] [Indexed: 11/20/2022] Open
Abstract
We have sequenced and characterized two R-plasmid-dependent single-stranded RNA bacteriophages (RPD ssRNA phages), C-1 and Hagl1. Phage C-1 requires a conjugative plasmid of the IncC group, while Hgal1 requires the IncH group. Both the adsorption rate constants and one-step growth curves are determined for both phages. We also empirically confirmed the lysis function of the predicted lysis genes. Genomic sequencing and phylogenetic analyses showed that both phages belong to the Levivirus group and are most closely related to another IncP-plasmid-dependent ssRNA phage, PRR1. Furthermore, our result strongly suggests that the stereotypical bauplans of genome organization found in Levivirus and Allolevivirus predate phage specialization for conjugative plasmids, suggesting that the utilization of conjugative plasmids for cell attachment and entry comprises independent evolutionary events for these two main clades of ssRNA phages. Our result is also consistent with findings of a previous study, making the Levivirus-like genome organization ancestral and the Allolevivirus-like genome derived. To obtain a deeper insight into the evolution of ssRNA phages, more phages specializing for various conjugative plasmids and infecting different bacterial species would be needed.
Collapse
Affiliation(s)
- Sherin Kannoly
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | | | | |
Collapse
|
45
|
Goremykin VV, Lockhart PJ, Viola R, Velasco R. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:615-26. [PMID: 22469001 DOI: 10.1111/j.1365-313x.2012.05014.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Mitochondrial genomes of spermatophytes are the largest of all organellar genomes. Their large size has been attributed to various factors; however, the relative contribution of these factors to mitochondrial DNA (mtDNA) expansion remains undetermined. We estimated their relative contribution in Malus domestica (apple). The mitochondrial genome of apple has a size of 396 947 bp and a one to nine ratio of coding to non-coding DNA, close to the corresponding average values for angiosperms. We determined that 71.5% of the apple mtDNA sequence was highly similar to sequences of its nuclear DNA. Using nuclear gene exons, nuclear transposable elements and chloroplast DNA as markers of promiscuous DNA content in mtDNA, we estimated that approximately 20% of the apple mtDNA consisted of DNA sequences imported from other cell compartments, mostly from the nucleus. Similar marker-based estimates of promiscuous DNA content in the mitochondrial genomes of other species ranged between 21.2 and 25.3% of the total mtDNA length for grape, between 23.1 and 38.6% for rice, and between 47.1 and 78.4% for maize. All these estimates are conservative, because they underestimate the import of non-functional DNA. We propose that the import of promiscuous DNA is a core mechanism for mtDNA size expansion in seed plants. In apple, maize and grape this mechanism contributed far more to genome expansion than did homologous recombination. In rice the estimated contribution of both mechanisms was found to be similar.
Collapse
Affiliation(s)
- Vadim V Goremykin
- IASMA Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige (TN), Italy.
| | | | | | | |
Collapse
|
46
|
Xie J, Ghabrial SA. Molecular characterization of two mitoviruses co-infecting a hypovirulent isolate of the plant pathogenic fungus Sclerotinia sclerotiorum [corrected]. Virology 2012; 428:77-85. [PMID: 22520836 DOI: 10.1016/j.virol.2012.03.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/26/2012] [Accepted: 03/17/2012] [Indexed: 11/30/2022]
Abstract
The complete nucleotide sequences of two double-stranded RNA (dsRNA) segments, isolated from the same hypovirulent strain (KL-1) of Sclerotinia sclerotiorum, were determined. Sequence analysis showed that dsRNAs 1 to be 2513 nts long and is A-U rich (61.7%). Excluding the poly(A) tail, dsRNAs2 is 2421 nts long and its AU content is 53.1%. The 5' and 3'-terminal sequences of the positive-strand of each dsRNA could be folded into predicted stable stem-loop structures. Mitochondrial codon usage revealed that each dsRNA has a single large open reading frame coding for a protein containing RNA-dependent RNA polymerase conserved motifs. Furthermore, dsRNAs 1 and 2 share sequence similarities with other mitoviruses. These results suggest that dsRNAs 1 and 2 represent two distinct new mitoviruses, designated Sclerotinia sclerotiorum mitovirus 1 (SsMV1/KL-1) and SsMV2/KL-1, respectively. The hypovirulence traits of strain KL-1 and the two mitoviruses could be co-transmitted to a virus-free virulent strain via hyphal anastomosis.
Collapse
Affiliation(s)
- Jiatao Xie
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, University of Kentucky, Lexington, KY 40546-0312, USA
| | | |
Collapse
|
47
|
Koonin EV, Dolja VV. Expanding networks of RNA virus evolution. BMC Biol 2012; 10:54. [PMID: 22715894 PMCID: PMC3379944 DOI: 10.1186/1741-7007-10-54] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 06/20/2012] [Indexed: 11/17/2022] Open
Abstract
In a recent BMC Evolutionary Biology article, Huiquan Liu and colleagues report two new genomes of double-stranded RNA (dsRNA) viruses from fungi and use these as a springboard to perform an extensive phylogenomic analysis of dsRNA viruses. The results support the old scenario of polyphyletic origin of dsRNA viruses from different groups of positive-strand RNA viruses and additionally reveal extensive horizontal gene transfer between diverse viruses consistent with the network-like rather than tree-like mode of viral evolution. Together with the unexpected discoveries of the first putative archaeal RNA virus and a RNA-DNA virus hybrid, this work shows that RNA viral genomics has major surprises to deliver. See research article: http://www.biomedcentral.com/1471-2148/12/91
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
48
|
Botella L, Tuomivirta TT, Vervuurt S, Diez JJ, Hantula J. Occurrence of two different species of mitoviruses in the European race of Gremmeniella abietina var. abietina, both hosted by the genetically unique Spanish population. Fungal Biol 2012; 116:872-82. [PMID: 22862915 DOI: 10.1016/j.funbio.2012.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 01/10/2023]
Abstract
The genetic structure of the genus Mitovirus community hosted by the European pathogenic conifer fungus Gremmeniella abietina var. abietina was investigated. Gremmeniella abietina is a species complex with a divergent mycovirus community, composed mainly of Totivirus, Partitivirus, and Mitovirus species. In this work, the total doubled-stranded (ds)RNA from 353 isolates from Canada, Finland, Spain, Switzerland, Turkey, and USA was extracted to look for the presence of a ca. 2.5 kb band typical of mitoviruses' genomes. Based on the banding data, 60 partial RNA-dependent RNA polymerase (RdRp) DNA sequences (ca. 500 bp) were amplified with reverse transcription-polymerase chain reaction (RT-PCR) and sequenced. Two distantly related mitovirus groups (species) were observed in the clustering analysis, one of them related to GMV1-1 and the other one related to a new putative species described in this study, GMV2-1. Viruses in these two clusters seemed to be subjected to purifying selection. The cluster with GMV1-1 included viruses observed in the Finnish biotype A and Spanish strains, whereas the cluster including GMV2-1 was composed of viruses of the Finnish biotype B and one from the Spanish population. Thereby, the Spanish population of G. abietina harboured mitovirus strains occurring in both biotype A and B strains, and it is the first one hosting distantly related mycoviruses of a single genus in one population of G. abietina. This may suggest that horizontal transmission of viruses could have occurred between biotype B and the Spanish population.
Collapse
Affiliation(s)
- Leticia Botella
- Sustainable Forest Management Research Institute, University of Valladolid, INIA, 34004 Palencia, Spain.
| | | | | | | | | |
Collapse
|
49
|
A member of the virus family Narnaviridae from the plant pathogenic oomycete Phytophthora infestans. Arch Virol 2011; 157:165-9. [PMID: 21971871 DOI: 10.1007/s00705-011-1126-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
A virus that has properties consistent with inclusion in the virus family Narnaviridae was described in Phytophthora infestans, the oomycete that caused the Irish potato famine. The genome of phytophthora infestans RNA virus 4 (PiRV-4) is 2,984 nt with short complementary terminal sequences and a single open reading frame predicted to encode an RNA-dependent RNA polymerase (RdRp) most closely related to saccharomyces cerevisiae narnavirus 20S (ScNV-20S) and ScNV-23S, the members of the genus Narnavirus, family Narnaviridae. This report constitutes the first description of a member of the family Narnaviridae from a host taxon outside of the kingdom Fungi.
Collapse
|
50
|
Fungi, Bacteria, and Viruses as Pathogens of the Fungal Community. Mycology 2009. [DOI: 10.1201/9781420027891.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
|