1
|
Ali A, Chiuppesi F, Nguyen M, Hausner MA, Nguyen J, Kha M, Iniguez A, Wussow F, Diamond DJ, Yang OO. Chimeric Antigen Receptors Targeting Human Cytomegalovirus. J Infect Dis 2021; 222:853-862. [PMID: 32285133 DOI: 10.1093/infdis/jiaa171] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (CMV) is a ubiquitous pathogen that causes significant morbidity in some vulnerable populations. Individualized adoptive transfer of ex vivo expanded CMV-specific CD8+ T cells has provided proof-of-concept that immunotherapy can be highly effective, but a chimeric antigen receptor (CAR) approach would provide a feasible method for broad application. We created 8 novel CARs using anti-CMV neutralizing antibody sequences, which were transduced via lentiviral vector into primary CD8+ T cells. All CARs were expressed. Activity against CMV-infected target cells was assessed by release of cytokines (interferon-γ and tumor necrosis factor-α), upregulation of surface CD107a, proliferation, cytolysis of infected cells, and suppression of viral replication. While some CARs showed varying functional activity across these assays, 1 CAR based on antibody 21E9 was consistently superior in all measures. These results support development of a CMV-specific CAR for therapeutic use against CMV and potentially other applications harnessing CMV-driven immunotherapies.
Collapse
Affiliation(s)
- Ayub Ali
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Flavia Chiuppesi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Minh Nguyen
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Mary Ann Hausner
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jenny Nguyen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Mindy Kha
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Angelina Iniguez
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Felix Wussow
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Don J Diamond
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Otto O Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA.,AIDS Healthcare Foundation, Los Angeles, California, USA
| |
Collapse
|
2
|
Acosta E, Bowlin T, Brooks J, Chiang L, Hussein I, Kimberlin D, Kauvar LM, Leavitt R, Prichard M, Whitley R. Advances in the Development of Therapeutics for Cytomegalovirus Infections. J Infect Dis 2021; 221:S32-S44. [PMID: 32134483 DOI: 10.1093/infdis/jiz493] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of therapeutics for cytomegalovirus (CMV) infections, while progressing, has not matched the pace of new treatments of human immunodeficiency virus (HIV) infections; nevertheless, recent developments in the treatment of CMV infections have resulted in improved human health and perhaps will encourage the development of new therapeutic approaches. First, the deployment of ganciclovir and valganciclovir for both the prevention and treatment of CMV infections and disease in transplant recipients has been further improved with the licensure of the efficacious and less toxic letermovir. Regardless, late-onset CMV disease, specifically pneumonia, remains problematic. Second, the treatment of congenital CMV infections with valganciclovir has beneficially improved both hearing and neurologic outcomes, both fundamental advances for these children. In these pediatric studies, viral load was decreased but not eliminated. Thus, an important lesson learned from studies in both populations is the need for new antiviral agents and the necessity for combination therapies as has been shown to be beneficial in the treatment of HIV infections, among others. The development of monoclonal antibodies, sirtuins, and cyclopropovir may provide new treatment options.
Collapse
Affiliation(s)
- Edward Acosta
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | - David Kimberlin
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Mark Prichard
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard Whitley
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Human Cytomegalovirus Congenital (cCMV) Infection Following Primary and Nonprimary Maternal Infection: Perspectives of Prevention through Vaccine Development. Vaccines (Basel) 2020; 8:vaccines8020194. [PMID: 32340180 PMCID: PMC7349293 DOI: 10.3390/vaccines8020194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 01/26/2023] Open
Abstract
Congenital cytomegalovirus (cCMV) might occur as a result of the human cytomegalovirus (HCMV) primary (PI) or nonprimary infection (NPI) in pregnant women. Immune correlates of protection against cCMV have been partly identified only for PI. Following either PI or NPI, HCMV strains undergo latency. From a diagnostic standpoint, while the serological criteria for the diagnosis of PI are well-established, those for the diagnosis of NPI are still incomplete. Thus far, a recombinant gB subunit vaccine has provided the best results in terms of partial protection. This partial efficacy was hypothetically attributed to the post-fusion instead of the pre-fusion conformation of the gB present in the vaccine. Future efforts should be addressed to verify whether a new recombinant gB pre-fusion vaccine would provide better results in terms of prevention of both PI and NPI. It is still a matter of debate whether human hyperimmune globulin are able to protect from HCMV vertical transmission. In conclusion, the development of an HCMV vaccine that would prevent a significant portion of PI would be a major step forward in the development of a vaccine for both PI and NPI.
Collapse
|
4
|
Gomes AC, Griffiths PD, Reeves MB. The Humoral Immune Response Against the gB Vaccine: Lessons Learnt from Protection in Solid Organ Transplantation. Vaccines (Basel) 2019; 7:E67. [PMID: 31319553 PMCID: PMC6789498 DOI: 10.3390/vaccines7030067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (hCMV) is considered to be the highest priority for vaccine development. This view is underscored by the significant morbidity associated with congenital hCMV infection and viraemia in transplant patients. Although a number of vaccines have been trialed, none have been licensed. The hCMV vaccine candidate that has performed best in clinical trials to date is the recombinant glycoprotein B (gB) vaccine that has demonstrated protection, ranging from a 43% to 50% efficacy in three independent phase II trials. In this review, we focus on data from the phase II trial performed in solid organ transplant patients and the outcomes of follow-up studies attempting to identify immunological and mechanistic correlates of protection associated with this vaccine strategy. We relate this to other vaccine studies of gB as well as other vaccine strategies to determine areas of commonality and divergence. Finally, through the review, we discuss the unique challenges and opportunities presented with vaccine studies in transplant populations with recommendations that could empower subsequent trials.
Collapse
Affiliation(s)
- Ariane C Gomes
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK.
| |
Collapse
|
5
|
A Native Human Monoclonal Antibody Targeting HCMV gB (AD-2 Site I). Int J Mol Sci 2018; 19:ijms19123982. [PMID: 30544903 PMCID: PMC6321246 DOI: 10.3390/ijms19123982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 12/22/2022] Open
Abstract
Hyperimmune globulin (HIG) has shown efficacy against human cytomegalovirus (HCMV) for both transplant and congenital transmission indications. Replicating that activity with a monoclonal antibody (mAb) offers the potential for improved consistency in manufacturing, lower infusion volume, and improved pharmacokinetics, as well as reduced risk of off-target reactivity leading to toxicity. HCMV pathology is linked to its broad cell tropism. The glycoprotein B (gB) envelope protein is important for infections in all cell types. Within gB, the antigenic determinant (AD)-2 Site I is qualitatively more highly-conserved than any other region of the virus. TRL345, a high affinity (Kd = 50 pM) native human mAb to this site, has shown efficacy in neutralizing the infection of fibroblasts, endothelial and epithelial cells, as well as specialized placental cells including trophoblast progenitor cells. It has also been shown to block the infection of placental fragments grown ex vivo, and to reduce syncytial spread in fibroblasts in vitro. Manufacturing and toxicology preparation for filing an IND (investigational new drug) application with the US Food and Drug Administration (FDA) are expected to be completed in mid-2019.
Collapse
|
6
|
Baraniak I, Kropff B, McLean GR, Pichon S, Piras-Douce F, Milne RSB, Smith C, Mach M, Griffiths PD, Reeves MB. Epitope-Specific Humoral Responses to Human Cytomegalovirus Glycoprotein-B Vaccine With MF59: Anti-AD2 Levels Correlate With Protection From Viremia. J Infect Dis 2018; 217:1907-1917. [PMID: 29528415 PMCID: PMC5972559 DOI: 10.1093/infdis/jiy102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/23/2018] [Indexed: 12/05/2022] Open
Abstract
The human cytomegalovirus (HCMV) virion envelope protein glycoprotein B (gB) is essential for viral entry and represents a major target for humoral responses following infection. Previously, a phase 2 placebo-controlled clinical trial conducted in solid organ transplant candidates demonstrated that vaccination with gB plus MF59 adjuvant significantly increased gB enzyme-linked immunosorbent assay (ELISA) antibody levels whose titer correlated directly with protection against posttransplant viremia. The aim of the current study was to investigate in more detail this protective humoral response in vaccinated seropositive transplant recipients. We focused on 4 key antigenic domains (AD) of gB (AD1, AD2, AD4, and AD5), measuring antibody levels in patient sera and correlating these with posttransplant HCMV viremia. Vaccination of seropositive patients significantly boosted preexisting antibody levels against the immunodominant region AD1 as well as against AD2, AD4, and AD5. A decreased incidence of viremia correlated with higher antibody levels against AD2 but not with antibody levels against the other 3 ADs. Overall, these data support the hypothesis that antibodies against AD2 are a major component of the immune protection of seropositives seen following vaccination with gB/MF59 vaccine and identify a correlate of protective immunity in allograft patients.
Collapse
Affiliation(s)
- Ilona Baraniak
- Institute for Immunity and Transplantation, University College London, United Kingdom
| | - Barbara Kropff
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Gary R McLean
- Cellular and Molecular Immunology Research Centre, London Metropolitan University, United Kingdom
| | - Sylvie Pichon
- Clinical Development, Sanofi Pasteur, Marcy l’Etoile, France
| | | | - Richard S B Milne
- Institute for Immunity and Transplantation, University College London, United Kingdom
| | - Colette Smith
- Research Department of Infection and Population Health, University College London, United Kingdom
| | - Michael Mach
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, United Kingdom
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, United Kingdom
| |
Collapse
|
7
|
Abstract
Congenital human cytomegalovirus (HCMV) infection can result in severe and permanent neurological injury in newborns, and vaccine development is accordingly a major public health priority. HCMV can also cause disease in solid organ transplant (SOT) and hematopoietic stem-cell transplant (HSCT) recipients, and a vaccine would be valuable in prevention of viremia and end-organ disease in these populations. Currently there is no licensed HCMV vaccine, but progress toward this goal has been made in recent clinical trials. A recombinant HCMV glycoprotein B (gB) vaccine has been shown to have some efficacy in prevention of infection in young women and adolescents, and has provided benefit to HCMV-seronegative SOT recipients. Similarly, DNA vaccines based on gB and the immunodominant T-cell target, pp65 (ppUL83), have been shown to reduce viremia in HSCT patients. This review provides an overview of HCMV vaccine candidates in various stages of development, as well as an update on the current status of ongoing clinical trials. Protective correlates of vaccine-induced immunity may be different for pregnant woman and transplant patients. As more knowledge emerges about correlates of protection, the ultimate licensure of HCMV vaccines may reflect the uniqueness of the target populations being immunized.
Collapse
Affiliation(s)
- K M Anderholm
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| | - C J Bierle
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN, 55455, USA
| | - M R Schleiss
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, 2001 6th Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Manghera A, McLean GR. Human cytomegalovirus vaccination: progress and perspectives of recombinant gB. Future Virol 2016. [DOI: 10.2217/fvl-2016-0039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A vaccine for Human cytomegalovirus (HCMV) remains a high priority as complications following infection are observed in immunocompromised individuals and in congenitally infected neonates. Numerous preclinical and clinical studies have investigated vaccine strategies ranging from live attenuated preparations, nucleic acid-based approaches and recombinant delivery systems to subunit vaccines. These have defined the importance of both cell-mediated and humoral immunity to viral gB in the control of HCMV infection. This review will cover clinical trials investigating vaccine approaches that have incorporated gB and discuss the future perspectives of the recombinant gB subunit vaccine for HCMV.
Collapse
Affiliation(s)
- Avneet Manghera
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Gary R McLean
- National Heart & Lung Institute, Imperial College London, London, UK
- Cellular & Molecular Immunology Research Centre, London Metropolitan University, London, UK
| |
Collapse
|
9
|
Ohlin M, Söderberg-Nauclér C. Human antibody technology and the development of antibodies against cytomegalovirus. Mol Immunol 2015; 67:153-70. [DOI: 10.1016/j.molimm.2015.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/08/2023]
|
10
|
A high-affinity native human antibody neutralizes human cytomegalovirus infection of diverse cell types. Antimicrob Agents Chemother 2014; 59:1558-68. [PMID: 25534746 DOI: 10.1128/aac.04295-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common infection causing poor outcomes among transplant recipients. Maternal infection and transplacental transmission are major causes of permanent birth defects. Although no active vaccines to prevent HCMV infection have been approved, passive immunization with HCMV-specific immunoglobulin has shown promise in the treatment of both transplant and congenital indications. Antibodies targeting the viral glycoprotein B (gB) surface protein are known to neutralize HCMV infectivity, with high-affinity binding being a desirable trait, both to compete with low-affinity antibodies that promote the transmission of virus across the placenta and to displace nonneutralizing antibodies binding nearby epitopes. Using a miniaturized screening technology to characterize secreted IgG from single human B lymphocytes, 30 antibodies directed against gB were previously cloned. The most potent clone, TRL345, is described here. Its measured affinity was 1 pM for the highly conserved site I of the AD-2 epitope of gB. Strain-independent neutralization was confirmed for 15 primary HCMV clinical isolates. TRL345 prevented HCMV infection of placental fibroblasts, smooth muscle cells, endothelial cells, and epithelial cells, and it inhibited postinfection HCMV spread in epithelial cells. The potential utility for preventing congenital transmission is supported by the blockage of HCMV infection of placental cell types central to virus transmission to the fetus, including differentiating cytotrophoblasts, trophoblast progenitor cells, and placental fibroblasts. Further, TRL345 was effective at controlling an ex vivo infection of human placental anchoring villi. TRL345 has been utilized on a commercial scale and is a candidate for clinical evaluation.
Collapse
|
11
|
Ohlin M. A new look at a poorly immunogenic neutralization epitope on cytomegalovirus glycoprotein B. Is there cause for antigen redesign? Mol Immunol 2014; 60:95-102. [PMID: 24802891 DOI: 10.1016/j.molimm.2014.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022]
Abstract
The immune response is able to control cytomegalovirus infection in most subjects. However, in some patient groups the virus is not well contained resulting in disease and severe morbidity. The development of efficacious vaccines is therefore a high priority. Antibodies may contribute to protection against disease caused by CMV but the most efficient targets for protective humoral immunity are not precisely known. Glycoprotein B (gB) is a protein that is targeted by virus-neutralizing antibodies. One epitope on gB, AD-2, is poorly immunogenic following natural infection and vaccination. It is consequently not effectively exploited as a target for antibodies by the immune system. However, antibodies specific for this epitope, when they develop, display important functional activities that may play a role in protection against infection. In this study critical features of human antibody recognition of this epitope are re-assessed based on structural and immunochemical data. The analysis suggests that the immune system may only be able to develop an AD-2 specific antibody response through rare, very specific rearrangement events that by chance create a naïve B cell that can be recruited into an AD-2 specific immune response. These results reinvigorate the notion that if we are to be able to effectively exploit AD-2 specific humoral immunity we need to readdress the nature of the antigen incorporated into vaccines so as to more effectively recruit B cells into the response against this epitope.
Collapse
Affiliation(s)
- Mats Ohlin
- Dept. of Immunotechnology, Lund University, Medicon Village, Building 406, S-22381 Lund, Sweden.
| |
Collapse
|
12
|
McCutcheon KM, Gray J, Chen NY, Liu K, Park M, Ellsworth S, Tripp RA, Tompkins SM, Johnson SK, Samet S, Pereira L, Kauvar LM. Multiplexed screening of natural humoral immunity identifies antibodies at fine specificity for complex and dynamic viral targets. MAbs 2014; 6:460-73. [PMID: 24492306 DOI: 10.4161/mabs.27760] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Viral entry targets with therapeutic neutralizing potential are subject to multiple escape mechanisms, including antigenic drift, immune dominance of functionally irrelevant epitopes, and subtle variations in host cell mechanisms. A surprising finding of recent years is that potent neutralizing antibodies to viral epitopes independent of strain exist, but are poorly represented across the diverse human population. Identifying these antibodies and understanding the biology mediating the specific immune response is thus difficult. An effective strategy for meeting this challenge is to incorporate multiplexed antigen screening into a high throughput survey of the memory B cell repertoire from immune individuals. We used this approach to discover suites of cross-clade antibodies directed to conformational epitopes in the stalk region of the influenza A hemagglutinin (HA) protein and to select high-affinity anti-peptide antibodies to the glycoprotein B (gB) of human cytomegalovirus. In each case, our screens revealed a restricted VH and VL germline usage, including published and previously unidentified gene families. The in vivo evolution of paratope specificity with optimal neutralizing activity was understandable after correlating biological activities with kinetic binding and epitope recognition. Iterative feedback between antigen probe design based on structure and function information with high throughput multiplexed screening demonstrated a generally applicable strategy for efficient identification of safe, native, finely tuned antibodies with the potential for high genetic barriers to viral escape.
Collapse
Affiliation(s)
| | | | | | - Keyi Liu
- Trellis Biosciences; South San Francisco, CA USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Carlsson F, Trilling M, Perez F, Ohlin M. A dimerized single-chain variable fragment system for the assessment of neutralizing activity of phage display-selected antibody fragments specific for cytomegalovirus. J Immunol Methods 2011; 376:69-78. [PMID: 22154743 DOI: 10.1016/j.jim.2011.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 11/18/2022]
Abstract
Cytomegalovirus (CMV) causes severe sequelae in congenitally infected newborns and may cause life-threatening disease in immuno-deficient patients. Recent findings demonstrate the possibility to alleviate the disease by infusing intravenous immunoglobulin G (IgG) preparations, indicating that antibodies are an effective therapeutic option. Modern molecular methodologies, like phage display, allow for the development of specific antibodies targeting virtually any antigen, including those of CMV. However, such methodologies do not in general result in products that by themselves mediate biological activity. To facilitate a semi-high-throughput approach for functional screening in future efforts to develop efficacious antibodies against CMV, we have integrated two different approaches to circumvent potential bottlenecks in such efforts. Firstly, we explored an approach that permits easy transfer of antibody fragment encoding genes from commonly used phage display vectors into vectors for the production of divalent immunoglobulins. Secondly, we demonstrate that such proteins can be applied in a novel reporter-based neutralization assay to establish a proof-of-concept workflow for the generation of neutralizing antibodies against CMV. We validated our approach by showing that divalent antibodies raised against the antigenic domain (AD)-2 region of gB effectively neutralized three different CMV strains (AD169, Towne and TB40/E), whereas two antibodies against the AD-1 region of gB displayed minor neutralizing capabilities. In conclusion, the methods investigated in this proof-of-concept study enables for a semi-high-throughput workflow in the screening and investigation of biological active antibodies.
Collapse
Affiliation(s)
- Fredrika Carlsson
- Department of Immunotechnology, Lund University, BMC D13, SE-221 84 Lund, Sweden.
| | | | | | | |
Collapse
|
14
|
Axelsson F, Persson J, Moreau E, Côté MH, Lamarre A, Ohlin M. Novel antibody specificities targeting glycoprotein B of cytomegalovirus identified by molecular library technology. N Biotechnol 2009; 25:429-36. [DOI: 10.1016/j.nbt.2009.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/06/2009] [Accepted: 05/07/2009] [Indexed: 01/08/2023]
|
15
|
Concurrent genotyping and quantitation of cytomegalovirus gB genotypes in solid-organ-transplant recipients by use of a real-time PCR assay. J Clin Microbiol 2008; 46:4004-10. [PMID: 18971365 DOI: 10.1128/jcm.01341-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a real-time genotyping and quantitative PCR (RT-GQ-PCR) assay to genotype cytomegalovirus (CMV) and quantify viral loads simultaneously in solid organ transplant (SOT) recipients. Special minor-groove DNA-binding probes were designed based on sequence polymorphism in the gB gene to increase genotyping specificity for gB1 to gB4. For validation, 28 samples with known genotypes determined by restriction fragment analysis (RFA) and 121 with unknown genotypes were tested. All samples were from SOT patients with CMV viremia. A 100% concordance for genotyping was achieved by using the RT-GQ-PCR with known genotypes determined by RFA. The RT-GQ-PCR identified more cases of CMV infections with mixed genotypes than RFA did. No cross-reaction between genotypes was observed. All four gB genotypes were detected in the 121 samples of unknown genotype. gB1 was the predominant single genotype (n = 61, 50.4%), followed by gB2 (n = 26, 21.0%), gB3, (n = 11, 9.1%), and gB4 (n = 3, 2.5%). Mixed-genotype infections were detected in 17% (20/121) of the samples. Patients with mixed-genotype infections had significantly higher CMV viral loads than those with single-genotype infections (P = 0.019). The RT-GQ-PCR assay was found to be highly sensitive and specific, with a wide dynamic range (2.7 to 10.7 log(10) copies/ml) and very good precision (coefficient of variation, approximately 1.78%). With the prominent feature of concurrent CMV gB genotyping and quantitation in a single reaction, the new assay provides a rapid and cost-effective method for monitoring CMV infection in SOT recipients.
Collapse
|
16
|
Rogers J, Schoepp RJ, Schröder O, Clements TL, Holland TF, Li JQ, Li J, Lewis LM, Dirmeier RP, Frey GJ, Tan X, Wong K, Woodnutt G, Keller M, Reed DS, Kimmel BE, Tozer EC. Rapid discovery and optimization of therapeutic antibodies against emerging infectious diseases. Protein Eng Des Sel 2008; 21:495-505. [PMID: 18480090 PMCID: PMC2461042 DOI: 10.1093/protein/gzn027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Using a comprehensive set of discovery and optimization tools, antibodies were produced with the ability to neutralize SARS coronavirus (SARS-CoV) infection in Vero E6 cells and in animal models. These anti-SARS antibodies were discovered using a novel DNA display method, which can identify new antibodies within days. Once neutralizing antibodies were identified, a comprehensive and effective means of converting the mouse sequences to human frameworks was accomplished using HuFR™ (human framework reassembly) technology. The best variant (61G4) from this screen showed a 3.5–4-fold improvement in neutralization of SARS-CoV infection in vitro. Finally, using a complete site-saturation mutagenesis methodology focused on the CDR (complementarity determining regions), a single point mutation (51E7) was identified that improved the 80% plaque reduction neutralization of the virus by greater than 8-fold. These discovery and evolution strategies can be applied to any emerging pathogen or toxin where a causative agent is known.
Collapse
Affiliation(s)
- J Rogers
- Verenium Corporation, 4955 Directors Place, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Humoral immunity targeting site I of antigenic domain 2 of glycoprotein B upon immunization with different cytomegalovirus candidate vaccines. Vaccine 2007; 26:41-6. [DOI: 10.1016/j.vaccine.2007.10.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 10/15/2007] [Accepted: 10/21/2007] [Indexed: 11/20/2022]
|
18
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
19
|
Feire AL, Koss H, Compton T. Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. Proc Natl Acad Sci U S A 2004; 101:15470-5. [PMID: 15494436 PMCID: PMC524452 DOI: 10.1073/pnas.0406821101] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human cytomegalovirus (HCMV) is capable of manifesting disease in nearly every organ system in immunocompromised patients. This broad pathogenic tropism correlates with the ability of the virus to infect all tested vertebrate cell types in vitro, a characteristic that has made receptor identification extremely difficult. During virus entry, HCMV induces cellular morphological changes and signaling cascades consistent with engagement of cellular integrins; however, HCMV structural proteins do not possess the widely used RGD integrin-binding motif. We identified an integrin-binding disintegrin-like domain within HCMV envelope glycoprotein B, a protein required for virus entry and fusion throughout the Herpesviridae. Accepted receptor criteria are met through the use of function-blocking integrin Abs, beta1 integrin knockout mouse fibroblasts, and glycoprotein B disintegrin-like peptides, all of which support a critical role for alpha2beta1, alpha6beta1, and alphaVbeta3 integrins as HCMV entry receptors and signaling mediators acting during the penetration stage of the entry pathway. Strikingly, the glycoprotein B disintegrin-like domain is conserved in many human and animal herpesviruses, suggesting that integrins may support entry across this medically important virus family.
Collapse
Affiliation(s)
- Adam L Feire
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
20
|
Coaquette A, Bourgeois A, Dirand C, Varin A, Chen W, Herbein G. Mixed Cytomegalovirus Glycoprotein B Genotypes in Immunocompromised Patients. Clin Infect Dis 2004; 39:155-61. [PMID: 15307021 DOI: 10.1086/421496] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 01/25/2004] [Indexed: 11/03/2022] Open
Abstract
On the basis of sequence variation in the UL55 gene that encodes glycoprotein B (gB), human cytomegalovirus (CMV) can be classified into 4 gB genotypes. The goal of the present study was to determine the distribution of CMV gB genotypes and the effect of gB type on clinical outcomes in a cohort of immunocompromised patients, including both transplant recipients and nonrecipients. The distribution of gB genotypes was as follows: gB1, 28.9% of patients; gB2, 19.6%; gB3, 23.7%; gB4, 2.0%; and mixed infection, 25.8%. In contrast to patients infected with a single gB genotype, patients infected with multiple gB genotypes developed progression to CMV disease, had an increased rate of graft rejection, had higher CMV loads, and were significantly more often infected with other herpesviruses. The presence of multiple gB genotypes, rather than the presence of a single gB genotype, could be a critical factor associated with severe clinical manifestations in immunocompromised patients.
Collapse
Affiliation(s)
- Alain Coaquette
- Department of Virology, Franche-Comte University School of Medicine, Besançon, France
| | | | | | | | | | | |
Collapse
|