1
|
Achs A, Glasa M, Šubr Z. Potyvirus-Based Vectors for Heterologous Gene Expression in Plants. Viruses 2024; 16:1920. [PMID: 39772227 PMCID: PMC11680211 DOI: 10.3390/v16121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Over the past two decades, plant viral vectors have emerged as a powerful tool for the production of recombinant proteins in plants. Among the different plant viruses engineered to carry foreign genes of interest in their genomes, potyviruses have gained attention due to their polyprotein expression strategy and broad host range. To date, at least eleven different species belonging to the genus Potyvirus have been used for heterologous gene expression in both their natural and experimental hosts. This review article provides an overview of the current state of potyvirus-based plant viral vectors, discussing the advantages and limitations of these systems. We also discuss the future challenges and potential applications of potyvirus-based expression vectors, including the production of vaccines, nanoparticles, therapeutics, and metabolic engineering. Overall, we highlight the potential of potyvirus-based vectors as a versatile tool for recombinant protein production in plants.
Collapse
Affiliation(s)
- Adam Achs
- Department of Virus Ecology, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| | - Miroslav Glasa
- Department of Virus Ecology, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
- Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Námestie J. Herdu 2, 917 01 Trnava, Slovakia
| | - Zdeno Šubr
- Department of Virus Ecology, Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
2
|
Xia T, Lu X, Kong D, Guo T, Gao Y, Xin L, Jiang Y, Wang X, Shan Z, Li J, Zhou H, Cui W, Qiao X, Tang L, Li Y, Wang L. Screening optimal DC-targeting peptide to enhance the immune efficacy of recombinant Lactobacillus expressing RHDV VP60. Virulence 2024; 15:2368080. [PMID: 38899573 PMCID: PMC11195490 DOI: 10.1080/21505594.2024.2368080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Dendritic cells (DCs) present an ideal target for delivering immunogenic cargo due to their potent antigen-presenting capabilities. This targeting approach holds promise in vaccine development by enhancing the efficiency of antigen recognition and capture by DCs. To identify a high-affinity targeting peptide binding to rabbit DCs, rabbit monocyte-derived DCs (raMoDCs) were isolated and cultured, and a novel peptide, HS (HSLRHDYGYPGH), was identified using a phage-displayed peptide library. Alongside HS, two other DC-targeting peptides, KC1 and MY, previously validated in our laboratory, were employed to construct recombinant Lactgobacillus reuteri fusion-expressed rabbit hemorrhagic disease virus (RHDV) capsid protein VP60. These recombinant Lactobacillus strains were named HS-VP60/L. reuteri, KC1-VP60/L. reuteri, and MY-VP60/L. reuteri. The ability of these recombinant Lactobacillus to bind rabbit DCs was evaluated both in vivo and in vitro. Results demonstrated that the DC-targeting peptide KC1 significantly enhanced the capture efficiency of recombinant Lactobacillus by raMoDCs, promoted DC maturation, and increased cytokine secretion. Furthermore, oral administration of KC1-VP60/L. reuteri effectively induced SIgA and IgG production in rabbits, prolonged rabbit survival post-challenge, and reduced RHDV copies in organs. In summary, the DC-targeting peptide KC1 exhibited robust binding to raMoDCs, and recombinant Lactobacillus expressing KC1-VP60 protein antigens efficiently induced systemic and mucosal immune responses in rabbits, conferring protective efficacy against RHDV. This study offers valuable insights for the development of novel RHDV vaccines.
Collapse
Affiliation(s)
- Tian Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Deming Kong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tiantian Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yueyi Gao
- Division of Viral Biologic Testing(I), China Institute of Veterinary Drug Control, Beijing, China
| | - Lingxiang Xin
- Division of Viral Biologic Testing(I), China Institute of Veterinary Drug Control, Beijing, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| |
Collapse
|
3
|
Rodamilans B, Hadersdorfer J, Berki Z, García B, Neumüller M, García JA. The Mechanism of Resistance of EUROPEAN Plum to Plum pox virus Mediated by Hypersensitive Response Is Linked to VIRAL NIa and Its Protease Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:1609. [PMID: 37111834 PMCID: PMC10147044 DOI: 10.3390/plants12081609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Plum pox virus (PPV) infects Prunus trees across the globe, causing the serious Sharka disease. Breeding programs in the past 20 years have been successful, generating plum varieties hypersensitive to PPV that show resistance in the field. Recently, a single tree displaying typical PPV symptoms was detected in an orchard of resistant plums. The tree was eradicated, and infected material was propagated under controlled conditions to study the new PPV isolate. Performing overlapping PCR analysis, the viral sequence was reconstructed, cloned and tested for infectivity in different 'Jojo'-based resistant plums. The results confirmed that the isolate, named PPV-D 'Herrenberg' (PPVD-H), was able to infect all these varieties. Analyses of chimeras between PPVD-H and a PPV-D standard isolate (PPVD) revealed that the NIa region of PPD-H, carrying three amino acid changes, was enough to break the resistance of these plums. Experiments with single and double mutants showed that all changes were essential to preserve the escaping phenotype. Additionally, one of the changes at the VPg-NIapro junction suggested the involvement of controlled endopeptidase cleavage in the viral response. Transient expression experiments in Nicotiana benthamiana confirmed that NIa cleavage in PPVD-H was reduced, compared to PPVD, linking the observed behavior to an NIa cleavage modulation.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Johannes Hadersdorfer
- School of Life Sciences Weihenstephan, Technical University of Munich, Dürnast 2, D-85354 Freising, Germany
| | - Zita Berki
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Beatriz García
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Michael Neumüller
- Bavarian Centre of Pomology and Fruit Breeding, Am Süßbach 1, D-85399 Hallbergmoos, Germany
| | - Juan Antonio García
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
4
|
Mesel F, Zhao M, García B, Simón‐Mateo C, García J. Targeting of genomic and negative-sense strands of viral RNA contributes to antiviral resistance mediated by artificial miRNAs and promotes the emergence of complex viral populations. MOLECULAR PLANT PATHOLOGY 2022; 23:1640-1657. [PMID: 35989243 PMCID: PMC9562735 DOI: 10.1111/mpp.13258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 05/27/2023]
Abstract
Technology based on artificial small RNAs, including artificial microRNAs (amiRNAs), exploits natural RNA silencing mechanisms to achieve silencing of endogenous genes or pathogens. This technology has been successfully employed to generate resistance against different eukaryotic viruses. However, information about viral RNA molecules effectively targeted by these small RNAs is rather conflicting, and factors contributing to the selection of virus mutants escaping the antiviral activity of virus-specific small RNAs have not been studied in detail. In this work, we transformed Nicotiana benthamiana plants with amiRNA constructs designed against the potyvirus plum pox virus (PPV), a positive-sense RNA virus, and obtained lines highly resistant to PPV infection and others showing partial resistance. These lines have allowed us to verify that amiRNA directed against genomic RNA is more efficient than amiRNA targeting its complementary strand. However, we also provide evidence that the negative-sense RNA strand is cleaved by the amiRNA-guided RNA silencing machinery. Our results show that the selection pressure posed by the amiRNA action on both viral RNA strands causes an evolutionary explosion that results in the emergence of a broad range of virus variants, which can further expand in the presence, and even in the absence, of antiviral challenges.
Collapse
Affiliation(s)
- Frida Mesel
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| | - Mingmin Zhao
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
- College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhotChina
| | - Beatriz García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| | - Carmen Simón‐Mateo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| | - Juan Antonio García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
5
|
Plum Pox Virus Genome-Based Vector Enables the Expression of Different Heterologous Polypeptides in Nicotiana benthamiana Plants. Processes (Basel) 2022. [DOI: 10.3390/pr10081526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Plant viral vectors have become a promising tool for the rapid and cost-effective production of recombinant proteins in plants. Among the numerous genera of viruses that have been used for heterologous expression, potyviruses offer several advantages, such as polyprotein expression strategy or a broad host range. In our work, the expression vectors pAD/pAD-agro based on the plum pox virus (PPV) genome were used for the heterologous expression of different foreign polypeptides: alfalfa mosaic virus capsid protein (AMV CP), zucchini yellow mosaic virus capsid protein (ZYMV CP), the small heat-shock protein of Cronobacter sakazakii fused with hexahistidine (sHSP-his), a fragment of influenza A virus hemagglutinin (HA2-2), influenza A virus protein PB1-F2, SARS-CoV-2 nucleocapsid protein (CoN2-his), and its N- and C-terminal fragments (CoN-1-his and CoN3-his, respectively), each fused with a hexahistidine anchor. Particular proteins differed in their accumulation, tissue localization, stability, and solubility. The accumulation rate of produced polypeptides varied from low (N, hemagglutinin fragment) to relatively high (plant viral CPs, N-terminal fragment of N, PB1-F2). Some proteins preferentially accumulated in roots (sHSP, hemagglutinin fragment, PB1-F2), showing signs of proteolytic degradation in leaf tissues. Thus, each expression requires an individual approach and optimization. Here, we summarize our several-year experiments and discuss the usefulness of the pAD/pADep vector system.
Collapse
|
6
|
Grech‐Baran M, Witek K, Poznański JT, Grupa‐Urbańska A, Malinowski T, Lichocka M, Jones JDG, Hennig J. The Ry sto immune receptor recognises a broadly conserved feature of potyviral coat proteins. THE NEW PHYTOLOGIST 2022; 235:1179-1195. [PMID: 35491734 PMCID: PMC9322412 DOI: 10.1111/nph.18183] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/13/2022] [Indexed: 05/05/2023]
Abstract
Knowledge of the immune mechanisms responsible for viral recognition is critical for understanding durable disease resistance and successful crop protection. We determined how potato virus Y (PVY) coat protein (CP) is recognised by Rysto , a TNL immune receptor. We applied structural modelling, site-directed mutagenesis, transient overexpression, co-immunoprecipitation, infection assays and physiological cell death marker measurements to investigate the mechanism of Rysto -CP interaction. Rysto associates directly with PVY CP in planta that is conditioned by the presence of a CP central 149 amino acids domain. Each deletion that affects the CP core region impairs the ability of Rysto to trigger defence. Point mutations in the amino acid residues Ser125 , Arg157 , and Asp201 of the conserved RNA-binding pocket of potyviral CP reduce or abolish Rysto binding and Rysto -dependent responses, demonstrating that appropriate folding of the CP core is crucial for Rysto -mediated recognition. Rysto recognises the CPs of at least 10 crop-damaging viruses that share a similar core region. It confers immunity to plum pox virus and turnip mosaic virus in both Solanaceae and Brassicaceae systems, demonstrating potential utility in engineering virus resistance in various crops. Our findings shed new light on how R proteins detect different viruses by sensing conserved structural patterns.
Collapse
Affiliation(s)
- Marta Grech‐Baran
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| | - Kamil Witek
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research ParkNorwichNR4 7UHUK
- The 2Blades FoundationEvanstonIL60201USA
| | - Jarosław T. Poznański
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| | - Anna Grupa‐Urbańska
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
- Plant Breeding and Acclimatization Institute‐National Research InstitutePlatanowa 19Młochów05‐831Poland
| | - Tadeusz Malinowski
- The National Institute of Horticultural ResearchKonstytucji 3. Maja 1/3Skierniewice96‐100Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| | - Jonathan D. G. Jones
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research ParkNorwichNR4 7UHUK
| | - Jacek Hennig
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| |
Collapse
|
7
|
Dalton KP, Alvarado C, Reytor E, del Carmen Nuñez M, Podadera A, Martínez-Alonso D, Alonso JMM, Nicieza I, Gómez-Sebastián S, Dalton RM, Parra F, Escribano JM. Chimeric VLPs Bearing VP60 from Two Serotypes of Rabbit Haemorrhagic Disease Virus Are Protective against Both Viruses. Vaccines (Basel) 2021; 9:vaccines9091005. [PMID: 34579243 PMCID: PMC8472679 DOI: 10.3390/vaccines9091005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
The VP60 capsid protein from rabbit haemorrhagic disease virus (RHDV), the causative agent of one of the most economically important disease in rabbits worldwide, forms virus-like particles (VLPs) when expressed using heterologous protein expression systems such as recombinant baculovirus, yeasts, plants or mammalian cell cultures. To prevent RHDV dissemination, it would be beneficial to develop a bivalent vaccine including both RHDV GI.1- and RHDV GI.2-derived VLPs to achieve robust immunisation against both serotypes. In the present work, we developed a strategy of production of a dual-serving RHDV vaccine co-expressing the VP60 proteins from the two RHDV predominant serotypes using CrisBio technology, which uses Tricholusia ni insect pupae as natural bioreactors, which are programmed by recombinant baculovirus vectors. Co-infecting the insect pupae with two baculovirus vectors expressing the RHDV GI.1- and RHDV GI.2-derived VP60 proteins, we obtained chimeric VLPs incorporating both proteins as determined by using serotype-specific monoclonal antibodies. The resulting VLPs showed the typical size and shape of this calicivirus as determined by electron microscopy. Rabbits immunised with the chimeric VLPs were fully protected against a lethal challenge infection with the two RHDV serotypes. This study demonstrates that it is possible to generate a dual cost-effective vaccine against this virus using a single production and purification process, greatly simplifying vaccine manufacturing.
Collapse
Affiliation(s)
- Kevin P. Dalton
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Campus El Cristo, Universidad de Oviedo, Edificio Santiago Gascón, 33006 Oviedo, Spain; (K.P.D.); (A.P.); (J.M.M.A.); (I.N.); (F.P.)
| | - Carmen Alvarado
- Alternative Gene Expression S.L. Ronda de Poniente 14, Tres Cantos, 28760 Madrid, Spain; (C.A.); (E.R.); (M.d.C.N.); (D.M.-A.); (S.G.-S.); (R.M.D.)
| | - Edel Reytor
- Alternative Gene Expression S.L. Ronda de Poniente 14, Tres Cantos, 28760 Madrid, Spain; (C.A.); (E.R.); (M.d.C.N.); (D.M.-A.); (S.G.-S.); (R.M.D.)
| | - Maria del Carmen Nuñez
- Alternative Gene Expression S.L. Ronda de Poniente 14, Tres Cantos, 28760 Madrid, Spain; (C.A.); (E.R.); (M.d.C.N.); (D.M.-A.); (S.G.-S.); (R.M.D.)
| | - Ana Podadera
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Campus El Cristo, Universidad de Oviedo, Edificio Santiago Gascón, 33006 Oviedo, Spain; (K.P.D.); (A.P.); (J.M.M.A.); (I.N.); (F.P.)
| | - Diego Martínez-Alonso
- Alternative Gene Expression S.L. Ronda de Poniente 14, Tres Cantos, 28760 Madrid, Spain; (C.A.); (E.R.); (M.d.C.N.); (D.M.-A.); (S.G.-S.); (R.M.D.)
| | - Jose Manuel Martin Alonso
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Campus El Cristo, Universidad de Oviedo, Edificio Santiago Gascón, 33006 Oviedo, Spain; (K.P.D.); (A.P.); (J.M.M.A.); (I.N.); (F.P.)
| | - Ines Nicieza
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Campus El Cristo, Universidad de Oviedo, Edificio Santiago Gascón, 33006 Oviedo, Spain; (K.P.D.); (A.P.); (J.M.M.A.); (I.N.); (F.P.)
| | - Silvia Gómez-Sebastián
- Alternative Gene Expression S.L. Ronda de Poniente 14, Tres Cantos, 28760 Madrid, Spain; (C.A.); (E.R.); (M.d.C.N.); (D.M.-A.); (S.G.-S.); (R.M.D.)
| | - Romy M. Dalton
- Alternative Gene Expression S.L. Ronda de Poniente 14, Tres Cantos, 28760 Madrid, Spain; (C.A.); (E.R.); (M.d.C.N.); (D.M.-A.); (S.G.-S.); (R.M.D.)
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Campus El Cristo, Universidad de Oviedo, Edificio Santiago Gascón, 33006 Oviedo, Spain; (K.P.D.); (A.P.); (J.M.M.A.); (I.N.); (F.P.)
| | - José M. Escribano
- Alternative Gene Expression S.L. Ronda de Poniente 14, Tres Cantos, 28760 Madrid, Spain; (C.A.); (E.R.); (M.d.C.N.); (D.M.-A.); (S.G.-S.); (R.M.D.)
- Correspondence:
| |
Collapse
|
8
|
Xie W, Marty DM, Xu J, Khatri N, Willie K, Moraes WB, Stewart LR. Simultaneous gene expression and multi-gene silencing in Zea mays using maize dwarf mosaic virus. BMC PLANT BIOLOGY 2021; 21:208. [PMID: 33952221 PMCID: PMC8097858 DOI: 10.1186/s12870-021-02971-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/13/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Maize dwarf mosaic virus (MDMV), a member of the genus Potyvirus, infects maize and is non-persistently transmitted by aphids. Several plant viruses have been developed as tools for gene expression and gene silencing in plants. The capacity of MDMV for both gene expression and gene silencing were examined. RESULTS Infectious clones of an Ohio isolate of MDMV, MDMV OH5, were obtained, and engineered for gene expression only, and for simultaneous marker gene expression and virus-induced gene silencing (VIGS) of three endogenous maize target genes. Single gene expression in single insertion constructs and simultaneous expression of green fluorescent protein (GFP) and silencing of three maize genes in a double insertion construct was demonstrated. Constructs with GFP inserted in the N-terminus of HCPro were more stable than those with insertion at the N-terminus of CP in our study. Unexpectedly, the construct with two insertion sites also retained insertions at a higher rate than single-insertion constructs. Engineered MDMV expression and VIGS constructs were transmissible by aphids (Rhopalosiphum padi). CONCLUSIONS These results demonstrate that MDMV-based vector can be used as a tool for simultaneous gene expression and multi-gene silencing in maize.
Collapse
Affiliation(s)
- Wenshuang Xie
- Department of Plant Pathology, Ohio State University, OH, 44691, Wooster, USA
| | - Dee Marie Marty
- USDA-ARS Corn Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | - Junhuan Xu
- Department of Plant Pathology, Ohio State University, OH, 44691, Wooster, USA
| | - Nitika Khatri
- Department of Plant Pathology, Ohio State University, OH, 44691, Wooster, USA
| | - Kristen Willie
- USDA-ARS Corn Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA
| | | | - Lucy R Stewart
- USDA-ARS Corn Soybean and Wheat Quality Research Unit, Wooster, OH, 44691, USA.
| |
Collapse
|
9
|
Strict Assembly Restriction of Peptides from Rabbit Hemorrhagic Disease Virus Presented by Rabbit Major Histocompatibility Complex Class I Molecule RLA-A1. J Virol 2020; 94:JVI.00396-20. [PMID: 32522857 DOI: 10.1128/jvi.00396-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/02/2020] [Indexed: 12/28/2022] Open
Abstract
Rabbits are pivotal domestic animals for both the economy and as an animal model for human diseases. A large number of rabbits have been infected by rabbit hemorrhagic disease virus (RHDV) in natural and artificial pandemics in the past. Differences in presentation of antigenic peptides by polymorphic major histocompatibility complex (MHC) molecules to T-cell receptors (TCR) on T lymphocytes are associated with viral clearance in mammals. Here, we screened and identified a series of peptides derived from RHDV binding to the rabbit MHC class I molecule, RLA-A1. The small, hydrophobic B and F pockets of RLA-A1 capture a peptide motif analogous to that recognized by human class I molecule HLA-A*0201, with more restricted aliphatic anchors at P2 and PΩ positions. Moreover, the rabbit molecule is characterized by an uncommon residue combination of Gly53, Val55, and Glu56, making the 310 helix and the loop between the 310 and α1 helices closer to the α2 helix. A wider A pocket in RLA-A1 can induce a special conformation of the P1 anchor and may play a pivotal role in peptide assembly and TCR recognition. Our study broadens the knowledge of T-cell immunity in domestic animals and also provides useful insights for vaccine development to prevent infectious diseases in rabbits.IMPORTANCE We screened rabbit MHC class I RLA-A1-restricted peptides from the capsid protein VP60 of rabbit hemorrhagic disease virus (RHDV) and determined the structures of RLA-A1 complexed with three peptides, VP60-1, VP60-2, and VP60-10. From the structures, we found that the peptide binding motifs of RLA-A1 are extremely constraining. Thus, there is a generally restricted peptide selection for RLA-A1 compared to that for human HLA-A*0201. In addition, uncommon residues Gly53, Val55, and Glu56 of RLA-A1 are located between the 310 helix and α1 helix, which makes the steric position of the 310 helix in RLA-A1 much closer to the α2 helix than that found in other mammalian MHC class I molecules. This special conformation between the 310 helix and α1 helix plays a pivotal role in rabbit MHC class I assembly. Our results provide new insights into MHC class I molecule assembly and peptide presentation of domestic mammals. Furthermore, these data also broaden our knowledge on T-cell immunity in rabbits and may also provide useful information for vaccine development to prevent infectious diseases in rabbits.
Collapse
|
10
|
Kannan M, Zainal Z, Ismail I, Baharum SN, Bunawan H. Application of Reverse Genetics in Functional Genomics of Potyvirus. Viruses 2020; 12:v12080803. [PMID: 32722532 PMCID: PMC7472138 DOI: 10.3390/v12080803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Numerous potyvirus studies, including virus biology, transmission, viral protein function, as well as virus–host interaction, have greatly benefited from the utilization of reverse genetic techniques. Reverse genetics of RNA viruses refers to the manipulation of viral genomes, transfection of the modified cDNAs into cells, and the production of live infectious progenies, either wild-type or mutated. Reverse genetic technology provides an opportunity of developing potyviruses into vectors for improving agronomic traits in plants, as a reporter system for tracking virus infection in hosts or a production system for target proteins. Therefore, this review provides an overview on the breakthroughs achieved in potyvirus research through the implementation of reverse genetic systems.
Collapse
Affiliation(s)
- Maathavi Kannan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Syarul Nataqain Baharum
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (M.K.); (Z.Z.); (I.I.); (S.N.B.)
- Correspondence: ; Tel.: +60-3-8921-4554
| |
Collapse
|
11
|
Qi R, Miao Q, Zhu J, Tang J, Tang A, Wang X, Dong D, Guo H, Liu G. Construction and immunogenicity of novel bivalent virus-like particles bearing VP60 genes of classic RHDV(GI.1) and RHDV2(GI.2). Vet Microbiol 2019; 240:108529. [PMID: 31902498 DOI: 10.1016/j.vetmic.2019.108529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Rabbit hemorrhagic disease (RHD) is an acute, inflammatory, septic, and devastating infectious disease caused by Rabbit hemorrhagic disease virus (RHDV), which poses a serious threat to the rabbit industry. RHDV2 (GI.2/RHDVb), a recently reported new variant could cause RHD in wild populations, but also RHDV-vaccinated rabbits. For now, both RHDV and RHDV2 are the main causes of RHD. To develop a new subunit vaccine that could protect rabbits against both classic RHDV and RHDV2 infections, we constructed a recombinant baculovirus (Bac-classic RHDV VP60-RHDV2 VP60) containing the VP60 genes of classic RHDV and RHDV2. Both VP60 genes were well expressed simultaneously in Spodoptera frugiperda cells (Sf9) after infection with the recombinant baculovirus. Transmission electron microscopy showed that the recombinant VP60 self-assembled into virus-like particles (VLPs). The antigenicity and immunogenicity of the bivalent VLPs vaccine were examined with animal experiments. Our results demonstrated that both the humoral and cellular immune responses were efficiently induced in rabbits by a subunit vaccine based on the recombinant baculovirus. In addition, all rabbits immunized with the bivalent VLPs vaccine survived after challenged with classic RHDV, and showed no clinical signs of RHD, whereas all the rabbits in the negative control group died from classic RHDV infection and showed typical clinical signs of RHD. In summary, our results indicated that the recombinant baculovirus carrying two VP60 genes is a candidate construct from which to develop a bivalent VLPs vaccine against both classic RHDV and RHDV2 infections.
Collapse
Affiliation(s)
- Ruibin Qi
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Qiuhong Miao
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China; Laboratory of Virology, Wageningen University & Research, Wageningen, 6708 PB, the Netherlands
| | - Jie Zhu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Jingyu Tang
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Aoxing Tang
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Xiaoxue Wang
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Dandan Dong
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Hongyuan Guo
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Guangqing Liu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China.
| |
Collapse
|
12
|
Mei Y, Liu G, Zhang C, Hill JH, Whitham SA. A sugarcane mosaic virus vector for gene expression in maize. PLANT DIRECT 2019; 3:e00158. [PMID: 31410390 PMCID: PMC6686331 DOI: 10.1002/pld3.158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/18/2019] [Indexed: 05/09/2023]
Abstract
Zea mays L. ssp. mays (maize) is an important crop plant as well as model system for genetics and plant biology. The ability to select among different virus-based platforms for transient gene silencing or protein expression experiments is expected to facilitate studies of gene function in maize and complement experiments with stable transgenes. Here, we describe the development of a sugarcane mosaic virus (SCMV) vector for the purpose of protein expression in maize. An infectious SCMV cDNA clone was constructed, and heterologous genetic elements were placed between the protein 1 (P1) and helper component-proteinase (HC-Pro) cistrons in the SCMV genome. Recombinant SCMV clones engineered to express green fluorescent protein (GFP), β-glucuronidase (GUS), or bialaphos resistance (BAR) protein were introduced into sweet corn (Golden × Bantam) plants. Documentation of developmental time courses spanning maize growth from seedling to tasseling showed that the SCMV genome tolerates insertion of foreign sequences of at least 1,809 nucleotides at the P1/HC-Pro junction. Analysis of insert stability showed that the integrity of GFP and BAR coding sequences was maintained longer than that of the much larger GUS coding sequence. The SCMV isolate from which the expression vector is derived is able to infect several important maize inbred lines, suggesting that this SCMV vector has potential to be a valuable tool for gene functional analysis in a broad range of experimentally important maize genotypes.
Collapse
Affiliation(s)
- Yu Mei
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowa
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Chunquan Zhang
- Department of AgricultureAlcorn State UniversityLormanMississippi
| | - John H. Hill
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowa
| | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowa
| |
Collapse
|
13
|
Müller C, Ulrich R, Schinköthe J, Müller M, Köllner B. Characterization of protective humoral and cellular immune responses against RHDV2 induced by a new vaccine based on recombinant baculovirus. Vaccine 2019; 37:4195-4203. [PMID: 31182325 DOI: 10.1016/j.vaccine.2019.04.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 04/04/2019] [Accepted: 04/19/2019] [Indexed: 01/23/2023]
Abstract
Rabbit hemorrhagic disease (RHD) is a lethal disease in rabbits caused by RHD virus (RHDV). Protection is only possible through vaccination. A new virus variant (RHDV2) which emerged in 2010 in France differed from the classical RHDV1 variant in certain aspects and vaccines against RHDV1 induced limited cross protection only. In a previous study, we designed a recombinant baculovirus based RHDV2-VP1 vaccine, which provided a protective immunity in rabbits against RHDV2. In the present study this newly created vaccine is characterized with regard to onset and duration of protection, and possible cross protection against classical RHDV1. Furthermore, humoral and cellular immune mechanisms in vaccinated and infected rabbits were analyzed. In all experiments, the recombinant vaccine was compared to a conventional liver-based RHDV2 vaccine. The RHDV2-VP1 vaccine induced a protective immune response already seven days after single vaccination and fully protected for at least 14 months. A booster vaccination 21 days after the first had a negative influence on long-term protection. The cross protection provided by the RHDV2-VP1 vaccine against classical RHDV1 was limited since only 50% of vaccinated rabbits survived the infection. Conclusively, the new, baculovirus-based RHDV2-VP1 vaccine has the potential to protect rabbits against the infection with RHDV2, blocks completely the disease progression and prevents the spread of RHDV2 at the population level.
Collapse
Affiliation(s)
- Claudia Müller
- Friedrich-Loeffler-Institute, Institute of Molecular Virology and Cell Biology, Department of Experimental Animal Facilities and Biorisk Management, Institute of Immunology, Greifswald-Insel Riems, Germany
| | - Reiner Ulrich
- Friedrich-Loeffler-Institute, Institute of Molecular Virology and Cell Biology, Department of Experimental Animal Facilities and Biorisk Management, Institute of Immunology, Greifswald-Insel Riems, Germany
| | - Jan Schinköthe
- Friedrich-Loeffler-Institute, Institute of Molecular Virology and Cell Biology, Department of Experimental Animal Facilities and Biorisk Management, Institute of Immunology, Greifswald-Insel Riems, Germany
| | - Marcus Müller
- Friedrich-Loeffler-Institute, Institute of Molecular Virology and Cell Biology, Department of Experimental Animal Facilities and Biorisk Management, Institute of Immunology, Greifswald-Insel Riems, Germany; IDT Biologika Riems, Greifswald-Insel Riems, Germany
| | - Bernd Köllner
- Friedrich-Loeffler-Institute, Institute of Molecular Virology and Cell Biology, Department of Experimental Animal Facilities and Biorisk Management, Institute of Immunology, Greifswald-Insel Riems, Germany.
| |
Collapse
|
14
|
Müller C, Ulrich R, Franzke K, Müller M, Köllner B. Crude extracts of recombinant baculovirus expressing rabbit hemorrhagic disease virus 2 VLPs from both insect and rabbit cells protect rabbits from rabbit hemorrhagic disease caused by RHDV2. Arch Virol 2018; 164:137-148. [PMID: 30291504 DOI: 10.1007/s00705-018-4032-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/14/2018] [Indexed: 12/19/2022]
Abstract
Vaccines against viral pathogens are often composed of recombinant proteins expressed in different systems. Such proteins expressed by recombinant baculoviruses have been proven to be effective for vaccination. Especially, after codon usage optimization high amounts of recombinant viral proteins can be obtained which can assemble to virus like particles (VLPs) spontaneously. In this study we compared two different codon usages of RHDV2-VP1 to improve the expression of recombinant VP1 of RHDV2 by recombinant baculoviruses after infection of insect SF9 cells or transduction of mammalian RK13 cells in order to gain high protein yields. Also the influence on the auto-assembly of RHDV2-VP1 to VLPs was investigated. Finally, the immunogenic potential of such recombinant vaccines against RHDV2 to induce a protective immune response in rabbits against RHDV2 should be characterized. There was no influence of different codon usages on RHDV2-VP1 gene expression in the respective cell lines detected. However, in insect cell line SF9 higher rates of recombinant VP1 were measured in comparison to the transduction of mammalian cells RK13. Auto-assembly of RHDV2-VP1 to VLPs was observed in both cell systems by electron microscopy. Finally, both RHDV-VP1 VLPs derived from mammalian and insect cells were able to induce a protective humoral immune response in rabbits against RHDV2.
Collapse
Affiliation(s)
- Claudia Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
| | - Marcus Müller
- IDT Biologika (Riems), Greifswald-Insel Riems, Germany
| | - Bernd Köllner
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany.
| |
Collapse
|
15
|
Martínez‐Turiño S, Pérez JDJ, Hervás M, Navajas R, Ciordia S, Udeshi ND, Shabanowitz J, Hunt DF, García JA. Phosphorylation coexists with O-GlcNAcylation in a plant virus protein and influences viral infection. MOLECULAR PLANT PATHOLOGY 2018; 19:1427-1443. [PMID: 29024291 PMCID: PMC5895533 DOI: 10.1111/mpp.12626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Phosphorylation and O-GlcNAcylation are two widespread post-translational modifications (PTMs), often affecting the same eukaryotic target protein. Plum pox virus (PPV) is a member of the genus Potyvirus which infects a wide range of plant species. O-GlcNAcylation of the capsid protein (CP) of PPV has been studied extensively, and some evidence of CP phosphorylation has also been reported. Here, we use proteomics analyses to demonstrate that PPV CP is phosphorylated in vivo at the N-terminus and the beginning of the core region. In contrast with the 'yin-yang' mechanism that applies to some mammalian proteins, PPV CP phosphorylation affects residues different from those that are O-GlcNAcylated (serines Ser-25, Ser-81, Ser-101 and Ser-118). Our findings show that PPV CP can be concurrently phosphorylated and O-GlcNAcylated at nearby residues. However, an analysis using a differential proteomics strategy based on iTRAQ (isobaric tags for relative and absolute quantitation) showed a significant enhancement of phosphorylation at Ser-25 in virions recovered from O-GlcNAcylation-deficient plants, suggesting that crosstalk between O-GlcNAcylation and phosphorylation in PPV CP takes place. Although the preclusion of phosphorylation at the four identified phosphotarget sites only had a limited impact on viral infection, the mimicking of phosphorylation prevents PPV infection in Prunus persica and weakens infection in Nicotiana benthamiana and other herbaceous hosts, prompting the emergence of potentially compensatory second mutations. We postulate that the joint action of phosphorylation and O-GlcNAcylation in the N-proximal segment of CP allows a fine-tuning of protein stability, providing the amount of CP required in each step of viral infection.
Collapse
Affiliation(s)
- Sandra Martínez‐Turiño
- Department of Plant Molecular GeneticsCentro Nacional de Biotecnología (CNB‐CSIC), Campus Universidad Autónoma de MadridMadrid 28049Spain
| | - José De Jesús Pérez
- Department of Plant Molecular GeneticsCentro Nacional de Biotecnología (CNB‐CSIC), Campus Universidad Autónoma de MadridMadrid 28049Spain
- Present address:
División de Biología MolecularInstituto Potosino de Investigación Científica y Tecnológica A.C.Camino a la Presa San José 2055San Luis PotosíSLPMéxico
| | - Marta Hervás
- Department of Plant Molecular GeneticsCentro Nacional de Biotecnología (CNB‐CSIC), Campus Universidad Autónoma de MadridMadrid 28049Spain
| | - Rosana Navajas
- Proteomics UnitCentro Nacional de Biotecnología (CNB‐CSIC), ProteoRed ISCIIIMadrid 28049Spain
| | - Sergio Ciordia
- Proteomics UnitCentro Nacional de Biotecnología (CNB‐CSIC), ProteoRed ISCIIIMadrid 28049Spain
| | - Namrata D. Udeshi
- Department of ChemistryUniversity of VirginiaCharlottesvilleVA 22904USA
- Present address:
Proteomics Platform, The Broad Institute of MIT and Harvard, 7 Cambridge Center, Room 5033CambridgeMA 02142USA
| | | | - Donald F. Hunt
- Department of ChemistryUniversity of VirginiaCharlottesvilleVA 22904USA
| | - Juan Antonio García
- Department of Plant Molecular GeneticsCentro Nacional de Biotecnología (CNB‐CSIC), Campus Universidad Autónoma de MadridMadrid 28049Spain
| |
Collapse
|
16
|
Bastet A, Lederer B, Giovinazzo N, Arnoux X, German‐Retana S, Reinbold C, Brault V, Garcia D, Djennane S, Gersch S, Lemaire O, Robaglia C, Gallois J. Trans-species synthetic gene design allows resistance pyramiding and broad-spectrum engineering of virus resistance in plants. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1569-1581. [PMID: 29504210 PMCID: PMC6097130 DOI: 10.1111/pbi.12896] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/10/2018] [Accepted: 01/28/2018] [Indexed: 05/19/2023]
Abstract
To infect plants, viruses rely heavily on their host's machinery. Plant genetic resistances based on host factor modifications can be found among existing natural variability and are widely used for some but not all crops. While biotechnology can supply for the lack of natural resistance alleles, new strategies need to be developed to increase resistance spectra and durability without impairing plant development. Here, we assess how the targeted allele modification of the Arabidopsis thaliana translation initiation factor eIF4E1 can lead to broad and efficient resistance to the major group of potyviruses. A synthetic Arabidopsis thaliana eIF4E1 allele was designed by introducing multiple amino acid changes associated with resistance to potyvirus in naturally occurring Pisum sativum alleles. This new allele encodes a functional protein while maintaining plant resistance to a potyvirus isolate that usually hijacks eIF4E1. Due to its biological functionality, this synthetic allele allows, at no developmental cost, the pyramiding of resistances to potyviruses that selectively use the two major translation initiation factors, eIF4E1 or its isoform eIFiso4E. Moreover, this combination extends the resistance spectrum to potyvirus isolates for which no efficient resistance has so far been found, including resistance-breaking isolates and an unrelated virus belonging to the Luteoviridae family. This study is a proof-of-concept for the efficiency of gene engineering combined with knowledge of natural variation to generate trans-species virus resistance at no developmental cost to the plant. This has implications for breeding of crops with broad-spectrum and high durability resistance using recent genome editing techniques.
Collapse
Affiliation(s)
- Anna Bastet
- GAFLINRAMontfavetFrance
- Aix Marseille UniversityUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesLaboratoire de Génétique et Biophysique des PlantesMarseilleFrance
- CNRSUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseilleFrance
- CEABioscience and Biotechnology Institute of Aix‐MarseilleMarseilleFrance
| | | | | | - Xavier Arnoux
- UMR 1332 Biologie du Fruit et PathologieINRAUniv. BordeauxVillenave d'OrnonFrance
| | - Sylvie German‐Retana
- UMR 1332 Biologie du Fruit et PathologieINRAUniv. BordeauxVillenave d'OrnonFrance
| | - Catherine Reinbold
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Véronique Brault
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Damien Garcia
- Centre National de la Recherche ScientifiqueInstitut de Biologie Moléculaire des Plantes (IBMP)UPR 2357StrasbourgFrance
| | - Samia Djennane
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Sophie Gersch
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Olivier Lemaire
- Université de StrasbourgINRAUMR‐A 1131Santé de la Vigne et Qualité du VinColmarFrance
| | - Christophe Robaglia
- Aix Marseille UniversityUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesLaboratoire de Génétique et Biophysique des PlantesMarseilleFrance
- CNRSUMR 7265 Biologie Végétale et Microbiologie EnvironnementalesMarseilleFrance
- CEABioscience and Biotechnology Institute of Aix‐MarseilleMarseilleFrance
| | | |
Collapse
|
17
|
Song EG, Ryu KH. A pepper mottle virus-based vector enables systemic expression of endoglucanase D in non-transgenic plants. Arch Virol 2017; 162:3717-3726. [PMID: 28864903 DOI: 10.1007/s00705-017-3539-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
Abstract
Plant-virus-based expression vectors have been used as an alternative to the creation of transgenic plants. Using a virus-based vector, we investigated the feasibility of producing the endoglucanase D (EngD) from Clostridium cellulovorans in Nicotiana benthamiana. This protein has endoglucanase, xylanase, and exoglucanase activities and may be of value for cellulose digestion in the generation of biofuels from plant biomass. The EngD gene was cloned between the nuclear inclusion b (NIb)- and coat protein (CP)-encoding sequences of pSP6PepMoV-Vb1. In vitro transcripts derived from the clone (pSP6PepMoV-Vb1/EngD) were infectious in N. benthamiana but caused milder symptoms than wild-type PepMoV-Vb1. RT-PCR amplification of total RNA from non-inoculated upper leaves infected with PepMoV-Vb1/EngD produced the target band for the CP, partial NIb and EngD-CP regions of PepMoV-V1/EngD, in addition to nonspecific bands. Western blot analysis showed the CP target bands of PepMoV-Vb1/EngD as well as non-target bands. EngD enzymatic activity in infected plants was detected using a glucose assay. The plant leaves showed increased senescence compared with healthy and PepMoV-Vb1-infected plants. Our study suggests the feasibility of using a viral vector for systemic infection of plants for expression of heterologous engD for the purpose of digesting a cellulose substrate in plant cells for biomass production.
Collapse
Affiliation(s)
- Eun Gyeong Song
- Plant Virus GenBank, Department of Horticulture, Biotechnology and Landscape Architecture, Seoul Women's University, Seoul, Republic of Korea
| | - Ki Hyun Ryu
- Plant Virus GenBank, Department of Horticulture, Biotechnology and Landscape Architecture, Seoul Women's University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Cui H, Wang A. Plum Pox Virus 6K1 Protein Is Required for Viral Replication and Targets the Viral Replication Complex at the Early Stage of Infection. J Virol 2016; 90:5119-5131. [PMID: 26962227 PMCID: PMC4859702 DOI: 10.1128/jvi.00024-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED The potyviral RNA genome encodes two polyproteins that are proteolytically processed by three viral protease domains into 11 mature proteins. Extensive molecular studies have identified functions for the majority of the viral proteins. For example, 6K2, one of the two smallest potyviral proteins, is an integral membrane protein and induces the endoplasmic reticulum (ER)-originated replication vesicles that target the chloroplast for robust viral replication. However, the functional role of 6K1, the other smallest protein, remains uncharacterized. In this study, we developed a series of recombinant full-length viral cDNA clones derived from a Canadian Plum pox virus (PPV) isolate. We found that deletion of any of the short motifs of 6K1 (each of which ranged from 5 to 13 amino acids), most of the 6K1 sequence (but with the conserved sequence of the cleavage sites being retained), or all of the 6K1 sequence in the PPV infectious clone abolished viral replication. The trans expression of 6K1 or the cis expression of a dislocated 6K1 failed to rescue the loss-of-replication phenotype, suggesting the temporal and spatial requirement of 6K1 for viral replication. Disruption of the N- or C-terminal cleavage site of 6K1, which prevented the release of 6K1 from the polyprotein, either partially or completely inhibited viral replication, suggesting the functional importance of the mature 6K1. We further found that green fluorescent protein-tagged 6K1 formed punctate inclusions at the viral early infection stage and colocalized with chloroplast-bound viral replicase elements 6K2 and NIb. Taken together, our results suggest that 6K1 is required for viral replication and is an important viral element of the viral replication complex at the early infection stage. IMPORTANCE Potyviruses account for more than 30% of known plant viruses and consist of many agriculturally important viruses. The genomes of potyviruses encode two polyproteins that are proteolytically processed into 11 mature proteins, with the majority of them having been at least partially functionally characterized. However, the functional role of a small protein named 6K1 remains obscure. In this study, we showed that deletion of 6K1 or a short motif/region of 6K1 in the full-length cDNA clones of plum pox virus abolishes viral replication and that mutation of the N- or C-terminal cleavage sites of 6K1 to prevent its release from the polyprotein greatly attenuates or completely inhibits viral replication, suggesting its important role in potyviral infection. We report that 6K1 forms punctate structures and targets the replication vesicles in PPV-infected plant leaf cells at the early infection stage. Our data reveal that 6K1 is an important viral protein of the potyviral replication complex.
Collapse
Affiliation(s)
- Hongguang Cui
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
19
|
Guo H, Zhu J, Tan Y, Li C, Chen Z, Sun S, Liu G. Self-assembly of virus-like particles of rabbit hemorrhagic disease virus capsid protein expressed in Escherichia coli and their immunogenicity in rabbits. Antiviral Res 2016; 131:85-91. [PMID: 27118636 DOI: 10.1016/j.antiviral.2016.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/09/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022]
Abstract
In this study, virus-like particles (VLPs) derived from rabbit hemorrhagic disease virus (RHDV) were evaluated for the development of a vaccine against RHDV infection. The VP60 gene was cloned and inserted into a pSMK expression vector containing a small ubiquitin-like modifier (SUMO) tag that can promote the soluble expression of heterologous proteins in Escherichia coli cells. After expression and purification of His-SUMO-VP60 and cleavage of the SUMO tag, we found that the RHDV VP60 protein had self-assembled into VLPs with a similar shape and smaller size compared with authentic RHDV capsid. Next, the antigenicity and immunogenicity of the VLPs were examined. The results showed that RHDV-specific responses were clearly induced in rabbits and that all rabbits in the VLP group survived while those in the negative control group died within 72 h post-infection. These results suggest that VLP-based RHDV could be a promising RHDV vaccine candidate.
Collapse
Affiliation(s)
- Huimin Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Yonggui Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Chuanfeng Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Zongyan Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Shiqi Sun
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 730046, Gansu, China.
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China.
| |
Collapse
|
20
|
Majer E, Navarro JA, Daròs JA. A potyvirus vector efficiently targets recombinant proteins to chloroplasts, mitochondria and nuclei in plant cells when expressed at the amino terminus of the polyprotein. Biotechnol J 2015; 10:1792-802. [PMID: 26147811 DOI: 10.1002/biot.201500042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/11/2015] [Accepted: 07/03/2015] [Indexed: 01/29/2023]
Abstract
Plant virus-based expression systems allow quick and efficient production of recombinant proteins in plant biofactories. Among them, a system derived from tobacco etch virus (TEV; genus potyvirus) permits coexpression of equimolar amounts of several recombinant proteins. This work analyzed how to target recombinant proteins to different subcellular localizations in the plant cell using this system. We constructed TEV clones in which green fluorescent protein (GFP), with a chloroplast transit peptide (cTP), a nuclear localization signal (NLS) or a mitochondrial targeting peptide (mTP) was expressed either as the most amino-terminal product or embedded in the viral polyprotein. Results showed that cTP and mTP mediated efficient translocation of GFP to the corresponding organelle only when present at the amino terminus of the viral polyprotein. In contrast, the NLS worked efficiently at both positions. Viruses expressing GFP in the amino terminus of the viral polyprotein produced milder symptoms. Untagged GFPs and cTP and NLS tagged amino-terminal GFPs accumulated to higher amounts in infected tissues. Finally, viral progeny from clones with internal GFPs maintained the extra gene better. These observations will help in the design of potyvirus-based vectors able to coexpress several proteins while targeting different subcellular localizations, as required in plant metabolic engineering.
Collapse
Affiliation(s)
- Eszter Majer
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - José-Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, Spain.
| |
Collapse
|
21
|
Zhao M, San León D, Mesel F, García JA, Simón-Mateo C. Assorted Processing of Synthetic Trans-Acting siRNAs and Its Activity in Antiviral Resistance. PLoS One 2015; 10:e0132281. [PMID: 26147769 PMCID: PMC4492489 DOI: 10.1371/journal.pone.0132281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/11/2015] [Indexed: 11/18/2022] Open
Abstract
The use of syn-tasiRNAs has been proposed as an RNA interference technique alternative to those previously described: hairpin based, virus induced gene silencing or artificial miRNAs. In this study we engineered the TAS1c locus to impair Plum pox virus (PPV) infection by replacing the five native siRNAs with two 210-bp fragments from the CP and the 3´NCR regions of the PPV genome. Deep sequencing analysis of the small RNA species produced by both constructs in planta has shown that phased processing of the syn-tasiRNAs is construct-specific. While in syn-tasiR-CP construct the processing was as predicted 21-nt phased in register with miR173-guided cleavage, the processing of syn-tasiR-3NCR is far from what was expected. A 22-nt species from the miR173-guided cleavage was a guide of two series of phased small RNAs, one of them in an exact 21-nt register, and the other one in a mixed of 21-/22-nt frame. In addition, both constructs produced abundant PPV-derived small RNAs in the absence of miR173 as a consequence of a strong sense post-transcriptional gene silencing induction. The antiviral effect of both constructs was also evaluated in the presence or absence of miR173 and showed that the impairment of PPV infection was not significantly higher when miR173 was present. The results show that syn-tasiRNAs processing depends on construct-specific factors that should be further studied before the so-called MIGS (miRNA-induced gene silencing) technology can be used reliably.
Collapse
Affiliation(s)
- Mingmin Zhao
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David San León
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Frida Mesel
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Carmen Simón-Mateo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
- College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, P.R. China
| |
Collapse
|
22
|
Poque S, Pagny G, Ouibrahim L, Chague A, Eyquard JP, Caballero M, Candresse T, Caranta C, Mariette S, Decroocq V. Allelic variation at the rpv1 locus controls partial resistance to Plum pox virus infection in Arabidopsis thaliana. BMC PLANT BIOLOGY 2015; 15:159. [PMID: 26109391 PMCID: PMC4479089 DOI: 10.1186/s12870-015-0559-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 06/17/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Sharka is caused by Plum pox virus (PPV) in stone fruit trees. In orchards, the virus is transmitted by aphids and by grafting. In Arabidopsis, PPV is transferred by mechanical inoculation, by biolistics and by agroinoculation with infectious cDNA clones. Partial resistance to PPV has been observed in the Cvi-1 and Col-0 Arabidopsis accessions and is characterized by a tendency to escape systemic infection. Indeed, only one third of the plants are infected following inoculation, in comparison with the susceptible Ler accession. RESULTS Genetic analysis showed this partial resistance to be monogenic or digenic depending on the allelic configuration and recessive. It is detected when inoculating mechanically but is overcome when using biolistic or agroinoculation. A genome-wide association analysis was performed using multiparental lines and 147 Arabidopsis accessions. It identified a major genomic region, rpv1. Fine mapping led to the positioning of rpv1 to a 200 kb interval on the long arm of chromosome 1. A candidate gene approach identified the chloroplast phosphoglycerate kinase (cPGK2) as a potential gene underlying the resistance. A virus-induced gene silencing strategy was used to knock-down cPGK2 expression, resulting in drastically reduced PPV accumulation. CONCLUSION These results indicate that rpv1 resistance to PPV carried by the Cvi-1 and Col-0 accessions is linked to allelic variations at the Arabidopsis cPGK2 locus, leading to incomplete, compatible interaction with the virus.
Collapse
Affiliation(s)
- S Poque
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Current address: Department of Plant Pathology, National Chung Hsing University, Taichung, 402, Taiwan.
| | - G Pagny
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - L Ouibrahim
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, F-84143, Montfavet cedex, France.
| | - A Chague
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - J-P Eyquard
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - M Caballero
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - T Candresse
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| | - C Caranta
- INRA-UR1052, Genetics and Breeding of Fruits and Vegetables, Dom. St Maurice, CS 60094, F-84143, Montfavet cedex, France.
| | - S Mariette
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Current address: INRA, UMR 1202 Biogeco, F- 33610, Cestas, France.
- Current address: Univ. Bordeaux, UMR1202 Biogeco, F-33400, Talence, France.
| | - V Decroocq
- INRA, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, cedex, France.
| |
Collapse
|
23
|
Salazar-González JA, Bañuelos-Hernández B, Rosales-Mendoza S. Current status of viral expression systems in plants and perspectives for oral vaccines development. PLANT MOLECULAR BIOLOGY 2015; 87:203-17. [PMID: 25560432 DOI: 10.1007/s11103-014-0279-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/22/2014] [Indexed: 05/23/2023]
Abstract
During the last 25 years, the technology to produce recombinant vaccines in plant cells has evolved from modest proofs of the concept to viable technologies adopted by some companies due to significant improvements in the field. Viral-based expression strategies have importantly contributed to this success owing to high yields, short production time (which is in most cases free of tissue culture steps), and the implementation of confined processes for production under GMPs. Herein the distinct expression systems based on viral elements are analyzed. This review also presents the outlook on how these technologies have been successfully applied to the development of plant-based vaccines, some of them being in advanced stages of development. Perspectives on how viral expression systems could allow for the development of innovative oral vaccines constituted by minimally-processed plant biomass are discussed.
Collapse
Affiliation(s)
- Jorge A Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico
| | | | | |
Collapse
|
24
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
25
|
Montes C, Castro Á, Barba P, Rubio J, Sánchez E, Carvajal D, Aguirre C, Tapia E, DelÍ Orto P, Decroocq V, Prieto H. Differential RNAi responses of Nicotiana benthamiana individuals transformed with a hairpin-inducing construct during Plum pox virus challenge. Virus Genes 2014; 49:325-38. [PMID: 24964777 DOI: 10.1007/s11262-014-1093-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/30/2014] [Indexed: 10/25/2022]
Abstract
Gene silencing and large-scale small RNA analysis can be used to develop RNA interference (RNAi)-based resistance strategies for Plum pox virus (PPV), a high impact disease of Prunus spp. In this study, a pPPViRNA hairpin-inducing vector harboring two silencing motif-rich regions of the PPV coat protein (CP) gene was evaluated in transgenic Nicotiana benthamiana (NB) plants. Wild-type NB plants infected with a chimeric PPV virus (PPV::GFP) exhibited affected leaves with mosaic chlorosis congruent to GFP fluorescence at 21 day post-inoculation; transgenic lines depicted a range of phenotypes from fully resistant to susceptible. ELISA values and GFP fluorescence intensities were used to select transgenic-resistant (TG-R) and transgenic-susceptible (TG-S) lines for further characterization of small interfering RNAs (siRNAs) by large-scale small RNA sequencing. In infected TG-S and untransformed (WT) plants, the observed siRNAs were nearly exclusively 21- and 22-nt siRNAs that targeted the whole PPV::GFP genome; 24-nt siRNAs were absent in these individuals. Challenged TG-R plants accumulated a full set of 21- to 24-nt siRNAs that were primarily associated with the selected motif-rich regions, indicating that a trans-acting siRNAs process prevented viral multiplication. BLAST analysis identified 13 common siRNA clusters targeting the CP gene. 21-nt siRNA sequences were associated with the 22-nt siRNAs and the scarce 23- and 24-nt molecules in TG-S plants and with most of the observed 22-, 23-, and 24-nt siRNAs in TG-R individuals. These results validate the use of a multi-hot spot silencing vector against PPV and elucidate the molecules by which hairpin-inducing vectors initiate RNAi in vivo.
Collapse
Affiliation(s)
- Christian Montes
- Biotechnology Laboratory, Instituto de Investigaciones Agropecuarias, La Platina Research Station, Avenida Santa Rosa 11610, La Pintana, 8831314, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Valli A, Gallo A, Calvo M, de Jesús Pérez J, García JA. A novel role of the potyviral helper component proteinase contributes to enhance the yield of viral particles. J Virol 2014; 88:9808-18. [PMID: 24942578 PMCID: PMC4136352 DOI: 10.1128/jvi.01010-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/09/2014] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED The helper component proteinase (HCPro) is an indispensable, multifunctional protein of members of the genus Potyvirus and other viruses of the family Potyviridae. This viral factor is directly involved in diverse steps of viral infection, such as aphid transmission, polyprotein processing, and suppression of host antiviral RNA silencing. In this paper, we show that although a chimeric virus based on the potyvirus Plum pox virus lacking HCPro, which was replaced by a heterologous silencing suppressor, caused an efficient infection in Nicotiana benthamiana plants, its viral progeny had very reduced infectivity. Making use of different approaches, here, we provide direct evidence of a previously unknown function of HCPro in which the viral factor enhances the stability of its cognate capsid protein (CP), positively affecting the yield of virions and consequently improving the infectivity of the viral progeny. Site-directed mutagenesis revealed that the ability of HCPro to stabilize CP and enhance the yield of infectious viral particles is not linked to any of its previously known activities and helped us to delimit the region of HCPro involved in this function in the central region of the protein. Moreover, the function is highly specific and cannot be fulfilled by the HCPro of a heterologous potyvirus. The importance of this novel requirement in regulating the sorting of the viral genome to be subjected to replication, translation, and encapsidation, thus contributing to the synchronization of these viral processes, is discussed. IMPORTANCE Potyviruses form one of the most numerous groups of plant viruses and are a major cause of crop loss worldwide. It is well known that these pathogens make use of virus-derived multitasking proteins, as well as dedicated host factors, to successfully infect their hosts. Here, we describe a novel requirement for the proper yield and infectivity of potyviral progeny. In this case, such a function is performed by the extensively studied viral factor HCPro, which seems to use an unknown mechanism that is not linked to its previously described activities. To our knowledge, this is the first time that a factor different from capsid protein (CP) has been shown to be directly involved in the yield of potyviral particles. Based on the data presented here, we hypothesize that this capacity of HCPro might be involved in the coordination of mutually exclusive activities of the viral genome by controlling correct assembly of CP in stable virions.
Collapse
Affiliation(s)
- Adrian Valli
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Araíz Gallo
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - María Calvo
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - José de Jesús Pérez
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
27
|
Majer E, Salvador Z, Zwart MP, Willemsen A, Elena SF, Daròs JA. Relocation of the NIb gene in the tobacco etch potyvirus genome. J Virol 2014; 88:4586-90. [PMID: 24453370 PMCID: PMC3993717 DOI: 10.1128/jvi.03336-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/16/2014] [Indexed: 11/20/2022] Open
Abstract
Potyviruses express most of their proteins from a long open reading frame that is translated into a large polyprotein processed by three viral proteases. To understand the constraints on potyvirus genome organization, we relocated the viral RNA-dependent RNA polymerase (NIb) cistron to all possible intercistronic positions of the Tobacco etch virus (TEV) polyprotein. Only viruses with NIb at the amino terminus of the polyprotein or in between P1 and HC-Pro were viable in tobacco plants.
Collapse
Affiliation(s)
- Eszter Majer
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Zaira Salvador
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Mark P. Zwart
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Anouk Willemsen
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
28
|
García JA, Glasa M, Cambra M, Candresse T. Plum pox virus and sharka: a model potyvirus and a major disease. MOLECULAR PLANT PATHOLOGY 2014; 15:226-41. [PMID: 24102673 PMCID: PMC6638681 DOI: 10.1111/mpp.12083] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
TAXONOMIC RELATIONSHIPS Plum pox virus (PPV) is a member of the genus Potyvirus in the family Potyviridae. PPV diversity is structured into at least eight monophyletic strains. GEOGRAPHICAL DISTRIBUTION First discovered in Bulgaria, PPV is nowadays present in most of continental Europe (with an endemic status in many central and southern European countries) and has progressively spread to many countries on other continents. GENOMIC STRUCTURE Typical of potyviruses, the PPV genome is a positive-sense single-stranded RNA (ssRNA), with a protein linked to its 5' end and a 3'-terminal poly A tail. It is encapsidated by a single type of capsid protein (CP) in flexuous rod particles and is translated into a large polyprotein which is proteolytically processed in at least 10 final products: P1, HCPro, P3, 6K1, CI, 6K2, VPg, NIapro, NIb and CP. In addition, P3N-PIPO is predicted to be produced by a translational frameshift. PATHOGENICITY FEATURES PPV causes sharka, the most damaging viral disease of stone fruit trees. It also infects wild and ornamental Prunus trees and has a large experimental host range in herbaceous species. PPV spreads over long distances by uncontrolled movement of plant material, and many species of aphid transmit the virus locally in a nonpersistent manner. SOURCES OF RESISTANCE A few natural sources of resistance to PPV have been found so far in Prunus species, which are being used in classical breeding programmes. Different genetic engineering approaches are being used to generate resistance to PPV, and a transgenic plum, 'HoneySweet', transformed with the viral CP gene, has demonstrated high resistance to PPV in field tests in several countries and has obtained regulatory approval in the USA.
Collapse
Affiliation(s)
- Juan Antonio García
- Departmento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Pasin F, Simón-Mateo C, García JA. The hypervariable amino-terminus of P1 protease modulates potyviral replication and host defense responses. PLoS Pathog 2014; 10:e1003985. [PMID: 24603811 PMCID: PMC3946448 DOI: 10.1371/journal.ppat.1003985] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 01/23/2014] [Indexed: 12/22/2022] Open
Abstract
The replication of many RNA viruses involves the translation of polyproteins, whose processing by endopeptidases is a critical step for the release of functional subunits. P1 is the first protease encoded in plant potyvirus genomes; once activated by an as-yet-unknown host factor, it acts in cis on its own C-terminal end, hydrolyzing the P1-HCPro junction. Earlier research suggests that P1 cooperates with HCPro to inhibit host RNA silencing defenses. Using Plum pox virus as a model, we show that although P1 does not have a major direct role in RNA silencing suppression, it can indeed modulate HCPro function by its self-cleavage activity. To study P1 protease regulation, we used bioinformatic analysis and in vitro activity experiments to map the core C-terminal catalytic domain. We present evidence that the hypervariable region that precedes the protease domain is predicted as intrinsically disordered, and that it behaves as a negative regulator of P1 proteolytic activity in in vitro cleavage assays. In viral infections, removal of the P1 protease antagonistic regulator is associated with greater symptom severity, induction of salicylate-dependent pathogenesis-related proteins, and reduced viral loads. We suggest that fine modulation of a viral protease activity has evolved to keep viral amplification below host-detrimental levels, and thus to maintain higher long-term replicative capacity.
Collapse
Affiliation(s)
- Fabio Pasin
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carmen Simón-Mateo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
30
|
Pasin F, Kulasekaran S, Natale P, Simón-Mateo C, García JA. Rapid fluorescent reporter quantification by leaf disc analysis and its application in plant-virus studies. PLANT METHODS 2014; 10:22. [PMID: 25053970 PMCID: PMC4105834 DOI: 10.1186/1746-4811-10-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/02/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Fluorescent proteins are extraordinary tools for biology studies due to their versatility; they are used extensively to improve comprehension of plant-microbe interactions. The viral infection process can easily be tracked and imaged in a plant with fluorescent protein-tagged viruses. In plants, fluorescent protein genes are among the most commonly used reporters in transient RNA silencing and heterologous protein expression assays. Fluorescence intensity is used to quantify fluorescent protein accumulation by image analysis or spectroscopy of protein extracts; however, these methods might not be suitable for medium- to large-scale comparisons. RESULTS We report that laser scanners, used routinely in proteomic studies, are suitable for quantitative imaging of plant leaves that express different fluorescent protein pairs. We developed a microtiter plate fluorescence spectroscopy method for direct quantitative comparison of fluorescent protein accumulation in intact leaf discs. We used this technique to measure a fluorescent reporter in a transient RNA silencing suppression assay, and also to monitor early amplification dynamics of a fluorescent protein-labeled potyvirus. CONCLUSIONS Laser scanners allow dual-color fluorescence imaging of leaf samples, which might not be acquired in standard stereomicroscope devices. Fluorescence microtiter plate analysis of intact leaf discs can be used for rapid, accurate quantitative comparison of fluorescent protein accumulation.
Collapse
Affiliation(s)
- Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Satish Kulasekaran
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Paolo Natale
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Carmen Simón-Mateo
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | | |
Collapse
|
31
|
Li ZX, Hu WD, Li BC, Li TY, Zhou XY, Zhang Z. Egg yolk IgY against RHDV capsid protein VP60 promotes rabbit defense against RHDV infection. Vet Immunol Immunopathol 2013; 157:97-104. [PMID: 24252247 DOI: 10.1016/j.vetimm.2013.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/26/2013] [Accepted: 10/08/2013] [Indexed: 01/14/2023]
Abstract
VP60 capsid protein is the major structural and immunogenicity protein of RHDV (Rabbit hemorrhagic disease virus, RHDV), and has been implicated as a main protein antigen in RHDV diagnosis and vaccine design. In this report, egg yolk antibody (IgY) against N-terminal of VP60 was evaluated and developed as a new strategy for RHDV therapy. Briefly, N-terminal of VP60 (∼250aa) fragment was cloned and inserted into pET28a expression vector, and then the resultant plasmid, pET28a/VP60-N, was transformed into E. coli BL21(DE3) for recombinant VP60-N protein (rVP60-N) expression. Next, the rVP60-N was purified by Ni(+)-affinity purification chromatography and identified by Western blotting with RHDV antiserum. After immunizing the chickens with rVP60-N, the anti-rVP60-N IgY was isolated, and the activity and specificity of the IgY antibody were analyzed by ELISA and Western blotting. In our results, the rVP60-N could be expressed in E. coli as soluble fraction, and the isolated anti-rVP60-N IgY demonstrated a high specificity and titer (1:22,000) against rVP60-N antigen. For further evaluation of the IgY efficacy in vivo, rabbits were grouped randomly and challenged with RHDV, and the results showed that anti-rVP60-N IgY could significantly protect rabbits from virus infection and promote the host survival after a sustained treatment with anti-rVP60-N IgY for 5 days. Taken together, our study demonstrates evidence that production of IgY against VP60 could be as a novel strategy for the RHDV therapy.
Collapse
Affiliation(s)
- Zai Xin Li
- Key Laboratory of Pharmaceutical Engineering Technology and Application, School of Chemical and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Wei Dong Hu
- Key Laboratory of Pharmaceutical Engineering Technology and Application, School of Chemical and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Bing Chao Li
- Key Laboratory of Pharmaceutical Engineering Technology and Application, School of Chemical and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Tian You Li
- Key Laboratory of Pharmaceutical Engineering Technology and Application, School of Chemical and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Xiao Yang Zhou
- Key Laboratory of Pharmaceutical Engineering Technology and Application, School of Chemical and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Zhi Zhang
- Key Laboratory of Pharmaceutical Engineering Technology and Application, School of Chemical and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China.
| |
Collapse
|
32
|
Carbonell A, Maliogka VI, Pérez JDJ, Salvador B, León DS, García JA, Simón-Mateo C. Diverse amino acid changes at specific positions in the N-terminal region of the coat protein allow Plum pox virus to adapt to new hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1211-24. [PMID: 23745677 DOI: 10.1094/mpmi-04-13-0093-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plum pox virus (PPV)-D and PPV-R are two isolates from strain D of PPV that differ in host specificity. Previous analyses of chimeras originating from PPV-R and PPV-D suggested that the N terminus of the coat protein (CP) includes host-specific pathogenicity determinants. Here, these determinants were mapped precisely by analyzing the infectivity in herbaceous and woody species of chimeras containing a fragment of the 3' region of PPV-D (including the region coding for the CP) in a PPV-R backbone. These chimeras were not infectious in Prunus persica, but systemically infected Nicotiana clevelandii and N. benthamiana when specific amino acids were modified or deleted in a short 30-amino-acid region of the N terminus of the CP. Most of these mutations did not reduce PPV fitness in Prunus spp. although others impaired systemic infection in this host. We propose a model in which the N terminus of the CP, highly relevant for virus systemic movement, is targeted by a host defense mechanism in Nicotiana spp. Mutations in this short region allow PPV to overcome the defense response in this host but can compromise the efficiency of PPV systemic movement in other hosts such as Prunus spp.
Collapse
|
33
|
de Jesús Pérez J, Udeshi ND, Shabanowitz J, Ciordia S, Juárez S, Scott CL, Olszewski NE, Hunt DF, García JA. O-GlcNAc modification of the coat protein of the potyvirus Plum pox virus enhances viral infection. Virology 2013; 442:122-31. [PMID: 23639873 PMCID: PMC4625898 DOI: 10.1016/j.virol.2013.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/13/2013] [Accepted: 03/30/2013] [Indexed: 11/17/2022]
Abstract
O-GlcNAcylation is a dynamic protein modification which has been studied mainly in metazoans. We reported previously that an Arabidopsis thaliana O-GlcNAc transferase modifies at least two threonine residues of the Plum pox virus (PPV) capsid protein (CP). Now, six additional residues were shown to be involved in O-GlcNAc modification of PPV CP. CP O-GlcNAcylation was abolished in the PPV CP7-T/A mutant, in which seven threonines were mutated. PPV CP7-T/A infected Nicotiana clevelandii, Nicotiana benthamiana, and Prunus persica without noticeable defects. However, defects in infection of A. thaliana were readily apparent. In mixed infections of wild-type arabidopsis, the CP7-T/A mutant was outcompeted by wild-type virus. These results indicate that CP O-GlcNAcylation has a major role in the infection process. O-GlcNAc modification may have a role in virion assembly and/or stability as the CP of PPV CP7-T/A was more sensitive to protease digestion than that of the wild-type virus.
Collapse
Affiliation(s)
- José de Jesús Pérez
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | - Namrata D. Udeshi
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Sergio Ciordia
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Silvia Juárez
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cheryl L. Scott
- Department of Plant Biology, 250 Biological Sciences Center, University of Minnesota, Saint Paul, MN 55108, USA
| | - Neil E. Olszewski
- Department of Plant Biology, 250 Biological Sciences Center, University of Minnesota, Saint Paul, MN 55108, USA
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Juan Antonio García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
34
|
Cheng Y, Chen Z, Li C, Meng C, Wu R, Liu G. Protective immune responses in rabbits induced by a suicidal DNA vaccine of the VP60 gene of rabbit hemorrhagic disease virus. Antiviral Res 2013; 97:227-31. [DOI: 10.1016/j.antiviral.2012.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/14/2012] [Accepted: 12/15/2012] [Indexed: 11/29/2022]
|
35
|
Conformational and thermal stability improvements for the large-scale production of yeast-derived rabbit hemorrhagic disease virus-like particles as multipurpose vaccine. PLoS One 2013; 8:e56417. [PMID: 23460801 PMCID: PMC3584067 DOI: 10.1371/journal.pone.0056417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/08/2013] [Indexed: 01/15/2023] Open
Abstract
Recombinant virus-like particles (VLP) antigenically similar to rabbit hemorrhagic disease virus (RHDV) were recently expressed at high levels inside Pichia pastoris cells. Based on the potential of RHDV VLP as platform for diverse vaccination purposes we undertook the design, development and scale-up of a production process. Conformational and stability issues were addressed to improve process control and optimization. Analyses on the structure, morphology and antigenicity of these multimers were carried out at different pH values during cell disruption and purification by size-exclusion chromatography. Process steps and environmental stresses in which aggregation or conformational instability can be detected were included. These analyses revealed higher stability and recoveries of properly assembled high-purity capsids at acidic and neutral pH in phosphate buffer. The use of stabilizers during long-term storage in solution showed that sucrose, sorbitol, trehalose and glycerol acted as useful aggregation-reducing agents. The VLP emulsified in an oil-based adjuvant were subjected to accelerated thermal stress treatments. None to slight variations were detected in the stability of formulations and in the structure of recovered capsids. A comprehensive analysis on scale-up strategies was accomplished and a nine steps large-scale production process was established. VLP produced after chromatographic separation protected rabbits against a lethal challenge. The minimum protective dose was identified. Stabilized particles were ultimately assayed as carriers of a foreign viral epitope from another pathogen affecting a larger animal species. For that purpose, a linear protective B-cell epitope from Classical Swine Fever Virus (CSFV) E2 envelope protein was chemically coupled to RHDV VLP. Conjugates were able to present the E2 peptide fragment for immune recognition and significantly enhanced the peptide-specific antibody response in vaccinated pigs. Overall these results allowed establishing improved conditions regarding conformational stability and recovery of these multimers for their production at large-scale and potential use on different animal species or humans.
Collapse
|
36
|
Pagny G, Paulstephenraj PS, Poque S, Sicard O, Cosson P, Eyquard JP, Caballero M, Chague A, Gourdon G, Negrel L, Candresse T, Mariette S, Decroocq V. Family-based linkage and association mapping reveals novel genes affecting Plum pox virus infection in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2012; 196:873-886. [PMID: 22943366 DOI: 10.1111/j.1469-8137.2012.04289.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/21/2012] [Indexed: 05/03/2023]
Abstract
Sharka is a devastating viral disease caused by the Plum pox virus (PPV) in stone fruit trees and few sources of resistance are known in its natural hosts. Since any knowledge gained from Arabidopsis on plant virus susceptibility factors is likely to be transferable to crop species, Arabidopsis's natural variation was searched for host factors essential for PPV infection. To locate regions of the genome associated with susceptibility to PPV, linkage analysis was performed on six biparental populations as well as on multiparental lines. To refine quantitative trait locus (QTL) mapping, a genome-wide association analysis was carried out using 147 Arabidopsis accessions. Evidence was found for linkage on chromosomes 1, 3 and 5 with restriction of PPV long-distance movement. The most relevant signals occurred within a region at the bottom of chromosome 3, which comprises seven RTM3-like TRAF domain-containing genes. Since the resistance mechanism analyzed here is recessive and the rtm3 knockout mutant is susceptible to PPV infection, it suggests that other gene(s) present in the small identified region encompassing RTM3 are necessary for PPV long-distance movement. In consequence, we report here the occurrence of host factor(s) that are indispensable for virus long-distance movement.
Collapse
Affiliation(s)
- Gaëlle Pagny
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | | | - Sylvain Poque
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Ophélie Sicard
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Patrick Cosson
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Jean-Philippe Eyquard
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Mélodie Caballero
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Aurélie Chague
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Germain Gourdon
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Lise Negrel
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Thierry Candresse
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Stéphanie Mariette
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| | - Véronique Decroocq
- INRA, Université de Bordeaux, UMR 1332 BFP, BP81, 33883, Villenave d'Ornon Cedex, France
| |
Collapse
|
37
|
Abrantes J, van der Loo W, Le Pendu J, Esteves PJ. Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): a review. Vet Res 2012; 43:12. [PMID: 22325049 PMCID: PMC3331820 DOI: 10.1186/1297-9716-43-12] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 02/10/2012] [Indexed: 02/06/2023] Open
Abstract
Rabbit haemorrhagic disease virus (RHDV) is a calicivirus of the genus Lagovirus that causes rabbit haemorrhagic disease (RHD) in adult European rabbits (Oryctolagus cuniculus). First described in China in 1984, the virus rapidly spread worldwide and is nowadays considered as endemic in several countries. In Australia and New Zealand where rabbits are pests, RHDV was purposely introduced for rabbit biocontrol. Factors that may have precipitated RHD emergence remain unclear, but non-pathogenic strains seem to pre-date the appearance of the pathogenic strains suggesting a key role for the comprehension of the virus origins. All pathogenic strains are classified within one single serotype, but two subtypes are recognised, RHDV and RHDVa. RHD causes high mortality in both domestic and wild adult animals, with individuals succumbing between 48-72 h post-infection. No other species has been reported to be fatally susceptible to RHD. The disease is characterised by acute necrotising hepatitis, but haemorrhages may also be found in other organs, in particular the lungs, heart, and kidneys due to disseminated intravascular coagulation. Resistance to the disease might be explained in part by genetically determined absence or weak expression of attachment factors, but humoral immunity is also important. Disease control in rabbitries relies mainly on vaccination and biosecurity measures. Such measures are difficult to be implemented in wild populations. More recent research has indicated that RHDV might be used as a molecular tool for therapeutic applications. Although the study of RHDV and RHD has been hampered by the lack of an appropriate cell culture system for the virus, several aspects of the replication, epizootology, epidemiology and evolution have been disclosed. This review provides a broad coverage and description of the current knowledge on the disease and the virus.
Collapse
Affiliation(s)
- Joana Abrantes
- CIBIO/UP, Centro de Investigacao em Biodiversidade e Recursos Geneticos/Universidade do Porto, Campus Agrario de Vairao, 4485-661 Vairao, Portugal
- INSERM, U892, Université de Nantes, 44007 Nantes, France
| | - Wessel van der Loo
- CIBIO/UP, Centro de Investigacao em Biodiversidade e Recursos Geneticos/Universidade do Porto, Campus Agrario de Vairao, 4485-661 Vairao, Portugal
| | | | - Pedro J Esteves
- CIBIO/UP, Centro de Investigacao em Biodiversidade e Recursos Geneticos/Universidade do Porto, Campus Agrario de Vairao, 4485-661 Vairao, Portugal
- CITS, Centro de Investigacao em Tecnologias de Saude, CESPU, Gandra, Portugal
| |
Collapse
|
38
|
Carbonell A, Dujovny G, García JA, Valli A. The Cucumber vein yellowing virus silencing suppressor P1b can functionally replace HCPro in Plum pox virus infection in a host-specific manner. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:151-64. [PMID: 21970691 DOI: 10.1094/mpmi-08-11-0216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plant viruses of the genera Potyvirus and Ipomovirus (Potyviridae family) use unrelated RNA silencing suppressors (RSS) to counteract antiviral RNA silencing responses. HCPro is the RSS of Potyvirus spp., and its activity is enhanced by the upstream P1 protein. Distinctively, the ipomovirus Cucumber vein yellowing virus (CVYV) lacks HCPro but contains two P1 copies in tandem (P1aP1b), the second of which functions as RSS. Using chimeras based on the potyvirus Plum pox virus (PPV), we found that P1b can functionally replace HCPro in potyviral infections of Nicotiana plants. Interestingly, P1a, the CVYV protein homologous to potyviral P1, disrupted the silencing suppression activity of P1b and reduced the infection efficiency of PPV in Nicotiana benthamiana. Testing the influence of RSS in host specificity, we found that a P1b-expressing chimera poorly infected PPV's natural host, Prunus persica. Conversely, P1b conferred on PPV chimeras the ability to replicate locally in cucumber, CVYV's natural host. The deleterious effect of P1a on PPV infection is host dependent, because the P1aP1b-expressing PPV chimera accumulated in cucumber to higher levels than PPV expressing P1b alone. These results demonstrate that a potyvirus can use different RSS, and that particular RSS and upstream P1-like proteins contribute to defining the virus host range.
Collapse
|
39
|
|
40
|
Rohde J, Schirrmeier H, Granzow H, Rziha HJ. A new recombinant Orf virus (ORFV, Parapoxvirus) protects rabbits against lethal infection with rabbit hemorrhagic disease virus (RHDV). Vaccine 2011; 29:9256-64. [DOI: 10.1016/j.vaccine.2011.09.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 11/29/2022]
|
41
|
Fu H, Pang S, Xue P, Yang J, Liu X, Wang Y, Li T, Li H, Li X. High levels of expression of fibroblast growth factor 21 in transgenic tobacco (Nicotiana benthamiana). Appl Biochem Biotechnol 2011; 165:465-75. [PMID: 21505802 DOI: 10.1007/s12010-011-9265-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/11/2011] [Indexed: 11/25/2022]
Abstract
Fibroblast growth factor-21 (FGF21) is a hepatic hormone that plays a critical role in metabolism, stimulating fatty acid oxidation in the liver and glucose uptake in adipose tissue. In this study, we produced tobacco plants expressing human recombinant FGF21 (hFGF21) via Agrobacterium-mediated transformation using a potato virus X (PVX)-based vector (pgR107). The vector contained the sequence encoding the human FGF21 gene fused with green florescence protein and a histidine tag. The recombinant plasmid was introduced into leaf cells of Nicotiana benthamiana (a wild Australian tobacco) via Agrobacterium-mediated agroinfiltration. As determined by fluorescence and Western blot of leaf extracts, the hFGF21 gene was correctly translated in tobacco plants. Seven days after agroinfection, the recombinant hFGF21 had accumulated to levels as high as 450 μg g(-1) fresh weight in leaves of agroinfected plants. The recombinant hFGF21 was purified from plant tissues by Ni-NTA affinity chromatography, and the purified hFGF21 stimulated glucose uptake in 3T3/L1 cells. This indicated that the recombinant hFGF21 expressed via the PVX viral vector in N. benthamiana was biologically active.
Collapse
Affiliation(s)
- Hongqi Fu
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Single dose adenovirus vectored vaccine induces a potent and long-lasting immune response against rabbit hemorrhagic disease virus after parenteral or mucosal administration. Vet Immunol Immunopathol 2011; 142:179-88. [PMID: 21621855 DOI: 10.1016/j.vetimm.2011.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 04/14/2011] [Accepted: 05/03/2011] [Indexed: 11/24/2022]
Abstract
Rabbit hemorrhagic disease virus (RHDV) is the etiological agent of a lethal and contagious disease of rabbits that remains as a serious problem worldwide. As this virus does not replicate in cell culture systems, the capsid protein gene has been expressed in heterologous hosts or inserted in replication-competent viruses in order to obtain non-conventional RHDV vaccines. However, due to technological or safety issues, current RHDV vaccines are still prepared from organs of infected rabbits. In this work, two human type 5 derived replication-defective adenoviruses encoding the rabbit hemorrhagic disease virus VP60 capsid protein were constructed. The recombinant protein was expressed as a multimer in mouse and rabbit cell lines at levels that ranged from approximately 120 to 160 mg/L of culture. Mice intravenously or subcutaneously inoculated with a single 10(8) gene transfer units (GTU) dose of the AdVP60 vector (designed for VP60 intracellular expression) seroconverted at days 7 and 14 post-immunization, respectively. This vector generated a stronger response than that obtained with a second vector (AdVP60sec) designed for VP60 secretion. Rabbits were then immunized by parenteral or mucosal routes with a single 10(9)GTU dose of the AdVP60 and the antibody response was evaluated using a competition ELISA specific for RHDV or RHDVa. Protective hemagglutination inhibition (HI) titers were also promptly detected and IgG antibodies corresponding with inhibition percentages over 85% persisted up to one year in all rabbits, independently of the immunization route employed. These levels were similar to those elicited with inactivated RHDV or with VP60 obtained from yeast or insect cells. IgA specific antibodies were only found in saliva of rabbits immunized by intranasal instillation. The feasibility of VP60 production and vaccination of rabbits with replication-defective adenoviral vectors was demonstrated.
Collapse
|
43
|
Mikschofsky H, Heilmann E, Schmidtke J, Schmidt K, Meyer U, Leinweber P, Broer I. Greenhouse and field cultivations of antigen-expressing potatoes focusing on the variability in plant constituents and antigen expression. PLANT MOLECULAR BIOLOGY 2011; 76:131-144. [PMID: 21594687 DOI: 10.1007/s11103-011-9774-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 03/26/2011] [Indexed: 05/30/2023]
Abstract
The production of plant-derived pharmaceuticals essentially requires stable concentrations of plant constituents, especially recombinant proteins; nonetheless, soil and seasonal variations might drastically interfere with this stability. In addition, variability might depend on the plant organ used for production. Therefore, we investigated the variability in plant constituents and antigen expression in potato plants under greenhouse and field growth conditions and in leaves compared to tubers. Using potatoes expressing VP60, the only structural capsid protein of the rabbit haemorrhagic disease virus (RHDV), CTB, the non-toxic B subunit (CTB) of the cholera toxin (CTA-CTB(5)) and the marker protein NPTII (neomycinphosphotransferase) as a model, we compare greenhouse and field production of potato-derived antigens. The influence of the production organ turned out to be transgene specific. In general, yield, plant quality and transgene expression levels in the field were higher than or similar to those observed in the greenhouse. The variation (CV) of major plant constituents and the amount of transgene-encoded protein was not influenced by the higher variation of soil properties observed in the field. Amazingly, for specific events, the variability in the model protein concentrations was often lower under field than under greenhouse conditions. The changes in gene expression under environmental stress conditions in the field observed in another event do not reduce the positive influence on variability since events like these should excluded from production. Hence, it can be concluded that for specific applications, field production of transgenic plants producing pharmaceuticals is superior to greenhouse production, even concerning the stability of transgene expression over different years. On the basis of our results, we expect equal or even higher expression levels with lower variability of recombinant pharmaceuticals in the field compared to greenhouse production combined with approximately 10 times higher tuber yield in the field.
Collapse
Affiliation(s)
- Heike Mikschofsky
- Agrobiotechnologie, Universität Rostock, Justus-von-Liebig-Weg 8, Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
44
|
Gil F, Pérez-Filgueira M, Barderas MG, Pastor-Vargas C, Alonso C, Vivanco F, Escribano JM. Targeting antigens to an invariant epitope of the MHC Class II DR molecule potentiates the immune response to subunit vaccines. Virus Res 2011; 155:55-60. [DOI: 10.1016/j.virusres.2010.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
|
45
|
Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL. Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 2010; 9:859-76. [PMID: 20673010 DOI: 10.1586/erv.10.85] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the molecular farming area, transient expression approaches for pharmaceutical proteins production, mainly recombinant monoclonal antibodies and vaccines, were developed almost two decades ago and, to date, these systems basically depend on Agrobacterium-mediated delivery and virus expression machinery. We survey here the current state-of-the-art of this research field. Several vectors have been designed on the basis of DNA- and RNA-based plant virus genomes and viral vectors are used both as single- and multicomponent expression systems in different combinations depending on the protein of interest. The obvious advantages of these systems are ease of manipulation, speed, low cost and high yield of proteins. In addition, Agrobacterium-mediated expression also allows the production in plants of complex proteins assembled from subunits. Currently, the transient expression methods are preferential over any other transgenic system for the exploitation of large and unrestricted numbers of plants in a contained environment. By designing optimal constructs and related means of delivery into plant cells, the overall technology plan considers scenarios that envisage high yield of bioproducts and ease in monitoring the whole spectrum of upstream production, before entering good manufacturing practice facilities. In this way, plant-derived bioproducts show promise of high competitiveness towards classical eukaryotic cell factory systems.
Collapse
Affiliation(s)
- Tatiana V Komarova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | | | |
Collapse
|
46
|
Calvo M, Dujovny G, Lucini C, Ortuño J, Alamillo JM, Simón-Mateo C, López-Moya JJ, García JA. Constraints to virus infection in Nicotiana benthamiana plants transformed with a potyvirus amplicon. BMC PLANT BIOLOGY 2010; 10:139. [PMID: 20604920 PMCID: PMC3095287 DOI: 10.1186/1471-2229-10-139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/06/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plant genomes have been transformed with full-length cDNA copies of viral genomes, giving rise to what has been called 'amplicon' systems, trying to combine the genetic stability of transgenic plants with the elevated replication rate of plant viruses. However, amplicons' performance has been very variable regardless of the virus on which they are based. This has boosted further interest in understanding the underlying mechanisms that cause this behavior differences, and in developing strategies to control amplicon expression. RESULTS Nicotiana benthamiana plants were transformed with an amplicon consisting of a full-length cDNA of the potyvirus Plum pox virus (PPV) genome modified to include a GFP reporter gene. Amplicon expression exhibited a great variability among different transgenic lines and even among different plants of the same line. Plants of the line 10.6 initially developed without signs of amplicon expression, but at different times some of them started to display sporadic infection foci in leaves approaching maturity. The infection progressed systemically, but at later times the infected plants recovered and returned to an amplicon-inactive state. The failure to detect virus-specific siRNAs in 10.6 plants before amplicon induction and after recovery suggested that a strong amplicon-specific RNA silencing is not established in these plants. However, the coexpression of extra viral silencing suppressors caused some amplicon activation, suggesting that a low level of RNA silencing could be contributing to maintain amplicon repression in the 10.6 plants. The resistance mechanisms that prevent amplicon-derived virus infection were also active against exogenous PPV introduced by mechanical inoculation or grafting, but did not affect other viruses. Amplicon-derived PPV was able to spread into wild type scions grafted in 10.6 rootstocks that did not display signs of amplicon expression, suggesting that resistance has little effect on virus movement. CONCLUSIONS Our results suggest that amplicon-derived virus infection is limited in this particular transgenic line by a combination of factors, including the presumed low efficiency of the conversion from the transgene transcript to replicable viral RNA, and also by the activation of RNA silencing and other defensive responses of the plant, which are not completely neutralized by viral suppressors.
Collapse
Affiliation(s)
- María Calvo
- Centro Nacional de Biotecnología-CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gabriela Dujovny
- Centro Nacional de Biotecnología-CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Lucini
- Centro Nacional de Biotecnología-CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Facultad de Ciencias y Artes, Universidad Católica de Ávila, Ávila, Spain
| | - Jesús Ortuño
- Centro Nacional de Biotecnología-CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Josefa M Alamillo
- Centro Nacional de Biotecnología-CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Fisiología Vegetal, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| | - Carmen Simón-Mateo
- Centro Nacional de Biotecnología-CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan José López-Moya
- Centro Nacional de Biotecnología-CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centre for Research in Agricultural Genomics CRAG, CSIC-IRTA-UAB, Barcelona, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología-CSIC, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
47
|
Decroocq V, Salvador B, Sicard O, Glasa M, Cosson P, Svanella-Dumas L, Revers F, García JA, Candresse T. The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1302-11. [PMID: 19737103 DOI: 10.1094/mpmi-22-10-1302] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In Arabidopsis thaliana Columbia (Col-0) plants, the restriction of Tobacco etch virus (TEV) long-distance movement involves at least three dominant RTM (restricted TEV movement) genes named RTM1, RTM2, and RTM3. Previous work has established that, while the RTM-mediated resistance is also effective against other potyviruses, such as Plum pox virus (PPV) and Lettuce mosaic virus (LMV), some isolates of these viruses are able to overcome the RTM mechanism. In order to identify the viral determinant of this RTM-resistance breaking, the biological properties of recombinants between PPV-R, which systemically infects Col-0, and PPV-PSes, restricted by the RTM resistance, were evaluated. Recombinants that contain the PPV-R coat protein (CP) sequence in an RTM-restricted background are able to systemically infect Col-0. The use of recombinants carrying chimeric CP genes indicated that one or more PPV resistance-breaking determinants map to the 5' half of the CP gene. In the case of LMV, sequencing of independent RTM-breaking variants recovered after serial passages of the LMV AF199 isolate on Col-0 plants revealed, in each case, amino acid changes in the CP N-terminal region, close to the DAG motif. Taken together, these findings demonstrate that the potyvirus CP N-terminal region determines the outcome of the interaction with the RTM-mediated resistance.
Collapse
Affiliation(s)
- V Decroocq
- UMR GDPP, INRA Université Bordeaux II, IBVM, Centre INRA de Bordeaux, BP 81, 33883 Villenave d'Ornon Cedex; France
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mikschofsky H, Schirrmeier H, Keil GM, Lange B, Polowick PL, Keller W, Broer I. Pea-derived vaccines demonstrate high immunogenicity and protection in rabbits against rabbit haemorrhagic disease virus. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:537-49. [PMID: 19486322 DOI: 10.1111/j.1467-7652.2009.00422.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Vaccines against rabbit haemorrhagic disease virus (RHDV) are commercially produced in experimentally infected rabbits. A genetically engineered and manufactured version of the major structural protein of RHDV (VP60) is considered to be an alternative approach for vaccine production. Plants have the potential to become an excellent recombinant production system, but the low expression level and insufficient immunogenic potency of plant-derived VP60 still hamper its practical use. In this study, we analysed the expression of a novel multimeric VP60-based antigen in four different plant species, including Nicotiana tabacum L., Solanum tuberosum L., Brassica napus L. and Pisum sativum L. Significant differences were detected in the expression patterns of the novel fusion antigen cholera toxin B subunit (CTB)::VP60 (ctbvp60(SEKDEL)) at the mRNA and protein levels. Pentameric CTB::VP60 molecules were only detected in N. tabacum and P. sativum, and displayed equal levels of CTB, at approximately 0.01% of total soluble protein (TSP), and traces of detectable VP60. However, strong enhancement of the CTB protein content via self-fertilization was only observed in P. sativum, where it reached up to 0.7% of TSP. In rabbits, a strong decrease in the protective vaccine dose required from 48-400 microg potato-derived VP60 [Castanon, S., Marin, M.S., Martin-Alonso, J.M., Boga, J.A., Casais, R., Humara, J.M., Ordas, R.J. and Parra, F. (1999) Immunization with potato plants expressing VP60 protein protects against rabbit hemorrhagic disease virus. J. Virol. 73, 4452-4455; Castanon, S., Martin-Alonso, J.M., Marin, M.S., Boga, J.A., Alonso, P., Parra, F. and Ordas, R.J. (2002) The effect of the promoter on expression of VP60 gene from rabbit hemorrhagic disease virus in potato plants. Plant Sci. 162, 87-95] to 0.56-0.28 microg antigenic VP60 (measured with VP60 enzyme-linked immunosorbent assay) of crude CTB::VP60 pea extracts was demonstrated. Rabbits immunized with pea-derived CTB::VP60 showed anti-VP60-specific antibodies, similar to RikaVacc((R))-immunized rabbits, and survived RHDV challenge.
Collapse
Affiliation(s)
- Heike Mikschofsky
- Agrobiotechnologie, Universität Rostock, Justus-von-Liebig-Weg 8, 18059 Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Plant-derived biologicals for use in animal health are becoming an increasingly important target for research into alternative, improved methods for disease control. Although there are no commercial products on the market yet, the development and testing of oral, plant-based vaccines is now beyond the proof-of-principle stage. Vaccines, such as those developed for porcine transmissible gastroenteritis virus, have the potential to stimulate both mucosal and systemic, as well as, lactogenic immunity as has already been seen in target animal trials. Plants are a promising production system, but they must compete with existing vaccines and protein production platforms. In addition, regulatory hurdles will need to be overcome, and industry and public acceptance of the technology are important in establishing successful products.
Collapse
Affiliation(s)
- R W Hammond
- USDA-ARS, BARC-West, Rm.252, Bldg. 011, Beltsville, MD 20705, USA.
| | | |
Collapse
|
50
|
Chimeric calicivirus-like particles elicit protective anti-viral cytotoxic responses without adjuvant. Virology 2009; 387:303-12. [DOI: 10.1016/j.virol.2009.02.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 12/29/2008] [Accepted: 02/26/2009] [Indexed: 11/23/2022]
|