1
|
Jiang B, Cao M, Zhou L, Zhen H, Cheng J, Jinqiang C, Liu W, Li Y. Transcriptomic analysis reveals bovine herpesvirus 1 infection regulates innate immune response resulted in restricted viral replication in neuronal cells. Microb Pathog 2024; 195:106896. [PMID: 39208957 DOI: 10.1016/j.micpath.2024.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Bovine herpesvirus 1 (BoHV-1) is a major pathogen that affects the global bovine population, primarily inducing respiratory and reproductive disorders. Its ability to establish latent infections in neuronal cells and to reactivate under certain conditions poses a continual threat to uninfected hosts. In this study, we aimed to analyze the replication characteristics of BoHV-1 in neuronal cells, as well as the effects of viral replication on host cell immunity and physiology. METHODS Using the Neuro-2a neuronal-origin cell line as a model, we explored the dynamics of BoHV-1 replication and analyzed differential gene expression profiles post-BoHV-1 infection using high-throughput RNA sequencing. RESULTS BoHV-1 demonstrated restricted replication in Neuro-2a cells. BoHV-1 induced apoptotic pathways and enhanced the transcription of interferon-stimulated genes and interferon regulatory factors while suppressing the complement cascade in Neuro-2a cells. CONCLUSIONS Different from BoHV-1 infection in other non-highly differentiated somatic cells result in viral dominance, BoHV-1 regulated the innate immune response in neuronal cells formed a "virus-nerve cell" relative equilibrium state, which may account for the restricted replication of BoHV-1 in neuronal cells, leading to a latent infection. These findings provide a foundation for further research into the mechanism underlying BoHV-1-induced latent infection in nerve cells.
Collapse
Affiliation(s)
- Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.
| | - Mengyao Cao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China; College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Linyi Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Hongyue Zhen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China; College of Animal Science and Technology, Northeast Forestry University, Heilongjiang, 150000, China
| | - Jing Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Cui Jinqiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
2
|
Romeo F, Delgado S, Yavorsky M, Martinez Cuesta L, Pereyra S, González Altamiranda E, Louge Uriarte E, Pérez S, Verna A. Modulation of Apoptosis by Bovine Gammaherpesvirus 4 Infection in Bovine Endometrial Cells and the Possible Role of LPS in This Process. BIOLOGY 2024; 13:249. [PMID: 38666861 PMCID: PMC11048171 DOI: 10.3390/biology13040249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 04/28/2024]
Abstract
The prevalent pathogens associated with bovine uterine infections are bacteria that appear to increase the host's susceptibility to secondary infections with other bacteria or viruses, among which BoGHV4 is the most frequently found. In this work, the study of the pathways of apoptosis induction was carried out on an experimental model of primary culture of endometrial cells, in order to know the implication of BoGHV4 and the presence of bacterial LPS in the pathogenesis of the bovine reproductive tract. For this, different staining techniques and molecular analysis by RT-PCR were used. The results obtained allowed us to conclude that the level of cell death observed in the proposed primary culture is directly related to the time of viral infection and the presence of LPS in BoGHV4 infection. The apoptosis indices in cells infected with BoGHV4 and BoGHV4 + LPS revealed a maximum that correlated with the appearance of cytopathic effects and the maximum viral titers in the model studied. However, morphological, biochemical, and molecular changes were evident during both early and late stages of apoptosis. These findings provide information on the factors that may influence the pathogenesis of BoGHV4 and help to better understand the mechanisms involved in virus infection.
Collapse
Affiliation(s)
- Florencia Romeo
- Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA-CONICET), Grupo de Salud Animal RN 226, Balcarce 7620, Argentina; (F.R.); (M.Y.); (S.P.); (E.G.A.); (E.L.U.)
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina;
| | - Santiago Delgado
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina;
| | - Marisol Yavorsky
- Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA-CONICET), Grupo de Salud Animal RN 226, Balcarce 7620, Argentina; (F.R.); (M.Y.); (S.P.); (E.G.A.); (E.L.U.)
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Mar del Plata 7600, Argentina;
| | - Lucía Martinez Cuesta
- Centro de Investigación Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires—CONICET, Tandil 7000, Argentina; (L.M.C.); (S.P.)
- Facultad de Ciencias Veterinarias, CISAPA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil 7000, Argentina
| | - Susana Pereyra
- Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA-CONICET), Grupo de Salud Animal RN 226, Balcarce 7620, Argentina; (F.R.); (M.Y.); (S.P.); (E.G.A.); (E.L.U.)
| | - Erika González Altamiranda
- Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA-CONICET), Grupo de Salud Animal RN 226, Balcarce 7620, Argentina; (F.R.); (M.Y.); (S.P.); (E.G.A.); (E.L.U.)
| | - Enrique Louge Uriarte
- Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA-CONICET), Grupo de Salud Animal RN 226, Balcarce 7620, Argentina; (F.R.); (M.Y.); (S.P.); (E.G.A.); (E.L.U.)
| | - Sandra Pérez
- Centro de Investigación Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires—CONICET, Tandil 7000, Argentina; (L.M.C.); (S.P.)
- Facultad de Ciencias Veterinarias, CISAPA, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil 7000, Argentina
| | - Andrea Verna
- Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, INTA-CONICET), Grupo de Salud Animal RN 226, Balcarce 7620, Argentina; (F.R.); (M.Y.); (S.P.); (E.G.A.); (E.L.U.)
| |
Collapse
|
3
|
Romeo F, Delgado S, Uriarte EL, Storani L, Cuesta LM, Morán P, Altamiranda EG, Odeón A, Pérez S, Verna A. Study of the dynamics of in vitro infection with bovine gammaherpesvirus type 4 and apoptosis markers in susceptible cells. Microb Pathog 2022; 169:105645. [PMID: 35716923 DOI: 10.1016/j.micpath.2022.105645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022]
Abstract
Bovine gammaherpesvirus type 4 (BoHV-4) shows tropism for the endometrium, in which it causes the death of epithelial and stroma cells. Despite having anti-apoptotic genes in its genome, experiments based on immortalized cell lines have shown that BoHV-4 induces cell death by apoptosis. In the present study, we evaluated BoHV-4 replication, pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) mitochondrial genes expression and chromatin condensation in bovine endometrium primary culture cells (BEC) and in the Madin Darby bovine kidney (MDBK) cell line. Results showed that BoHV-4 has a preference for replication in BEC cells over the MDBK cell line, demonstrated by the high viral titer that is consistent with the tropism of the virus. In BEC cells, chromatin condensation was consistent with the values of viral kinetics at the late stage of infection, accompanied with a balance in the mRNA levels of apoptotic mitochondrial proteins. As a consequence, in those cells viral transmission would be enhanced by inhibiting apoptosis in the early stage of virus proliferation, allowing the complete production of viral progeny, and then, the induction of apoptosis in late stages would allow neighboring cells infection. In MDBK cells replication kinetics was coincident with the up-regulation of Bcl-2, which suggests that the productive infection in MDBK is associated with a lytic phase of the virus or another cell death pathway (probably autophagy mechanism) at the late stage of infection. The results agree with the study of nuclear morphology, where a constant chromatin condensation was observed over time. It is clear that the documented BoHV-4 apoptotic responses observed in the cell lines studied above are not valid in cells from primary cultures. The data presented in this study suggest that BoHV-4 could induce apoptosis in BEC cells without a leading role of the mitochondria pathway. Further studies will be necessary to characterize in detail the programmed cell death pathways involved in BoHV-4 infection in the primary cell cultures evaluated.
Collapse
Affiliation(s)
- Florencia Romeo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina; Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Santiago Delgado
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Enrique Louge Uriarte
- Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo de Sanidad Animal. Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Leonardo Storani
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo de Agrobiotecnología. Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA). Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina; Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación. Godoy Cruz, 2370, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucia Martínez Cuesta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET. Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires. Paraje Arroyo Seco S/N, Tandil, (7000), Argentina
| | - Pedro Morán
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires. Paraje Arroyo Seco S/N, Tandil, (7000), Argentina
| | - Erika González Altamiranda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo de Sanidad Animal. Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Anselmo Odeón
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina
| | - Sandra Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET. Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires. Paraje Arroyo Seco S/N, Tandil, (7000), Argentina
| | - Andrea Verna
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Grupo de Sanidad Animal. Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Ferreira HCC, de Araújo EN, Rosado NCL, Fietto JLR, Santos MR, Gomes LL, Silva LMN, Bressan GC, Martins GF, Sreevatsan S, Silva-Júnior A. Apoptosis in the late replication phase of Bovine alphaherpesvirus 1 in experimentally infected calves. Braz J Microbiol 2021; 52:2529-2534. [PMID: 34355356 DOI: 10.1007/s42770-021-00546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/21/2021] [Indexed: 10/20/2022] Open
Abstract
Bovine alphaherpesvirus 1 (BoHV-1) is a pathogen causing respiratory and reproductive clinical signs in cattle. Infected animals may develop rhinotracheitis, vulvovaginitis, balanoposthitis, and abortion. Viral latency is generally established in neuronal ganglia simultaneously to a decrease in both genes or genome expression and viral replication. Under stressful conditions, infection is reactivated leading to viral replication and the manifestation of clinical signs. In this study, we evaluated both viral reactivation and apoptosis in trigeminal ganglia cells as BoHV-1 progressed from the latent to the acute phase of infection after dexamethasone administration in experimentally infected calves. To test ganglia cell death as a consequence of BoHV-1 infection, we stained the BoHV-1 samples with TUNEL after the viral shedding by the calves. RT-qPCR of apoptotic genes was also performed, showing the upregulation of the caspase 8 gene in the trigeminal ganglia from cattle experimentally infected with BoHV-1. These results showed the occurrence of apoptosis in ganglion cells of calves infected by BoHV-1.
Collapse
Affiliation(s)
- Hanna Carolina Campos Ferreira
- Laboratório de Imunobiológicos e Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Elaine Nery de Araújo
- Laboratório de Imunobiológicos e Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Nívia Carolina Lopes Rosado
- Laboratório de Imunobiológicos e Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Juliana Lopes Rangel Fietto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Marcus Rebouças Santos
- Laboratório de Imunobiológicos e Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Lidiany Lopes Gomes
- Laboratório de Imunobiológicos e Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Laura Morais Nascimento Silva
- Laboratório de Imunobiológicos e Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Gustavo Costa Bressan
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Srinand Sreevatsan
- College of Veterinary Medicine, Michigan State University, F130G Veterinary Medical Center, 784 Wilson RD, Room 784 Wilson Road, Room F130G, East Lansing, MI, 48824, USA
| | - Abelardo Silva-Júnior
- Laboratório de Imunobiológicos e Virologia Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil.
| |
Collapse
|
5
|
Morán P, Manrique J, Pérez S, Romeo F, Odeón A, Jones L, Verna A. Analysis of the anti-apoptotic v-Bcl2 and v-Flip genes and effect on in vitro programmed cell death of Argentinean isolates of bovine gammaherpesvirus 4 (BoHV-4). Microb Pathog 2020; 144:104170. [PMID: 32224211 DOI: 10.1016/j.micpath.2020.104170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/11/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022]
Abstract
Some viruses encode inhibitory factors of apoptosis during infection to prolong cell viability and then to achieve a higher production of viral progeny or facilitate persistent infections. There is evidence that some gammaherpesviruses, including BoHV-4, carry genes that can both inhibit or induce apoptosis. BoHV-4 possesses two genes (ORF16 and ORF71) that code for proteins with anti-apoptotic functions, such as v-Bcl2 and v-Flip, respectively. Thus, it is relevant to study BoHV-4 in relation to the modulation of apoptosis in infected cells as a strategy for persistence in the host. The objective of this work was to analyze whether variations in v-Flip and v- Bcl2 of six phylogenetically divergent Argentinean isolates of BoHV-4 can influence the capacity of these strains to induce apoptosis in cell cultures. In this study, variations were mainly detected in the v-Flip gene and protein of the BoHV-4 strains belonging to genotype 3. Thus, it is possible to infer that sequence variations could be associated with some BoHV-4 genotype. Induction of apoptosis was not a significant event for any of the genetically distinct local isolates of BoHV-4 and there was not an evident relationship between the variability of both genes with the apoptotic effect of the phylogenetically distinct strains.
Collapse
Affiliation(s)
- Pedro Morán
- Facultad Ciencias Veterinarias, UNCPBA, Argentina
| | | | - Sandra Pérez
- Facultad Ciencias Veterinarias, UNCPBA, Argentina; CONICET, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Argentina
| | - Florencia Romeo
- Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina
| | - Anselmo Odeón
- Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina
| | - Leandro Jones
- CONICET, Argentina; Laboratorio de Virología y Genética Molecular, Facultad de Ciencias Naturales y Ciencias de La Salud, Universidad Nacional de La Patagonia San Juan Bosco, Argentina
| | - Andrea Verna
- CONICET, Argentina; Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina.
| |
Collapse
|
6
|
Morán PE, Pérez SE, Odeón AC, Verna AE. [Bovine herpesvirus 4 (BoHV-4): general aspects of the biology and status in Argentina]. Rev Argent Microbiol 2015; 47:155-66. [PMID: 25962539 DOI: 10.1016/j.ram.2015.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/05/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022] Open
Abstract
Bovine herpesvirus 4 (BoHV-4) has been isolated from cattle with respiratory infections, vulvovaginitis, mastitis, abortions, endometritis and from apparently healthy animals throughout the world. Although it has not yet been established as causal agent of a specific disease entity, it is primarily associated with reproductive disorders of cattle. This virus can infect a wide range of species, either in vivo or in vitro. Two groups of prototype strains were originated from the first isolates: the DN599-type strains (American group) and the Movar-type strains (European group). In Argentina, BoHV-4 was isolated and characterized in 2007 from vaginal discharge samples taken from cows that had aborted. So far, more than 40 isolates, mainly associated with aborting bovine females have been registered in our country.
Collapse
Affiliation(s)
- Pedro E Morán
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina.
| | - Sandra E Pérez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Anselmo C Odeón
- Departamento de Producción Animal, Laboratorio de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA) Balcarce, Balcarce, Argentina
| | - Andrea E Verna
- Departamento de Producción Animal, Laboratorio de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA) Balcarce, Balcarce, Argentina
| |
Collapse
|
7
|
Montagnaro S, Ciarcia R, Pagnini F, De Martino L, Puzio MV, Granato GE, Avino F, Pagnini U, Iovane G, Giordano A. Bovine herpesvirus type 4 infection modulates autophagy in a permissive cell line. J Cell Biochem 2013; 114:1529-35. [PMID: 23297091 DOI: 10.1002/jcb.24494] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/18/2012] [Indexed: 12/19/2022]
Abstract
Bovine herpesvirus type 4 (BoHV-4), like other herpesviruses, induces a series of alterations in the host cell that modify the intracellular environment in favor of viral replication, survival and spread. This research examined the impact of BoHV-4 infection on autophagy in BoHV-4 infected Madin Darby bovine kidney (MDBK) cells. Protein extracts of BoHV-4 infected and control MDBK cells were subjected to Western blot. The concentrations of the autophagy and apoptosis-related proteins Beclin 1, p21, PI3 kinase, Akt1/2, mTOR, phospho mTOR, p62 and the light chain three (LC3) were normalized to the actin level and expressed as the densitometric ratio. Western blot analysis of virus-infected cells revealed that autophagic degradation pathway was induced in the late phase of BoHV-4 infection. After 48 h post-infection the protein LC3II, which is essential for autophagy was found to be markedly increased, while infection of MDBK cells with BoHV-4 resulted in a depletion of p62 levels. Becline 1, PI3 kinase, Akt1/2 and p21 expression increased between 24 and 48 h post-infection. Surprisingly, mTOR and its phosphorylated form, which are negative regulators of autophagy, also increased after 24 h post-infection. In conclusion, our findings suggest that BoHV-4 has developed mechanisms for modulation of autophagy that are probably part of a strategy designed to enhance viral replication and to evade the immune system. Additional studies on the relationship between autophagy and BoHV-4 replication and survival, in both lytic and latent replication phases, are needed to understand the role of autophagy in BoHV-4 pathogenesis.
Collapse
Affiliation(s)
- Serena Montagnaro
- Department of Pathology and Animal Health, School of Veterinary Medicine, University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Redaelli M, Cavaggioni A, Mucignat-Caretta C, Cavirani S, Caretta A, Donofrio G. Transduction of the rat brain by Bovine Herpesvirus 4. GENETIC VACCINES AND THERAPY 2008; 6:6. [PMID: 18267037 PMCID: PMC2259350 DOI: 10.1186/1479-0556-6-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 02/12/2008] [Indexed: 11/10/2022]
Abstract
Bovine herpesvirus 4 (BoHV-4) is a gamma-herpesvirus with no clear disease association. A recombinant BoHV-4 (BoHV-4EGFP Delta TK) expressing Green Fluorescent Protein (EGFP), was successfully used to infect F98 rat glioma cells. BoHV-4EGFP Delta TK was injected into the lateral ventricle of the rat brain. Histology and immunohistochemistry showed that ependymal and rostral migratory stream cells were transduced while neurons were not. Clinical scores, evaluated for 90 days, indicated that the virus was non neuropathogenic, suggesting this virus is a suitable vector for brain tumor gene therapy.
Collapse
Affiliation(s)
- Marco Redaelli
- Department of Human Anatomy and Physiology, University of Padova, 35131 Padova, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Donofrio G, Herath S, Sartori C, Cavirani S, Flammini CF, Sheldon IM. Bovine herpesvirus 4 is tropic for bovine endometrial cells and modulates endocrine function. Reproduction 2007; 134:183-97. [PMID: 17641100 PMCID: PMC2740819 DOI: 10.1530/rep-07-0065] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bovine postpartum uterine disease, metritis, affects about 40% of animals and is widely considered to have a bacterial aetiology. Although the gamma-herpesvirus bovine herpesvirus 4 (BoHV-4) has been isolated from several outbreaks of metritis or abortion, the role of viruses in endometrial pathology and the mechanisms of viral infection of uterine cells are often ignored. The objectives of the present study were to explore the interaction, tropism and outcomes of BoHV-4 challenge of endometrial stromal and epithelial cells. Endometrial stromal and epithelial cells were purified and infected with a recombinant BoHV-4 carrying an enhanced green fluorescent protein (EGFP) expression cassette to monitor the establishment of infection. BoHV-4 efficiently infected both stromal and epithelial cells, causing a strong non-apoptotic cytopathic effect, associated with robust viral replication. The crucial step for the BoHV-4 endometriotropism appeared to be after viral entry as there was enhanced transactivation of the BoHV-4 immediate early 2 gene promoter following transient transfection into the endometrial cells. Infection with BoHV-4 increased cyclooxygenase 2 protein expression and prostaglandin estradiol secretion in endometrial stromal cells, but not epithelial cells. Bovine macrophages are persistently infected with BoHV-4, and co-culture with endometrial stromal cells reactivated BoHV-4 replication in the persistently infected macrophages, suggesting a symbiotic relationship between the cells and virus. In conclusion, the present study provides evidence of cellular and molecular mechanisms, supporting the concept that BoHV-4 is a pathogen associated with uterine disease.
Collapse
Affiliation(s)
- Gaetano Donofrio
- Dipartimento di Salute Animale, Sezione di Malattie Infettive, Facoltà di Medicina Veterinaria, via del Taglio 8, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Gillet L, Dewals B, Farnir F, de Leval L, Vanderplasschen A. Bovine herpesvirus 4 induces apoptosis of human carcinoma cell lines in vitro and in vivo. Cancer Res 2005; 65:9463-72. [PMID: 16230410 DOI: 10.1158/0008-5472.can-05-1076] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The idea of using oncolytic viruses for the treatment of cancers was proposed a century ago. During the last two decades, viruses able to replicate specifically in cancer cells and to induce their lysis were identified and were genetically modified to improve their viro-oncolytic properties. More recently, a new approach consisting of inducing selective apoptosis in cancer cells through viral infection has been proposed; this approach has been called viro-oncoapoptosis. In the present study, we report the property of bovine herpesvirus-4 (BoHV-4) to induce, in vitro and in vivo, apoptosis of some human carcinomas. This conclusion relies on the following observations: (a) In vitro, BoHV-4 infection induced apoptosis of A549 and OVCAR carcinoma cell lines in a time- and dose-dependent manner. (b) Apoptosis was induced by the expression of an immediate-early or an early BoHV-4 gene, but did not require viral replication. (c) Cell treatment with caspase inhibitors showed that apoptosis induced by BoHV-4 relied mainly on caspase-10 activation. (d) Infection of cocultures of A549 or OVCAR cells mixed with human 293 cells (in which BoHV-4 does not induce apoptosis) showed that BoHV-4 specifically eradicated A549 or OVCAR cancer cells from the cocultures. (e) Finally, in vivo experiments done with nude mice showed that BoHV-4 intratumoral injections reduced drastically the growth of preestablished A549 xenografts. Taken together, these results suggest that BoHV-4 may have potential as a viro-oncoapoptotic agent for the treatment of some human carcinomas. Moreover, further identification of BoHV-4 proapoptotic gene(s) and the cellular pathways targeted by this or these gene(s) could lead to the design of new cancer therapeutic strategies.
Collapse
Affiliation(s)
- Laurent Gillet
- Department of Infectious and Parasitic Diseases, Faculty of Medicine, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
11
|
Medici MA, Sciortino MT, Perri D, Amici C, Avitabile E, Ciotti M, Balestrieri E, De Smaele E, Franzoso G, Mastino A. Protection by herpes simplex virus glycoprotein D against Fas-mediated apoptosis: role of nuclear factor kappaB. J Biol Chem 2003; 278:36059-36067. [PMID: 12844494 DOI: 10.1074/jbc.m306198200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signals involved in protection against apoptosis by herpes simplex virus 1 (HSV-1) were investigated. Using U937 monocytoid cells as an experimental model, we have demonstrated that HSV-1 rendered these cells resistant to Fas-induced apoptosis promptly after infection. UV-inactivated virus as well as the envelope glycoprotein D (gD) of HSV-1, by itself, exerted a protective effect on Fas-induced apoptosis. NF-kappaB was activated by gD, and protection against Fas-mediated apoptosis by gD was abolished in cells stably transfected with a dominant negative mutant I-kappaBalpha, indicating that NF-kappaB activation plays a role in the antiapoptotic activity of gD in our experimental model. Moreover, NF-kappaB-dependent protection against Fas-mediated apoptosis was associated with decreased levels of caspase-8 activity and with the up-regulation of intracellular antiapoptotic proteins.
Collapse
Affiliation(s)
- M Antonietta Medici
- Department of Microbiological, Genetic and Molecular Sciences, Salita Sperone 31, University of Messina, 98166 Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|