1
|
Kondrachuk O, Ciccone P, Ford N, Hong K, Kimura Y, Zi J, Yusuf S, Alkousa A, Tailor N, Rajkumar R, Rappaport J, Gupta MK. HIV Protein Nef Induces Cardiomyopathy Through Induction of Bcl2 and p21. Int J Mol Sci 2024; 25:11401. [PMID: 39518954 PMCID: PMC11547003 DOI: 10.3390/ijms252111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
HIV-associated cardiovascular diseases remain a leading cause of death in people living with HIV/AIDS (PLWHA). Although antiretroviral drugs suppress the viral load, they fail to remove the virus entirely. HIV-1 Nef protein is known to play a role in viral virulence and HIV latency. Expression of Nef protein can be detected in different organs, including cardiac tissue. Despite the established role of Nef protein in HIV-1 replication, its impact on organ function inside the human body is not clear. To understand the effect of Nef at the organ level, we created a new Nef-transgenic (Nef-TG) mouse that expresses Nef protein in the heart. Our study found that Nef expression caused inhibition of cardiac function and pathological changes in the heart with increased fibrosis, leading to heart failure and early mortality. Further, we found that cellular autophagy is significantly inhibited in the cardiac tissue of Nef-TG mice. Mechanistically, we found that Nef protein causes the accumulation of Bcl2 and Beclin-1 proteins in the tissue, which may affect the cellular autophagy system. Additionally, we found Nef expression causes upregulation of the cellular senescence marker p21 and senescence-associated β-galactosidase expression. Our findings suggest that the Nef-mediated inhibition of autophagy and induction of senescence markers may promote aging in PLWHA. Our mouse model could help us to understand the effect of Nef protein on organ function during latent HIV infection.
Collapse
Affiliation(s)
- Olena Kondrachuk
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Pierce Ciccone
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Nicole Ford
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Kim Hong
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Yuka Kimura
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Jorgo Zi
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sumaya Yusuf
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Aya Alkousa
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Nishit Tailor
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Rithvik Rajkumar
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Jay Rappaport
- Division of Pathology, Tulane National Primate Research Center, Covington, LA 70118, USA
| | - Manish K. Gupta
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
2
|
Garcia AK, Almodovar S. The Intersection of HIV and Pulmonary Vascular Health: From HIV Evolution to Vascular Cell Types to Disease Mechanisms. JOURNAL OF VASCULAR DISEASES 2024; 3:174-200. [PMID: 39464800 PMCID: PMC11507615 DOI: 10.3390/jvd3020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
People living with HIV (PLWH) face a growing burden of chronic diseases, owing to the combinations of aging, environmental triggers, lifestyle choices, and virus-induced chronic inflammation. The rising incidence of pulmonary vascular diseases represents a major concern for PLWH. The study of HIV-associated pulmonary vascular complications ideally requires a strong understanding of pulmonary vascular cell biology and HIV pathogenesis at the molecular level for effective applications in infectious diseases and vascular medicine. Active HIV infection and/or HIV proteins disturb the delicate balance between vascular tone and constriction, which is pivotal for maintaining pulmonary vascular health. One of the defining features of HIV is its high genetic diversity owing to several factors including its high mutation rate, recombination between viral strains, immune selective pressures, or even geographical factors. The intrinsic HIV genetic diversity has several important implications for pathogenic outcomes of infection and the overall battle to combat HIV. Challenges in the field present themselves from two sides of the same coin: those imposed by the virus itself and those stemming from the host. The field may be advanced by further developing in vivo and in vitro models that are well described for both pulmonary vascular diseases and HIV for mechanistic studies. In essence, the study of HIV-associated pulmonary vascular complications requires a multidisciplinary approach, drawing upon insights from both infectious diseases and vascular medicine. In this review article, we discuss the fundamentals of HIV virology and their impact on pulmonary disease, aiming to enhance the understanding of either area or both simultaneously. Bridging the gap between preclinical research findings and clinical practice is essential for improving patient care. Addressing these knowledge gaps requires interdisciplinary collaborations, innovative research approaches, and dedicated efforts to prioritize HIV-related pulmonary complications on the global research agenda.
Collapse
Affiliation(s)
- Amanda K. Garcia
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Sharilyn Almodovar
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
- Center for Tropical Medicine & Infectious Diseases, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| |
Collapse
|
3
|
Kumar A, Mahajan A, Salazar EA, Pruitt K, Guzman CA, Clauss MA, Almodovar S, Dhillon NK. Impact of human immunodeficiency virus on pulmonary vascular disease. Glob Cardiol Sci Pract 2021; 2021:e202112. [PMID: 34285903 PMCID: PMC8272407 DOI: 10.21542/gcsp.2021.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/31/2021] [Indexed: 01/08/2023] Open
Abstract
With the advent of anti-retroviral therapy, non-AIDS-related comorbidities have increased in people living with HIV. Among these comorbidities, pulmonary hypertension (PH) is one of the most common causes of morbidity and mortality. Although chronic HIV-1 infection is independently associated with the development of pulmonary arterial hypertension, PH in people living with HIV may also be the outcome of various co-morbidities commonly observed in these individuals including chronic obstructive pulmonary disease, left heart disease and co-infections. In addition, the association of these co-morbidities and other risk factors, such as illicit drug use, can exacerbate the development of pulmonary vascular disease. This review will focus on these complex interactions contributing to PH development and exacerbation in HIV patients. We also examine the interactions of HIV proteins, including Nef, Tat, and gp120 in the pulmonary vasculature and how these proteins alter the endothelial and smooth muscle function by transforming them into susceptible PH phenotype. The review also discusses the available infectious and non-infectious animal models to study HIV-associated PAH, highlighting the advantages and disadvantages of each model, along with their ability to mimic the clinical manifestations of HIV-PAH.
Collapse
Affiliation(s)
- Ashok Kumar
- Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aatish Mahajan
- Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ethan A Salazar
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Christian Arce Guzman
- Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthias A Clauss
- Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sharilyn Almodovar
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Navneet K Dhillon
- Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
4
|
Joas S, Sauermann U, Roshani B, Klippert A, Daskalaki M, Mätz-Rensing K, Stolte-Leeb N, Heigele A, Tharp GK, Gupta PM, Nelson S, Bosinger S, Parodi L, Giavedoni L, Silvestri G, Sauter D, Stahl-Hennig C, Kirchhoff F. Nef-Mediated CD3-TCR Downmodulation Dampens Acute Inflammation and Promotes SIV Immune Evasion. Cell Rep 2021; 30:2261-2274.e7. [PMID: 32075764 PMCID: PMC7052273 DOI: 10.1016/j.celrep.2020.01.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/10/2019] [Accepted: 01/21/2020] [Indexed: 01/05/2023] Open
Abstract
The inability of Nef to downmodulate the CD3-T cell receptor (TCR) complex distinguishes HIV-1 from other primate lentiviruses and may contribute to its high virulence. However, the role of this Nef function in virus-mediated immune activation and pathogenicity remains speculative. Here, we selectively disrupted this Nef activity in SIVmac239 and analyzed the consequences for the virological, immunological, and clinical outcome of infection in rhesus macaques. The inability to downmodulate CD3-TCR does not impair viral replication during acute infection but is associated with increased immune activation and antiviral gene expression. Subsequent early reversion in three of six animals suggests strong selective pressure for this Nef function and is associated with high viral loads and progression to simian AIDS. In the absence of reversions, however, viral replication and the clinical course of infection are attenuated. Thus, Nef-mediated downmodulation of CD3 dampens the inflammatory response to simian immunodeficiency virus (SIV) infection and seems critical for efficient viral immune evasion. HIV-1 lacks the CD3 downmodulation function of Nef that is otherwise conserved in primate lentiviruses. Joas et al. disrupted this Nef activity in SIVmac239 and show that Nef-mediated downmodulation of CD3 dampens inflammatory responses to SIV. This promotes effective immune evasion and maintenance of high viral loads in infected rhesus macaques.
Collapse
Affiliation(s)
- Simone Joas
- Institute of Molecular Virology - Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany
| | | | - Berit Roshani
- German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | | | - Maria Daskalaki
- German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | | | | | - Anke Heigele
- Institute of Molecular Virology - Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany
| | - Gregory K Tharp
- Yerkes Primate Research Center, Emory Vaccine Center, and Department of Pathology, Emory University, Atlanta, GA, USA
| | - Prachi Mehrotra Gupta
- Yerkes Primate Research Center, Emory Vaccine Center, and Department of Pathology, Emory University, Atlanta, GA, USA
| | - Sydney Nelson
- Yerkes Primate Research Center, Emory Vaccine Center, and Department of Pathology, Emory University, Atlanta, GA, USA
| | - Steven Bosinger
- Yerkes Primate Research Center, Emory Vaccine Center, and Department of Pathology, Emory University, Atlanta, GA, USA
| | - Laura Parodi
- Host-Pathogen Interactions Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis Giavedoni
- Host-Pathogen Interactions Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Guido Silvestri
- Yerkes Primate Research Center, Emory Vaccine Center, and Department of Pathology, Emory University, Atlanta, GA, USA
| | - Daniel Sauter
- Institute of Molecular Virology - Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology - Ulm University Medical Center, Meyerhofstraße 1, 89081 Ulm, Germany.
| |
Collapse
|
5
|
Almodovar S, Swanson J, Giavedoni LD, Kanthaswamy S, Long CS, Voelkel NF, Edwards MG, Folkvord JM, Connick E, Westmoreland SV, Luciw PA, Flores SC. Lung Vascular Remodeling, Cardiac Hypertrophy, and Inflammatory Cytokines in SHIVnef-Infected Macaques. Viral Immunol 2017; 31:206-222. [PMID: 29256819 DOI: 10.1089/vim.2017.0051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fatal pulmonary arterial hypertension (PAH) affects HIV-infected individuals at significantly higher frequencies. We previously showed plexiform-like lesions characterized by recanalized lumenal obliteration, intimal disruption, medial hypertrophy, and thrombosis consistent with PAH in rhesus macaques infected with chimeric SHIVnef but not with the parental SIVmac239, suggesting that Nef is implicated in the pathophysiology of HIV-PAH. However, the current literature on non-human primates as animal models for SIV(HIV)-associated pulmonary disease reports the ultimate pathogenic pulmonary outcomes of the research efforts; however, the variability and features in the actual disease progression remain poorly described, particularly when using different viral sources for infection. We analyzed lung histopathology, performed immunophenotyping of cells in plexogenic lesions pathognomonic of PAH, and measured cardiac hypertrophy biomarkers and cytokine expression in plasma and lung of juvenile SHIVnef-infected macaques. Here, we report significant hematopathologies, changes in cardiac biomarkers consistent with ventricular hypertrophy, significantly increased levels of interleukin-12 and GM-CSF and significantly decreased sCD40 L, CCL-2, and CXCL-1 in plasma of the SHIVnef group. Pathway analysis of inflammatory gene expression predicted activation of NF-κB transcription factor RelB and inhibition of bone morphogenetic protein type-2 in the setting of SHIVnef infection. Our findings highlight the utility of SHIVnef-infected macaques as suitable models of HIV-associated pulmonary vascular remodeling as pathogenetic changes are concordant with features of idiopathic, familial, scleroderma, and HIV-PAH.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado.,2 Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center , Lubbock, Texas
| | - Jessica Swanson
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Luis D Giavedoni
- 3 Department of Virology and Immunology, and Southwest National Primate Research Center, Texas Biomedical Research Institute , San Antonio, Texas
| | - Sreetharan Kanthaswamy
- 4 School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University , Arizona
| | - Carlin S Long
- 5 Department of Medicine, University of California , San Francisco, San Francisco, California
| | - Norbert F Voelkel
- 6 Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University , Richmond, Virginia
| | - Michael G Edwards
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| | - Joy M Folkvord
- 7 Division of Infectious Diseases, Department of Medicine, University of Arizona College of Medicine , Tucson, Arizona
| | - Elizabeth Connick
- 7 Division of Infectious Diseases, Department of Medicine, University of Arizona College of Medicine , Tucson, Arizona
| | - Susan V Westmoreland
- 8 New England Primate Research Center , Division of Comparative Pathology, Southborough, Massachusetts
| | - Paul A Luciw
- 9 Center for Comparative Medicine, University of California , Davis, Davis, California
| | - Sonia C Flores
- 1 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
6
|
Wang T, Green LA, Gupta SK, Kim C, Wang L, Almodovar S, Flores SC, Prudovsky IA, Jolicoeur P, Liu Z, Clauss M. Transfer of intracellular HIV Nef to endothelium causes endothelial dysfunction. PLoS One 2014; 9:e91063. [PMID: 24608713 PMCID: PMC3946685 DOI: 10.1371/journal.pone.0091063] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 02/07/2014] [Indexed: 12/17/2022] Open
Abstract
With effective antiretroviral therapy (ART), cardiovascular diseases (CVD) are emerging as a major cause of morbidity and death in the aging HIV-infected population. To address whether HIV-Nef, a viral protein produced in infected cells even when virus production is halted by ART, can lead to endothelial activation and dysfunction, we tested Nef protein transfer to and activity in endothelial cells. We demonstrated that Nef is essential for major endothelial cell activating effects of HIV-infected Jurkat cells when in direct contact with the endothelium. In addition, we found that Nef protein in endothelial cells is sufficient to cause apoptosis, ROS generation and release of monocyte attractant protein-1 (MCP-1). The Nef protein-dependent endothelial activating effects can be best explained by our observation that Nef protein rapidly transfers from either HIV-infected or Nef-transfected Jurkat cells to endothelial cells between these two cell types. These results are of in vivo relevance as we demonstrated that Nef protein induces GFP transfer from T cells to endothelium in CD4.Nef.GFP transgenic mice and Nef is present in chimeric SIV-infected macaques. Analyzing the signal transduction effects of Nef in endothelial cells, we found that Nef-induced apoptosis is mediated through ROS-dependent mechanisms, while MCP-1 production is NF-kB dependent. Together, these data indicate that inhibition of Nef-associated pathways may be promising new therapeutic targets for reducing the risk for cardiovascular disease in the HIV-infected population.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cellular & Integrative Physiology and Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- R. L. Roudebush VA Medical Center, Indianapolis, Indiana, United States
| | - Linden A. Green
- Department of Cellular & Integrative Physiology and Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- R. L. Roudebush VA Medical Center, Indianapolis, Indiana, United States
| | - Samir K. Gupta
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chul Kim
- Department of Cellular & Integrative Physiology and Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Liang Wang
- Department of Cellular & Integrative Physiology and Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- R. L. Roudebush VA Medical Center, Indianapolis, Indiana, United States
| | - Sharilyn Almodovar
- Department of Medicine, Pulmonary Sciences & Critical Care Medicine, University of Colorado, Denver, Colorado, United States of America
| | - Sonia C. Flores
- Department of Medicine, Pulmonary Sciences & Critical Care Medicine, University of Colorado, Denver, Colorado, United States of America
| | - Igor A. Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Paul Jolicoeur
- Institut de Recherches Cliniques de Montréal University of Montréal, Montréal, Quebec, Canada
| | - Ziyue Liu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Matthias Clauss
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cellular & Integrative Physiology and Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- R. L. Roudebush VA Medical Center, Indianapolis, Indiana, United States
- * E-mail:
| |
Collapse
|
7
|
Abstract
The following state-of-the-art seminar was delivered as part of the Aspen Lung Conference on Pulmonary Hypertension and Vascular Diseases held in Aspen, Colorado in June 2012. This paper will summarize the lecture and present results from a nonhuman primate model of infection with Simian (Human) Immunodeficiency Virus - nef chimeric virions as well as the idea that polymorphisms in the HIV-1 nef gene may be driving the immune response that results in exuberant inflammation and aberrant endothelial cell (EC) function. We will present data gathered from primary HIV nef isolates where we tested the biological consequences of these polymorphisms and how their presence in human populations may predict patients at risk for developing this disease. In this article, we also discuss how a dysregulated immune system, in conjunction with a viral infection, could contribute to pulmonary arterial hypertension (PAH). Both autoimmune diseases and some viruses are associated with defects in the immune system, primarily in the function of regulatory T cells. These T-cell defects may be a common pathway in the formation of plexiform lesions. Regardless of the route by which viruses may lead to PAH, it is important to recognize their role in this rare disease.
Collapse
Affiliation(s)
- Sonia C Flores
- Section of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | |
Collapse
|
8
|
Almodovar S, Knight R, Allshouse AA, Roemer S, Lozupone C, McDonald D, Widmann J, Voelkel NF, Shelton RJ, Suarez EB, Hammer KW, Goujard C, Petrosillo N, Simonneau G, Hsue PY, Humbert M, Flores SC. Human Immunodeficiency Virus nef signature sequences are associated with pulmonary hypertension. AIDS Res Hum Retroviruses 2012; 28:607-18. [PMID: 22066947 DOI: 10.1089/aid.2011.0021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Severe pulmonary hypertension (PH) associated with vascular remodeling is a long-term complication of HIV infection (HIV-PH) affecting 1/200 infected individuals vs. 1/200,000 frequency in the uninfected population. Factors accounting for increased PH susceptibility in HIV-infected individuals are unknown. Rhesus macaques infected with chimeric SHIVnef virions but not with SIV display PH-like pulmonary vascular remodeling suggesting that HIV-Nef is associated with PH; these monkeys showed changes in nef sequences that correlated with pathogenesis after passage in vivo. We further examined whether HIV-nef alleles in HIV-PH subjects have signature sequences associated with the disease phenotype. We evaluated specimens from participants with and without HIV-PH from European Registries and validated results with samples collected as part of the Lung-HIV Studies in San Francisco. We found that 10 polymorphisms in nef were overrepresented in blood cells or lung tissue specimens from European HIV-PH individuals but significantly less frequent in HIV-infected individuals without PH. These polymorphisms mapped to known functional domains in Nef. In the validation cohort, 7/10 polymorphisms in the HIV-nef gene were confirmed; these polymorphisms arose independently from viral load, CD4(+) T cell counts, length of infection, and antiretroviral therapy status. Two out of 10 polymorphisms were previously reported in macaques with PH-like pulmonary vascular remodeling. Cloned recombinant Nef proteins from clinical samples down-regulated CD4, suggesting that these primary isolates are functional. This study offers new insights into the association between Nef polymorphisms in functional domains and the HIV-PH phenotype. The utility of these polymorphisms as predictors of PH should be examined in a larger population.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Rob Knight
- Departments of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Amanda A. Allshouse
- Departments of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Sarah Roemer
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Catherine Lozupone
- Departments of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Daniel McDonald
- Departments of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Jeremy Widmann
- Departments of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Norbert F. Voelkel
- Victoria Johnson Center for Obstructive Lung Diseases, Virginia Commonwealth University, Richmond, Virginia
| | - Robert J. Shelton
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Edu B. Suarez
- Biology Department, University of Puerto Rico in Ponce, and Department of Physiology, Pharmacology and Toxicology, Ponce School of Medicine, Ponce, Puerto Rico
| | - Kenneth W. Hammer
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Cecile Goujard
- INSERM U802, Université Paris 11 and Service de Médecine Interne, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Nicola Petrosillo
- Second Infectious Diseases Division, National Institute for Infectious Diseases “L. Spallanzani,” Rome, Italy
| | - Gerald Simonneau
- Université Paris-Sud 11, Service de Pneumologie, Centre National de Référence de I'Hypertension Artérielle Pulmonaire, Hộpital Antoine-Béclère, Clamart, France
| | - Priscilla Y. Hsue
- Division of Cardiology, University of California, San Francisco, California
| | - Marc Humbert
- Université Paris-Sud 11, Service de Pneumologie, Centre National de Référence de I'Hypertension Artérielle Pulmonaire, Hộpital Antoine-Béclère, Clamart, France
| | - Sonia C. Flores
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
9
|
Thippeshappa R, Ruan H, Kimata JT. Breaking Barriers to an AIDS Model with Macaque-Tropic HIV-1 Derivatives. BIOLOGY 2012; 1:134-64. [PMID: 23336082 PMCID: PMC3546514 DOI: 10.3390/biology1020134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022]
Abstract
The development of an animal model of human immunodeficiency virus type 1 (HIV-1)/AIDS that is suitable for preclinical testing of antiretroviral therapy, vaccines, curative strategies, and studies of pathogenesis has been hampered by the human-specific tropism of HIV-1. Although simian immunodeficiency virus (SIV) or HIV-1/SIV chimeric viruses (SHIVs)-rhesus macaque models are excellent surrogates for AIDS research, the genetic differences between SIV or SHIV and HIV-1 limit their utility as model systems. The identification of innate retro viral restriction factors has increased our understanding about blockades to HIV-1 replication in macaques and provided a guide for the construction of macaque-tropic HIV-1 clones. However, while these viruses replicate in macaque cells in vitro, they are easily controlled and have not caused AIDS in host animals, indicating that we may not fully understand the restrictive barriers of innate immunity. In this review, we discuss recent findings regarding HIV-1 restriction factors, particularly as they apply to cross-species transmission of primate lentiviruses and the development of a macaque model of HIV-1/AIDS.
Collapse
Affiliation(s)
| | | | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.T.); (H.R.)
| |
Collapse
|
10
|
Abstract
The quest for an effective and safe HIV-1 vaccine has been and still is the aspiration of many scientists and clinicians worldwide. Until recently, the hopes for an effective vaccine were thwarted by the disappointing results and early termination in September 2007 of the STEP study, which saw a subgroup of male vaccine recipients at an increased risk of HIV-1 infection, and the failure of earlier trials of vaccines based on recombinant envelope proteins to provide any level of protection. The results of the STEP study raised important questions in the field of HIV vaccines, including the use of recombinant adenovirus vectors as immunogens, the rationale for the development of T-cell-based vaccines and the development pathway for these vaccines, in terms of assessment of immunogenicity and the challenge models used. The study of neutralizing antibodies has demonstrated that the induction of high-titre, broadly neutralizing antibodies in the majority of recipients is likely to be highly problematic. However, the results of the RV144 Thai trial released in September 2009 have brought new optimism to the field. This study employed envelope-based immunogens delivered as a priming vaccination with a recombinant poxvirus vector and boosting with recombinant proteins. This regimen provided modest protection to HIV-1 infection in a low-risk population. Although the correlates of protection are currently unknown, extensive studies are underway to try to determine these. Neutralizing antibodies were not induced in the RV144 study; however, considerable titres of binding antibodies to HIV-1 viral envelope (Env) were. It is speculated that these antibodies may have provided a means of protection by a mechanism such as antibody-dependent cell-mediated cytotoxicity. In addition, no CD8+ T-cell responses were induced, but robust CD4+ T-cell responses were, and correlates of protection are being sought by analysing the quality of this aspect of the vaccine-induced immune response. The current paradigm for an optimal HIV-1 vaccine is to design immunogens and vaccination protocols that allow the induction of both broadly neutralizing humoral and broadly reactive and effective cell-mediated immunity, to act at sites of possible infection and post-infection, respectively. However, this is challenged by the results of the RV144 trial as neither of these responses were induced but modest protection was observed. Understanding the biology and immunopathology of HIV-1 early following infection, its modes of transmission and the human immune system's response to the virus should aid in the rational design of vaccines of increased efficacy.
Collapse
Affiliation(s)
- C Mee Ling Munier
- HIV Immunovirology Laboratory, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
11
|
Morris A, Crothers K, Beck JM, Huang L. An official ATS workshop report: Emerging issues and current controversies in HIV-associated pulmonary diseases. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2011; 8:17-26. [PMID: 21364216 PMCID: PMC5830656 DOI: 10.1513/pats.2009-047ws] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pulmonary diseases are major causes of morbidity and death in persons with HIV infection. Millions of people with HIV/AIDS throughout the world are at risk of opportunistic pneumonias such as tuberculosis, bacterial pneumonia, and Pneumocystis pneumonia. However, the availability of combination antiretroviral therapy has turned HIV into a chronic disease, and noninfectious lung diseases such as lung cancer, chronic obstructive pulmonary disease, and pulmonary arterial hypertension are also emerging as important causes of illness. Despite the importance of these diseases and the rapidly evolving understanding of their pathogenesis and epidemiology, few avenues exist for the discussion and dissemination of new clinical and basic insights. In May of 2008, the American Thoracic Society sponsored a 1-day workshop, "Emerging Issues and Current Controversies in HIV-Associated Pulmonary Diseases," which brought together basic and clinical researchers in HIV-associated pulmonary disease. A review of the literature was performed by workshop participants, and the workshop included 18 presentations on diverse topics summarized in this article.
Collapse
MESH Headings
- AIDS-Related Opportunistic Infections/diagnosis
- AIDS-Related Opportunistic Infections/drug therapy
- AIDS-Related Opportunistic Infections/epidemiology
- Anti-Bacterial Agents/therapeutic use
- Anti-HIV Agents/therapeutic use
- Antitubercular Agents/therapeutic use
- Comorbidity
- Female
- Humans
- Incidence
- Male
- Pneumonia, Bacterial/diagnosis
- Pneumonia, Bacterial/drug therapy
- Pneumonia, Bacterial/epidemiology
- Pneumonia, Pneumocystis/diagnosis
- Pneumonia, Pneumocystis/drug therapy
- Pneumonia, Pneumocystis/epidemiology
- Practice Guidelines as Topic
- Prognosis
- Risk Assessment
- Severity of Illness Index
- Societies, Medical
- Survival Rate
- Tuberculosis, Pulmonary/diagnosis
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/epidemiology
- United States/epidemiology
Collapse
|
12
|
Vif substitution enables persistent infection of pig-tailed macaques by human immunodeficiency virus type 1. J Virol 2011; 85:3767-79. [PMID: 21289128 DOI: 10.1128/jvi.02438-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among Old World monkeys, pig-tailed macaques (Pt) are uniquely susceptible to human immunodeficiency virus type 1 (HIV-1), although the infection does not persist. We demonstrate that the susceptibility of Pt T cells to HIV-1 infection is due to the absence of postentry inhibition by a TRIM5 isoform. Notably, substitution of the viral infectivity factor protein, Vif, with that from pathogenic SIVmne enabled replication of HIV-1 in Pt T cells in vitro. When inoculated into juvenile pig-tailed macaques, the Pt-tropic HIV-1 persistently replicated for more than 1.5 to 2 years, producing low but measurable plasma viral loads and persistent proviral DNA in peripheral blood mononuclear cells. It also elicited strong antibody responses. However, there was no decline in CD4(+) T cells or evidence of disease. Surprisingly, the Pt-tropic HIV-1 was rapidly controlled when inoculated into newborn Pt macaques, although it transiently rebounded after 6 months. We identified two notable differences between the Pt-tropic HIV-1 and SIVmne. First, SIV Vif does not associate with Pt-tropic HIV-1 viral particles. Second, while Pt-tropic HIV-1 degrades both Pt APOBEC3G and APOBEC3F, it prevents their inclusion in virions to a lesser extent than pathogenic SIVmne. Thus, while SIV Vif is necessary for persistent infection by Pt-tropic HIV-1, improved expression and inhibition of APOBEC3 proteins may be required for robust viral replication in vivo. Additional adaptation of the virus may also be necessary to enhance viral replication. Nevertheless, our data suggest the potential for the pig-tailed macaque to be developed as an animal model of HIV-1 infection and disease.
Collapse
|
13
|
Lee JE, Patel K, Almodóvar S, Tuder RM, Flores SC, Sehgal PB. Dependence of Golgi apparatus integrity on nitric oxide in vascular cells: implications in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 2011; 300:H1141-58. [PMID: 21217069 DOI: 10.1152/ajpheart.00767.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although reduced bioavailability of nitric oxide (NO) has been implicated in the pathogenesis of pulmonary arterial hypertension (PAH), its consequences on organellar structure and function within vascular cells is largely unexplored. We investigated the effect of reduced NO on the structure of the Golgi apparatus as assayed by giantin or GM130 immunofluorescence in human pulmonary arterial endothelial (HPAECs) and smooth muscle (HPASMCs) cells, bovine PAECs, and human EA.hy926 endothelial cells. Golgi structure was also investigated in cells in tissue sections of pulmonary vascular lesions in idiopathic PAH (IPAH) and in macaques infected with a chimeric simian immunodeficiency virus containing the human immunodeficiency virus (HIV)-nef gene (SHIV-nef) with subcellular three-dimensional (3D) immunoimaging. Compounds with NO scavenging activity including 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), methylene blue, N-acetylcysteine, and hemoglobin markedly fragmented the Golgi in all cell types evaluated as did monocrotaline pyrrole, while LY-83583, sildenafil, fasudil, Y-27632, Tiron, Tempol, or H(2)O(2) did not. Golgi fragmentation by NO scavengers was inhibited by diethylamine NONOate, was evident in HPAECs after selective knockdown of endothelial nitric oxide synthase using small interfering RNA (siRNA), was independent of microtubule organization, required the GTPase dynamin 2, and was accompanied by depletion of α-soluble N-ethylmaleimide-sensitive factor (NSF) acceptor protein (α-SNAP) from Golgi membranes and codispersal of the SNAP receptor (SNARE) Vti1a with giantin. Golgi fragmentation was confirmed in endothelial and smooth muscle cells in pulmonary arterial lesions in IPAH and the SHIV-nef-infected macaque with subcellular 3D immunoimaging. In SHIV-nef-infected macaques Golgi fragmentation was observed in cells containing HIV-nef-bearing endosomes. The observed Golgi fragmentation suggests that NO plays a significant role in modulating global protein trafficking patterns that contribute to changes in the cell surface landscape and functional signaling in vascular cells.
Collapse
Affiliation(s)
- Jason E Lee
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, 10595, USA
| | | | | | | | | | | |
Collapse
|
14
|
Almodovar S, Cicalini S, Petrosillo N, Flores SC. Pulmonary hypertension associated with HIV infection: pulmonary vascular disease: the global perspective. Chest 2010; 137:6S-12S. [PMID: 20522575 DOI: 10.1378/chest.09-3065] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The success of antiretroviral therapies in improving the survival of patients infected with HIV and reducing HIV-associated opportunistic infections is undisputed. Nevertheless, long-term outcomes such as noninfectious cardiovascular complications, including cardiomegaly, pericarditis, myocarditis, and pulmonary arterial hypertension, are now serious concerns. The lung is a frequent target organ for disorders associated with HIV infection. HIV-related pulmonary arterial hypertension (HRPAH) affects more individuals who are infected with HIV than individuals who are uninfected. Moreover, the long-standing estimated prevalence of HRPAH in developed countries (calculated at 0.5%) is increasing as more clinician-scientists unify their efforts to screen patients who are pulmonary asymptomatic for pulmonary arterial hypertension. In order to decrease mortality, efforts are directed at early detection, diagnosis, and therapeutic interventions before the disease compromises patients' quality of life. This article reviews the logistics of screening approaches for HRPAH and discusses the substantial disease burden currently faced by developing countries, where the prevalence of HIV infection is higher and complicated by hyperendemic risk factors, limited access to antiretrovirals, and lack of screening tools. We also present mechanistic insights into HRPAH, including the role of HIV proteins and their potential use as screening tools, and, finally, areas that still need intense research.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- University of Colorado Denver, Department of Pulmonary Sciences and Critical Care Medicine, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
15
|
Sehgal PB, Mukhopadhyay S, Patel K, Xu F, Almodóvar S, Tuder RM, Flores SC. Golgi dysfunction is a common feature in idiopathic human pulmonary hypertension and vascular lesions in SHIV-nef-infected macaques. Am J Physiol Lung Cell Mol Physiol 2009; 297:L729-37. [PMID: 19648286 DOI: 10.1152/ajplung.00087.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Golgi dysfunction has been previously investigated as a mechanism involved in monocrotaline-induced pulmonary hypertension (PAH). In the present study, we addressed whether Golgi dysfunction might occur in pulmonary vascular cells in idiopathic PAH (IPAH) and whether there might be a causal relationship between trafficking dysfunction and vasculopathies of PAH. Quantitative immunostaining for the Golgi tethers giantin and p115 on human lung tissue from patients with IPAH (n = 6) compared with controls demonstrated a marked cytoplasmic dispersal of giantin- and p115-bearing vesicular elements in vascular cells in the proliferative, obliterative, and plexiform lesions in IPAH and an increase in the amounts of these Golgi tethers/matrix proteins per cell. The causality question was approached by genetic means using human immunodeficiency virus (HIV)-Nef, a protein that disrupts endocytic and trans-Golgi trafficking. Macaques infected with a chimeric simian immunodeficiency virus (SIV) containing the HIV-nef gene (SHIV-nef), but not the nonchimeric SIV virus containing the endogenous SIV-nef gene, displayed pulmonary arterial vasculopathies similar to those in human IPAH. Giantin and p115 levels and their subcellular distribution in pulmonary vascular cells in lungs of SHIV-nef infected macaques (n = 4) were compared with SIV-infected (n = 3) and an uninfected macaque control. Only macaques infected with chimeric SHIV-nef showed pulmonary vascular lesions containing cells with dramatic cytoplasmic dispersal and an increase in giantin and p115. Specifically, the HIV-Nef-positive cells showed increased giantin, p115, and the activated transcription factor PY-STAT3. These data represent the first test of the Golgi dysfunction hypothesis in IPAH and place trafficking and Golgi disruption in the chain of causality of pulmonary vasculopathies in the macaque model.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Rm. 201 Basic Sciences Bldg., Dept. of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ndolo T, George M, Nguyen H, Dandekar S. Expression of simian immunodeficiency virus Nef protein in CD4+ T cells leads to a molecular profile of viral persistence and immune evasion. Virology 2006; 353:374-87. [PMID: 16857233 DOI: 10.1016/j.virol.2006.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/22/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
The Nef protein of human immunodeficiency virus and simian immunodeficiency virus is expressed early in infection and plays an important role in disease progression in vivo. In addition, Nef has been shown to modulate cellular functions. To decipher Nef-mediated changes in gene expression, we utilized DNA microarray analysis to elucidate changes in gene expression in a Jurkat CD4+ T-cell line stably expressing SIV-Nef protein under the control of an inducible promoter. Our results showed that genes associated with antigen presentation including members of the T-cell receptor and major histocompatibility class 1 complex were consistently down-regulated at the transcript level in SIV-Nef-expressing cells. In addition, Nef induced a transcriptional profile of cell-cycle-related genes that support the survival of Nef-expressing cells. Furthermore, Nef enhanced the transcription of genes encoding enzymes and factors that catalyze the biosynthesis of membrane glycolipids and phospholipids. In conclusion, gene expression profiling showed that SIV-Nef induces a transcriptional profile in CD4+ T cells that promotes immune evasion and cell survival, thus facilitating viral persistence.
Collapse
Affiliation(s)
- Thomas Ndolo
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
17
|
Marecki JC, Cool CD, Parr JE, Beckey VE, Luciw PA, Tarantal AF, Carville A, Shannon RP, Cota-Gomez A, Tuder RM, Voelkel NF, Flores SC. HIV-1 Nef is associated with complex pulmonary vascular lesions in SHIV-nef-infected macaques. Am J Respir Crit Care Med 2006; 174:437-45. [PMID: 16728715 PMCID: PMC2648120 DOI: 10.1164/rccm.200601-005oc] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE HIV-infected patients with pulmonary arterial hypertension have histologic manifestations that are indistinguishable from those found in patients with idiopathic pulmonary arterial hypertension. In addition, the role of pleiotropic viral proteins in the development of plexiform lesions in HIV-related pulmonary hypertension (HRPH) has not been explored. Simian immunodeficiency virus (SIV) infection of macaques has been found to closely recapitulate many of the characteristic features of HIV infection, and thus hallmarks of pulmonary arterial hypertension should also be found in this nonhuman primate model of HIV. OBJECTIVES To determine whether pulmonary arterial lesions were present in archived SIV-infected macaque lung tissues from Johns Hopkins University and two National Primate Research Centers. METHODS Archived macaque and human lung sections were examined via immunohistochemistry for evidence of complex vascular lesions. RESULTS Complex plexiform-like lesions characterized by lumenal obliteration, intimal disruption, medial hypertrophy, thrombosis, and recanalized lumena were found exclusively in animals infected with SHIV-nef (a chimeric viral construct containing the HIV nef gene in an SIV backbone), but not in animals infected with SIV. The mass of cells in the lesions were factor VIII positive, and contained cells positive for muscle-specific and smooth muscle actins. Lung mononuclear cells were positive for HIV Nef, suggesting viral replication. Endothelial cells in both the SHIV-nef macaques and patients with HRPH, but not in patients with idiopathic pulmonary arterial hypertension, were also Nef positive. CONCLUSIONS The discovery of complex vascular lesions in SHIV-nef- but not SIV-infected animals, and the presence of Nef in the vascular cells of patients with HRPH, suggest that Nef plays a key role in the development of severe pulmonary arterial disease.
Collapse
Affiliation(s)
- John C Marecki
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, 4200 East Ninth Avenue, Box C272, Denver, CO 80262, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Khan M, Jin L, Miles L, Bond VC, Powell MD. Chimeric human immunodeficiency virus type 1 virions that contain the simian immunodeficiency virus nef gene are cyclosporin A resistant. J Virol 2005; 79:3211-6. [PMID: 15709044 PMCID: PMC548445 DOI: 10.1128/jvi.79.5.3211-3216.2005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have previously shown that human immunodeficiency virus type 1 (HIV-1) virions which have their own nef gene deleted and are trans complemented to contain HIV-2 or simian immunodeficiency virus (SIV) Nef become resistant to treatment with cyclosporin A. To expand and confirm these studies, we have tested an HIV-1 isolate in which the HIV-1 nef gene has been replaced by the nef gene from SIV in a multiround infectivity assay using more physiologically relevant cell types. Our results confirm that HIV-1 virions that contain SIV nef can replicate in a cyclophilin-independent fashion.
Collapse
Affiliation(s)
- Mahfuz Khan
- Dept. of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA.
| | | | | | | | | |
Collapse
|
19
|
Schindler M, Münch J, Brenner M, Stahl-Hennig C, Skowronski J, Kirchhoff F. Comprehensive analysis of nef functions selected in simian immunodeficiency virus-infected macaques. J Virol 2004; 78:10588-97. [PMID: 15367626 PMCID: PMC516420 DOI: 10.1128/jvi.78.19.10588-10597.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of simian immunodeficiency virus (SIVmac) nef mutants have been investigated to clarify which in vitro Nef functions contribute to efficient viral replication and pathogenicity in rhesus macaques. Most of these nef alleles, however, were only functionally characterized for their ability to down-modulate CD4 and class I major histocompatibility complex (MHC-I) cell surface expression and to enhance SIV replication and infectivity. To obtain information on the in vivo relevance of more recently established Nef functions, we examined the ability of a large panel of constructed SIVmac Nef mutants and of variants that emerged in infected macaques to down-regulate CD3, CD28, and MHC-II and to up-regulate the MHC-II-associated invariant chain (Ii). We found that all these four Nef functions were restored in SIV-infected macaques. In most cases, however, the initial mutations and the changes selected in vivo affected several in vitro Nef functions. For example, truncated Nef proteins that emerged in animals infected with SIVmac239 containing a 152-bp deletion in nef efficiently modulated both CD3 and Ii surface expression. Overall, our results suggest that the effect of Nef on each of the six cellular receptors investigated contributes to viral fitness in the infected host but also indicate that modulation of CD3, MHC-I, MHC-II, or Ii surface expression alone is insufficient for SIV virulence.
Collapse
Affiliation(s)
- Michael Schindler
- Department of Virology, Universitätsklinikum, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Costa LJ, Zheng YH, Sabotic J, Mak J, Fackler OT, Peterlin BM. Nef binds p6* in GagPol during replication of human immunodeficiency virus type 1. J Virol 2004; 78:5311-23. [PMID: 15137387 PMCID: PMC400368 DOI: 10.1128/jvi.78.10.5311-5323.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The atypical Nef protein (NefF12) from human immunodeficiency virus type 1 strain F12 (HIV-1(F12)) interferes with virion production and infectivity via a mysterious mechanism. The correlation of these effects with the unusual perinuclear subcellular localization of NefF12 suggested that the wild-type Nef protein could bind to assembly intermediates in late stages of viral replication. To test this hypothesis, Nef from HIV-1(NL4-3) was fused to an endoplasmic reticulum (ER) retention signal (NefKKXX). This mutant NefKKXX protein recapitulated fully the effects of NefF12 on on Gag processing and virion production, either alone or as a CD8 fusion protein. Importantly, the mutant NefKKXX protein also localized to the intermediate compartment, between the ER and the trans-Golgi network. Furthermore, Nef bound the GagPol polyprotein in vitro and in vivo. This binding mapped to the C-terminal flexible loop in Nef and the transframe p6* protein in GagPol. The significance of this interaction was demonstrated by a genetic assay in which the release of a mutant HIV-1 provirus lacking the PTAP motif in the late domain that no longer binds Tsg101 was rescued by a Nef.Tsg101 chimera. Importantly, this rescue as well as incorporation of Nef into HIV-1 virions correlated with the ability of Nef to interact with GagPol. Our data demonstrate that the retention of Nef in the intermediate compartment interferes with viral replication and suggest a new role for Nef in the production of HIV-1.
Collapse
Affiliation(s)
- Luciana J Costa
- Department of Medicine, University of California-San Francisco, UCSF-Mt. Zion Cancer Center, 2340 Sutter Street, San Francisco, CA 94115, USA
| | | | | | | | | | | |
Collapse
|
21
|
Khan M, Jin L, Huang MB, Miles L, Bond VC, Powell MD. Chimeric human immunodeficiency virus type 1 (HIV-1) virions containing HIV-2 or simian immunodeficiency virus Nef are resistant to cyclosporine treatment. J Virol 2004; 78:1843-50. [PMID: 14747548 PMCID: PMC369439 DOI: 10.1128/jvi.78.4.1843-1850.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viral protein Nef and the cellular factor cyclophilin A are both required for full infectivity of human immunodeficiency virus type 1 (HIV-1) virions. In contrast, HIV-2 and simian immunodeficiency virus (SIV) do not incorporate cyclophilin A into virions or need it for full infectivity. Since Nef and cyclophilin A appear to act in similar ways on postentry events, we determined whether chimeric HIV-1 virions that contained either HIV-2 or SIV Nef would have a direct effect on cyclophilin A dependence. Our results show that chimeric HIV-1 virions containing either HIV-2 or SIV Nef are resistant to treatment by cyclosporine and enhance the infectivity of virions with mutations in the cyclophilin A binding loop of Gag. Amino acids at the C terminus of HIV-2 and SIV are necessary for inducing cyclosporine resistance. However, transferring these amino acids to the C terminus of HIV-1 Nef is insufficient to induce cyclosporine resistance in HIV-1. These results suggest that HIV-2 and SIV Nef are able to compensate for the need for cyclophilin A for full infectivity and that amino acids present at the C termini of these proteins are important for this function.
Collapse
Affiliation(s)
- Mahfuz Khan
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | | | | | | | | | | |
Collapse
|
22
|
Simard MC, Chrobak P, Kay DG, Hanna Z, Jothy S, Jolicoeur P. Expression of simian immunodeficiency virus nef in immune cells of transgenic mice leads to a severe AIDS-like disease. J Virol 2002; 76:3981-95. [PMID: 11907238 PMCID: PMC136064 DOI: 10.1128/jvi.76.8.3981-3995.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to study the functions of simian immunodeficiency virus (SIV) Nef in vivo in a small-animal model, we constructed transgenic (Tg) mice expressing the SIV(mac)239 nef gene in the natural target cells of the virus under the control of the human CD4 gene promoter (CD4C). These CD4C/SHIV-nef(SIV) Tg mice develop a severe AIDS-like disease, with manifestations including premature death, failure to thrive or weight loss, wasting, thymic atrophy, an especially low number of peripheral CD8+ T cells as well as a low number of peripheral CD4+ T cells, diarrhea, splenomegaly, and kidney (interstitial nephritis, segmental glomerulosclerosis), lung (lymphocytic interstitial pneumonitis), and heart disease. In addition, these Tg mice fail to mount a class-switched antibody response after immunization with ovalbumin, they produce anti-DNA autoantibodies, and some of them develop Pneumocystis carinii lung infections. All these results suggest a generalized Nef-induced immunodeficiency. The low numbers of peripheral CD8+ and CD4+ T cells are likely to reflect a thymic defect and may be similar to the DiGeorge-like "thymic defect" immunophenotype described for a subgroup of human immunodeficiency virus type 1-infected children. Therefore, it appears that SIV Nef alone expressed in mice, in appropriate cell types and at sufficient levels, can elicit many of the phenotypes of simian and human AIDS. These Tg mice should be instrumental in studying the pathogenesis of SIV Nef-induced phenotypes.
Collapse
Affiliation(s)
- Marie-Chantal Simard
- Laboratory of Molecular Biology, Clinical Research Institute of Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Foster JL, Molina RP, Luo T, Arora VK, Huang Y, Ho DD, Garcia JV. Genetic and functional diversity of human immunodeficiency virus type 1 subtype B Nef primary isolates. J Virol 2001; 75:1672-80. [PMID: 11160665 PMCID: PMC114076 DOI: 10.1128/jvi.75.4.1672-1680.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized the functional integrity of seven primary Nef isolates: five from a long-term nonprogressing human immunodeficiency virus (HIV)-infected individual and one each from two patients with AIDS. One of the seven Nefs was defective for CD4 downregulation, two others were defective for PAK-2 activation, and one Nef was defective for PAK-2 activation and major histocompatibility complex (MHC) class I downregulation. Five of the Nefs were tested and found to be functional for the enhancement of virus particle infectivity. The structural basis for each of the functional defects has been analyzed by constructing a consensus nef, followed by mutational analysis of the variant amino acid residues. Mutations A29V and F193I were deleterious to CD4 downregulation and PAK-2 activation, respectively, while S189R rendered Nef defective for both MHC class I downregulation and PAK-2 activation. A search of the literature identified HIVs from five patients with Nefs predominantly mutated at F193 and from one patient with Nefs predominantly mutated at A29. A29 is highly conserved in all HIV subtypes except for subtype E. F193 is conserved in subtype B (and possibly in the closely related subtype D), but none of the other HIV group M subtypes. Our results suggest that functional distinctions may exist between HIV subtypes.
Collapse
Affiliation(s)
- J L Foster
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Mandic R, Fackler OT, Geyer M, Linnemann T, Zheng YH, Peterlin BM. Negative factor from SIV binds to the catalytic subunit of the V-ATPase to internalize CD4 and to increase viral infectivity. Mol Biol Cell 2001; 12:463-73. [PMID: 11179428 PMCID: PMC30956 DOI: 10.1091/mbc.12.2.463] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The accessory protein negative factor (Nef) from human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is required for optimal viral infectivity and the progression to acquired immunodeficiency syndrome (AIDS). Nef interacts with the endocytic machinery, resulting in the down-regulation of cluster of differentiation antigen 4 (CD4) and major histocompatibility complex class I (MHCI) molecules on the surface of infected cells. Mutations in the C-terminal flexible loop of Nef result in a lower rate of internalization by this viral protein. However, no loop-dependent binding of Nef to adaptor protein-2 (AP-2), which is the adaptor protein complex that is required for the internalization of proteins from the plasma membrane, could be demonstrated. In this study we investigated the relevance of different motifs in Nef from SIV(mac239) for its internalization, CD4 down-regulation, binding to components of the trafficking machinery, and viral infectivity. Our data suggest that the binding of Nef to the catalytic subunit H of the vacuolar membrane ATPase (V-ATPase) facilitates its internalization. This binding depends on the integrity of the whole flexible loop. Subsequent studies on Nef mutant viruses revealed that the flexible loop is essential for optimal viral infectivity. Therefore, our data demonstrate how Nef contacts the endocytic machinery in the absence of its direct binding to AP-2 and suggest an important role for subunit H of the V-ATPase in viral infectivity.
Collapse
Affiliation(s)
- R Mandic
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Francisco, California 94143-0703, USA
| | | | | | | | | | | |
Collapse
|
25
|
Arora VK, Molina RP, Foster JL, Blakemore JL, Chernoff J, Fredericksen BL, Garcia JV. Lentivirus Nef specifically activates Pak2. J Virol 2000; 74:11081-7. [PMID: 11070003 PMCID: PMC113188 DOI: 10.1128/jvi.74.23.11081-11087.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nef proteins from human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) have been found to associate with an active cellular serine/threonine kinase designated Nef-associated kinase (Nak). The exact identity of Nak remains controversial, with two recent studies indicating that Nak may be either Pak1 or Pak2. In this study, we investigated the hypothesis that such discrepancies arise from the use of different Nef alleles or different cell types by individual investigators. We first confirm that Pak2 but not Pak1 is cleaved by caspase 3 in vitro and then demonstrate that Nak is caspase 3 sensitive, regardless of Nef allele or cell type used. We tested nef alleles from three lentiviruses (HIV-1 SF2, HIV-1 NL4-3, and SIVmac239) and used multiple cell lines of myeloid, lymphoid, and nonhematopoietic origin to evaluate the identity of Nak. We demonstrate that ectopically expressed Pak2 can substitute for Nak, while ectopically expressed Pak1 cannot. We then show that Nef specifically mediates the robust activation of ectopically expressed Pak2, directly demonstrating that Nef regulates Pak2 activity and does not merely associate with activated Pak2. We report that most of the active Pak2 is found bound to Nef, although a fraction is not. In contrast, only a small amount of Nef is found associated with Pak2. We conclude that Nak is Pak2 and that Nef specifically mediates Pak2 activation in a low-abundance complex. These results will facilitate both the elucidation of the role of Nef in pathogenesis and the development of specific inhibitors of this highly conserved function of Nef.
Collapse
Affiliation(s)
- V K Arora
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Barber SA, Maughan MF, Roos JW, Clements JE. Two amino acid substitutions in the SIV Nef protein mediate associations with distinct cellular kinases. Virology 2000; 276:329-38. [PMID: 11040124 DOI: 10.1006/viro.2000.0558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A functional Nef protein is crucial in vivo for viral replication leading to pathogenesis in SIV-infected macaques. Moreover, a full-length Nef protein is required for optimal virus replication in primary cells, and both HIV and SIV Nef proteins enhance virion infectivity. Enhanced infectivity may result in part from the ability of Nef to incorporate cellular kinases into virions. In two previous reports, we compared in vitro kinase profiles of SIV recombinant clones that express nef genes derived either from the prototypic lymphocyte-tropic SIVmac239, clone SIV/Fr-2, or from our neurovirulent clone SIV/17E-Fr. While the SIV/Fr-2 Nef protein associated with the previously described PAK-related kinase and an unidentified serine kinase present in a Nef-associated kinase complex (NAKC), SIV/17E-Fr Nef was found to associate with a novel serine kinase activity that was biochemically distinct from both PAK and NAKC. Interestingly, while both Nef proteins were incorporated into virus particles, Nef-associated kinase activity was detected only in virions containing the SIV/17E-Fr Nef protein. Because sequence analysis identified only five amino acids that differed between the Nef proteins of SIV/Fr-2 and SIV/17E-Fr, we were able to evaluate the contribution of each amino acid to Nef-associated kinase activity as well as virus infectivity by constructing a panel of SIV clones containing individual reversions of each differing amino acid in SIV/17E-Fr Nef to the corresponding amino acid in SIV/Fr-2 Nef. In this report, we identify previously uncharacterized amino acids in the N terminus and the conserved core domain of Nef that are essential for the detection of Nef/kinase interactions as well as Nef phosphorylation during SIV infection. Further, via a novel infectivity assay recently developed in our laboratory that utilizes CEMX174 reporter cells stably expressing an SIV/LTR-luciferase construct, we find no direct correlation between specific Nef kinase associations and enhanced virion infectivity.
Collapse
Affiliation(s)
- S A Barber
- Division of Comparative Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, Maryland, 21205, USA
| | | | | | | |
Collapse
|