1
|
Prakash K, Satishkartik S, Ramalingam S, Gangadaran P, Gnanavel S, Aruljothi KN. Investigating the multifaceted role of nucleolin in cellular function and Cancer: Structure, Regulation, and therapeutic implications. Gene 2025; 957:149479. [PMID: 40210024 DOI: 10.1016/j.gene.2025.149479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/20/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
Nucleolin (NCL), a highly conserved and multifunctional phosphoprotein, is primarily localized in the nucleolus and participates in various cellular compartments, including the nucleoplasm, cytoplasm, and plasma membrane. Initially discovered in the 1970 s, NCL is integral to ribosome biogenesis through its roles in ribosomal RNA transcription, processing, and assembly. Beyond ribosome synthesis, NCL plays critical roles in cellular processes such as DNA and RNA metabolism, chromatin remodeling, and cell cycle regulation, underscoring its essentiality for cell viability. Structurally, NCL comprises multiple functional domains, which facilitates interaction with various kinases and other proteins. NCL's extensive post-translational modifications influence its localization and function. Importantly, NCL has emerged as a key player in multiple pathologies, particularly cancer, where it contributes to tumor growth, metastasis, and drug resistance. On the cell surface, NCL acts as a co-receptor for growth factors and other ligands, facilitating oncogenic signaling. Additionally, its regulation of non-coding RNAs, stabilization of oncogenic mRNAs, and involvement in immune evasion highlight its potential as a therapeutic target. This review provides an unexplored in-depth overview of NCL's structure, functions, and modifications, with a focus on its role in cancer biology and its therapeutic implications.
Collapse
Affiliation(s)
- Kruthika Prakash
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| | - Srisri Satishkartik
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| | - Satish Ramalingam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - S Gnanavel
- Biomaterials Laboratory, Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - K N Aruljothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India.
| |
Collapse
|
2
|
Chen L, Dickerhoff J, Zheng KW, Erramilli S, Feng H, Wu G, Onel B, Chen Y, Wang KB, Carver M, Lin C, Sakai S, Wan J, Vinson C, Hurley L, Kossiakoff AA, Deng N, Bai Y, Noinaj N, Yang D. Structural basis for nucleolin recognition of MYC promoter G-quadruplex. Science 2025; 388:eadr1752. [PMID: 40245140 DOI: 10.1126/science.adr1752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/28/2025] [Indexed: 04/19/2025]
Abstract
The MYC oncogene promoter G-quadruplex (MycG4) regulates transcription and is a prevalent G4 locus in immortal cells. Nucleolin, a major MycG4-binding protein, exhibits greater affinity for MycG4 than for nucleolin recognition element (NRE) RNA. Nucleolin's four RNA binding domains (RBDs) are essential for high-affinity MycG4 binding. We present the 2.6-angstrom crystal structure of the nucleolin-MycG4 complex, revealing a folded parallel three-tetrad G-quadruplex with two coordinating potassium ions (K+), interacting with RBD1, RBD2, and Linker12 through its 6-nucleotide (nt) central loop and 5' flanking region. RBD3 and RBD4 bind MycG4's 1-nt loops as demonstrated by nuclear magnetic resonance (NMR). Cleavage under targets and tagmentation sequencing confirmed nucleolin's binding to MycG4 in cells. Our results revealed a G4 conformation-based recognition by a regulating protein through multivalent interactions, suggesting that G4s are nucleolin's primary cellular substrates, indicating G4 epigenetic transcriptional regulation and helping G4-targeted drug discovery.
Collapse
Affiliation(s)
- Luying Chen
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of .Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Jonathan Dickerhoff
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of .Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Ke-Wei Zheng
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Satchal Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guanhui Wu
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of .Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Buket Onel
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of .Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Yuwei Chen
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Kai-Bo Wang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of .Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Megan Carver
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Clement Lin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of .Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Saburo Sakai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of .Pharmacy, Purdue University, West Lafayette, IN, USA
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Charles Vinson
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laurence Hurley
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Nanjie Deng
- Department of Chemistry and Physical Sciences, Pace University, New York, NY, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Danzhou Yang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of .Pharmacy, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
Naveed A, Umer R, Fatemah A, Naveed R. Nucleolin a Central Player in Host Virus Interactions and its Role in Viral Progeny Production. Mol Biotechnol 2025:10.1007/s12033-025-01372-1. [PMID: 39821823 DOI: 10.1007/s12033-025-01372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/04/2025] [Indexed: 01/19/2025]
Abstract
Nucleolin (NCL) is a prevalent and widely distributed nucleolar protein in cells. While primarily located in the nucleolus, NCL is also found within the nucleoplasm, cytoplasm, and even on the cell surface. NCL's unique nature arises from its multifaceted roles and extensive interactions with various proteins. The structural stability of NCL is reliant on protease inhibitors, particularly in proliferating cells, indicating its essential role in cellular maintenance. This review is centered on elucidating the structure of NCL, its significance in host-viral interactions, and its various contributions to viral progeny production. This work is to enhance the scientific community's understanding of NCL functionality and its implications for viral infection processes. NCL is highlighted as a crucial host protein that viruses frequently target, exploiting it to support their own life cycles and establish infections. Understanding these interactions is key to identifying NCL's role in viral pathogenesis and its potential as a therapeutic target. Our current knowledge, alongside extensive scientific literature, underscores the critical role of host proteins like NCL in both viral infections and other diseases. As a target for viral exploitation, NCL supports viral replication and survival, making it a promising candidate for therapeutic intervention. By delving deeper into the intricacies of NCL-viral protein interactions, researchers may uncover effective antiviral mechanisms. This review aspires to inspire further research into NCL's role in viral infections and promote advancements in antiviral therapeutic development.
Collapse
Affiliation(s)
- Ahsan Naveed
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA.
| | - Rumaisa Umer
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA
| | - Ayzal Fatemah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA
- Albert B Chandler Hospital, University of Kentucky, Lexington, Fayette, USA
| | - Rabia Naveed
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
4
|
Panesso-Gómez S, Cole AJ, Wield A, Anyaeche VI, Shah J, Jiang Q, Ebai T, Sharrow AC, Tseng G, Yoon E, Brown DD, Clark AM, Larsen SD, Eder I, Gau D, Roy P, Dahl KN, Tran L, Jiang H, McAuliffe PF, Lee AV, Buckanovich RJ. Identification of the MRTFA/SRF pathway as a critical regulator of quiescence in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623825. [PMID: 39605642 PMCID: PMC11601311 DOI: 10.1101/2024.11.15.623825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chemoresistance is a major driver of cancer deaths. One understudied mechanism of chemoresistance is quiescence. We used single cell culture to identify, retrieve, and RNA-Seq profile primary quiescent ovarian cancer cells (qOvCa). We found that many qOvCa differentially expressed genes are transcriptional targets of the Myocardin Related Transcription Factor/Serum Response Factor (MRTF/SRF) pathway. We also found that genetic disruption of MRTF-SRF interaction, or an MRTF/SRF inhibitor (CCG257081) impact qOvCa gene expression and induce a quiescent state in cancer cells. Suggesting a broad role for this pathway in quiescence, CCG257081 treatment induced quiescence in breast, lung, colon, pancreatic and ovarian cancer cells. Furthermore, CCG081 (i) maintained a quiescent state in patient derived breast cancer organoids and, (ii) induced tumor growth arrest in ovarian cancer xenografts. Together, these data suggest that MRTF/SRF pathway is a critical regulator of quiescence in cancer and a possible therapeutic target.
Collapse
Affiliation(s)
- Santiago Panesso-Gómez
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander J Cole
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Wield
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vivian I Anyaeche
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaynish Shah
- Australian Centre for Blood Diseases, Central Clinical School, Monash University and Alfred Health, Melbourne, VIC, Australia
| | - Qi Jiang
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tonge Ebai
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison C Sharrow
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Euisik Yoon
- Department of Electrical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Daniel D Brown
- Women's Cancer Research Center, Magee-Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amanda M Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott D Larsen
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ian Eder
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - David Gau
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | - Kris N Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lam Tran
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hui Jiang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Adrian V Lee
- Women's Cancer Research Center, Magee-Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ronald J Buckanovich
- Department of Internal Medicine and Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Thongchot S, Aksonnam K, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Nucleolin‑based targeting strategies in cancer treatment: Focus on cancer immunotherapy (Review). Int J Mol Med 2023; 52:81. [PMID: 37477132 PMCID: PMC10555485 DOI: 10.3892/ijmm.2023.5284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
The benefits of treating several types of cancers using immunotherapy have recently been established. The overexpression of nucleolin (NCL) in a number of types of cancer provides an attractive antigen target for the development of novel anticancer immunotherapeutic treatments. NCL is a multifunctional protein abundantly distributed in the nucleus, cytoplasm and cell membrane. It influences carcinogenesis, and the proliferation, survival and metastasis of cancer cells, leading to cancer progression. Additionally, the meta‑analysis of total and cytoplasmic NCL overexpression indicates a poor prognosis of patients with breast cancer. The AS1411 aptamers currently appear to have therapeutic action in the phase II clinical trial. The authors' research group has recently explored the anticancer function of NCL through the activation of T cells by dendritic cell‑based immunotherapy. The present review describes and discusses the mechanisms through which the multiple functions of NCL can participate in the progression of cancer. In addition, the studies that define the utility of NCL‑dependent anticancer therapies are summarized, with specific focus being paid to cancer immunotherapeutic approaches.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Krittaya Aksonnam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| |
Collapse
|
6
|
Nucleolin; A tumor associated antigen as a potential lung cancer biomarker. Pathol Res Pract 2022; 240:154160. [DOI: 10.1016/j.prp.2022.154160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/11/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
|
7
|
Fabre L, Rousset C, Monier K, Da Cruz-Boisson F, Bouvet P, Charreyre MT, Delair T, Fleury E, Favier A. Fluorescent Polymer-AS1411-Aptamer Probe for dSTORM Super-Resolution Imaging of Endogenous Nucleolin. Biomacromolecules 2022; 23:2302-2314. [PMID: 35549176 DOI: 10.1021/acs.biomac.1c01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleolin is a multifunctional protein involved in essential biological processes. To precisely localize it and unravel its different roles in cells, fluorescence imaging is a powerful tool, especially super-resolution techniques. Here, we developed polymer-aptamer probes, both small and bright, adapted to direct stochastic optical reconstruction microscopy (dSTORM). Well-defined fluorescent polymer chains bearing fluorophores (AlexaFluor647) and a reactive end group were prepared via RAFT polymerization. The reactive end-group was then used for the oriented conjugation with AS1411, a DNA aptamer that recognizes nucleolin with high affinity. Conjugation via strain-promoted alkyne/azide click chemistry (SPAAC) between dibenzylcyclooctyne-ended fluorescent polymer chains and 3'-azido-functionalized nucleic acids proved to be the most efficient approach. In vitro and in cellulo evaluations demonstrated that selective recognition for nucleolin was retained. Their brightness and small size make these polymer-aptamer probes an appealing alternative to immunofluorescence, especially for super-resolution (10-20 nm) nanoscopy. dSTORM imaging demonstrated the ability of our fluorescent polymer-aptamer probe to provide selective and super-resolved detection of cell surface nucleolin.
Collapse
Affiliation(s)
- Laura Fabre
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, F-69622 Villeurbanne Cédex, France
| | - Corentin Rousset
- Univ Lyon, Centre Léon Bérard, UMR INSERM 1052 CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon F-69008, France
| | - Karine Monier
- Univ Lyon, Centre Léon Bérard, UMR INSERM 1052 CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon F-69008, France
| | - Fernande Da Cruz-Boisson
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, F-69622 Villeurbanne Cédex, France
| | - Philippe Bouvet
- Univ Lyon, Centre Léon Bérard, UMR INSERM 1052 CNRS 5286, Centre de recherche en cancérologie de Lyon, Lyon F-69008, France
| | - Marie-Thérèse Charreyre
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, F-69622 Villeurbanne Cédex, France
| | - Thierry Delair
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, F-69622 Villeurbanne Cédex, France
| | - Etienne Fleury
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, F-69622 Villeurbanne Cédex, France
| | - Arnaud Favier
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, F-69622 Villeurbanne Cédex, France
| |
Collapse
|
8
|
González‐Arzola K, Guerra‐Castellano A, Rivero‐Rodríguez F, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MA. Mitochondrial cytochrome c shot towards histone chaperone condensates in the nucleus. FEBS Open Bio 2021; 11:2418-2440. [PMID: 33938164 PMCID: PMC8409293 DOI: 10.1002/2211-5463.13176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Despite mitochondria being key for the control of cell homeostasis and fate, their role in DNA damage response is usually just regarded as an apoptotic trigger. However, growing evidence points to mitochondrial factors modulating nuclear functions. Remarkably, after DNA damage, cytochrome c (Cc) interacts in the cell nucleus with a variety of well-known histone chaperones, whose activity is competitively inhibited by the haem protein. As nuclear Cc inhibits the nucleosome assembly/disassembly activity of histone chaperones, it might indeed affect chromatin dynamics and histone deposition on DNA. Several histone chaperones actually interact with Cc Lys residues through their acidic regions, which are also involved in heterotypic interactions leading to liquid-liquid phase transitions responsible for the assembly of nuclear condensates, including heterochromatin. This relies on dynamic histone-DNA interactions that can be modulated by acetylation of specific histone Lys residues. Thus, Cc may have a major regulatory role in DNA repair by fine-tuning nucleosome assembly activity and likely nuclear condensate formation.
Collapse
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Francisco Rivero‐Rodríguez
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| |
Collapse
|
9
|
Ravi Kumara GS, Seo YJ. Polymerase-mediated synthesis of p-vinylaniline-coupled fluorescent DNA for the sensing of nucleolin protein- c-myc G-quadruplex interactions. Org Biomol Chem 2021; 19:5788-5793. [PMID: 34085078 DOI: 10.1039/d1ob00863c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper we report the synthesis of two deoxyuridine derivatives (dUCN2, dUPy)-featuring p-vinylaniline-based fluorophores linked through a propargyl unit at the 5' position-that function as molecular rotors. This probing system proved to be useful for the sensing of gene regulation arising from interactions between this G-quadruplex and nucleolin.
Collapse
Affiliation(s)
| | - Young Jun Seo
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
10
|
Raineri F, Bourgoin-Voillard S, Cossutta M, Habert D, Ponzo M, Houppe C, Vallée B, Boniotto M, Chalabi-Dchar M, Bouvet P, Couvelard A, Cros J, Debesset A, Cohen JL, Courty J, Cascone I. Nucleolin Targeting by N6L Inhibits Wnt/β-Catenin Pathway Activation in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13122986. [PMID: 34203710 PMCID: PMC8232280 DOI: 10.3390/cancers13122986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and resistant cancer with no available effective therapy. We have previously demonstrated that nucleolin targeting by N6L impairs tumor growth and normalizes tumor vessels in PDAC mouse models. Here, we investigated new pathways that are regulated by nucleolin in PDAC. We found that N6L and nucleolin interact with β-catenin. We found that the Wnt/β-catenin pathway is activated in PDAC and is necessary for tumor-derived 3D growth. N6L and nucleolin loss of function induced by siRNA inhibited Wnt pathway activation by preventing β-catenin stabilization in PDAC cells. N6L also inhibited the growth and the activation of the Wnt/β-catenin pathway in vivo in mice and in 3D cultures derived from MIA PaCa2 tumors. On the other hand, nucleolin overexpression increased β-catenin stabilization. In conclusion, in this study, we identified β-catenin as a new nucleolin interactor and suggest that the Wnt/β-catenin pathway could be a new target of the nucleolin antagonist N6L in PDAC.
Collapse
Affiliation(s)
- Fabio Raineri
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
| | - Sandrine Bourgoin-Voillard
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
- University of Grenoble Alpes, CNRS, Grenoble INP, Inserm U1055, LBFA and BEeSy, PROMETHEE Proteomic Platform, 38400 Saint-Martin d’Heres, France
- University of Grenoble Alpes, CNRS, Grenoble INP, TIMC, PROMETHEE Proteomic Platform, 38000 Grenoble, France
- CHU Grenoble Alpes, Institut de Biologie et de Pathologie, 38043 Grenoble, France
| | - Mélissande Cossutta
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d’Investigation Clinique Biotherapie, 94010 Créteil, France
| | - Damien Habert
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
| | - Matteo Ponzo
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
| | - Claire Houppe
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
| | - Benoît Vallée
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
| | - Michele Boniotto
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
| | - Mounira Chalabi-Dchar
- Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, University of Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 69008 Lyon, France; (M.C.-D.); (P.B.)
| | - Philippe Bouvet
- Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, University of Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, 69008 Lyon, France; (M.C.-D.); (P.B.)
- University of Lyon, Ecole Normale Supérieure de Lyon, 69342 Lyon, France
| | - Anne Couvelard
- Département de Pathologie, Hôpital Bichat APHP DHU UNITY, 75018 Paris, France; (A.C.); (J.C.)
| | - Jerome Cros
- Département de Pathologie, Hôpital Bichat APHP DHU UNITY, 75018 Paris, France; (A.C.); (J.C.)
| | - Anais Debesset
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
| | - José L. Cohen
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d’Investigation Clinique Biotherapie, 94010 Créteil, France
| | - José Courty
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d’Investigation Clinique Biotherapie, 94010 Créteil, France
| | - Ilaria Cascone
- University Paris Est Créteil, INSERM, IMRB, 94010 Créteil, France; (F.R.); (S.B.-V.); (M.C.); (D.H.); (M.P.); (C.H.); (B.V.); (M.B.); (A.D.); (J.L.C.); (J.C.)
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d’Investigation Clinique Biotherapie, 94010 Créteil, France
- Correspondence: ; Tel.: +33-149-813-765
| |
Collapse
|
11
|
di Leandro L, Giansanti F, Mei S, Ponziani S, Colasante M, Ardini M, Angelucci F, Pitari G, d'Angelo M, Cimini A, Fabbrini MS, Ippoliti R. Aptamer-Driven Toxin Gene Delivery in U87 Model Glioblastoma Cells. Front Pharmacol 2021; 12:588306. [PMID: 33935695 PMCID: PMC8082512 DOI: 10.3389/fphar.2021.588306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
A novel suicide gene therapy approach was tested in U87 MG glioblastoma multiforme cells. A 26nt G-rich double-stranded DNA aptamer (AS1411) was integrated into a vector at the 5' of a mammalian codon-optimized saporin gene, under CMV promoter. With this plasmid termed "APTSAP", the gene encoding ribosome-inactivating protein saporin is driven intracellularly by the glioma-specific aptamer that binds to cell surface-exposed nucleolin and efficiently kills target cells, more effectively as a polyethyleneimine (PEI)-polyplex. Cells that do not expose nucleolin at the cell surface such as 3T3 cells, used as a control, remain unaffected. Suicide gene-induced cell killing was not observed when the inactive saporin mutant SAPKQ DNA was used in the (PEI)-polyplex, indicating that saporin catalytic activity mediates the cytotoxic effect. Rather than apoptosis, cell death has features resembling autophagic or methuosis-like mechanisms. These main findings support the proof-of-concept of using PEI-polyplexed APTSAP for local delivery in rat glioblastoma models.
Collapse
Affiliation(s)
- Luana di Leandro
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sabrina Mei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Sara Ponziani
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Martina Colasante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giuseppina Pitari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
12
|
Suganuma M, Watanabe T, Sueoka E, Lim IK, Fujiki H. Role of TNF-α-Inducing Protein Secreted by Helicobacter pylori as a Tumor Promoter in Gastric Cancer and Emerging Preventive Strategies. Toxins (Basel) 2021; 13:181. [PMID: 33804551 PMCID: PMC7999756 DOI: 10.3390/toxins13030181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor necrosis factor-α (TNF-α)-inducing protein (tipα) gene family, comprising Helicobacter pylori membrane protein 1 (hp-mp1) and tipα, has been identified as a tumor promoter, contributing to H. pylori carcinogenicity. Tipα is a unique H. pylori protein with no similarity to other pathogenicity factors, CagA, VacA, and urease. American H. pylori strains cause human gastric cancer, whereas African strains cause gastritis. The presence of Tipα in American and Euro-Asian strains suggests its involvement in human gastric cancer development. Tipα secreted from H. pylori stimulates gastric cancer development by inducing TNF-α, an endogenous tumor promoter, through its interaction with nucleolin, a Tipα receptor. This review covers the following topics: tumor-promoting activity of the Tipα family members HP-MP1 and Tipα, the mechanism underlying this activity of Tipα via binding to the cell-surface receptor, nucleolin, the crystal structure of rdel-Tipα and N-terminal truncated rTipα, inhibition of Tipα-associated gastric carcinogenesis by tumor suppressor B-cell translocation gene 2 (BTG2/TIS21), and new strategies to prevent and treat gastric cancer. Thus, Tipα contributes to the carcinogenicity of H. pylori by a mechanism that differs from those of CagA and VacA.
Collapse
Affiliation(s)
- Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501, Japan;
| | - Eisaburo Sueoka
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501, Japan; (E.S.); (H.F.)
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea;
| | - Hirota Fujiki
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Nabeshima, Saga 849-8501, Japan; (E.S.); (H.F.)
| |
Collapse
|
13
|
Pavlova II, Tsvetkov VB, Isaakova EA, Severov VV, Khomyakova EA, Lacis IA, Lazarev VN, Lagarkova MA, Pozmogova GE, Varizhuk AM. Transcription-facilitating histone chaperons interact with genomic and synthetic G4 structures. Int J Biol Macromol 2020; 160:1144-1157. [PMID: 32454109 DOI: 10.1016/j.ijbiomac.2020.05.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 01/26/2023]
Abstract
Affinity for G-quadruplex (G4) structures may be a common feature of transcription-facilitating histone chaperons (HCs). This assumption is based on previous unmatched studies of HCs FACT, nucleolin (NCL), BRD3, and ATRX. We verified this assumption and considered its implications for the therapeutic applications of synthetic (exogenous) G4s and the biological significance of genomic G4s. First, we questioned whether exogenous G4s that recognize cell-surface NCL and could trap other HCs in the nucleus are usable as anticancer agents. We performed in vitro binding assays and selected leading multi-targeted G4s. They exhibited minor effects on cell viability. The presumed NCL-regulated intracellular transport of G4s was inefficient or insufficient for tumor-specific G4 delivery. Next, to clarify whether G4s in the human genome could recruit HCs, we compared available HC ChIP-seq data with G4-seq/G4-ChIP-seq data. Several G4s, including the well-known c-Myc quadruplex structure, were found to be colocalized with HC occupancy sites in cancer cell lines. As evidenced by our molecular modeling data, c-Myc G4 might interfere with the HC function of BRD3 but is unlikely to prevent the BRD3-driven assembly of the chromatin remodeling complex. The c-Myc case illustrates the intricate role of genomic G4s in chromatin remodeling, nucleosome remodeling, and transcription.
Collapse
Affiliation(s)
- Iulia I Pavlova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia.; Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Vladimir B Tsvetkov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia.; Computational Oncology Group, I.M. Sechenov First Moscow State Medical University, Trubetskaya str, 8/2, Moscow 119146, Russia; A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky prospect str. 29, Moscow 119991, Russia
| | - Ekaterina A Isaakova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia.; Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Vyacheslav V Severov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia
| | - Ekaterina A Khomyakova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia
| | - Ivan A Lacis
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia
| | - Vassilii N Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia.; Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia
| | - Maria A Lagarkova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia.; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia
| | - Galina E Pozmogova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia.; Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia
| | - Anna M Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia.; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya str. 1a, Moscow 119435, Russia; Engelhardt Institute of Molecular Biology, Vavilova str. 32, Moscow 119991, Russia.
| |
Collapse
|
14
|
Aptamer-Based In Vivo Therapeutic Targeting of Glioblastoma. Molecules 2020; 25:molecules25184267. [PMID: 32957732 PMCID: PMC7570863 DOI: 10.3390/molecules25184267] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive, infiltrative, and lethal brain tumor in humans. Despite the extensive advancement in the knowledge about tumor progression and treatment over the last few years, the prognosis of GBM is still very poor due to the difficulty of targeting drugs or anticancer molecules to GBM cells. The major challenge in improving GBM treatment implicates the development of a targeted drug delivery system, capable of crossing the blood–brain barrier (BBB) and specifically targeting GBM cells. Aptamers possess many characteristics that make them ideal novel therapeutic agents for the treatment of GBM. They are short single-stranded nucleic acids (RNA or ssDNA) able to bind to a molecular target with high affinity and specificity. Several GBM-targeting aptamers have been developed for imaging, tumor cell isolation from biopsies, and drug/anticancer molecule delivery to the tumor cells. Due to their properties (low immunogenicity, long stability, and toxicity), a large number of aptamers have been selected against GBM biomarkers and tested in GBM cell lines, while only a few of them have also been tested in in vivo models of GBM. Herein, we specifically focus on aptamers tested in GBM in vivo models that can be considered as new diagnostic and/or therapeutic tools for GBM patients’ treatment.
Collapse
|
15
|
Fang L, Wang KK, Huang Q, Cheng F, Huang F, Liu WW. Nucleolin Mediates LPS-induced Expression of Inflammatory Mediators and Activation of Signaling Pathways. Curr Med Sci 2020; 40:646-653. [PMID: 32862374 DOI: 10.1007/s11596-020-2229-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
In this study, we investigated the effects of nucleolin on lipopolysaccharide (LPS)-induced activation of MAPK and NF-KappaB (NF-κB) signaling pathways and secretion of TNF-α, IL-1β and HMGB1 in THP-1 monocytes. Immunofluorescence assay and Western blotting were used to identify the nucleolin expression in cell membrane, cytoplasm and nucleus of THP-1 monocytes. Inactivation of nucleolin was induced by neutralizing antibody against nucleolin. THP-1 monocytes were pretreated with anti-nucleolin antibody for 1 h prior to LPS challenge. The irrelevant IgG group was used as control. Secretion of inflammatory mediators (TNF-α, IL-1β and HMGB1) and activation of MAPK and NF-κB/I-κB signaling pathways were examined to assess the effects of nucleolin on LPS-mediated inflammatory response. Nucleolin existed in cell membrane, cytoplasm and nucleus of THP-1 monocytes. Pretreatment of anti-nucleolin antibody significantly inhibited the LPS-induced secretion of TNF-α, IL-1β and HMGB1. P38, JNK, ERK and NF-κB subunit p65 inhibitors could significantly inhibit the secretion of IL-1β, TNF-α and HMGB1 induced by LPS. Moreover, the phosphorylation of p38, JNK, ERK and p65 (or nuclear translocation of p65) was significantly increased after LPS challenge. In contrast, pretreatment of anti-nucleolin antibody could significantly inhibit the LPS-induced phosphorylation of p38, JNK, ERK and p65 (or nuclear translocation of p65). However, the irrelevant IgG, as a negative control, had no effect on LPS-induced secretion of TNF-α and IL-1β and phosphorylation of p38, JNK, ERK and p65 (or nuclear translocation of p65). We demonstrated that nucleolin mediated the LPS-induced activation of MAPK and NF-κB signaling pathways, and regulated the secretion of inflammatory mediators (TNF-α, IL-1β and HMGB1).
Collapse
Affiliation(s)
- Li Fang
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China.
| | - Kang-Kai Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Qing Huang
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| | - Feng Cheng
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| | - Fang Huang
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| | - Wei-Wei Liu
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| |
Collapse
|
16
|
Nyhus C, Pihl M, Hyttel P, Hall VJ. Evidence for nucleolar dysfunction in Alzheimer's disease. Rev Neurosci 2019; 30:685-700. [PMID: 30849050 DOI: 10.1515/revneuro-2018-0104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/08/2019] [Indexed: 11/15/2022]
Abstract
The nucleolus is a dynamically changing organelle that is central to a number of important cellular functions. Not only is it important for ribosome biogenesis, but it also reacts to stress by instigating a nucleolar stress response and is further involved in regulating the cell cycle. Several studies report nucleolar dysfunction in Alzheimer's disease (AD). Studies have reported a decrease in both total nucleolar volume and transcriptional activity of the nucleolar organizing regions. Ribosomes appear to be targeted by oxidation and reduced protein translation has been reported. In addition, several nucleolar proteins are dysregulated and some of these appear to be implicated in classical AD pathology. Some studies also suggest that the nucleolar stress response may be activated in AD, albeit this latter research is rather limited and requires further investigation. The purpose of this review is to draw the connections of all these studies together and signify that there are clear changes in the nucleolus and the ribosomes in AD. The nucleolus is therefore an organelle that requires more attention than previously given in relation to understanding the biological mechanisms underlying the disease.
Collapse
Affiliation(s)
- Caitlin Nyhus
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| | - Maria Pihl
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| | - Vanessa Jane Hall
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| |
Collapse
|
17
|
Wang F, Zhou S, Qi D, Xiang SH, Wong ET, Wang X, Fonkem E, Hsieh TC, Yang J, Kirmani B, Shabb JB, Wu JM, Wu M, Huang JH, Yu WH, Wu E. Nucleolin Is a Functional Binding Protein for Salinomycin in Neuroblastoma Stem Cells. J Am Chem Soc 2019; 141:3613-3622. [PMID: 30689374 DOI: 10.1021/jacs.8b12872] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this study is to illuminate a novel therapeutic approach by identifying a functional binding target of salinomycin, an emerging anticancer stem cell (CSC) agent, and to help dissect the underlying action mechanisms. By utilizing integrated strategies, we identify that nucleolin (NCL) is likely a salinomycin-binding target and a critical regulator involved in human neuroblastoma (NB) CSC activity. Salinomycin markedly suppresses NB CD34 expression and reduces CD34+ cell population in an NCL-dependent manner via disruption of the interaction of NCL with CD34 promoter. The elevated levels of NCL expression in NB tumors are associated with poor patient survival. Altogether, these results indicate that NCL is likely a novel functional salinomycin-binding target that exhibits the potential to be a prognostic marker for NB therapy.
Collapse
Affiliation(s)
- Fengfei Wang
- Department of Neurosurgery , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Neuroscience Institute , Baylor Scott & White Health , Temple , Texas 76502 , United States
- Department of Neurology , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Department of Surgery , Texas A & M University College of Medicine , Temple , Texas 76504 , United States
| | - Shuang Zhou
- Department of Neurosurgery , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Neuroscience Institute , Baylor Scott & White Health , Temple , Texas 76502 , United States
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Dan Qi
- Department of Neurosurgery , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Neuroscience Institute , Baylor Scott & White Health , Temple , Texas 76502 , United States
| | - Shi-Hua Xiang
- Nebraska Center for Virology, School of Veterinary Medicine and Biomedical Sciences , University of Nebraska-Lincoln , Lincoln , Nebraska 68583 , United States
| | - Eric T Wong
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , Massachusetts 02215 , United States
| | - Xuejing Wang
- Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan 450052 , China
| | - Ekokobe Fonkem
- Department of Neurosurgery , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Neuroscience Institute , Baylor Scott & White Health , Temple , Texas 76502 , United States
- Department of Neurology , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Department of Surgery , Texas A & M University College of Medicine , Temple , Texas 76504 , United States
- LIVESTRONG Cancer Institutes, Dell Medical School , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Tze-Chen Hsieh
- Department of Biochemistry and Molecular Biology , New York Medical College , Valhalla , New York 10595 , United States
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Batool Kirmani
- Department of Neurology , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Department of Surgery , Texas A & M University College of Medicine , Temple , Texas 76504 , United States
| | - John B Shabb
- Department of Biomedical Sciences, School of Medicine and Health Sciences , University of North Dakota , Grand Forks , North Dakota 58202 , United States
| | - Joseph M Wu
- Department of Biochemistry and Molecular Biology , New York Medical College , Valhalla , New York 10595 , United States
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences , University of North Dakota , Grand Forks , North Dakota 58202 , United States
| | - Jason H Huang
- Department of Neurosurgery , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Neuroscience Institute , Baylor Scott & White Health , Temple , Texas 76502 , United States
- Department of Surgery , Texas A & M University College of Medicine , Temple , Texas 76504 , United States
| | - Wei-Hsuan Yu
- Institute of Biochemistry and Molecular Biology, College of Medicine , National Taiwan University , Taipei 10051 , Taiwan
| | - Erxi Wu
- Department of Neurosurgery , Baylor Scott & White Health , Temple , Texas 78508 , United States
- Neuroscience Institute , Baylor Scott & White Health , Temple , Texas 76502 , United States
- Department of Surgery , Texas A & M University College of Medicine , Temple , Texas 76504 , United States
- LIVESTRONG Cancer Institutes, Dell Medical School , The University of Texas at Austin , Austin , Texas 78712 , United States
- Department of Pharmaceutical Sciences , Texas A & M University College of Pharmacy , College Station , Texas 77843 , United States
| |
Collapse
|
18
|
Chromatin control in double strand break repair. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019. [PMID: 30798938 DOI: 10.1016/bs.apcsb.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
DNA double strand breaks (DSB) are the most deleterious type of damage inflicted on DNA by various environmental factors and as consequences of normal cellular metabolism. The multistep nature of DSB repair and the need to assemble large protein complexes at repair sites necessitate multiple chromatin changes there. This review focuses on the key findings of how chromatin regulators exert temporal and spatial control on DSB repair. These mechanisms coordinate repair with cell cycle progression, lead to DSB repair pathway choice, provide accessibility of repair machinery to damaged sites and move the lesions to nuclear environments permissive for repair.
Collapse
|
19
|
Bian WX, Xie Y, Wang XN, Xu GH, Fu BS, Li S, Long G, Zhou X, Zhang XL. Binding of cellular nucleolin with the viral core RNA G-quadruplex structure suppresses HCV replication. Nucleic Acids Res 2019; 47:56-68. [PMID: 30462330 PMCID: PMC6326805 DOI: 10.1093/nar/gky1177] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/22/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of human chronic liver disease and hepatocellular carcinoma. G-quadruplex (G4) is an important four-stranded secondary structure of nucleic acids. Recently, we discovered that the core gene of HCV contains a G4 RNA structure; however, the interaction between the HCV core RNA G4 and host cellular proteins, and the roles of the HCV core RNA G4 in HCV infection and pathogenesis remain elusive. Here, we identified a cellular protein, nucleolin (NCL), which bound and stabilized the HCV core RNA G4 structure. We demonstrated the direct interaction and colocalization between NCL and wild-type core RNA G4 at both in vitro and in cell physiological conditions of the alive virus; however no significant interaction was found between NCL and G4-modified core RNA. NCL is also associated with HCV particles. HCV infection induced NCL mRNA and protein expression, while NCL suppressed wild-type viral replication and expression, but not G4-modified virus. Silencing of NCL greatly enhanced viral RNA replication. Our findings provide new insights that NCL may act as a host factor for anti-viral innate immunity, and binding of cellular NCL with the viral core RNA G4 structure is involved in suppressing HCV replication.
Collapse
Affiliation(s)
- Wen-Xiu Bian
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Yan Xie
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Xiao-Ning Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Hua Xu
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
| | - Bo-Shi Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei Province, Wuhan 430072, China
| | - Shu Li
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| | - Gang Long
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei Province, Wuhan 430072, China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Medical Research Institute and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, PR China
| |
Collapse
|
20
|
Yang S, Li H, Xu L, Deng Z, Han W, Liu Y, Jiang W, Zu Y. Oligonucleotide Aptamer-Mediated Precision Therapy of Hematological Malignancies. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:164-175. [PMID: 30292138 PMCID: PMC6172475 DOI: 10.1016/j.omtn.2018.08.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/01/2023]
Abstract
Precision medicine has recently emerged as a promising strategy for cancer therapy because it not only specifically targets cancer cells but it also does not have adverse effects on normal cells. Oligonucleotide aptamers are a class of small molecule ligands that can specifically bind to their targets on cell surfaces with high affinity. Aptamers have great potential in precision cancer therapy due to their unique physical, chemical, and biological properties. Therefore, aptamer technology has been widely investigated for biomedical and clinical applications. This review focuses on the potential applications of aptamer technology as a new tool for precision treatment of hematological malignancies, including leukemia, lymphoma, and multiple myeloma.
Collapse
Affiliation(s)
- Shuanghui Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Huan Li
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ling Xu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhenhan Deng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wei Han
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Yanting Liu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Wenqi Jiang
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Devanand P, Oya Y, Sundaramoorthy S, Song KY, Watanabe T, Kobayashi Y, Shimizu Y, Hong SA, Suganuma M, Lim IK. Inhibition of TNFα-interacting protein α (Tipα)-associated gastric carcinogenesis by BTG2 /TIS21 via downregulating cytoplasmic nucleolin expression. Exp Mol Med 2018; 50:e449. [PMID: 29472702 PMCID: PMC5903828 DOI: 10.1038/emm.2017.281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
To understand the regulation of Helicobacter pylori (H. pylori)-associated gastric carcinogenesis, we examined the effect of B-cell translocation gene 2 (BTG2) expression on the biological activity of Tipα, an oncoprotein secreted from H. pylori. BTG2, the human ortholog of mouse TIS21 (BTG2/TIS21), has been reported to be a primary response gene that is transiently expressed in response to various stimulations. Here, we report that BTG2 is constitutively expressed in the mucous epithelium and parietal cells of the gastric gland in the stomach. Expression was increased in the mucous epithelium following H. pylori infection in contrast to its loss in human gastric adenocarcinoma. Indeed, adenoviral transduction of BTG2/TIS21 significantly inhibited Tipα activity in MKN-1 and MGT-40, human and mouse gastric cancer cells, respectively, thereby downregulating tumor necrosis factor-α (TNFα) expression and Erk1/2 phosphorylation by reducing expression of nucleolin, a Tipα receptor. Chromatin immunoprecipitation proved that BTG2/TIS21 inhibited Sp1 expression and its binding to the promoter of the nucleolin gene. In addition, BTG2/TIS21 expression significantly reduced membrane-localized nucleolin expression in cancer cells, and the loss of BTG2/TIS21 expression induced cytoplasmic nucleolin availability in gastric cancer tissues, as evidenced by immunoblotting and immunohistochemistry. Higher expression of BTG2 and lower expression of nucleolin were accompanied with better overall survival of poorly differentiated gastric cancer patients. This is the first report showing that BTG2/TIS21 inhibits nucleolin expression via Sp1 binding, which might be associated with the inhibition of H. pylori-induced carcinogenesis. We suggest that BTG2/TIS21 is a potential inhibitor of nucleolin in the cytoplasm, leading to inhibition of carcinogenesis after H. pylori infection.
Collapse
Affiliation(s)
- Preethi Devanand
- Division of Medical Sciences, Graduate School of Ajou University, Gyeonggi-do, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Gyeonggi-do, Republic of Korea
| | - Yukiko Oya
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Santhoshkumar Sundaramoorthy
- Division of Medical Sciences, Graduate School of Ajou University, Gyeonggi-do, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Gyeonggi-do, Republic of Korea
| | - Kye Yong Song
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Tatsuro Watanabe
- Department of Clinical Laboratory of Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | - Soon Auck Hong
- Department of Pathology, Soonchunhyang Cheonan hospital, Soonchunhyang University, College of Medicine, Cheonan, Republic of Korea
| | - Masami Suganuma
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - In Kyoung Lim
- Division of Medical Sciences, Graduate School of Ajou University, Gyeonggi-do, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University, School of Medicine, Gyeonggi-do, Republic of Korea
| |
Collapse
|
22
|
Cell surface expression of nucleolin mediates the antiangiogenic and antitumor activities of kallistatin. Oncotarget 2017; 9:2220-2235. [PMID: 29416766 PMCID: PMC5788634 DOI: 10.18632/oncotarget.23346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Kallistatin is a unique serine proteinase inhibitor and heparin-binding protein. A previous study conducted by our group indicated that kallistatin has antiangiogenic and antitumoral activities. In the present study, we report that kallistatin specifically binds to membrane surface-expressed nucleolin with high affinity. Antibody-mediated neutralization or siRNA-induced nucleolin knockdown results in loss of kallistatin suppression of endothelial cell proliferation and migration in vitro and tumor angiogenesis and growth in vivo. In addition, we show that kallistatin is internalized and transported into cell nuclei of endothelial cells via nucleolin. Within the nucleus, kallistatin inhibits the phosphorylation of nucleolin, which is a critical step required for cell proliferation. Thus, we demonstrate that nucleolin is a novel functional receptor of kallistatin that mediates its antiangiogenic and antitumor activities. These findings provide mechanistic insights into the inhibitory effects of kallistatin on endothelial cell growth, tumor cell proliferation, and tumor-related angiogenesis.
Collapse
|
23
|
Lago S, Tosoni E, Nadai M, Palumbo M, Richter SN. The cellular protein nucleolin preferentially binds long-looped G-quadruplex nucleic acids. Biochim Biophys Acta Gen Subj 2017; 1861:1371-1381. [PMID: 27913192 PMCID: PMC5466061 DOI: 10.1016/j.bbagen.2016.11.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/25/2016] [Accepted: 11/26/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND G-quadruplexes (G4s) are four-stranded nucleic acid structures that form in G-rich sequences. Nucleolin (NCL) is a cellular protein reported for its functions upon G4 recognition, such as induction of neurodegenerative diseases, tumor and virus mechanisms activation. We here aimed at defining NCL/G4 binding determinants. METHODS Electrophoresis mobility shift assay was used to detect NCL/G4 binding; circular dichroism to assess G4 folding, topology and stability; dimethylsulfate footprinting to detect G bases involved in G4 folding. RESULTS The purified full-length human NCL was initially tested on telomeric G4 target sequences to allow for modulation of loop, conformation, length, G-tract number, stability. G4s in promoter regions with more complex sequences were next employed. We found that NCL binding to G4s heavily relies on G4 loop length, independently of the conformation and oligonucleotide/loop sequence. Low stability G4s are preferred. When alternative G4 conformations are possible, those with longer loops are preferred upon binding to NCL, even if G-tracts need to be spared from G4 folding. CONCLUSIONS Our data provide insight into how G4s and the associated proteins may control the ON/OFF molecular switch to several pathological processes, including neurodegeneration, tumor and virus activation. Understanding these regulatory determinants is the first step towards the development of targeted therapies. GENERAL SIGNIFICANCE The indication that NCL binding preferentially stimulates and induces folding of G4s containing long loops suggests NCL ability to modify the overall structure and steric hindrance of the involved nucleic acid regions. This protein-induced modification of the G4 structure may represent a cellular mechanosensor mechanism to molecular signaling and disease pathogenesis. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Sara Lago
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Elena Tosoni
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Manlio Palumbo
- Department of Pharmaceutical Sciences, University of Padua, via Marzolo 5, 35131 Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy.
| |
Collapse
|
24
|
Cheng Y, Zhao G, Zhang S, Nigim F, Zhou G, Yu Z, Song Y, Chen Y, Li Y. AS1411-Induced Growth Inhibition of Glioma Cells by Up-Regulation of p53 and Down-Regulation of Bcl-2 and Akt1 via Nucleolin. PLoS One 2016; 11:e0167094. [PMID: 27907160 PMCID: PMC5132312 DOI: 10.1371/journal.pone.0167094] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
AS1411 binds nucleolin (NCL) and is the first oligodeoxynucleotide aptamer to reach phase I and II clinical trials for the treatment of several cancers. However, the mechanisms by which AS1411 targets and kills glioma cells and tissues remain unclear. Here we report that AS1411 induces cell apoptosis and cycle arrest, and inhibits cell viability by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 in human glioma cells. NCL was overexpressed in both nucleus and cytoplasm in human glioma U87, U251 and SHG44 cells compared to normal human astrocytes (NHA). AS1411 bound NCL and inhibited the proliferation of glioma cells but not NHA, which was accompanied with up-regulation of p53 and down-regulation of Bcl-2 and Akt1. Moreover, AS1411 treatment resulted in the G2/M cell cycle arrest in glioma cells, which was however abolished by overexpression of NCL. Further, AS1411 induced cell apoptosis, which was prevented by silencing of p53 and overexpression of Bcl-2. In addition, AS1411 inhibited the migration and invasion of glioma cells in an Akt1-dependent manner. Importantly, AS1411 inhibited the growth of glioma xenograft and prolonged the survival time of glioma tumor-bearing mice. These results revealed a promising treatment of glioma by oligodeoxynucleotide aptamer.
Collapse
Affiliation(s)
- Ye Cheng
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- Department of Neurosurgery, Harvard Medical School, Boston, United States of America
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Siwen Zhang
- Department of Endocrine, The First Hospital of Jilin University, Changchun, China
| | - Fares Nigim
- Department of Neurosurgery, Harvard Medical School, Boston, United States of America
| | - Guangtong Zhou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Zhiyun Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yang Song
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yunqian Li
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Aptamers in hematological malignancies and their potential therapeutic implications. Crit Rev Oncol Hematol 2016; 106:108-17. [PMID: 27637356 DOI: 10.1016/j.critrevonc.2016.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/06/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023] Open
Abstract
Aptamers are short DNA/RNA oligonucleotides selected by the process called Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Due to their functional similarity to monoclonal antibodies with some superior characters, such as high specificity and affinity, flexible modification and stability, and lack of toxicity and immunogenicity, they are promising alternative and complementary targeted therapy for hematologic malignancies. The trends in aptamer technology including production, selection, modifications are briefly discussed in this review. The key aspect is to illustrate aptamers against cancer cells in hematologic malignancies especially those that have entered clinical trials. We also discuss some challenges remain in the application of aptamers.
Collapse
|
26
|
Terrier O, Carron C, De Chassey B, Dubois J, Traversier A, Julien T, Cartet G, Proust A, Hacot S, Ressnikoff D, Lotteau V, Lina B, Diaz JJ, Moules V, Rosa-Calatrava M. Nucleolin interacts with influenza A nucleoprotein and contributes to viral ribonucleoprotein complexes nuclear trafficking and efficient influenza viral replication. Sci Rep 2016; 6:29006. [PMID: 27373907 PMCID: PMC4931502 DOI: 10.1038/srep29006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/09/2016] [Indexed: 01/18/2023] Open
Abstract
Influenza viruses replicate their single-stranded RNA genomes in the nucleus of infected cells and these replicated genomes (vRNPs) are then exported from the nucleus to the cytoplasm and plasma membrane before budding. To achieve this export, influenza viruses hijack the host cell export machinery. However, the complete mechanisms underlying this hijacking remain not fully understood. We have previously shown that influenza viruses induce a marked alteration of the nucleus during the time-course of infection and notably in the nucleolar compartment. In this study, we discovered that a major nucleolar component, called nucleolin, is required for an efficient export of vRNPs and viral replication. We have notably shown that nucleolin interacts with the viral nucleoprotein (NP) that mainly constitutes vRNPs. Our results suggest that this interaction could allow vRNPs to "catch" the host cell export machinery, a necessary step for viral replication.
Collapse
Affiliation(s)
- Olivier Terrier
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Coralie Carron
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Benoît De Chassey
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Julia Dubois
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Aurélien Traversier
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Thomas Julien
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| | - Gaëlle Cartet
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anaïs Proust
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| | - Sabine Hacot
- Centre de Recherche en Cancérologie de Lyon, UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, Lyon, France and Université de Lyon, Lyon, France
| | - Denis Ressnikoff
- CIQLE, Centre d’imagerie quantitative Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Vincent Lotteau
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bruno Lina
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Hospices Civils de Lyon, Laboratory of Virology, Lyon, France
| | - Jean-Jacques Diaz
- Centre de Recherche en Cancérologie de Lyon, UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, Lyon, France and Université de Lyon, Lyon, France
| | - Vincent Moules
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| |
Collapse
|
27
|
Salvetti A, Couté Y, Epstein A, Arata L, Kraut A, Navratil V, Bouvet P, Greco A. Nuclear Functions of Nucleolin through Global Proteomics and Interactomic Approaches. J Proteome Res 2016; 15:1659-69. [PMID: 27049334 DOI: 10.1021/acs.jproteome.6b00126] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nucleolin (NCL) is a major component of the cell nucleolus, which has the ability to rapidly shuttle to several other cells' compartments. NCL plays important roles in a variety of essential functions, among which are ribosome biogenesis, gene expression, and cell growth. However, the precise mechanisms underlying NCL functions are still unclear. Our study aimed to provide new information on NCL functions via the identification of its nuclear interacting partners. Using an interactomics approach, we identified 140 proteins co-purified with NCL, among which 100 of them were specifically found to be associated with NCL after RNase digestion. The functional classification of these proteins confirmed the prominent role of NCL in ribosome biogenesis and additionally revealed the possible involvement of nuclear NCL in several pre-mRNA processing pathways through its interaction with RNA helicases and proteins participating in pre-mRNA splicing, transport, or stability. NCL knockdown experiments revealed that NCL regulates the localization of EXOSC10 and the amount of ZC3HAV1, two components of the RNA exosome, further suggesting its involvement in the control of mRNA stability. Altogether, this study describes the first nuclear interactome of human NCL and provides the basis for further understanding the mechanisms underlying the essential functions of this nucleolar protein.
Collapse
Affiliation(s)
- Anna Salvetti
- International Center for Infectiology Research (CIRI), Inserm U1111, CNRS UMR5308 , 69007 Lyon, France
- Ecole Normale Supérieure de Lyon , 69007 Lyon, France
- Labex Ecofect Université de Lyon , 69007 Lyon, France
| | - Yohann Couté
- Université Grenoble Alpes , 38000 Grenoble, France
- CEA, BIG-BGE , 38000 Grenoble, France
- INSERM, BGE , 38000 Grenoble, France
| | - Alberto Epstein
- International Center for Infectiology Research (CIRI), Inserm U1111, CNRS UMR5308 , 69007 Lyon, France
- Ecole Normale Supérieure de Lyon , 69007 Lyon, France
- Labex Ecofect Université de Lyon , 69007 Lyon, France
| | - Loredana Arata
- Subdepartment of Molecular Genetics, Public Health Institute of Chile , Santiago, Chile
| | - Alexandra Kraut
- Université Grenoble Alpes , 38000 Grenoble, France
- CEA, BIG-BGE , 38000 Grenoble, France
- INSERM, BGE , 38000 Grenoble, France
| | - Vincent Navratil
- Pôle Rhône Alpes de Bioinformatique (PRABI), Université Lyon 1 , 69100 Villeurbanne, France
| | - Philippe Bouvet
- Ecole Normale Supérieure de Lyon , 69007 Lyon, France
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052, CNRS UMR5286 , 69003 Lyon, France
| | - Anna Greco
- International Center for Infectiology Research (CIRI), Inserm U1111, CNRS UMR5308 , 69007 Lyon, France
- Ecole Normale Supérieure de Lyon , 69007 Lyon, France
| |
Collapse
|
28
|
Tasdemir S, Eroz R, Dogan H, Erdem HB, Sahin I, Kara M, Engin RI, Turkez H. Association Between Human Hair Loss and the Expression Levels of Nucleolin, Nucleophosmin, and UBTF Genes. Genet Test Mol Biomarkers 2016; 20:197-202. [PMID: 26866305 DOI: 10.1089/gtmb.2015.0246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Nucleolar organizer regions, also known as argyrophilic nucleolar organizer regions, are associated with ribosomal genes. The main function of the nucleolus is the rapid production of ribosomal subunits, a process that must be highly regulated to provide the appropriate levels for cellular proliferation and cell growth. There are no studies in the literature addressing the expression and function of nucleolar component proteins, including nucleophosmin, nucleolin and the upstream binding transcription factor (UBTF), in human follicular hair cells. METHODS Nineteen healthy males who had normal and sufficient hair follicles on the back of the head, but exhibited hair loss on the frontal/vertex portions of the head and 14 healthy males without hair loss were included in the current study. Gene expression levels were measured by relative quantitative real time polymerase chain reaction. RESULTS In the individuals suffering from alopecia, the total expression levels of nucleolin, nucleophosmin, and UBTF were lower in normal sites than in hair loss sites. Strong expression level correlations were detected between: nucleophosmin and nucleolin; nucleophosmin and UBTF, and nucleolin and UBTF for both groups. CONCLUSIONS There was an association between human hair loss and the expression levels of nucleolin, nucleophosmin, and UBTF genes.
Collapse
Affiliation(s)
- Sener Tasdemir
- 1 Department of Medical Genetics, Faculty of Medicine, Ataturk University , Erzurum, Turkey
| | - Recep Eroz
- 2 Department of Medical Genetics, Faculty of Medicine, Duzce University , Duzce, Turkey
| | - Hasan Dogan
- 3 Department of Medical Biology, Faculty of Medicine, Ataturk University , Erzurum, Turkey
| | - Haktan Bagis Erdem
- 1 Department of Medical Genetics, Faculty of Medicine, Ataturk University , Erzurum, Turkey
| | - Ibrahim Sahin
- 1 Department of Medical Genetics, Faculty of Medicine, Ataturk University , Erzurum, Turkey
| | - Murat Kara
- 4 Department of Medical Genetics, Faculty of Medicine, Mugla Sitki Kocaman University , Mugla, Turkey
| | - Ragip Ismail Engin
- 5 Department of Dermatology, Regional Training and Research Hospital , Erzurum, Turkey
| | - Hasan Turkez
- 6 Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University , Erzurum, Turkey
| |
Collapse
|
29
|
Xie Q, Guo X, Gu J, Zhang L, Jin H, Huang H, Li J, Huang C. p85α promotes nucleolin transcription and subsequently enhances EGFR mRNA stability and EGF-induced malignant cellular transformation. Oncotarget 2016; 7:16636-49. [PMID: 26918608 PMCID: PMC4941340 DOI: 10.18632/oncotarget.7674] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/16/2016] [Indexed: 11/25/2022] Open
Abstract
p85α is a regulatory subunit of phosphatidylinositol 3-kinase (PI3K) that is a key lipid enzyme for generating phosphatidylinositol 3, 4, 5-trisphosphate, and subsequently activates signaling that ultimately regulates cell cycle progression, cell growth, cytoskeletal changes, and cell migration. In addition to form a complex with the p110 catalytic subunit, p85α also exists as a monomeric form due to that there is a greater abundance of p85α than p110 in many cell types. Our previous studies have demonstrated that monomeric p85α exerts a pro-apoptotic role in UV response through induction of TNF-α gene expression in PI3K-independent manner. In current studies, we identified a novel biological function of p85α as a positive regulator of epidermal growth factor receptor (EGFR) expression and cell malignant transformation via nucleolin-dependent mechanism. Our results showed that p85α was crucial for EGFR and nucleolin expression and subsequently resulted in an increase of malignant cellular transformation by using both specific knockdown and deletion of p85α in its normal expressed cells. Mechanistic studies revealed that p85α upregulated EGFR protein expression mainly through stabilizing its mRNA, whereas nucleolin (NCL) was able to bind to egfr mRNA and increase its mRNA stability. Consistently, overexpression of NCL in p85α-/- cells restored EGFR mRNA stabilization, protein expression and cell malignant transformation. Moreover, we discovered that p85α upregulated NCL gene transcription via enhancing C-Jun activation. Collectively, our studies demonstrate a novel function of p85α as a positive regulator of EGFR mRNA stability and cell malignant transformation, providing a significant insight into the understanding of biomedical nature of p85α protein in mammalian cells and further supporting that p85α might be a potential target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xirui Guo
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiayan Gu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Liping Zhang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| |
Collapse
|
30
|
Val S, Burgett K, Brown KJ, Preciado D. SuperSILAC Quantitative Proteome Profiling of Murine Middle Ear Epithelial Cell Remodeling with NTHi. PLoS One 2016; 11:e0148612. [PMID: 26859300 PMCID: PMC4747582 DOI: 10.1371/journal.pone.0148612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 01/20/2016] [Indexed: 12/12/2022] Open
Abstract
Background Chronic Otitis Media with effusion (COME) develops after sustained inflammation and is characterized by secretory middle ear epithelial metaplasia and effusion, most frequently mucoid. Non-typeable Haemophilus influenzae (NTHi), the most common acute Otitis Media (OM) pathogen, is postulated to promote middle ear epithelial remodeling in the progression of OM from acute to chronic. The goals of this study were to examine histopathological and quantitative proteomic epithelial effects of NTHi challenge in a murine middle ear epithelial cell line. Methods NTHi lysates were generated and used to stimulate murine epithelial cells (mMEEC) cultured at air-liquid interface over 48 hours– 1 week. Conditional quantitative Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) of cell lysates was performed to interrogate the global protein production in the cells, using the SuperSILAC technique. Histology of the epithelium over time was done to measure bacterial dependent remodeling. Results Mass spectrometry analysis identified 2,565 proteins across samples, of which 74 exhibited differential enrichment or depletion in cell lysates (+/-2.0 fold-change; p value<0.05). The key molecular functions regulated by NTHi lysates exposure were related to cell proliferation, death, migration, adhesion and inflammation. Finally, chronic exposure induced significant epithelial thickening of cells grown at air liquid interface. Conclusions NTHi lysates drive pathways responsible of cell remodeling in murine middle ear epithelium which likely contributes to observed epithelial hyperplasia in vitro. Further elucidation of these mediators will be critical in understanding the progression of OM from acute to chronic at the molecular level.
Collapse
Affiliation(s)
- Stéphanie Val
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, United States of America
| | - Katelyn Burgett
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, United States of America
| | - Kristy J. Brown
- Center for Genetic Medicine Research, Children’s National Health System, Washington, DC, United States of America
| | - Diego Preciado
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, United States of America
- Division of Pediatric Otolaryngology, Children’s National Health System, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
31
|
Fonseca NA, Rodrigues AS, Rodrigues-Santos P, Alves V, Gregório AC, Valério-Fernandes Â, Gomes-da-Silva LC, Rosa MS, Moura V, Ramalho-Santos J, Simões S, Moreira JN. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination. Biomaterials 2015; 69:76-88. [PMID: 26283155 DOI: 10.1016/j.biomaterials.2015.08.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 12/31/2022]
Abstract
Breast cancer stem cells (CSC) are thought responsible for tumor growth and relapse, metastization and active evasion to standard chemotherapy. The recognition that CSC may originate from non-stem cancer cells (non-SCC) through plastic epithelial-to-mesenchymal transition turned these into relevant cell targets. Of crucial importance for successful therapeutic intervention is the identification of surface receptors overexpressed in both CSC and non-SCC. Cell surface nucleolin has been described as overexpressed in cancer cells as well as a tumor angiogenic marker. Herein we have addressed the questions on whether nucleolin was a common receptor among breast CSC and non-SCC and whether it could be exploited for targeting purposes. Liposomes functionalized with the nucleolin-binding F3 peptide, targeted simultaneously, nucleolin-overexpressing putative breast CSC and non-SCC, which was paralleled by OCT4 and NANOG mRNA levels in cells from triple negative breast cancer (TNBC) origin. In murine embryonic stem cells, both nucleolin mRNA levels and F3 peptide-targeted liposomes cellular association were dependent on the stemness status. An in vivo tumorigenic assay suggested that surface nucleolin overexpression per se, could be associated with the identification of highly tumorigenic TNBC cells. This proposed link between nucleolin expression and the stem-like phenotype in TNBC, enabled 100% cell death mediated by F3 peptide-targeted synergistic drug combination, suggesting the potential to abrogate the plasticity and adaptability associated with CSC and non-SCC. Ultimately, nucleolin-specific therapeutic tools capable of simultaneous debulk multiple cellular compartments of the tumor microenvironment may pave the way towards a specific treatment for TNBC patient care.
Collapse
Affiliation(s)
- Nuno A Fonseca
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - Ana S Rodrigues
- PhD Program in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal
| | - Paulo Rodrigues-Santos
- Immunology Institute, Faculty of Medicine (Polo I), University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal; Immunology and Oncology Laboratory, Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal
| | - Vera Alves
- Immunology Institute, Faculty of Medicine (Polo I), University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal
| | - Ana C Gregório
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; PhD Program in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão (Polo II), Rua Dom Francisco de Lemos, Coimbra 3030-789, Portugal
| | - Ângela Valério-Fernandes
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; PhD Program in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão (Polo II), Rua Dom Francisco de Lemos, Coimbra 3030-789, Portugal
| | - Lígia C Gomes-da-Silva
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal; PhD Program in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal
| | - Manuel Santos Rosa
- Immunology Institute, Faculty of Medicine (Polo I), University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal
| | - Vera Moura
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; TREAT U, S.A., Parque Industrial de Taveiro, Lote 44, Coimbra 3045-508, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - Sérgio Simões
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - João Nuno Moreira
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal.
| |
Collapse
|
32
|
Tosoni E, Frasson I, Scalabrin M, Perrone R, Butovskaya E, Nadai M, Palù G, Fabris D, Richter SN. Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription. Nucleic Acids Res 2015; 43:8884-97. [PMID: 26354862 PMCID: PMC4605322 DOI: 10.1093/nar/gkv897] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 01/26/2023] Open
Abstract
Folding of the LTR promoter into dynamic G-quadruplex conformations has been shown to suppress its transcriptional activity in HIV-1. Here we sought to identify the proteins that control the folding of this region of proviral genome by inducing/stabilizing G-quadruplex structures. The implementation of electrophorethic mobility shift assay and pull-down experiments coupled with mass spectrometric analysis revealed that the cellular protein nucleolin is able to specifically recognize G-quadruplex structures present in the LTR promoter. Nucleolin recognized with high affinity and specificity the majority, but not all the possible G-quadruplexes folded by this sequence. In addition, it displayed greater binding preference towards DNA than RNA G-quadruplexes, thus indicating two levels of selectivity based on the sequence and nature of the target. The interaction translated into stabilization of the LTR G-quadruplexes and increased promoter silencing activity; in contrast, disruption of nucleolin binding in cells by both siRNAs and a nucleolin binding aptamer greatly increased LTR promoter activity. These data indicate that nucleolin possesses a specific and regulated activity toward the HIV-1 LTR promoter, which is mediated by G-quadruplexes. These observations provide new essential insights into viral transcription and a possible low mutagenic target for antiretroviral therapy.
Collapse
Affiliation(s)
- Elena Tosoni
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Ilaria Frasson
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Matteo Scalabrin
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Rosalba Perrone
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Elena Butovskaya
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| | - Dan Fabris
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padua, Italy
| |
Collapse
|
33
|
Mateos J, Landeira-Abia A, Fafián-Labora JA, Fernández-Pernas P, Lesende-Rodríguez I, Fernández-Puente P, Fernández-Moreno M, Delmiro A, Martín MA, Blanco FJ, Arufe MC. iTRAQ-based analysis of progerin expression reveals mitochondrial dysfunction, reactive oxygen species accumulation and altered proteostasis. Stem Cell Res Ther 2015; 6:119. [PMID: 26066325 PMCID: PMC4487579 DOI: 10.1186/s13287-015-0110-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 10/14/2014] [Accepted: 06/04/2015] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Nuclear accumulation of a mutant form of the nuclear protein Lamin-A, called Progerin (PG) or Lamin AΔ50, occurs in Hutchinson-Gilford Progeria Syndrome (HGPS) or Progeria, an accelerated aging disease. One of the main symptoms of this genetic disorder is a loss of sub-cutaneous fat due to a dramatic lipodystrophy. METHODS We stably induced the expression of human PG and GFP -Green Fluorescent Protein- as control in 3T3L1 cells using a lentiviral system to study the effect of PG expression in the differentiation capacity of this cell line, one of the most used adipogenic models. Quantitative proteomics (iTRAQ) was done to study the effect of the PG accumulation. Several of the modulated proteins were validated by immunoblotting and real-time PCR. Mitochondrial function was analyzed by measurement of a) the mitochondrial basal activity, b) the superoxide anion production and c) the individual efficiency of the different complex of the respiratory chain. RESULTS We found that over-expression PG by lentiviral gene delivery leads to a decrease in the proliferation rate and to defects in adipogenic capacity when compared to the control. Quantitative proteomics analysis showed 181 proteins significantly (p<0.05) modulated in PG-expressing preadipocytes. Mitochondrial function is impaired in PG-expressing cells. Specifically, we have detected an increase in the activity of the complex I and an overproduction of Superoxide anion. Incubation with Reactive Oxygen Species (ROS) scavenger agents drives to a decrease in autophagic proteolysis as revealed by LC3-II/LC3-I ratio. CONCLUSION PG expression in 3T3L1 cells promotes changes in several Biological Processes, including structure of cytoskeleton, lipid metabolism, calcium regulation, translation, protein folding and energy generation by the mitochondria. Our data strengthen the contribution of ROS accumulation to the premature aging phenotype and establish a link between mitochondrial dysfunction and loss of proteostasis in HGPS.
Collapse
Affiliation(s)
- Jesús Mateos
- Grupo de Proteómica-ProteoRed/Plataforma PBR2-ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
| | - Arancha Landeira-Abia
- Grupo de Proteómica-ProteoRed/Plataforma PBR2-ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
| | - Juan Antonio Fafián-Labora
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
| | - Pablo Fernández-Pernas
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
- Rheumatology Division, CIBER-BBN/ISCII, Instituto de Investigación Biomédica de A Coruña INIBIC-Hospital Universitario A Coruña, 15006, A Coruña, Spain.
| | - Iván Lesende-Rodríguez
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
| | - Patricia Fernández-Puente
- Grupo de Proteómica-ProteoRed/Plataforma PBR2-ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
| | - Mercedes Fernández-Moreno
- Rheumatology Division, CIBER-BBN/ISCII, Instituto de Investigación Biomédica de A Coruña INIBIC-Hospital Universitario A Coruña, 15006, A Coruña, Spain.
- Grupo de Genómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
| | - Aitor Delmiro
- Laboratorio de Enfermedades Mitocondriales, Instituto de Investigación Hospital 12 de Octubre (i + 12), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, E-28041, Spain.
| | - Miguel A Martín
- Laboratorio de Enfermedades Mitocondriales, Instituto de Investigación Hospital 12 de Octubre (i + 12), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, Madrid, E-28041, Spain.
| | - Francisco J Blanco
- Grupo de Proteómica-ProteoRed/Plataforma PBR2-ISCIII, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
- Rheumatology Division, CIBER-BBN/ISCII, Instituto de Investigación Biomédica de A Coruña INIBIC-Hospital Universitario A Coruña, 15006, A Coruña, Spain.
| | - María C Arufe
- Cellular Therapy and Medicine Regenerative Group, Department of Medicine, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, As Xubias, 15006, A Coruña, Spain.
- Rheumatology Division, CIBER-BBN/ISCII, Instituto de Investigación Biomédica de A Coruña INIBIC-Hospital Universitario A Coruña, 15006, A Coruña, Spain.
| |
Collapse
|
34
|
Andersen RK, Hammer K, Hager H, Christensen JN, Ludvigsen M, Honoré B, Thomsen MBH, Madsen M. Melanoma tumors frequently acquire LRP2/megalin expression, which modulates melanoma cell proliferation and survival rates. Pigment Cell Melanoma Res 2015; 28:267-80. [PMID: 25585665 DOI: 10.1111/pcmr.12352] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/12/2015] [Indexed: 12/13/2022]
Abstract
We show that the multiligand receptor megalin, known to mediate uptake and trafficking of nutrients and signaling molecules, is frequently expressed in malignant melanoma samples. Expression of megalin-encoding mRNA was investigated in 65 samples of nevi, melanomas, and melanoma metastases and was observed in more than 60% of the malignant samples, while only in 20% of the benign counterparts. Megalin expression in nevus and melanoma samples was additionally investigated by immunohistochemistry, which confirmed our mRNA-based observations. We furthermore show that a panel of tumor-derived melanoma cell lines express LRP2/megalin endogenously. In these cells, megalin is internalized from the cell surface and localizes extensively to intracellular vesicles, confirming receptor activity and pointing toward association with the endocytic apparatus. Groundbreaking, our results indicate that sustained megalin expression in melanoma cells is crucial for cell maintenance, as siRNA-mediated reduction in melanoma cell expression of LRP2/megalin significantly decreases melanoma cell proliferation and survival rates.
Collapse
Affiliation(s)
- Rikke K Andersen
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wolfson E, Schmukler E, Schokoroy ST, Kloog Y, Pinkas-Kramarski R. Enhancing FTS (Salirasib) efficiency via combinatorial treatment. Biol Cell 2015; 107:130-43. [PMID: 25735913 DOI: 10.1111/boc.201400087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/26/2015] [Indexed: 11/29/2022]
Abstract
The Ras oncogene transmits signals, which regulate various cellular processes including cell motility, differentiation, growth and death. Since Ras signalling is abnormally activated in more than 30% of human cancers, Ras and its downstream signalling pathways are considered good targets for therapeutic interference. Ras is post-translationally modified by the addition of a farnesyl group, which permits its attachment to the plasma membrane. Exploiting this knowledge, a synthetic Ras inhibitor, S-trans, trans-farnesylthiosalicylic acid (FTS; Salirasib), was developed. FTS resembles the farnesylcysteine group of Ras, and acts as an effective Ras antagonist. In the present review, the effect of FTS in combination with various other drugs, as tested in vitro and in vivo, and its therapeutic potential are discussed. As reviewed, FTS cooperates with diverse therapeutic agents, which significantly improves treatment outcome. Therefore, combinations of FTS with other agents have a potential to serve as anti-cancer or anti-inflammatory therapies.
Collapse
Affiliation(s)
- Eya Wolfson
- Department of Neurobiology, Tel-Aviv University, Ramat-Aviv, Israel
| | | | | | | | | |
Collapse
|
36
|
Qi J, Li H, Liu N, Xing Y, Zhou G, Wu Y, Liu Y, Chen W, Yue J, Han B, Kang S, Wu X. The implications and mechanisms of the extra-nuclear nucleolin in the esophageal squamous cell carcinomas. Med Oncol 2015; 32:45. [PMID: 25631630 DOI: 10.1007/s12032-015-0484-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/22/2015] [Indexed: 01/17/2023]
Abstract
In recent decades, the multi-functional protein nucleolin (NCL) has been reported to express outside the nucleus of many cancer cells. However, the expression and role of the extra-nuclear NCL in esophageal squamous cell carcinoma (ESCC) were not well characterized. Here, NCL was detected by immunohistochemistry and Western blotting in 60 ESCC tissues. Further, the associations of NCL, EGFR, CXCR4 and Ki67 were analyzed by in vitro assays. Our results showed that NCL expression in all 40 cases of ESCC tissues with metastasis was extensively located in the nucleus, cytoplasm and cell membrane (extra-nucleus), while NCL expression in all 20 cases of ESCC without metastasis was merely limited into the nucleus (intra-nucleus).The extra-nuclear NCL expression was positively correlated with the expression of EGFR, CXCR4 and Ki67 and serves as an independent prognostic factor for ESCC patients. In vitro, NCL siRNA (si-NCL) efficaciously affected the expression of EGF or SDF-1-induced p-AKT, p-ERK and Ki67. Also, NCL siRNA inhibited the capacity of migration and invasion of ECA109 cells. In conclusions, our study suggests that NCL is implicated in the initiation and transduction of EGFR and CXCR4 signaling and further up-regulates Ki67 expression to modulate the biological behaviors of ESCC. Clinically, the extra-nuclear NCL expression can be used as an important indicator to determine metastasis and predict the prognosis, which help develop new therapeutic strategies against ESCC.
Collapse
Affiliation(s)
- Jiafeng Qi
- Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang D, Liang Y, Xie Q, Gao G, Wei J, Huang H, Li J, Gao J, Huang C. A novel post-translational modification of nucleolin, SUMOylation at Lys-294, mediates arsenite-induced cell death by regulating gadd45α mRNA stability. J Biol Chem 2015; 290:4784-4800. [PMID: 25561743 PMCID: PMC4335216 DOI: 10.1074/jbc.m114.598219] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/30/2014] [Indexed: 11/06/2022] Open
Abstract
Nucleolin is a ubiquitously expressed protein and participates in many important biological processes, such as cell cycle regulation and ribosomal biogenesis. The activity of nucleolin is regulated by intracellular localization and post-translational modifications, including phosphorylation, methylation, and ADP-ribosylation. Small ubiquitin-like modifier (SUMO) is a category of recently verified forms of post-translational modifications and exerts various effects on the target proteins. In the studies reported here, we discovered SUMOylational modification of human nucleolin protein at Lys-294, which facilitated the mRNA binding property of nucleolin by maintaining its nuclear localization. In response to arsenic exposure, nucleolin-SUMO was induced and promoted its binding with gadd45α mRNA, which increased gadd45α mRNA stability and protein expression, subsequently causing GADD45α-mediated cell death. On the other hand, ectopic expression of Mn-SOD attenuated the arsenite-generated superoxide radical level, abrogated nucleolin-SUMO, and in turn inhibited arsenite-induced apoptosis by reducing GADD45α expression. Collectively, our results for the first time demonstrate that nucleolin-SUMO at K294R plays a critical role in its nucleus sequestration and gadd45α mRNA binding activity. This novel biological function of nucleolin is distinct from its conventional role as a proto-oncogene. Therefore, our findings here not only reveal a new modification of nucleolin protein and its novel functional paradigm in mRNA metabolism but also expand our understanding of the dichotomous roles of nucleolin in terms of cancer development, which are dependent on multiple intracellular conditions and consequently the appropriate regulations of its modifications, including SUMOylation.
Collapse
Affiliation(s)
- Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and; Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuguang Liang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guangxun Gao
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Jinlong Wei
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and.
| |
Collapse
|
38
|
Durut N, Sáez-Vásquez J. Nucleolin: dual roles in rDNA chromatin transcription. Gene 2015; 556:7-12. [PMID: 25225127 DOI: 10.1016/j.gene.2014.09.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 01/17/2023]
Abstract
Nucleolin is a major nucleolar protein conserved in all eukaryotic organisms. It is a multifunctional protein involved in different cellular aspects like chromatin organization and stability, DNA and RNA metabolism, assembly of ribonucleoprotein complexes, cytokinesis, cell proliferation and stress response. The multifunctionality of nucleolin is linked to its tripartite structure, post-translational modifications and its ability of shuttling from and to the nucleolus/nucleoplasm and cytoplasm. Nucleolin has been now studied for many years and its activities and properties have been described in a number of excellent reviews. Here, we overview the role of nucleolin in RNA polymerase I (RNAPI) transcription and describe recent results concerning its functional interaction with rDNA chromatin organization. For a long time, nucleolin has been associated with rRNA gene expression and pre-rRNA processing. However, the functional connection between nucleolin and active versus inactive rRNA genes is still not fully understood. Novel evidence indicates that the nucleolin protein might be required for controlling the transcriptional ON/OFF states of rDNA chromatin in both mammals and plants.
Collapse
Affiliation(s)
- Nathalie Durut
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France; Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France; Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France.
| |
Collapse
|
39
|
Wu DM, Zhang P, Liu RY, Sang YX, Zhou C, Xu GC, Yang JL, Tong AP, Wang CT. Phosphorylation and changes in the distribution of nucleolin promote tumor metastasis via the PI3K/Akt pathway in colorectal carcinoma. FEBS Lett 2014; 588:1921-9. [PMID: 24713430 DOI: 10.1016/j.febslet.2014.03.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 02/05/2023]
Abstract
Here, we investigated the molecular mechanism underlying the changes in the distribution of nucleolin. Our study identified PI3K/Akt signaling as an essential pathway regulating the distribution of nucleolin. Furthermore, nucleolin can interact with phospho-PI3K-p55, and changes in the distribution of nucleolin were related to its phosphorylation. Subsequently, we analyzed the correlation of VEGF and nucleolin, and found that distribution of nucleolin related to metastatic potential. Finally, blocking cell surface nucleolin influences the process of epithelial-mesenchymal transitions. This indicates that nucleolin may be a novel cancer therapy target and a predictive marker for tumor migration in colorectal carcinoma.
Collapse
Affiliation(s)
- Dong-ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China
| | - Peng Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, Sichuan, PR China
| | - Ru-yan Liu
- Graduate School, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Ya-xiong Sang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China
| | - Cong Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China
| | - Guang-chao Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China
| | - Jin-liang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China
| | - Ai-ping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China.
| | - Chun-ting Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China.
| |
Collapse
|
40
|
Watanabe T, Takahashi A, Suzuki K, Kurusu-Kanno M, Yamaguchi K, Fujiki H, Suganuma M. Epithelial-mesenchymal transition in human gastric cancer cell lines induced by TNF-α-inducing protein of Helicobacter pylori. Int J Cancer 2014; 134:2373-82. [PMID: 24249671 DOI: 10.1002/ijc.28582] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/22/2013] [Indexed: 01/13/2023]
Abstract
Helicobacter pylori strains produce tumor necrosis factor-α (TNF-α)-inducing protein, Tipα as a carcinogenic factor in the gastric epithelium. Tipα acts as a homodimer with 38-kDa protein, whereas del-Tipα is an inactive monomer. H. pylori isolated from gastric cancer patients secreted large amounts of Tipα, which are incorporated into gastric cancer cells by directly binding to nucleolin on the cell surface, which is a receptor of Tipα. The binding complex induces expression of TNF-α and chemokine genes, and activates NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells). To understand the mechanisms of Tipα in tumor progression, we looked at numerous effects of Tipα on human gastric cancer cell lines. Induction of cell migration and elongation was found to be mediated through the binding to surface nucleolin, which was inhibited by the nucleolin-targeted siRNAs. Tipα induced formation of filopodia in MKN-1 cells, suggesting invasive morphological changes. Tipα enhanced the phosphorylation of 11 cancer-related proteins in serine, threonine and tyrosine, indicating activation of MEK-ERK signal cascade. Although the downregulation of E-cadherin was not shown in MKN-1 cells, Tipα induced the expression of vimentin, a significant marker of the epithelial-mesenchymal transition (EMT). It is of great importance to note that Tipα reduced the Young's modulus of MKN-1 cells determined by atomic force microscopy: This shows lower cell stiffness and increased cell motility. The morphological changes induced in human gastric cancer cells by Tipα are significant phenotypes of EMT. This is the first report that Tipα is a new inducer of EMT, probably associated with tumor progression in human gastric carcinogenesis.
Collapse
Affiliation(s)
- Tatsuro Watanabe
- Research Institute for Clinical Oncology, Saitama Cancer Center, Kitaadachi-gun, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Cheng DD, Zhao HG, Yang YS, Hu T, Yang QC. GSK3β negatively regulates HIF1α mRNA stability via nucleolin in the MG63 osteosarcoma cell line. Biochem Biophys Res Commun 2014; 443:598-603. [PMID: 24333432 DOI: 10.1016/j.bbrc.2013.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022]
Abstract
Hypoxia-inducible factor 1α (HIF1α) is a transcription factor involved in the growth, invasion and metastasis of malignant tumors. Glycogen synthase kinase 3 beta (GSK3β) is a protein kinase involved in a variety of signaling pathways, such as the Wnt and NF-κB pathways; this kinase can affect tumor progress through the regulation of transcription factor expression and apoptosis. Recent studies showed that GSK3β was involved in the expression of HIF1α. However, the effect of GSK3β on HIF1α expression in osteosarcoma cells remains unknown. To understand the relationship between GSK3β and HIF1α comprehensively, small RNA interference techniques, Western blot analyses, quantitative real-time PCR analyses and luciferase assays were used in our study. Experimental data revealed that inhibition of GSK3β could increase HIF1α protein levels and expression of its target genes by increasing the stability of the HIF1α mRNA, not by affecting the HIF1α protein stability, and that this process could be mediated by nucleolin.
Collapse
Affiliation(s)
- Dong-dong Cheng
- Department of Orthopeadics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hai-guang Zhao
- Department of Vascular Surgery, Shanghai Jiao Tong University Affiliated Ninth People's Hospital, Shanghai 200011, China
| | - Yun-song Yang
- Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tu Hu
- Department of Orthopeadics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qing-cheng Yang
- Department of Orthopeadics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
42
|
Salvetti A, Greco A. Viruses and the nucleolus: the fatal attraction. Biochim Biophys Acta Mol Basis Dis 2013; 1842:840-7. [PMID: 24378568 PMCID: PMC7135015 DOI: 10.1016/j.bbadis.2013.12.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/05/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022]
Abstract
Viruses are small obligatory parasites and as a consequence, they have developed sophisticated strategies to exploit the host cell's functions to create an environment that favors their own replication. A common feature of most – if not all – families of human and non-human viruses concerns their interaction with the nucleolus. The nucleolus is a multifunctional nuclear domain, which, in addition to its well-known role in ribosome biogenesis, plays several crucial other functions. Viral infection induces important nucleolar alterations. Indeed, during viral infection numerous viral components localize in nucleoli, while various host nucleolar proteins are redistributed in other cell compartments or are modified, and non-nucleolar cellular proteins reach the nucleolus. This review highlights the interactions reported between the nucleolus and some human or animal viral families able to establish a latent or productive infection, selected on the basis of their known interactions with the nucleolus and the nucleolar activities, and their links with virus replication and/or pathogenesis. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Most viruses interact with the nucleolus that plays a major role in virus life cycle. Virus/nucleolus interaction is crucial for virus replication and pathogenesis. Role of nucleoli in the infection with selected RNA viruses and herpes viruses
Collapse
Affiliation(s)
- Anna Salvetti
- Centre International de Recherche en Infectiologie (CIRI, International Center for Infectiology Research), Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, 46 Allée d'Italie, 69365 Lyon CEDEX, France; LabEx Ecofect, Université de Lyon, 69007 Lyon, France.
| | - Anna Greco
- Centre International de Recherche en Infectiologie (CIRI, International Center for Infectiology Research), Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, 46 Allée d'Italie, 69365 Lyon CEDEX, France; LabEx Ecofect, Université de Lyon, 69007 Lyon, France.
| |
Collapse
|
43
|
Yamada T, Park CS, Lacorazza HD. Genetic control of quiescence in hematopoietic stem cells. Cell Cycle 2013; 12:2376-83. [PMID: 23839041 PMCID: PMC3841317 DOI: 10.4161/cc.25416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023] Open
Abstract
Cellular quiescence is a reversible cell cycle arrest that is poised to re-enter the cell cycle in response to a combination of cell-intrinsic factors and environmental cues. In hematopoietic stem cells, a coordinated balance between quiescence and differentiating proliferation ensures longevity and prevents both genetic damage and stem cell exhaustion. However, little is known about how all these processes are integrated at the molecular level. We will briefly review the environmental and intrinsic control of stem cell quiescence and discuss a new model that involves a protein-to-protein interaction between G0S2 and the phospho-nucleoprotein nucleolin in the cytosol.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Pathology & Immunology; Baylor College of Medicine; Texas Children’s Hospital; Houston, TX USA
| | - Chun Shik Park
- Department of Pathology & Immunology; Baylor College of Medicine; Texas Children’s Hospital; Houston, TX USA
| | - H Daniel Lacorazza
- Department of Pathology & Immunology; Baylor College of Medicine; Texas Children’s Hospital; Houston, TX USA
| |
Collapse
|
44
|
Zhang H, Chen C, Hou L, Jin N, Shi J, Wang Z, Liu Y, Feng Q, Zhang Z. Targeting and hyperthermia of doxorubicin by the delivery of single-walled carbon nanotubes to EC-109 cells. J Drug Target 2013; 21:312-319. [DOI: 10.3109/1061186x.2012.749880] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Zhao H, Huang Y, Xue C, Chen Y, Hou X, Guo Y, Zhao L, Hu ZH, Huang Y, Luo Y, Zhang L. Prognostic significance of the combined score of endothelial expression of nucleolin and CD31 in surgically resected non-small cell lung cancer. PLoS One 2013; 8:e54674. [PMID: 23382938 PMCID: PMC3561357 DOI: 10.1371/journal.pone.0054674] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
Nucleolin is implicated to play a role in angiogenesis, a vital process in tumor growth and metastasis. However, the presence and clinical relevance of nucleolin in human non small cell lung cancer (NSCLC) remains largely unknown. In this study, we explored the expression and prognostic implication of nucleolin in surgically resected NSCLC patients. A cohort of 146 NSCLC patients who underwent surgical resection was selected for tissue microarray. In this tissue microarray, nucleolin expression was measured by immunofluorescence. Staining for CD31, a marker of endothelial cells, was performed to mark blood vessels. A Cox proportional hazards model was used to assess the prognostic significance of nucleolin. Nucleolin expression was observed in 34.2% of all patients, and 64.1% in high CD31 expression patients. The disease-free survival (DFS) was significantly shorter in patients with high nucleolin (CD31(hi)NCL(hi)) compared to patients with low tumor blood vessels (CD31(lo)NCL(lo)) (5 ys of DFS 24% vs 64%, p = 0.002). Such a difference was demonstrated in the following stratified analyses: stage I (p<0.001), squamous cell carcinoma and adenosquamous cell carcinoma (p = 0.028), small tumor (<5 cm, p = 0.008), and surgery alone (p = 0.015). Multivariate analysis further revealed that nucleolin expression independently predicted for worse survival (p = 0.003). This study demonstrates that nucleolin is associated with the clinical outcomes in postoperative NSCLC patients. Thus, the expression levels of nucleolin may provide a new prognostic marker to identify patients at higher risk for treatment failure, especially in some subgroups.
Collapse
Affiliation(s)
- Hongyun Zhao
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yan Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Cong Xue
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yang Chen
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, Beijing Key Laboratory for Protein Therapeutics, and Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Hou
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Ying Guo
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Liping Zhao
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhi huang Hu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Yujie Huang
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, Beijing Key Laboratory for Protein Therapeutics, and Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongzhang Luo
- National Engineering Laboratory for Anti-tumor Protein Therapeutics, Beijing Key Laboratory for Protein Therapeutics, and Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
46
|
Bremer S, Klein K, Sedlmaier A, Abouzied M, Gieselmann V, Franken S. Hepatoma-derived growth factor and nucleolin exist in the same ribonucleoprotein complex. BMC BIOCHEMISTRY 2013; 14:2. [PMID: 23305559 PMCID: PMC3551658 DOI: 10.1186/1471-2091-14-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 01/02/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND Hepatoma-derived growth factor (HDGF) is a protein which is highly expressed in a variety of tumours. HDGF has mitogenic, angiogenic, neurotrophic and antiapoptotic activity but the molecular mechanisms by which it exerts these activities are largely unknown nor has its biological function in tumours been elucidated. Mass spectrometry was performed to analyse the HDGFStrep-tag interactome. By Pull-down-experiments using different protein and nucleic acid constructs the interaction of HDGF and nucleolin was investigated further. RESULTS A number of HDGFStrep-tag copurifying proteins were identified which interact with RNA or are involved in the cellular DNA repair machinery. The most abundant protein, however, copurifying with HDGF in this approach was nucleolin. Therefore we focus on the characterization of the interaction of HDGF and nucleolin in this study. We show that expression of a cytosolic variant of HDGF causes a redistribution of nucleolin into the cytoplasm. Furthermore, formation of HDGF/nucleolin complexes depends on bcl-2 mRNA. Overexpression of full length bcl-2 mRNA increases the number of HDGF/nucleolin complexes whereas expression of only the bcl-2 coding sequence abolishes interaction completely. Further examination reveals that the coding sequence of bcl-2 mRNA together with either the 5' or 3' UTR is sufficient for formation of HDGF/nucleolin complexes. When bcl-2 coding sequence within the full length cDNA is replaced by a sequence coding for secretory alkaline phosphatase complex formation is not enhanced. CONCLUSION The results provide evidence for the existence of HDGF and nucleolin containing nucleoprotein complexes which formation depends on the presence of specific mRNAs. The nature of these RNAs and other components of the complexes should be investigated in future.
Collapse
Affiliation(s)
- Stephanie Bremer
- Institute of Biochemistry and Molecular Biology, University of Bonn, Nussallee 11, Bonn, 53115, Germany
| | - Katharina Klein
- Institute of Biochemistry and Molecular Biology, University of Bonn, Nussallee 11, Bonn, 53115, Germany
| | - Angela Sedlmaier
- Institute of Biochemistry and Molecular Biology, University of Bonn, Nussallee 11, Bonn, 53115, Germany
| | - Mekky Abouzied
- Faculty of Pharmacy, University of El-Minia, El-Minia, Egypt
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, University of Bonn, Nussallee 11, Bonn, 53115, Germany
| | - Sebastian Franken
- Institute of Biochemistry and Molecular Biology, University of Bonn, Nussallee 11, Bonn, 53115, Germany
- Present address: Life-Science-Inkubator, Ludwig-Erhard-Allee 2, Bonn, 53175, Germany
| |
Collapse
|
47
|
Abstract
The perinucleolar compartment (PNC) is a nuclear substructure associated with, but structurally distinct from, the nucleolus. The PNC contains several RNA processing proteins and several RNA pol III transcripts, which form novel complexes. As determined by cell culture experiments and human tumor samples, the PNC forms exclusively in cancer cells and the percentage of cancer cells in a population that have one or more PNCs directly correlates with the malignancy of that population of cells. Therefore, the PNC is being developed as a prognostic marker for several malignancies. PNC elimination in cancer cells has proven to be a useful as screening method to discover probe compounds used to elucidate PNC biology and to discover compounds with the potential to be developed as minimally toxic anti-cancer drugs.
Collapse
Affiliation(s)
- John T Norton
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
48
|
Birmpas C, Briand JP, Courty J, Katsoris P. The pseudopeptide HB-19 binds to cell surface nucleolin and inhibits angiogenesis. Vasc Cell 2012; 4:21. [PMID: 23265284 PMCID: PMC3606460 DOI: 10.1186/2045-824x-4-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/30/2012] [Indexed: 12/31/2022] Open
Abstract
Background Nucleolin is a protein over-expressed on the surface of tumor and endothelial cells. Recent studies have underlined the involvement of cell surface nucleolin in tumor growth and angiogenesis. This cell surface molecule serves as a receptor for various ligands implicated in pathophysiological processes such as growth factors, cell adhesion molecules like integrins, selectins or laminin-1, lipoproteins and viruses (HIV and coxsackie B). HB-19 is a synthetic multimeric pseudopeptide that binds cell surface expressed nucleolin and inhibits both tumor growth and angiogenesis. Methodology/principal findings In the present work, we further investigated the biological actions of pseudopeptide HB-19 on HUVECs. In a previous work, we have shown that HB-19 inhibits the in vivo angiogenesis on the chicken embryo CAM assay. We now provide evidence that HB-19 inhibits the in vitro adhesion, migration and proliferation of HUVECs without inducing their apoptosis. The above biological actions seem to be regulated by SRC, ERK1/2, AKT and FAK kinases as we found that HB-19 inhibits their activation in HUVECs. Matrix metalloproteinases (MMPs) play crucial roles in tumor growth and angiogenesis, so we investigated the effect of HB-19 on the expression of MMP-2 and we found that HB-19 downregulates MMP-2 in HUVECs. Finally, down regulation of nucleolin using siRNA confirmed the implication of nucleolin in the biological actions of these peptides. Conclusions/significance Taken together, these results indicate that HB-19 could constitute an interesting tool for tumor therapy strategy, targeting cell surface nucleolin.
Collapse
|
49
|
Birmpas C, Briand JP, Courty J, Katsoris P. Nucleolin mediates the antiangiogenesis effect of the pseudopeptide N6L. BMC Cell Biol 2012; 13:32. [PMID: 23146273 PMCID: PMC3560177 DOI: 10.1186/1471-2121-13-32] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nucleolin is a protein over-expressed on the surface of activated cells. Recent studies have underlined the involvement of cell surface nucleolin in angiogenesis processes. This cell surface molecule serves as a receptor for various ligands implicated in pathophysiological processes such as growth factors, cell adhesion molecules like integrins, selectins or laminin-1, lipoproteins and viruses. N6L is a synthetic multimeric pseudopeptide that binds cell surface expressed nucleolin and inhibits cell proliferation. RESULTS In the present work, we further investigated the mechanisms of action of pseudopeptide N6L on angiogenesis using HUVECs. We provide evidence that N6L inhibits the in vitro adhesion, proliferation and migration of HUVECs without inducing their apoptosis. In addition, we found that N6L downregulates MMP-2 in HUVECs. The above biological actions are regulated by SRC, ERK1/2, AKT and FAK kinases as we found that N6L inhibits their activation in HUVECs. Finally, down regulation of nucleolin using siRNA demonstrated the implication of nucleolin in the biological actions of these peptides. CONCLUSIONS Taken together, these results indicate that N6L could constitute an interesting therapeutic tool for treating diseases associated with excessive angiogenesis.
Collapse
Affiliation(s)
| | | | - Josẻ Courty
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | |
Collapse
|
50
|
Zhang D, Li J, Zhang M, Gao G, Zuo Z, Yu Y, Zhu L, Gao J, Huang C. The requirement of c-Jun N-terminal kinase 2 in regulation of hypoxia-inducing factor-1α mRNA stability. J Biol Chem 2012; 287:34361-71. [PMID: 22910906 PMCID: PMC3464542 DOI: 10.1074/jbc.m112.365882] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/16/2012] [Indexed: 11/06/2022] Open
Abstract
The mRNA of hif-1α is considered as being constitutively and ubiquitously expressed, regardless of the level of oxygen tension. However many recent reports have showed that hif-1α mRNA could be regulated by natural antisense transcripts, potential microRNAs, and low O(2). In this study, it was found that a deficiency of JNK2 expression reduced HIF-1α protein induction in response to nickel treatment resulting from the impaired expression of hif-1α mRNA. Both the promoter luciferase assay and mRNA degradation assay clearly showed that depletion of JNK2 affected stability of hif-1α mRNA, rather than regulated its transcription. In addition, nucleolin, a classic histone chaperone, was demonstrated to physically bind to hif-1α mRNA and maintain its stability. Further investigation indicated that JNK2 regulated nucleolin expression and might in turn stabilize hif-1α mRNA. Collectively, we provided one more piece of evidence for the oncogenic role of JNK2 and nucleolin in regulating the cancer microenvironments by controlling HIF-1α expression.
Collapse
Affiliation(s)
- Dongyun Zhang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Jingxia Li
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Min Zhang
- the Zhejiang Province Key Laboratory of Medical Genetics, School of Life Science, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Guangxun Gao
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Zhenghong Zuo
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Yonghui Yu
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Linda Zhu
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| | - Jimin Gao
- the Zhejiang Province Key Laboratory of Medical Genetics, School of Life Science, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987 and
| |
Collapse
|