1
|
Raj R, Kumar A, Savithri HS, Singh P. Groundnut bud necrosis virus encoded movement protein NSm binds to GTP and ATP. 3 Biotech 2025; 15:146. [PMID: 40321847 PMCID: PMC12044118 DOI: 10.1007/s13205-025-04305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Groundnut bud necrosis virus (GBNV) is a tripartite negative sense RNA virus that belongs to tospoviridae family. The M RNA encodes non-structural protein-m (NSm), a movement protein in tospoviruses. In this communication, we demonstrate that, GBNV NSm interacts with ATP and GTP. UV crosslinking with [γ-32P] ATP indicates that GBNV NSm forms two distinct complexes with ATP one of them is Mg2+ dependent and the other is Mg2+ independent. It also binds to ATP- and GTP-coupled agarose resin and shows competition with free ATP and GTP but not with UTP and CTP. The NSm-NTP interaction was further validated by intrinsic fluorescence quenching studies. NTPs and dNTPs both could quench the intrinsic fluorescence of NSm. However, maximum quenching of fluorescence occurred in the presence of GTP, followed by ATP, suggesting that it is the preferred ligand. The extent of fluorescence quenching with different concentrations of GTP was used to calculate the binding constant, and it was found to be 3 μM, lower than that reported for other proteins that can bind NTP. This is the first report of the GTP and ATP binding property of NSm from any Tospoviruses. Further, NSm could also hydrolyze GTP. Preliminary sequence analysis suggests the presence of two putative atypical Walker A motif from amino acid sequences 51-58 and 267-274, indicating that this sequence might be involved in NTP binding. This motif is conserved in most of the tospoviruses. NSm from GBNV an Asian clade, localize to ER network and remodels it to vesicles which has been proposed to be involved in movement through plasmodesmata (PD). Therefore, GTP-NSm interaction might be involved in signaling cell to cell trafficking.
Collapse
Affiliation(s)
- Rishi Raj
- Department of Botany, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| | - Abhay Kumar
- ICAR-National Research Centre on Litchi, Muzaffarpur, Bihar 842 002 India
| | - H. S. Savithri
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 India
| | - Pratibha Singh
- Department of Botany, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| |
Collapse
|
2
|
Úbeda JR, Aranda MA, Donaire L. Alphaflexiviridae in Focus: Genomic Signatures, Conserved Elements and Viral-Driven Cellular Remodeling. Viruses 2025; 17:611. [PMID: 40431623 PMCID: PMC12115993 DOI: 10.3390/v17050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
The family Alphaflexiviridae comprises plant- and fungus-infecting viruses with single-stranded, positive-sense RNA genomes ranging from 5.4 to 9 kb. Their virions are flexuous and filamentous, measuring 470-800 nm in length and 12-13 nm in diameter. The family includes 72 recognized species, classified into six genera: Allexivirus, Lolavirus, Platypuvirus, Potexvirus (plant-infecting), and Botrexvirus and Sclerodarnavirus (fungus-infecting). The genus Potexvirus is the largest, with 52 species, including Potexvirus ecspotati (potato virus X), an important crop pathogen and plant virology model. The genera are distinguished by genome organization and host range, while species differentiation relies on nucleotide and protein sequence identity thresholds. In this review, we summarize the current knowledge on the genomic structure, conserved genes, and phylogenetic relationships within Alphaflexiviridae, with a particular focus on the replicase and coat protein genes as signature markers. Additionally, we update the model of cellular remodeling driven by the triple gene block proteins, which are essential for virus movement, among other viral functions. Beyond their biological significance, alphaflexiviruses serve as valuable models for studying virus-host dynamics and hold potential applications in plant disease control and biotechnology. This review provides an updated framework for understanding Alphaflexiviridae and their broader impact on plant virology.
Collapse
Affiliation(s)
| | | | - Livia Donaire
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, P.O. Box 164, Espinardo, 30100 Murcia, Spain; (J.R.Ú.); (M.A.A.)
| |
Collapse
|
3
|
Huang YW, Sun CI, Hu CC, Tsai CH, Meng M, Lin NS, Dinesh-Kumar SP, Hsu YH. A viral movement protein co-opts endoplasmic reticulum luminal-binding protein and calreticulin to promote intracellular movement. PLANT PHYSIOLOGY 2023; 191:904-924. [PMID: 36459587 PMCID: PMC9922411 DOI: 10.1093/plphys/kiac547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Intracellular movement is an important step for the initial spread of virus in plants during infection. This process requires virus-encoded movement proteins (MPs) and their interaction with host factors. Despite the large number of known host factors involved in the movement of different viruses, little is known about host proteins that interact with one of the MPs encoded by potexviruses, the triple-gene-block protein 3 (TGBp3). The main obstacle lies in the relatively low expression level of potexviral TGBp3 in hosts and the weak or transient nature of interactions. Here, we used TurboID-based proximity labeling to identify the network of proteins directly or indirectly interacting with the TGBp3 of a potexvirus, Bamboo mosaic virus (BaMV). Endoplasmic reticulum (ER) luminal-binding protein 4 and calreticulin 3 of Nicotiana benthamiana (NbBiP4 and NbCRT3, respectively) associated with the functional TGBp3-containing BaMV movement complexes, but not the movement-defective mutant, TGBp3M. Fluorescent microscopy revealed that TGBp3 colocalizes with NbBiP4 or NbCRT3 and the complexes move together along ER networks to cell periphery in N. benthamiana. Loss- and gain-of-function experiments revealed that NbBiP4 or NbCRT3 is required for the efficient spread and accumulation of BaMV in infected leaves. In addition, overexpression of NbBiP4 or NbCRT3 enhanced the targeting of BaMV TGBp1 to plasmodesmata (PD), indicating that NbBiP4 and NbCRT3 interact with TGBp3 to promote the intracellular transport of virion cargo to PD that facilitates virus cell-to-cell movement. Our findings revealed additional roles for NbBiP4 and NbCRT3 in BaMV intracellular movement through ER networks or ER-derived vesicles to PD, which enhances the spread of BaMV in N. benthamiana.
Collapse
Affiliation(s)
- Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chu-I Sun
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, California 95616, USA
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hisng University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
4
|
Solovyev AG, Atabekova AK, Lezzhov AA, Solovieva AD, Chergintsev DA, Morozov SY. Distinct Mechanisms of Endomembrane Reorganization Determine Dissimilar Transport Pathways in Plant RNA Viruses. PLANTS (BASEL, SWITZERLAND) 2022; 11:2403. [PMID: 36145804 PMCID: PMC9504206 DOI: 10.3390/plants11182403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Plant viruses exploit the endomembrane system of infected cells for their replication and cell-to-cell transport. The replication of viral RNA genomes occurs in the cytoplasm in association with reorganized endomembrane compartments induced by virus-encoded proteins and is coupled with the virus intercellular transport via plasmodesmata that connect neighboring cells in plant tissues. The transport of virus genomes to and through plasmodesmata requires virus-encoded movement proteins (MPs). Distantly related plant viruses encode different MP sets, or virus transport systems, which vary in the number of MPs and their properties, suggesting their functional differences. Here, we discuss two distinct virus transport pathways based on either the modification of the endoplasmic reticulum tubules or the formation of motile vesicles detached from the endoplasmic reticulum and targeted to endosomes. The viruses with the movement proteins encoded by the triple gene block exemplify the first, and the potyviral system is the example of the second type. These transport systems use unrelated mechanisms of endomembrane reorganization. We emphasize that the mode of virus interaction with cell endomembranes determines the mechanism of plant virus cell-to-cell transport.
Collapse
Affiliation(s)
- Andrey G. Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Anastasia K. Atabekova
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Alexander A. Lezzhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D. Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A. Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
5
|
Jiang C, Shan S, Huang Y, Mao C, Zhang H, Li Y, Chen J, Wei Z, Sun Z. The C-Terminal Transmembrane Domain of Cowpea Mild Mottle Virus TGBp2 Is Critical for Plasmodesmata Localization and for Its Interaction With TGBp1 and TGBp3. Front Microbiol 2022; 13:860695. [PMID: 35495691 PMCID: PMC9051516 DOI: 10.3389/fmicb.2022.860695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
The movement of some plant RNA viruses is mediated by triple gene block (TGB) proteins, which cooperate to transfer the viral genome from cell to cell through plasmodesmata. Here, we investigated the function of the TGB proteins of cowpea mild mottle virus (CPMMV; genus Carlavirus, family Betaflexiviridae), which causes severe damage to soybean production. Subcellular localization experiments demonstrated that TGBp1 and TGBp3 were localized to the endoplasmic reticulum (ER), plasmodesmata (PD) and nucleus in Nicotiana benthamiana leaves. TGBp2 was unusually localized to PD. In protein interaction assays TGBp2 significantly enhanced the interaction between TGBp3 and TGBp1. Interaction assays using deletion mutants showed that the C-terminal transmembrane (TM) domain of TGBp2 is critical for its localization to PD and for its interaction with TGBp1 and TGBp3.
Collapse
|
6
|
Decle-Carrasco S, Rodríguez-Zapata LC, Castano E. Plant viral proteins and fibrillarin: the link to complete the infective cycle. Mol Biol Rep 2021; 48:4677-4686. [PMID: 34036480 DOI: 10.1007/s11033-021-06401-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm express proteins that localize in the nucleolus. Some positive single stranded RNA viruses from animals and plants have been reported to interact with the main nucleolar protein, Fibrillarin. Among nucleolar proteins, Fibrillarin is an essential protein that has been conserved in sequence and function throughout evolution. Fibrillarin is a methyltransferase protein with more than 100 methylation sites in the pre-ribosomal RNA, involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. Recently, it was found that AtFib2 shows a ribonuclease activity. In plant viruses, Fibrillarin is involved in long-distance movement and cell-to-cell movement, being two highly different processes. The mechanism that Fibrillarin performs is still unknown. However, and despite belonging to very different viral families, the majority comply with the following. (1) They are positive single stranded RNA viruses; (2) encode different types of viral proteins that partially localize in the nucleolus; (3) interacts with Fibrillarin exporting it to the cytoplasm; (4) the viral protein-Fibrillarin interaction forms an RNP complex with the viral RNA and; (5) Fibrillarin depletion affects the infective cycle of the virus. Here we review the relationship of those plant viruses with Fibrillarin interaction, with special focus on the molecular processes of the virus to sequester Fibrillarin to complete its infective cycle.
Collapse
Affiliation(s)
- Stefano Decle-Carrasco
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México.
| |
Collapse
|
7
|
Decle-Carrasco S, Rodríguez-Zapata LC, Castano E. Plant viral proteins and fibrillarin: the link to complete the infective cycle. Mol Biol Rep 2021. [PMID: 34036480 DOI: 10.1007/s11033-021-06401-1/tables/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm express proteins that localize in the nucleolus. Some positive single stranded RNA viruses from animals and plants have been reported to interact with the main nucleolar protein, Fibrillarin. Among nucleolar proteins, Fibrillarin is an essential protein that has been conserved in sequence and function throughout evolution. Fibrillarin is a methyltransferase protein with more than 100 methylation sites in the pre-ribosomal RNA, involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. Recently, it was found that AtFib2 shows a ribonuclease activity. In plant viruses, Fibrillarin is involved in long-distance movement and cell-to-cell movement, being two highly different processes. The mechanism that Fibrillarin performs is still unknown. However, and despite belonging to very different viral families, the majority comply with the following. (1) They are positive single stranded RNA viruses; (2) encode different types of viral proteins that partially localize in the nucleolus; (3) interacts with Fibrillarin exporting it to the cytoplasm; (4) the viral protein-Fibrillarin interaction forms an RNP complex with the viral RNA and; (5) Fibrillarin depletion affects the infective cycle of the virus. Here we review the relationship of those plant viruses with Fibrillarin interaction, with special focus on the molecular processes of the virus to sequester Fibrillarin to complete its infective cycle.
Collapse
Affiliation(s)
- Stefano Decle-Carrasco
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México.
| |
Collapse
|
8
|
Morozov SY, Solovyev AG. Small hydrophobic viral proteins involved in intercellular movement of diverse plant virus genomes. AIMS Microbiol 2020; 6:305-329. [PMID: 33134746 PMCID: PMC7595835 DOI: 10.3934/microbiol.2020019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Most plant viruses code for movement proteins (MPs) targeting plasmodesmata to enable cell-to-cell and systemic spread in infected plants. Small membrane-embedded MPs have been first identified in two viral transport gene modules, triple gene block (TGB) coding for an RNA-binding helicase TGB1 and two small hydrophobic proteins TGB2 and TGB3 and double gene block (DGB) encoding two small polypeptides representing an RNA-binding protein and a membrane protein. These findings indicated that movement gene modules composed of two or more cistrons may encode the nucleic acid-binding protein and at least one membrane-bound movement protein. The same rule was revealed for small DNA-containing plant viruses, namely, viruses belonging to genus Mastrevirus (family Geminiviridae) and the family Nanoviridae. In multi-component transport modules the nucleic acid-binding MP can be viral capsid protein(s), as in RNA-containing viruses of the families Closteroviridae and Potyviridae. However, membrane proteins are always found among MPs of these multicomponent viral transport systems. Moreover, it was found that small membrane MPs encoded by many viruses can be involved in coupling viral replication and cell-to-cell movement. Currently, the studies of evolutionary origin and functioning of small membrane MPs is regarded as an important pre-requisite for understanding of the evolution of the existing plant virus transport systems. This paper represents the first comprehensive review which describes the whole diversity of small membrane MPs and presents the current views on their role in plant virus movement.
Collapse
Affiliation(s)
- Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
9
|
Jiang Z, Zhang K, Li Z, Li Z, Yang M, Jin X, Cao Q, Wang X, Yue N, Li D, Zhang Y. The Barley stripe mosaic virus γb protein promotes viral cell-to-cell movement by enhancing ATPase-mediated assembly of ribonucleoprotein movement complexes. PLoS Pathog 2020; 16:e1008709. [PMID: 32730331 PMCID: PMC7419011 DOI: 10.1371/journal.ppat.1008709] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 08/11/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Nine genera of viruses in five different families use triple gene block (TGB) proteins for virus movement. The TGB modules fall into two classes: hordei-like and potex-like. Although TGB-mediated viral movement has been extensively studied, determination of the constituents of the viral ribonucleoprotein (vRNP) movement complexes and the mechanisms underlying their involvement in vRNP-mediated movement are far from complete. In the current study, immunoprecipitation of TGB1 protein complexes formed during Barley stripe mosaic virus (BSMV) infection revealed the presence of the γb protein in the products. Further experiments demonstrated that TGB1 interacts with γb in vitro and in vivo, and that γb-TGB1 localizes at the periphery of chloroplasts and plasmodesmata (PD). Subcellular localization analyses of the γb protein in Nicotiana benthamiana epidermal cells indicated that in addition to chloroplast localization, γb also targets the ER, actin filaments and PD at different stages of viral infection. By tracking γb localization during BSMV infection, we demonstrated that γb is required for efficient cell-to-cell movement. The N-terminus of γb interacts with the TGB1 ATPase/helicase domain and enhances ATPase activity of the domain. Inactivation of the TGB1 ATPase activity also significantly impaired PD targeting. In vitro translation together with co-immunoprecipitation (co-IP) analyses revealed that TGB1-TGB3-TGB2 complex formation is enhanced by ATP hydrolysis. The γb protein positively regulates complex formation in the presence of ATP, suggesting that γb has a novel role in BSMV cell-to-cell movement by directly promoting TGB1 ATPase-mediated vRNP movement complex assembly. We further demonstrated that elimination of ATPase activity abrogates PD and actin targeting of Potato virus X (PVX) and Beet necrotic yellow vein virus (BNYVV) TGB1 proteins. These results expand our understanding of the multifunctional roles of γb and provide new insight into the functions of TGB1 ATPase domains in the movement of TGB-encoding viruses.
Collapse
Affiliation(s)
- Zhihao Jiang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Kun Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Zhaolei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Zhenggang Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Meng Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Xuejiao Jin
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Qing Cao
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Xueting Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Ning Yue
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
10
|
Yang X, Lu Y, Wang F, Chen Y, Tian Y, Jiang L, Peng J, Zheng H, Lin L, Yan C, Taliansky M, MacFarlane S, Wu Y, Chen J, Yan F. Involvement of the chloroplast gene ferredoxin 1 in multiple responses of Nicotiana benthamiana to Potato virus X infection. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2142-2156. [PMID: 31872217 PMCID: PMC7094082 DOI: 10.1093/jxb/erz565] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 05/14/2023]
Abstract
The chloroplast protein ferredoxin 1 (FD1), with roles in the chloroplast electron transport chain, is known to interact with the coat proteins (CPs) of Tomato mosaic virus and Cucumber mosaic virus. However, our understanding of the roles of FD1 in virus infection remains limited. Here, we report that the Potato virus X (PVX) p25 protein interacts with FD1, whose mRNA and protein levels are reduced by PVX infection or by transient expression of p25. Silencing of FD1 by Tobacco rattle virus-based virus-induced gene silencing (VIGS) promoted the local and systemic infection of plants by PVX. Use of a drop-and-see (DANS) assay and callose staining revealed that the permeability of plasmodesmata (PDs) was increased in FD1-silenced plants together with a consistently reduced level of PD callose deposition. After FD1 silencing, quantitative reverse transcription-real-time PCR (qRT-PCR) analysis and LC-MS revealed these plants to have a low accumulation of the phytohormones abscisic acid (ABA) and salicylic acid (SA), which contributed to the decreased callose deposition at PDs. Overexpression of FD1 in transgenic plants manifested resistance to PVX infection, but the contents of ABA and SA, and the PD callose deposition were not increased in transgenic plants. Overexpression of FD1 interfered with the RNA silencing suppressor function of p25. These results demonstrate that interfering with FD1 function causes abnormal plant hormone-mediated antiviral processes and thus enhances PVX infection.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fang Wang
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Ying Chen
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yanzhen Tian
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangliang Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chengqi Yan
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Michael Taliansky
- The James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee, UK
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| | - Stuart MacFarlane
- The James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee, UK
| | - Yuanhua Wu
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
11
|
Ur Rehman A, Li Z, Yang Z, Waqas M, Wang G, Xu W, Li F, Hong N. The Coat Protein of Citrus Yellow Vein Clearing Virus Interacts with Viral Movement Proteins and Serves as an RNA Silencing Suppressor. Viruses 2019; 11:E329. [PMID: 30959816 PMCID: PMC6520955 DOI: 10.3390/v11040329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/29/2023] Open
Abstract
Citrus yellow vein clearing virus is a newly accepted member of the genus Mandarivirus in the family Alphaflexiviridae. The triple gene block proteins (TGBp1, TGBp2 and TGBp3) encoded by plant viruses in this family function on facilitating virus movement. However, the protein function of citrus yellow vein clearing virus (CYVCV) have never been explored. Here, we showed in both yeast two-hybrid (Y2H) and bimolecular fluorescence (BiFC) assays that the coat protein (CP), TGBp1 and TGBp2 of CYVCV are self-interacting. Its CP also interacts with all three TGB proteins, and TGBp1 and TGBp2 interact with each other but not with TGBp3. Furthermore, the viral CP colocalizes with TGBp1 and TGBp3 at the plasmodesmata (PD) of epidermal cells of Nicotiana benthamiana leaves, and TGBp1 can translocate TGBp2 from granular-like structures embedded within ER networks to the PD. The results suggest that these proteins could coexist at the PD of epidermal cells of N. benthamiana. Using Agrobacterium infiltration-mediated RNA silencing assays, we show that CYVCV CP is a strong RNA silencing suppressor (RSS) triggered by positive-sense green fluorescent protein (GFP) RNA. The presented results provide insights for further revealing the mechanism of the viral movement and suppression of RNA silencing.
Collapse
Affiliation(s)
- Atta Ur Rehman
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
- Plant Pathology Section, Central Cotton Research Institute, Sakrand, Sindh 67210, Pakistan.
| | - Zhuoran Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zuokun Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| | - Muhammad Waqas
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| | - Wenxing Xu
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| | - Feng Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China.
| |
Collapse
|
12
|
Reagan BC, Ganusova EE, Fernandez JC, McCray TN, Burch-Smith TM. RNA on the move: The plasmodesmata perspective. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 275:1-10. [PMID: 30107876 DOI: 10.1016/j.plantsci.2018.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/25/2018] [Accepted: 07/04/2018] [Indexed: 05/11/2023]
Abstract
It is now widely accepted that plant RNAs can have effects at sites far away from their sites of synthesis. Cellular mRNA transcripts, endogenous small RNAs and defense-related small RNAs all move from cell to cell via plasmodesmata (PD), and may even move long distances in the phloem. Despite their small size, PD have complicated substructures, and the area of the pore available for RNA trafficking can be remarkably small. The intent of this review is to bring into focus the role of PD in cell-to-cell and long distance communication in plants. We consider how cellular RNAs could move through the cell to the PD and thence through PD. The protein composition of PD and the possible roles of PD proteins in RNA trafficking are also discussed. Recent evidence for RNA metabolism in organelles acting as a factor in controlling PD flux is also presented, highlighting new aspects of plant intra- and intercellular communication. It is clear that while the phenomenon of RNA mobility is common and essential, many questions remain, and these have been highlighted throughout this review.
Collapse
Affiliation(s)
- Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Elena E Ganusova
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Jessica C Fernandez
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tyra N McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States; School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
13
|
Li Z, Zhang Y, Jiang Z, Jin X, Zhang K, Wang X, Han C, Yu J, Li D. Hijacking of the nucleolar protein fibrillarin by TGB1 is required for cell-to-cell movement of Barley stripe mosaic virus. MOLECULAR PLANT PATHOLOGY 2018; 19:1222-1237. [PMID: 28872759 PMCID: PMC6638131 DOI: 10.1111/mpp.12612] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 05/18/2023]
Abstract
Barley stripe mosaic virus (BSMV) Triple Gene Block1 (TGB1) is a multifunctional movement protein with RNA-binding, ATPase and helicase activities which mainly localizes to the plasmodesmata (PD) in infected cells. Here, we show that TGB1 localizes to the nucleus and the nucleolus, as well as the cytoplasm, and that TGB1 nuclear-cytoplasmic trafficking is required for BSMV cell-to-cell movement. Prediction analyses and laser scanning confocal microscopy (LSCM) experiments verified that TGB1 possesses a nucleolar localization signal (NoLS) (amino acids 95-104) and a nuclear localization signal (NLS) (amino acids 227-238). NoLS mutations reduced BSMV cell-to-cell movement significantly, whereas NLS mutations almost completely abolished movement. Furthermore, neither the NoLS nor NLS mutant viruses could infect Nicotiana benthamiana systemically, although the NoLS mutant virus was able to establish systemic infections of barley. Protein interaction experiments demonstrated that TGB1 interacts directly with the glycine-arginine-rich (GAR) domain of the nucleolar protein fibrillarin (Fib2). Moreover, in BSMV-infected cells, Fib2 accumulation increased by about 60%-70% and co-localized with TGB1 in the plasmodesmata. In addition, BSMV cell-to-cell movement in fib2 knockdown transgenic plants was reduced to less than one-third of that of non-transgenic plants. Fib2 also co-localized with both TGB1 and BSMV RNA, which are the main components of the ribonucleoprotein (RNP) movement complex. Collectively, these results show that TGB1-Fib2 interactions play a direct role in cell-to-cell movement, and we propose that Fib2 is hijacked by BSMV TGB1 to form a BSMV RNP which functions in cell-to-cell movement.
Collapse
Affiliation(s)
- Zhenggang Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Yongliang Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Zhihao Jiang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Xuejiao Jin
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Kun Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Xianbing Wang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Chenggui Han
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Jialin Yu
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Dawei Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| |
Collapse
|
14
|
Hong JS, Ju HJ. The Plant Cellular Systems for Plant Virus Movement. THE PLANT PATHOLOGY JOURNAL 2017; 33:213-228. [PMID: 28592941 PMCID: PMC5461041 DOI: 10.5423/ppj.rw.09.2016.0198] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/05/2016] [Accepted: 11/13/2016] [Indexed: 05/24/2023]
Abstract
Plasmodesmata (PDs) are specialized intercellular channels that facilitate the exchange of various molecules, including sugars, ribonucleoprotein complexes, transcription factors, and mRNA. Their diameters, estimated to be 2.5 nm in the neck region, are too small to transfer viruses or viral genomes. Tobacco mosaic virus and Potexviruses are the most extensively studied viruses. In viruses, the movement protein (MP) is responsible for the PD gating that allows the intercellular movement of viral genomes. Various host factors interact with MP to regulate complicated mechanisms related to PD gating. Virus replication and assembly occur in viral replication complex (VRC) with membrane association, especially in the endoplasmic reticulum. VRC have a highly organized structure and are highly regulated by interactions among the various host factors, proteins encoded by the viral genome, and the viral genome. Virus trafficking requires host machineries, such as the cytoskeleton and the secretory systems. MP facilitates the virus replication and movement process. Despite the current level of understanding of virus movement, there are still many unknown and complex interactions between virus replication and virus movement. While numerous studies have been conducted to understand plant viruses with regards to cell-to-cell movement and replication, there are still many knowledge gaps. To study these interactions, adequate research tools must be used such as molecular, and biochemical techniques. Without such tools, virologists will not be able to gain an accurate or detailed understanding of the virus infection process.
Collapse
Affiliation(s)
- Jin-Sung Hong
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Ho-Jong Ju
- Department of Agricultural Biology, College of Agricultural Life Science, Chonbuk National University, Jeonju 54896, Korea
- Plant Medicinal Research Center, College of Agricultural Life Science, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
15
|
Ho TL, Lee HC, Chou YL, Tseng YH, Huang WC, Wung CH, Lin NS, Hsu YH, Chang BY. The cysteine residues at the C-terminal tail of Bamboo mosaic virus triple gene block protein 2 are critical for efficient plasmodesmata localization of protein 1 in the same block. Virology 2017; 501:47-53. [PMID: 27863274 DOI: 10.1016/j.virol.2016.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/05/2016] [Indexed: 10/20/2022]
Abstract
The movement of some plant viruses are accomplished by three proteins encoded by a triple gene block (TGB). The second protein (TGBp2) in the block is a transmembrane protein. This study was aimed to unravel the mechanism underlying the relatively inefficient cell-to-cell movement of Bamboo mosaic virus (BaMV) caused by amino acid substitutions for the three Cys residues, Cys-109, Cys-112 and Cys-119, at the C-terminal tail of TGBp2. Results from confocal microscopy revealed that substitutions of the three Cys residues of TGBp2, especially Cys-109 and Cys-112, would reduce the efficiency of TGBp2- and TGBp3-dependent PD localization of TGBp1. Moreover, there is an additive effect of the substitutions on reducing the efficiency of PD localization of TGBp1. These results indicate that the Cys residues in the C-terminal tail region of TGBp2 participate in the TGBp2- and TGBp3-dependent PD localization of TGBp1, and thus influence the cell-to-cell movement capability of BaMV.
Collapse
Affiliation(s)
- Tsai-Ling Ho
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Hsiang-Chi Lee
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China; Ph.D. Program in Microbial Genomics, National Chung-Hsing University and Academia Sinica, Taiwan, Republic of China
| | - Yuan-Lin Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Yang-Hao Tseng
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Wei-Cheng Huang
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Chiung-Hua Wung
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Na-Sheng Lin
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China; Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Ban-Yang Chang
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China.
| |
Collapse
|
16
|
Abraham A, Savithri HS. A novel viral RNA helicase with an independent translation enhancement activity. FEBS Lett 2016; 590:1187-99. [PMID: 27001161 DOI: 10.1002/1873-3468.12145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 11/12/2022]
Abstract
RNA helicases have not been identified among negative sense RNA viruses. In this study, it is shown that Nonstructural protein (NSs) of Groundnut bud necrosis virus (GBNV) acts as a Mg(2+) - and ATP-dependent bipolar RNA helicase. Biophysical and biochemical analysis of the deletion mutants (NΔ124 NSs, CΔ80 NSs) revealed that both the N- and C-terminal residues are required for substrate binding, oligomerization and helicase activity, but are dispensable for ATPase activity. Interestingly, NSs could enhance the translation of RNA (~ 10-fold) independent of its helicase activity. This is the first report of a RNA helicase from negative strand RNA viruses.
Collapse
Affiliation(s)
- Ambily Abraham
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
17
|
Lico C, Benvenuto E, Baschieri S. The Two-Faced Potato Virus X: From Plant Pathogen to Smart Nanoparticle. FRONTIERS IN PLANT SCIENCE 2015; 6:1009. [PMID: 26635836 PMCID: PMC4646960 DOI: 10.3389/fpls.2015.01009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/30/2015] [Indexed: 05/24/2023]
Abstract
Potato virus X (PVX) is a single-stranded RNA plant virus, historically investigated in light of the detrimental effects on potato, the world's fourth most important food commodity. The study of the interactions with cells, and more generally with the plant, both locally and systemically, significantly contributed to unveil the mechanisms underlying gene silencing, fundamental not only in plant virology but also in the study of gene expression regulation. Unraveling the molecular events of PVX infection paved the way for the development of different viral expression vectors and consequential applications in functional genomics and in the biosynthesis of heterologous proteins in plants. Apart from that, the ease of manipulation and the knowledge of the virus structure (particle dimensions, shape and physicochemical features) are inspiring novel applications, mainly focused on nanobiotechnology. This review will lead the reader in this area, spanning from fundamental to applied research, embracing fields from plant pathology to vaccine and drug-targeted delivery, imaging and material sciences. Due to the versatile moods, PVX holds promise to become an interesting nanomaterial, in view to create the widest possible arsenal of new "bio-inspired" devices to face evolving issues in biomedicine and beyond.
Collapse
Affiliation(s)
- Chiara Lico
- Laboratory of Biotechnology , ENEA, Rome, Italy
| | | | | |
Collapse
|
18
|
Minicka J, Otulak K, Garbaczewska G, Pospieszny H, Hasiów-Jaroszewska B. Ultrastructural insights into tomato infections caused by three different pathotypes of Pepino mosaic virus and immunolocalization of viral coat proteins. Micron 2015; 79:84-92. [PMID: 26369497 DOI: 10.1016/j.micron.2015.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 02/05/2023]
Abstract
This paper presents studies on an ultrastructural analysis of plant tissue infected with different pathotypes of Pepino mosaic virus (PepMV) and the immunolocalization of viral coat proteins. Because the PepMV virus replicates with a high mutation rate and exhibits significant genetic diversity, therefore, isolates of PepMV display a wide range of symptoms on infected plants. In this work, tomato plants of the Beta Lux cultivar were inoculated mechanically with three pathotypes representing the Chilean 2 (CH2) genotype: mild (PepMV-P22), necrotic (PepMV-P19) and yellowing (PepMV-P5-IY). The presence of viral particles in all infected plants in the different compartments of various cell types (i.e. spongy and palisade mesophyll, sieve elements and xylem vessels) was revealed via ultrastructural analyses. For the first time, it was possible to demonstrate the presence of crystalline inclusions, composed of virus-like particles. In the later stage of PepMV infection (14 dpi) various pathotype-dependent changes in the structure of the individual organelles (i.e. mitochondria, chloroplasts) were found. The strongest immunogold labeling of the viral coat proteins was also observed in plants infected by necrotic isolates. A large number of viral coat proteins were marked in the plant conductive elements, both xylem and phloem.
Collapse
Affiliation(s)
- Julia Minicka
- Department of Virology and Bacteriology, Institute of Plant Protection - National Research Institute, Wl. Wegorka 20, 60-318 Poznan, Poland
| | - Katarzyna Otulak
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Grażyna Garbaczewska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Henryk Pospieszny
- Department of Virology and Bacteriology, Institute of Plant Protection - National Research Institute, Wl. Wegorka 20, 60-318 Poznan, Poland
| | - Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection - National Research Institute, Wl. Wegorka 20, 60-318 Poznan, Poland.
| |
Collapse
|
19
|
Makarov VV, Makarova SS, Makhotenko AV, Obraztsova EA, Kalinina NO. In vitro properties of hordeivirus TGB1 protein forming ribonucleoprotein complexes. J Gen Virol 2015; 96:3422-3431. [PMID: 26276346 DOI: 10.1099/jgv.0.000252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hordeivirus movement protein encoded by the first gene of the triple gene block (TGB1 protein, TGBp1) interacts in vivo with viral genomic and subgenomic RNAs to form ribonucleoprotein (RNP) particles that are considered to be a form of viral genome (non-virion transport form) capable of cell-to-cell and long-distance transport in infected plants. The structures of these RNPs have not been elucidated. The poa semilatent virus (PSLV) TGBp1 contains a structured C-terminal NTPase/helicase domain and an N-terminal extension region consisting of two domains - a completely intrinsically disordered extreme N-terminal domain and an internal domain (ID) with structure resembling a partially disordered molten globule. Here, we characterized the structures assembled in vitro by the full-length PSLV TGBp1 alone or in the presence of viral RNA. The PSLV TGBp1 was capable of multimerization and self-assembly into extended high-molecular-mass complexes. These complexes disassembled to apparent monomers upon incubation with ATP. Upon incubation with viral RNA, the PSLV TGBp1 in vitro formed RNP structures that appeared as filamentous particles resembling virions of helical filamentous plant viruses in morphology and dimensions. By comparing the biophysical characteristics of PSLV TGBp1 and its domains in the presence and absence of RNA, we show that the ID plays the main structural role in the self-interactions and RNA interactions of TGBp1 leading to the assembly of virus-like RNP particles.
Collapse
Affiliation(s)
- Valentin V Makarov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninsky Gory, Moscow 119992, Russia
| | - Svetlana S Makarova
- Department of Biology, Lomonosov Moscow State University, Leninsky Gory, Moscow 119992, Russia
| | - Antonida V Makhotenko
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninsky Gory, Moscow 119992, Russia
| | - Ekaterina A Obraztsova
- M. M. Shemyakin and Yu. A. Ovchinnikov Bioorganic Chemistry Institute, Miklukho-Maklaya str. 16/10, Moscow 117997, Russia
| | - Natalia O Kalinina
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninsky Gory, Moscow 119992, Russia
| |
Collapse
|
20
|
Plant virus replication and movement. Virology 2015; 479-480:657-71. [DOI: 10.1016/j.virol.2015.01.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 01/10/2023]
|
21
|
Bhushan L, Abraham A, Choudhury NR, Rana VS, Mukherjee SK, Savithri HS. Demonstration of helicase activity in the nonstructural protein, NSs, of the negative-sense RNA virus, groundnut bud necrosis virus. Arch Virol 2015; 160:959-67. [PMID: 25643815 DOI: 10.1007/s00705-014-2331-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/30/2014] [Indexed: 12/22/2022]
Abstract
The nonstructural protein NSs, encoded by the S RNA of groundnut bud necrosis virus (GBNV) (genus Tospovirus, family Bunyaviridae) has earlier been shown to possess nucleic-acid-stimulated NTPase and 5' α phosphatase activity. ATP hydrolysis is an essential function of a true helicase. Therefore, NSs was tested for DNA helicase activity. The results demonstrated that GBNV NSs possesses bidirectional DNA helicase activity. An alanine mutation in the Walker A motif (K189A rNSs) decreased DNA helicase activity substantially, whereas a mutation in the Walker B motif resulted in a marginal decrease in this activity. The parallel loss of the helicase and ATPase activity in the K189A mutant confirms that NSs acts as a non-canonical DNA helicase. Furthermore, both the wild-type and K189A NSs could function as RNA silencing suppressors, demonstrating that the suppressor activity of NSs is independent of its helicase or ATPase activity. This is the first report of a true helicase from a negative-sense RNA virus.
Collapse
Affiliation(s)
- Lokesh Bhushan
- Department of Biochemistry, New Biological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | | | | | | | | | | |
Collapse
|
22
|
Senanayake DMJB, Mandal B. Expression of symptoms, viral coat protein and silencing suppressor gene during mixed infection of a N-Wi strain of potato virus Y and an asymptomatic strain of potato virus X. Virusdisease 2015; 25:314-21. [PMID: 25674598 DOI: 10.1007/s13337-014-0204-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 02/07/2014] [Indexed: 11/26/2022] Open
Abstract
Potato virus Y (PVY) and potato virus X (PVX), the RNA viruses of two different genera results into synergistic interactions on mixed infection. In this study, a N-Wi strain of PVY and a PVX strain that is asymptomatic on potato were used to study their interactions during mixed infection in Nicotiana benthamiana and Nicotiana tabacum with reference to symptom expression, level of coat protein (CP) using ELISA and suppressor gene using real time PCR under high temperature (26-40 °C) and low temperature (5-25 °C) conditions. Both mixed and single infection caused severe necrosis and death of N. benthamiana plants. Single infection of these viruses in N. tabacum showed mild symptoms but mixed infection caused more severe symptoms. Synergistic symptoms were more pronounced under low temperature conditions than at high temperature. In low temperature conditions, the CP level of PVX in N. benthamiana was twofold higher than PVY and both the viruses reached at peak at 28 dpi in single virus infection. When PVY and PVX inoculated together, the CP levels of both the viruses increased and reached to the peak earlier (within 7-14 days) than that in the single virus inoculation. Although, the CP level of PVX was higher than PVY in mixed infection, at later stage (28 dpi) both the CP level declined to the similar level. The level of p25 suppressor gene was higher than HC-Pro in single inoculation. However, under mixed inoculation of PVY and PVX, expression of p25 was declined to the level of HC-Pro when the CP levels of both the virus also were observed to decline. The expression pattern of CP and suppressor gene was different in plants when mixed infection was created by inoculation of one virus followed by the other. This study showed the level of CP and suppressor gene of specific strain of PVY and PVX during their mixed infection in tobacco.
Collapse
Affiliation(s)
- D M J B Senanayake
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - B Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
23
|
Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S. Structural disorder in viral proteins. Chem Rev 2014; 114:6880-911. [PMID: 24823319 DOI: 10.1021/cr4005692] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, College of Fine Arts and Sciences, and ‡Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | | | | | | | |
Collapse
|
24
|
Okano Y, Senshu H, Hashimoto M, Neriya Y, Netsu O, Minato N, Yoshida T, Maejima K, Oshima K, Komatsu K, Yamaji Y, Namba S. In Planta Recognition of a Double-Stranded RNA Synthesis Protein Complex by a Potexviral RNA Silencing Suppressor. THE PLANT CELL 2014; 26:2168-2183. [PMID: 24879427 PMCID: PMC4079376 DOI: 10.1105/tpc.113.120535] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/23/2014] [Accepted: 05/09/2014] [Indexed: 05/22/2023]
Abstract
RNA silencing plays an important antiviral role in plants and invertebrates. To counteract antiviral RNA silencing, most plant viruses have evolved viral suppressors of RNA silencing (VSRs). TRIPLE GENE BLOCK PROTEIN1 (TGBp1) of potexviruses is a well-characterized VSR, but the detailed mechanism by which it suppresses RNA silencing remains unclear. We demonstrate that transgenic expression of TGBp1 of plantago asiatica mosaic virus (PlAMV) induced developmental abnormalities in Arabidopsis thaliana similar to those observed in mutants of SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6) required for the trans-acting small interfering RNA synthesis pathway. PlAMV-TGBp1 inhibits SGS3/RDR6-dependent double-stranded RNA synthesis in the trans-acting small interfering RNA pathway. TGBp1 interacts with SGS3 and RDR6 and coaggregates with SGS3/RDR6 bodies, which are normally dispersed in the cytoplasm. In addition, TGBp1 forms homooligomers, whose formation coincides with TGBp1 aggregation with SGS3/RDR6 bodies. These results reveal the detailed molecular function of TGBp1 as a VSR and shed new light on the SGS3/RDR6-dependent double-stranded RNA synthesis pathway as another general target of VSRs.
Collapse
Affiliation(s)
- Yukari Okano
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroko Senshu
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Osamu Netsu
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nami Minato
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuya Yoshida
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kenro Oshima
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
25
|
Solovyev AG, Savenkov EI. Factors involved in the systemic transport of plant RNA viruses: the emerging role of the nucleus. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1689-97. [PMID: 24420565 DOI: 10.1093/jxb/ert449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Compatible virus-host interactions depend on a suitable milieu in the host cells permitting viral gene expression, replication, and spread. During pathogenesis, viruses hijack the plant cellular machinery to access molecules, subcellular structures, and host transport pathways needed for infection. Vascular trafficking of virus transport forms (VTF) within the phloem is a crucial step in setting-up virus infection within the entire plant. Moreover, vascular trafficking is an essential step for the further transmission of the viruses by their natural vectors as movement of the viruses to the distant parts of the plant from the initial site of infection guarantees accessibility of the virus particle for vector transmission. With the recent advances in the field of plant virology several emerging themes of viral systemic movement occur linking the role of virus-mediated transcriptional reprogramming and nuclear factors in vascular trafficking. Recent studies have uncovered host factors involved in virus vascular trafficking. Surprisingly, it appears that the role of the nucleus and nuclear factors in virus movement is still under-appreciated. This review describes how these new themes started to emerge by using two contrasting modes of virus vascular trafficking. It is argued that the translocation of viral movement proteins into the nuclei is, in many cases, an essential step in promoting virus systemic infection.
Collapse
Affiliation(s)
- Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | | |
Collapse
|
26
|
Park MR, Jeong RD, Kim KH. Understanding the intracellular trafficking and intercellular transport of potexviruses in their host plants. FRONTIERS IN PLANT SCIENCE 2014; 5:60. [PMID: 24672528 PMCID: PMC3957223 DOI: 10.3389/fpls.2014.00060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/06/2014] [Indexed: 05/22/2023]
Abstract
The movement of potexviruses through the cytoplasm to plasmodesmata (PD) and through PD to adjacent cells depends on the viral and host cellular proteins. Potexviruses encode three movement proteins [referred to as the triple gene block (TGB1-3)]. TGB1 protein moves cell-to-cell through PD and requires TGB2 and TGB3, which are endoplasmic reticulum (ER)-located proteins. TGB3 protein directs the movement of the ER-derived vesicles induced by TGB2 protein from the perinuclear ER to the cortical ER. TGB2 protein physically interacts with TGB3 protein in a membrane-associated form and also interacts with either coat protein (CP) or TGB1 protein at the ER network. Recent studies indicate that potexvirus movement involves the interaction between TGB proteins and CP with host proteins including membrane rafts. A group of host cellular membrane raft proteins, remorins, can serve as a counteracting membrane platform for viral ribonucleoprotein (RNP) docking and can thereby inhibit viral movement. The CP, which is a component of the RNP movement complex, is also critical for viral cell-to-cell movement through the PD. Interactions between TGB1 protein and/or the CP subunit with the 5'-terminus of genomic RNA [viral RNA (vRNA)] form RNP movement complexes and direct the movement of vRNAs through the PD. Recent studies show that tobacco proteins such as NbMPB2C or NbDnaJ-like proteins interact with the stem-loop 1 RNA located at the 5'-terminus of Potato virus X vRNA and regulate intracellular as well as intercellular movement. Although several host proteins that interact with vRNAs or viral proteins and that are crucial for vRNA transport have been screened and characterized, additional host proteins and details of viral movement remain to be characterized. In this review, we describe recent progress in understanding potexvirus movement within and between cells and how such movement is affected by interactions between vRNA/proteins and host proteins.
Collapse
Affiliation(s)
- Mi-Ri Park
- Department of Agricultural Biotechnology, Seoul National UniversitySeoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, South Korea
- Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Rae-Dong Jeong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research InstituteJeongeup, South Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Seoul National UniversitySeoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, South Korea
- Research Institute for Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
- *Correspondence: Kook-Hyung Kim, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, South Korea e-mail:
| |
Collapse
|
27
|
Tilsner J, Linnik O, Louveaux M, Roberts IM, Chapman SN, Oparka KJ. Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J Cell Biol 2013; 201:981-95. [PMID: 23798728 PMCID: PMC3691464 DOI: 10.1083/jcb.201304003] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/16/2013] [Indexed: 02/04/2023] Open
Abstract
Plant viruses use movement proteins (MPs) to modify intercellular pores called plasmodesmata (PD) to cross the plant cell wall. Many viruses encode a conserved set of three MPs, known as the triple gene block (TGB), typified by Potato virus X (PVX). In this paper, using live-cell imaging of viral RNA (vRNA) and virus-encoded proteins, we show that the TGB proteins have distinct functions during movement. TGB2 and TGB3 established endoplasmic reticulum-derived membranous caps at PD orifices. These caps harbored the PVX replicase and nonencapsidated vRNA and represented PD-anchored viral replication sites. TGB1 mediated insertion of the viral coat protein into PD, probably by its interaction with the 5' end of nascent virions, and was recruited to PD by the TGB2/3 complex. We propose a new model of plant virus movement, which we term coreplicational insertion, in which MPs function to compartmentalize replication complexes at PD for localized RNA synthesis and directional trafficking of the virus between cells.
Collapse
Affiliation(s)
- Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Chou YL, Hung YJ, Tseng YH, Hsu HT, Yang JY, Wung CH, Lin NS, Meng M, Hsu YH, Chang BY. The stable association of virion with the triple-gene-block protein 3-based complex of Bamboo mosaic virus. PLoS Pathog 2013; 9:e1003405. [PMID: 23754943 PMCID: PMC3675025 DOI: 10.1371/journal.ppat.1003405] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 04/22/2013] [Indexed: 12/03/2022] Open
Abstract
The triple-gene-block protein 3 (TGBp3) of Bamboo mosaic virus (BaMV) is an integral endoplasmic reticulum (ER) membrane protein which is assumed to form a membrane complex to deliver the virus intracellularly. However, the virus entity that is delivered to plasmodesmata (PD) and its association with TGBp3-based complexes are not known. Results from chemical extraction and partial proteolysis of TGBp3 in membrane vesicles revealed that TGBp3 has a right-side-out membrane topology; i.e., TGBp3 has its C-terminal tail exposed to the outer surface of ER. Analyses of the TGBp3-specific immunoprecipitate of Sarkosyl-extracted TGBp3-based complex revealed that TGBp1, TGBp2, TGBp3, capsid protein (CP), replicase and viral RNA are potential constituents of virus movement complex. Substantial co-fractionation of TGBp2, TGBp3 and CP, but not TGBp1, in the early eluted gel filtration fractions in which virions were detected after TGBp3-specific immunoprecipitation suggested that the TGBp2- and TGBp3-based complex is able to stably associate with the virion. This notion was confirmed by immunogold-labeling transmission electron microscopy (TEM) of the purified virions. In addition, mutational and confocal microscopy analyses revealed that TGBp3 plays a key role in virus cell-to-cell movement by enhancing the TGBp2- and TGBp3-dependent PD localization of TGBp1. Taken together, our results suggested that the cell-to-cell movement of potexvirus requires stable association of the virion cargo with the TGBp2- and TGBp3-based membrane complex and recruitment of TGBp1 to the PD by this complex.
Collapse
Affiliation(s)
- Yuan-Lin Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Yi-Jing Hung
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Yang-Hao Tseng
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Hsiu-Ting Hsu
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Jun-Yi Yang
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Chiung-Hua Wung
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | - Ban-Yang Chang
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
29
|
Sattar MN, Kvarnheden A, Saeed M, Briddon RW. Cotton leaf curl disease - an emerging threat to cotton production worldwide. J Gen Virol 2013; 94:695-710. [PMID: 23324471 DOI: 10.1099/vir.0.049627-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cotton leaf curl disease (CLCuD) is a serious disease of cotton which has characteristic symptoms, the most unusual of which is the formation of leaf-like enations on the undersides of leaves. The disease is caused by whitefly-transmitted geminiviruses (family Geminiviridae, genus Begomovirus) in association with specific, symptom-modulating satellites (betasatellites) and an evolutionarily distinct group of satellite-like molecules known as alphasatellites. CLCuD occurs across Africa as well as in Pakistan and north-western India. Over the past 25 years, Pakistan and India have experienced two epidemics of the disease, the most recent of which involved a virus and satellite that are resistance breaking. Loss of this conventional host-plant resistance, which saved the cotton growers from ruin in the late 1990s, leaves farmers with only relatively poor host plant tolerance to counter the extensive losses the disease causes. There has always been the fear that CLCuD could spread from the relatively limited geographical range it encompasses at present to other cotton-growing areas of the world where, although the disease is not present, the environmental conditions are suitable for its establishment and the whitefly vector occurs. Unfortunately recent events have shown this fear to be well founded, with CLCuD making its first appearance in China. Here, we outline recent advances made in understanding the molecular biology of the components of the disease complex, their interactions with host plants, as well as efforts being made to control CLCuD.
Collapse
Affiliation(s)
- M Naeem Sattar
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07 Uppsala, Sweden
| | - Anders Kvarnheden
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, SE-750 07 Uppsala, Sweden
| | - Muhammad Saeed
- National Institute for Biotechnology and Genetic Engineering, PO Box 577, Jhang Road, Faisalabad, Pakistan
| | - Rob W Briddon
- National Institute for Biotechnology and Genetic Engineering, PO Box 577, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
30
|
Lee MY, Yan L, Gorter FA, Kim BYT, Cui Y, Hu Y, Yuan C, Grindheim J, Ganesan U, Liu Z, Han C, Yu J, Li D, Jackson AO. Brachypodium distachyon line Bd3-1 resistance is elicited by the barley stripe mosaic virus triple gene block 1 movement protein. J Gen Virol 2012; 93:2729-2739. [DOI: 10.1099/vir.0.045880-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Barley stripe mosaic virus North Dakota 18 (ND18), Beijing (BJ), Xinjiang (XJ), Type (TY) and CV21 strains are unable to infect the Brachypodium distachyon Bd3-1 inbred line, which harbours a resistance gene designated Bsr1, but the Norwich (NW) strain is virulent on Bd3-1. Analysis of ND18 and NW genomic RNA reassortants and RNAβ mutants demonstrates that two amino acids within the helicase motif of the triple gene block 1 (TGB1) movement protein have major effects on their Bd3-1 phenotypes. Resistance to ND18 correlates with an arginine residue at TGB1 position 390 (R390) and a threonine at position 392 (T392), whereas the virulent NW strain contains lysines (K) at both positions. ND18 TGB1 R390K (NDTGB1R390K) and NDTGB1T392K single substitutions, and an NDTGB1R390K,T392K double mutation resulted in systemic infections of Bd3-1. Reciprocal NDTGB1 substitutions into NWTGB1 (NWTGB1K390R and NWTGB1K392T) failed to affect virulence, implying that K390 and K392 compensate for each other. In contrast, an NWTGB1K390R,K392T double mutant exhibited limited vascular movement in Bd3-1, but developed prominent necrotic streaks that spread from secondary leaf veins. This phenotype, combined with the appearance of necrotic spots in certain ND18 mutants, and necrosis and rapid wilting of Bd3-1 plants after BJ strain (BJTGB1K390,T392) inoculations, show that Bd3-1 Bsr1 resistance is elicited by the TGB1 protein and suggest that it involves a hypersensitive response.
Collapse
Affiliation(s)
- Mi Yeon Lee
- Department of Plant and Microbial Biology, University of California–Berkeley, Berkeley, CA 94720, USA
| | - Lijie Yan
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Florien A. Gorter
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands
- Department of Plant and Microbial Biology, University of California–Berkeley, Berkeley, CA 94720, USA
| | - Brian Y. T. Kim
- Department of Plant and Microbial Biology, University of California–Berkeley, Berkeley, CA 94720, USA
| | - Yu Cui
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
- Department of Plant and Microbial Biology, University of California–Berkeley, Berkeley, CA 94720, USA
| | - Yue Hu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Cheng Yuan
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Jessica Grindheim
- Department of Plant and Microbial Biology, University of California–Berkeley, Berkeley, CA 94720, USA
| | - Uma Ganesan
- Department of Plant and Microbial Biology, University of California–Berkeley, Berkeley, CA 94720, USA
| | - Zhiyong Liu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Andrew O. Jackson
- Department of Plant and Microbial Biology, University of California–Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
31
|
Makarov VV, Iconnikova AY, Guseinov MA, Vishnichenko VK, Kalinina NO. In vitro phosphorylation of the N-terminal half of hordeivirus movement protein. BIOCHEMISTRY. BIOKHIMIIA 2012; 77:1072-81. [PMID: 23157268 DOI: 10.1134/s0006297912090155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The N-terminal half of TGB1 movement protein of poa semilatent hordeivirus, which forms a ribonucleoprotein complex involved in movement of the viral genome in the plant, and its two domains, NTD and ID, are phosphorylated in vitro by a fraction enriched in cell walls from Nicotiana benthamiana. Using a set of protein kinase inhibitors with different specificities, it was found that enzymes possessing activities of casein kinase 1, protein kinase A, and protein kinase C are involved in phosphorylation. Commercial preparations of protein kinases A and C are able to phosphorylate in vitro recombinant proteins corresponding to the N-terminal half of the protein and its domains NTD and ID. Phosphorylation of the NTD has no effect on the efficiency and character of its binding to RNA. However, phosphorylation of the ID leads to a decrease in its RNA-binding activity and in the ability for homological protein-protein interactions.
Collapse
Affiliation(s)
- V V Makarov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | | | | |
Collapse
|
32
|
Tilsner J, Linnik O, Wright KM, Bell K, Roberts AG, Lacomme C, Santa Cruz S, Oparka KJ. The TGB1 movement protein of Potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory. PLANT PHYSIOLOGY 2012; 158:1359-70. [PMID: 22253256 PMCID: PMC3291258 DOI: 10.1104/pp.111.189605] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/13/2012] [Indexed: 05/18/2023]
Abstract
Potato virus X (PVX) requires three virally encoded proteins, the triple gene block (TGB), for movement between cells. TGB1 is a multifunctional protein that suppresses host gene silencing and moves from cell to cell through plasmodesmata, while TGB2 and TGB3 are membrane-spanning proteins associated with endoplasmic reticulum-derived granular vesicles. Here, we show that TGB1 organizes the PVX "X-body," a virally induced inclusion structure, by remodeling host actin and endomembranes (endoplasmic reticulum and Golgi). Within the X-body, TGB1 forms helically arranged aggregates surrounded by a reservoir of the recruited host endomembranes. The TGB2/3 proteins reside in granular vesicles within this reservoir, in the same region as nonencapsidated viral RNA, while encapsidated virions accumulate at the outer (cytoplasmic) face of the X-body, which comprises a highly organized virus "factory." TGB1 is both necessary and sufficient to remodel host actin and endomembranes and to recruit TGB2/3 to the X-body, thus emerging as the central orchestrator of the X-body. Our results indicate that the actin/endomembrane-reorganizing properties of TGB1 function to compartmentalize the viral gene products of PVX infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karl J. Oparka
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom (J.T., O.L., K.B., C.L., K.J.O.); and The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom (K.M.W., A.G.R., S.S.C.)
| |
Collapse
|
33
|
Semashko MA, González I, Shaw J, Leonova OG, Popenko VI, Taliansky ME, Canto T, Kalinina NO. The extreme N-terminal domain of a hordeivirus TGB1 movement protein mediates its localization to the nucleolus and interaction with fibrillarin. Biochimie 2012; 94:1180-8. [PMID: 22349738 DOI: 10.1016/j.biochi.2012.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/06/2012] [Indexed: 01/13/2023]
Abstract
The hordeiviral movement protein encoded by the first gene of the triple gene block (TGBp1) of Poa semilatent virus (PSLV), interacts with viral genomic RNAs to form RNP particles which are considered to be a form of viral genome capable of cell-to-cell and long-distance transport in infected plants. The PSLV TGBp1 contains a C-terminal NTPase/helicase domain (HELD) and an N-terminal extension region consisting of two structurally and functionally distinct domains: an extreme N-terminal domain (NTD) and an internal domain (ID). This study demonstrates that transient expression of TGBp1 fused to GFP in Nicotiana benthamiana leaves results in faint but obvious fluorescence in the nucleolus in addition to cytosolic distribution. Mutagenesis of the basic amino acids inside the NTD clusters A (116)KSKRKKKNKK(125) and B (175)KKATKKESKKQTK(187) reveals that these clusters are indispensable for nuclear and nucleolar targeting of PSLV TGBp1 and may contain nuclear and nucleolar localization signals or their elements. The PSLV TGBp1 is able to bind to fibrillarin, the major nucleolar protein (AtFib2 from Arabidopsis thaliana) in vitro. This protein-protein interaction occurs between the glycine-arginine-rich (GAR) domain of fibrillarin and the first 82 amino acid residues of TGBp1. The interaction of TGBp1 with fibrillarin is also visualized in vivo by bimolecular fluorescence complementation (BiFC) during co-expression of TGBp1 or its deletion mutants, and fibrillarin as fusions to different halves of YFP in N. benthamiana plants. The sites responsible for nuclear/nucleolar localization and fibrillarin binding, have been located within the intrinsically disordered TGBp1 NTD. These data could suggest that specific functions of hordeivirus TGBp1 may depend on its interaction with nucleolar components.
Collapse
Affiliation(s)
- Maria A Semashko
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninsky Gory, Moscow, 119992, Russia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ji X, Qian D, Wei C, Ye G, Zhang Z, Wu Z, Xie L, Li Y. Movement protein Pns6 of rice dwarf phytoreovirus has both ATPase and RNA binding activities. PLoS One 2011; 6:e24986. [PMID: 21949821 PMCID: PMC3176798 DOI: 10.1371/journal.pone.0024986] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/20/2011] [Indexed: 11/18/2022] Open
Abstract
Cell-to-cell movement is essential for plant viruses to systemically infect host plants. Plant viruses encode movement proteins (MP) to facilitate such movement. Unlike the well-characterized MPs of DNA viruses and single-stranded RNA (ssRNA) viruses, knowledge of the functional mechanisms of MPs encoded by double-stranded RNA (dsRNA) viruses is very limited. In particular, many studied MPs of DNA and ssRNA viruses bind non-specifically ssRNAs, leading to models in which ribonucleoprotein complexes (RNPs) move from cell to cell. Thus, it will be of special interest to determine whether MPs of dsRNA viruses interact with genomic dsRNAs or their derivative sRNAs. To this end, we studied the biochemical functions of MP Pns6 of Rice dwarf phytoreovirus (RDV), a member of Phytoreovirus that contains a 12-segmented dsRNA genome. We report here that Pns6 binds both dsRNAs and ssRNAs. Intriguingly, Pns6 exhibits non-sequence specificity for dsRNA but shows preference for ssRNA sequences derived from the conserved genomic 5'- and 3'-terminal consensus sequences of RDV. Furthermore, Pns6 exhibits magnesium-dependent ATPase activities. Mutagenesis identified the RNA binding and ATPase activity sites of Pns6 at the N- and C-termini, respectively. Our results uncovered the novel property of a viral MP in differentially recognizing dsRNA and ssRNA and establish a biochemical basis to enable further studies on the mechanisms of dsRNA viral MP functions.
Collapse
Affiliation(s)
- Xu Ji
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Dan Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Chunhong Wei
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhongkai Zhang
- Biotechnology and Genetic Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, People's Republic of China
| | - Zujian Wu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Lianhui Xie
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
35
|
The interaction between bamboo mosaic virus replication protein and coat protein is critical for virus movement in plant hosts. J Virol 2011; 85:12022-31. [PMID: 21917973 DOI: 10.1128/jvi.05595-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bamboo mosaic virus (BaMV) is a positive-sense RNA virus belonging to the genus Potexvirus. Open reading frame 1 (ORF1) encodes the viral replication protein that consists of a capping enzyme domain, a helicase-like domain (HLD), and an RNA-dependent RNA polymerase domain from the N to C terminus. ORF5 encodes the viral coat protein (CP) required for genome encapsidation and the virus movement in plants. In this study, application of a yeast-two hybrid assay detected an interaction between the viral HLD and CP. However, the interaction did not affect the NTPase activity of the HLD. To identify the critical amino acids of CP interacting with the HLD, a random mutational library of CP was created using error-prone PCR, and the mutations adversely affecting the interaction were screened by a bacterial two-hybrid system. As a result, the mutations A209G and N210S in CP were found to weaken the interaction. To determine the significance of the interaction, the mutations were introduced into a BaMV infectious clone, and the mutational effects on viral replication, movement, and genome encapsidation were investigated. There was no effect on accumulations of BaMV CP and genomic RNAs within protoplasts; however, the virus cell-to-cell movement in plants was restricted. Sequence alignment revealed that A209 of BaMV CP is conserved in many potexviruses. Mutation of the corresponding residue in Foxtail mosaic virus CP also reduced the viral HLD-CP interaction and restricted the virus movement, suggesting that interaction between CP and a widely conserved HLD in the potexviral replication protein is crucial for viral trafficking through plasmodesmata.
Collapse
|
36
|
Schoelz JE, Harries PA, Nelson RS. Intracellular transport of plant viruses: finding the door out of the cell. MOLECULAR PLANT 2011; 4:813-31. [PMID: 21896501 PMCID: PMC3183398 DOI: 10.1093/mp/ssr070] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/18/2011] [Indexed: 05/03/2023]
Abstract
Plant viruses are a class of plant pathogens that specialize in movement from cell to cell. As part of their arsenal for infection of plants, every virus encodes a movement protein (MP), a protein dedicated to enlarging the pore size of plasmodesmata (PD) and actively transporting the viral nucleic acid into the adjacent cell. As our knowledge of intercellular transport has increased, it has become apparent that viruses must also use an active mechanism to target the virus from their site of replication within the cell to the PD. Just as viruses are too large to fit through an unmodified plasmodesma, they are also too large to be freely diffused through the cytoplasm of the cell. Evidence has accumulated now for the involvement of other categories of viral proteins in intracellular movement in addition to the MP, including viral proteins originally associated with replication or gene expression. In this review, we will discuss the strategies that viruses use for intracellular movement from the replication site to the PD, in particular focusing on the role of host membranes for intracellular transport and the coordinated interactions between virus proteins within cells that are necessary for successful virus spread.
Collapse
Affiliation(s)
- James E. Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Phillip A. Harries
- Department of Biology, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Richard S. Nelson
- Plant Biology Division, The Samuel Roberts Noble Foundation, Inc., Ardmore, OK 73401, USA
| |
Collapse
|
37
|
Shemyakina EA, Erokhina TN, Gorshkova EN, Schiemann J, Solovyev AG, Morozov SY. Formation of protein complexes containing plant virus movement protein TGBp3 is necessary for its intracellular trafficking. Biochimie 2011; 93:742-8. [PMID: 21251950 DOI: 10.1016/j.biochi.2011.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/11/2011] [Indexed: 12/11/2022]
Abstract
Cell-to-cell movement of Poa semilatent virus (genus Hordeivirus) in infected plants is mediated by three viral 'triple gene block' (TGB) proteins. One of those termed TGBp3 is an integral membrane protein essential for intracellular transport of other TGB proteins and viral genomic RNA to plasmodesmata. TGBp3 targeting to plasmodesmata-associated sites is believed to involve an unconventional mechanism which does not employ endoplasmic reticulum-derived transport vesicles. Previously TGBp3 has been shown to contain a composite transport signal consisting of the central hydrophilic protein region which includes a conserved pentapeptide YQDLN and the C-terminal transmembrane segment. This study demonstrates that these TGBp3 structural elements have distinct functions in protein transport. The YQDLN-containing region is essential for TGBp3 incorporation into high-molecular-mass protein complexes. In transient expression assay formation of such complexes is necessary for entering the TGBp3-specific pathway of intracellular transport and protein delivery to plasmodesmata-associated sites. In virus-infected plants TGBp3 is also found predominantly in the form of high-molecular-mass complexes. When the complex-formation function of YQDLN-containing region is disabled by a mutation, targeting to plasmodesmata-associated sites can be complemented by a heterologous peptide capable of formation multimeric complexes. The C-terminal transmembrane segment is found to be an essential signal of TGBp3 intracellular transport to peripheral sites.
Collapse
Affiliation(s)
- Elena A Shemyakina
- Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
38
|
Shemyakina EA, Solovyev AG, Leonova OG, Popenko VI, Schiemann J, Morozov SY. The Role of Microtubule Association in Plasmodesmal Targeting of Potato mop-top virus Movement Protein TGBp1. Open Virol J 2011; 5:1-11. [PMID: 21660184 PMCID: PMC3109696 DOI: 10.2174/1874357901105010001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/11/2010] [Accepted: 10/25/2010] [Indexed: 12/19/2022] Open
Abstract
Cell-to-cell movement of Potato mop-top virus (PMTV) is mediated by three virus-encoded ‘triple gene block’ (TGB) proteins termed TGBp1, TGBp2 and TGBp3. TGBp1 binds virus RNAs to form viral ribonucleoprotein complexes (vRNPs), the transport form of viral genome. TGBp2 and TGBp3 are necessary for intracellular delivery of TGBp1-containing vRNPs to plasmodesmata. To analyze subcellular localization and transport of TGBp1 we used a single binary vector for agrobacterium-mediated co-expression of PMTV TGBp1 fused to green fluorescent protein and TGBp2/TGBp3. At two days post infiltration (dpi) TGBp1 was found in the nucleus and in association with microtubules (MTs). Similar localization pattern was revealed in cells expressing GFP-TGBp1 alone after particle bombardment. At 3 dpi, in addition to the nucleus and MTs, TGBp1 was detected in numerous granular bodies located both along the MTs and at the cell wall. The latter structures co-localized with plasmodesmata-associated callose depositions. At 4 dpi, GFP-TGBp1 was detected in cell wall-associated bodies and also in residual MTs, the nucleoplasm and large perinuclear inclusions resembling aggresomes. Therefore GFP-TGBp1 association with MTs preceded to its localization to plasmodesmata. Disassembly of cell MTs by colchicine prevented GFP-TGBp1 targeting to plasmodesmata and the MT-dependent aggresome formation. Deletion analysis also revealed a correlation between TGBp1 microtubule association and plasmodesmata targeting. We propose that TGBp1 interaction with MTs may be important for the formation of vRNP bodies destined for the transport to plasmodesmata as well as degradation of the excessive TGBp1.
Collapse
Affiliation(s)
- Elena A Shemyakina
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119992, Russia
| | | | | | | | | | | |
Collapse
|
39
|
Niehl A, Heinlein M. Cellular pathways for viral transport through plasmodesmata. PROTOPLASMA 2011; 248:75-99. [PMID: 21125301 DOI: 10.1007/s00709-010-0246-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/16/2010] [Indexed: 05/03/2023]
Abstract
Plant viruses use plasmodesmata (PD) to spread infection between cells and systemically. Dependent on viral species, movement through PD can occur in virion or non-virion form, and requires different mechanisms for targeting and modification of the pore. These mechanisms are supported by viral movement proteins and by other virus-encoded factors that interact among themselves and with plant cellular components to facilitate virus movement in a coordinated and regulated fashion.
Collapse
Affiliation(s)
- Annette Niehl
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | | |
Collapse
|
40
|
Wright KM, Cowan GH, Lukhovitskaya NI, Tilsner J, Roberts AG, Savenkov EI, Torrance L. The N-terminal domain of PMTV TGB1 movement protein is required for nucleolar localization, microtubule association, and long-distance movement. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1486-97. [PMID: 20923354 DOI: 10.1094/mpmi-05-10-0105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The triple-gene-block (TGB)1 protein of Potato mop-top virus (PMTV) was fused to fluorescent proteins and expressed in epidermal cells of Nicotiana benthamiana under the control of the 35S promoter. TGB1 fluorescence was observed in the cytoplasm, nucleus, and nucleolus and occasionally associated with microtubules. When expressed from a modified virus (PMTV.YFP-TGB1) which formed local lesions but was not competent for systemic movement, yellow fluorescent protein (YFP)-TGB1 labeled plasmodesmata in cells at the leading edge of the lesion and plasmodesmata, microtubules, nuclei, and nucleoli in cells immediately behind the leading edge. Deletion of 84 amino acids from the N-terminus of unlabeled TGB1 within the PMTV genome abolished movement of viral RNA to noninoculated leaves. When the same deletion was introduced into PMTV.YFP-TGB1, labeling of microtubules and nucleoli was abolished. The N-terminal 84 amino acids of TGB1 were fused to green fluorescent protein (GFP) and expressed in epidermal cells where GFP localized strongly to the nucleolus (not seen with unfused GFP), indicating that these amino acids contain a nucleolar localization signal; the fusion protein did not label microtubules. This is the first report of nucleolar and microtubule association of a TGB movement protein. The results suggest that PMTV TGB1 requires interaction with nuclear components and, possibly, microtubules for long-distance movement of viral RNA.
Collapse
Affiliation(s)
- Kathryn M Wright
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Verchot-Lubicz J, Torrance L, Solovyev AG, Morozov SY, Jackson AO, Gilmer D. Varied movement strategies employed by triple gene block-encoding viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1231-47. [PMID: 20831404 DOI: 10.1094/mpmi-04-10-0086] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Several RNA virus genera belonging to the Virgaviridae and Flexiviridae families encode proteins organized in a triple gene block (TGB) that facilitate cell-to-cell and long-distance movement. The TGB proteins have been traditionally classified as hordei-like or potex-like based on phylogenetic comparisons and differences in movement mechanisms of the Hordeivirus and Potexvirus spp. However, accumulating data from other model viruses suggests that a revised framework is needed to accommodate the profound differences in protein interactions occurring during infection and ancillary capsid protein requirements for movement. The goal of this article is to highlight common features of the TGB proteins and salient differences in movement properties exhibited by individual viruses encoding these proteins. We discuss common and divergent aspects of the TGB transport machinery, describe putative nucleoprotein movement complexes, highlight recent data on TGB protein interactions and topological properties, and review membrane associations occurring during subcellular targeting and cell-to-cell movement. We conclude that the existing models cannot be used to explain all TGB viruses, and we propose provisional Potexvirus, Hordeivirus, and Pomovirus models. We also suggest areas that might profit from future research on viruses harboring this intriguing arrangement of movement proteins.
Collapse
Affiliation(s)
- Jeanmarie Verchot-Lubicz
- Oklahoma State University, Department of Entomology and Plant Pathology, Stillwater, OK 74078, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Chiu MH, Chen IH, Baulcombe DC, Tsai CH. The silencing suppressor P25 of Potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway. MOLECULAR PLANT PATHOLOGY 2010; 11:641-9. [PMID: 20696002 PMCID: PMC6640501 DOI: 10.1111/j.1364-3703.2010.00634.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previous evidence has indicated that the P25 protein encoded by Potato virus X (PVX) inhibits either the assembly or function of the effector complexes in the RNA silencing-based antiviral defence system (Bayne et al., Cell-to-cell movement of Potato Potexvirus X is dependent on suppression of RNA silencing. Plant J.44, 471-482). This finding prompted us to investigate the possibility that P25 targets the Argonaute (AGO) effector nuclease of RNA silencing. Co-immunoprecipitation and Western blot analysis indicated that there is a strong interaction between P25 and AGO1 of Arabidopsis when these proteins are transiently co-expressed in Nicotiana benthamiana. P25 also interacts with AGO1, AGO2, AGO3 and AGO4, but not with AGO5 and AGO9. As an effective suppressor, the amount of AGO1 accumulated in the presence of P25 was dramatically lower than that infiltrated with HcPro, but was restored when treated with a proteasome inhibitor MG132. These findings are consistent with the idea that RNA silencing is an antiviral defence mechanism and that the counter-defence role of P25 is through the degradation of AGO proteins via the proteasome pathway. Further support for this idea is provided by the observation that plants treated with MG132 are less susceptible to PVX and its relative Bamboo mosaic virus.
Collapse
Affiliation(s)
- Meng-Hsuen Chiu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | |
Collapse
|
43
|
Makarov VV, Obraztsova EA, Solovyev AG, Morozov SY, Taliansky ME, Yaminsky IV, Kalinina NO. The internal domain of hordeivirus movement protein TGB1 forms in vitro filamentous structures. BIOCHEMISTRY (MOSCOW) 2010; 75:752-8. [DOI: 10.1134/s0006297910060106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
NTPase and 5' to 3' RNA duplex-unwinding activities of the hepatitis E virus helicase domain. J Virol 2010; 84:3595-602. [PMID: 20071563 DOI: 10.1128/jvi.02130-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hepatitis E virus (HEV) is a causative agent of acute hepatitis, and it is the sole member of the genus Hepevirus in the family Hepeviridae. The open reading frame 1 (ORF1) protein of HEV encodes nonstructural polyprotein with putative domains for methyltransferase, cysteine protease, helicase and RNA-dependent RNA polymerase. It is not yet known whether ORF1 functions as a single protein with multiple domains or is processed to form separate functional units. On the basis of amino acid conserved motifs, HEV helicase has been grouped into helicase superfamily 1 (SF-1). In order to examine the RNA helicase activity of the NTPase/helicase domain of HEV, the region (amino acids 960 to 1204) was cloned and expressed as histidine-tagged protein in Escherichia coli (HEV Hel) and purified. HEV Hel exhibited NTPase and RNA unwinding activities. Enzyme hydrolyzed all rNTPs efficiently, dATP and dCTP with moderate efficiency, while it showed less hydrolysis of dGTP and dTTP. Enzyme showed unwinding of only RNA duplexes with 5' overhangs showing 5'-to-3' polarity. We also expressed and purified two HEV Hel mutants. Helicase mutant I, with substitution in the nucleotide-binding motif I (GKS to GAS), showed 30% ATPase activity. Helicase mutant II, with substitutions in the Mg(2+) binding motif II (DEAP to AAAP), showed 50% ATPase activity. Both mutants completely lost ability to unwind RNA duplexes with 5' overhangs. These findings represent the first report demonstrating NTPase/RNA helicase activity of the helicase domain of HEV ORF1.
Collapse
|
45
|
Makarov VV, Rybakova EN, Efimov AV, Dobrov EN, Serebryakova MV, Solovyev AG, Yaminsky IV, Taliansky ME, Morozov SY, Kalinina NO. Domain organization of the N-terminal portion of hordeivirus movement protein TGBp1. J Gen Virol 2009; 90:3022-3032. [DOI: 10.1099/vir.0.013862-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Three ‘triple gene block’ proteins known as TGBp1, TGBp2 and TGBp3 are required for cell-to-cell movement of plant viruses belonging to a number of genera including Hordeivirus. Hordeiviral TGBp1 interacts with viral genomic RNAs to form ribonucleoprotein (RNP) complexes competent for translocation between cells through plasmodesmata and over long distances via the phloem. Binding of hordeivirus TGBp1 to RNA involves two protein regions, the C-terminal NTPase/helicase domain and the N-terminal extension region. This study demonstrated that the extension region of hordeivirus TGBp1 consists of two structurally and functionally distinct domains called the N-terminal domain (NTD) and the internal domain (ID). In agreement with secondary structure predictions, analysis of circular dichroism spectra of the isolated NTD and ID demonstrated that the NTD represents a natively unfolded protein domain, whereas the ID has a pronounced secondary structure. Both the NTD and ID were able to bind ssRNA non-specifically. However, whilst the NTD interacted with ssRNA non-cooperatively, the ID bound ssRNA in a cooperative manner. Additionally, both domains bound dsRNA. The NTD and ID formed low-molecular-mass oligomers, whereas the ID also gave rise to high-molecular-mass complexes. The isolated ID was able to interact with both the NTD and the C-terminal NTPase/helicase domain in solution. These data demonstrate that the hordeivirus TGBp1 has three RNA-binding domains and that interaction between these structural units can provide a basis for remodelling of viral RNP complexes at different steps of cell-to-cell and long-distance transport of virus infection.
Collapse
Affiliation(s)
- Valentin V. Makarov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Ekaterina N. Rybakova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Alexander V. Efimov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Eugene N. Dobrov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | | | - Andrey G. Solovyev
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Moscow 127550, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Igor V. Yaminsky
- Physical Faculty, Moscow State University, Moscow 119992, Russia
| | | | - Sergey Yu. Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119992, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Natalia O. Kalinina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| |
Collapse
|
46
|
Ji X, Wei C, Li Y. Expression of rice dwarf phytoreovirus Pns6 and the specificity analysis of its monoclonal antibodies. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2009; 52:958-64. [PMID: 19911132 DOI: 10.1007/s11427-009-0129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 05/16/2009] [Indexed: 10/20/2022]
Abstract
The genome of rice dwarf phytoreovirus (RDV) is composed of 12 double-stranded RNA segments, of which segment S6 encodes a non-structural protein Pns6 identified as the movement protein. In this report, Pns6 with a 6-histidine tag at the N-terminal was expressed in E. coli after induction under low temperature (18 degrees C) and low concentration (0.4 mmol/L and 0.2 mmol/L) of IPTG, and then purified by Ni-chelated affinity chromatography. Stability analysis indicated that the expressed HisPns6 protein was stable at 37 degrees C after 24 h treatment. This recombinant protein was then used to make monoclonal antibody. Total 18 hybridoma clones were obtained. The specificity of antibodies was tested by Western blot using native Pns6 extracted from RDV-infected rice leaves, and 15 positive clones were confirmed. Mapping of the antigenic sites of Pns6 using antibodies showed that the most sensitive antigen determinant is located in the C-terminal region (the 296th-509th amino acids) of Pns6, which is confirms bioinformatics analysis.
Collapse
Affiliation(s)
- Xu Ji
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871, China
| | | | | |
Collapse
|
47
|
Tseng YH, Hsu HT, Chou YL, Hu CC, Lin NS, Hsu YH, Chang BY. The two conserved cysteine residues of the triple gene block protein 2 are critical for both cell-to-cell and systemic movement of Bamboo mosaic virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1379-88. [PMID: 19810807 DOI: 10.1094/mpmi-22-11-1379] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The triple gene block protein 2 (TGBp2) of Bamboo mosaic virus (BaMV) is a transmembrane protein which is known to be required for the cell-to-cell movement of potexviruses. This protein has two conserved Cys residues, Cys-109 and Cys-112, at its C-terminal tail, which is supposed to be exposed on the outer surface of the endoplasmic reticulum (ER) membrane and ER-derived granular vesicles. In this study, we investigated the importance of these two Cys residues on the cell-to-cell and systemic movement of BaMV. Our results indicate that the Cys-to-Ala substitutions in TGBp2 make the cell-to-cell movement of BaMV relatively inefficient and the systemic movement of BaMV severely inhibited. Moreover, the defect in systemic movement is attributed to the inefficient transport of viral RNA in the phloem of petiole. Clearly, TGBp2 is critical not only for the cell-to-cell but also for the systemic movement of BaMV. In addition, the conserved Cys residues are important for the functioning of TGBp2.
Collapse
Affiliation(s)
- Yang-Hao Tseng
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
Bamunusinghe D, Hemenway CL, Nelson RS, Sanderfoot AA, Ye CM, Silva MAT, Payton M, Verchot-Lubicz J. Analysis of potato virus X replicase and TGBp3 subcellular locations. Virology 2009; 393:272-85. [PMID: 19729179 DOI: 10.1016/j.virol.2009.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/09/2009] [Accepted: 08/02/2009] [Indexed: 10/20/2022]
Abstract
Potato virus X (PVX) infection leads to certain cytopathological modifications of the host endomembrane system. The subcellular location of the PVX replicase was previously unknown while the PVX TGBp3 protein was previously reported to reside in the ER. Using PVX infectious clones expressing the green fluorescent protein reporter, and antisera detecting the PVX replicase and host membrane markers, we examined the subcellular distribution of the PVX replicase in relation to the TGBp3. Confocal and electron microscopic observations revealed that the replicase localizes in membrane bound structures that derive from the ER. A subset of TGBp3 resides in the ER at the same location as the replicase. Sucrose gradient fractionation showed that the PVX replicase and TGBp3 proteins co-fractionate with ER marker proteins. This localization represents a region where both proteins may be synthesized and/or function. There is no evidence to indicate that either PVX protein moves into the Golgi apparatus. Cerulenin, a drug that inhibits de novo membrane synthesis, also inhibited PVX replication. These combined data indicate that PVX replication relies on ER-derived membrane recruitment and membrane proliferation.
Collapse
Affiliation(s)
- Devinka Bamunusinghe
- Department of Entomology and Plant Pathology, Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lim HS, Bragg JN, Ganesan U, Ruzin S, Schichnes D, Lee MY, Vaira AM, Ryu KH, Hammond J, Jackson AO. Subcellular localization of the barley stripe mosaic virus triple gene block proteins. J Virol 2009; 83:9432-48. [PMID: 19570874 PMCID: PMC2738231 DOI: 10.1128/jvi.00739-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 06/22/2009] [Indexed: 02/07/2023] Open
Abstract
Barley stripe mosaic virus (BSMV) spreads from cell to cell through the coordinated actions of three triple gene block (TGB) proteins (TGB1, TGB2, and TGB3) arranged in overlapping open reading frames (ORFs). Our previous studies (D. M. Lawrence and A. O. Jackson, J. Virol. 75:8712-8723, 2001; D. M. Lawrence and A. O. Jackson, Mol. Plant Pathol. 2:65-75, 2001) have shown that each of these proteins is required for cell-to-cell movement in monocot and dicot hosts. We recently found (H.-S. Lim, J. N. Bragg, U. Ganesan, D. M. Lawrence, J. Yu, M. Isogai, J. Hammond, and A. O. Jackson, J. Virol. 82:4991-5006, 2008) that TGB1 engages in homologous interactions leading to the formation of a ribonucleoprotein complex containing viral genomic and messenger RNAs, and we have also demonstrated that TGB3 functions in heterologous interactions with TGB1 and TGB2. We have now used Agrobacterium tumefaciens-mediated protein expression in Nicotiana benthamiana leaf cells and site-specific mutagenesis to determine how TGB protein interactions influence their subcellular localization and virus spread. Confocal microscopy revealed that the TGB3 protein localizes at the cell wall (CW) in close association with plasmodesmata and that the deletion or mutagenesis of a single amino acid at the immediate C terminus can affect CW targeting. TGB3 also directed the localization of TGB2 from the endoplasmic reticulum to the CW, and this targeting was shown to be dependent on interactions between the TGB2 and TGB3 proteins. The optimal localization of the TGB1 protein at the CW also required TGB2 and TGB3 interactions, but in this context, site-specific TGB1 helicase motif mutants varied in their localization patterns. The results suggest that the ability of TGB1 to engage in homologous binding interactions is not essential for targeting to the CW. However, the relative expression levels of TGB2 and TGB3 influenced the cytosolic and CW distributions of TGB1 and TGB2. Moreover, in both cases, localization at the CW was optimal at the 10:1 TGB2-to-TGB3 ratios occurring in virus infections, and mutations reducing CW localization had corresponding effects on BSMV movement phenotypes. These data support a model whereby TGB protein interactions function in the subcellular targeting of movement protein complexes and the ability of BSMV to move from cell to cell.
Collapse
Affiliation(s)
- Hyoun-Sub Lim
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Jennifer N. Bragg
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Uma Ganesan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Steven Ruzin
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Denise Schichnes
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Mi Yeon Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Anna Maria Vaira
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Ki Hyun Ryu
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - John Hammond
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| | - Andrew O. Jackson
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, FNPRU, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, CNR, Istituto di Virologia Vegetale, Torino 10135, Italy, Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, South Korea
| |
Collapse
|
50
|
Linder P, Owttrim GW. Plant RNA helicases: linking aberrant and silencing RNA. TRENDS IN PLANT SCIENCE 2009; 14:344-52. [PMID: 19446493 DOI: 10.1016/j.tplants.2009.03.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/11/2009] [Accepted: 03/17/2009] [Indexed: 05/06/2023]
Abstract
RNA helicases are ATPases that are capable of rearranging RNA and ribonucleoprotein (RNP) structure, and they can potentially function in any aspect of RNA metabolism. The RNA helicase gene family of plant genomes is larger and more diverse than genome families observed in other systems and provides an ideal model for investigation of the physiological importance of RNA secondary structure rearrangement in plant development. Numerous plant RNA helicases are associated with a variety of physiological functions, but this review will focus on the thirteen RNA helicases associated with the metabolism of aberrant and silencing RNAs. The results emphasize the crucial role RNA helicase activity has in the regulation of mRNA quality control and gene expression in plant development.
Collapse
Affiliation(s)
- Patrick Linder
- Department of Microbiology and Molecular Medicine, CMU, 1 Rue Michel Servet, CH-1211 Geneve 4, Switzerland
| | | |
Collapse
|