1
|
Xie N. Application of Protein Expression in Mycoplasma Study. SCIENTIFICA 2024; 2024:4142663. [PMID: 39435316 PMCID: PMC11493480 DOI: 10.1155/2024/4142663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/28/2024] [Indexed: 10/23/2024]
Abstract
Mycoplasma is a kind of pathogenic microorganism, and its survival and replication need to be parasitic inside the host cell. Therefore, studies on the metabolic pathway, protein composition, and biological characteristics of Mycoplasma require the use of protein expression techniques. In this paper, the application of protein expression in Mycoplasma research was reviewed, including commonly used protein expression systems, optimization strategy of protein expression, protein omics analysis, and protein function research, and the future development direction has been prospected.
Collapse
Affiliation(s)
- Nian Xie
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton 3168, VIC, Australia
| |
Collapse
|
2
|
Dielectric Spectroscopy to Improve the Production of rAAV Used in Gene Therapy. Processes (Basel) 2020. [DOI: 10.3390/pr8111456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The insect cell-baculovirus expression vector system is an established method for large scale recombinant adeno-associated virus (rAAV) production, largely due to its scalability and high volumetric productivities. During rAAV production it is critical to monitor process parameters such as Spodoptera frugiperda (Sf9) cell concentration, infection timing, and cell harvest viabilities since they can have a significant influence on rAAV productivity and product quality. Herein we developed the use of dielectric spectroscopy as a process analytical technology (PAT) tool used to continuously monitor the production of rAAV in 2 L stirred tank bioreactors, achieving enhanced control over the production process. This study resulted in improved manufacturing robustness through continuous monitoring of cell culture parameters, eliminating sampling needs, increasing the accuracy of infection timing, and reliably estimating the time of harvest. To increase the accuracy of baculovirus infection timing, the cell growth/permittivity model was coupled to a feedback loop with real-time monitoring. This system was able to predict baculovirus infection timing up to 24 h in advance for greatly improved accuracy of infection and ensuring consistent high rAAV productivities. Furthermore, predictive models were developed based on the dielectric measurements of the culture. These multiple linear regression-based models resulted in correlation coefficients (Q2) of 0.89 for viable cell concentration, 0.97 for viability, and 0.92 for cell diameter. Finally, models were developed to predict rAAV titer providing the capability to distinguish in real time between high and low titer production batches.
Collapse
|
3
|
Liu Y, Long YH, Wang SQ, Zhang YY, Li YF, Mi JS, Yu CH, Li DY, Zhang JH, Zhang XJ. JMJD6 regulates histone H2A.X phosphorylation and promotes autophagy in triple-negative breast cancer cells via a novel tyrosine kinase activity. Oncogene 2018; 38:980-997. [PMID: 30185813 DOI: 10.1038/s41388-018-0466-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/04/2018] [Accepted: 07/26/2018] [Indexed: 11/09/2022]
Abstract
Overexpression of Jumonji domain-containing 6 (JMJD6) has been reported to be associated with more aggressive breast cancer characteristics. However, the precise role of JMJD6 in breast cancer development remains unclear. Here, we demonstrate that JMJD6 has intrinsic tyrosine kinase activity and can utilize ATP and GTP as phosphate donors to phosphorylate Y39 of histone H2A.X (H2A.XY39ph). High JMJD6 levels promoted autophagy in triple negative breast cancer (TNBC) cells by regulating the expression of autophagy-related genes. The JMJD6-H2A.XY39ph axis promoted TNBC cell growth via the autophagy pathway. We show that combined inhibition of JMJD6 kinase activity and autophagy efficiently decreases TNBC growth. Together, these findings suggest an effective strategy for TNBC treatment.
Collapse
Affiliation(s)
- Yan Liu
- College of Life Science, North China University of Science and Technology, Tangshan, China.,Cancer Institute, Tangshan People's Hospital, Tangshan, China
| | - Yue-Hong Long
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Shu-Qing Wang
- Hospital of North China University of Science and Technology, Tangshan, China.
| | - Yuan-Yue Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, China.,Cancer Institute, Tangshan People's Hospital, Tangshan, China
| | - Yu-Feng Li
- Cancer Institute, Tangshan People's Hospital, Tangshan, China
| | | | | | - De-Yan Li
- People's Hospital of Zunhua, Zunhua, China
| | - Jing-Hua Zhang
- Cancer Institute, Tangshan People's Hospital, Tangshan, China.
| | | |
Collapse
|
4
|
Dielectric Spectroscopy and Optical Density Measurement for the Online Monitoring and Control of Recombinant Protein Production in Stably Transformed Drosophila melanogaster S2 Cells. SENSORS 2018; 18:s18030900. [PMID: 29562633 PMCID: PMC5876727 DOI: 10.3390/s18030900] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 01/30/2023]
Abstract
The production of recombinant proteins in bioreactors requires real-time process monitoring and control to increase process efficiency and to meet the requirements for a comprehensive audit trail. The combination of optical near-infrared turbidity sensors and dielectric spectroscopy provides diverse system information because different measurement principles are exploited. We used this combination of techniques to monitor and control the growth and protein production of stably transformed Drosophila melanogaster S2 cells expressing antimicrobial proteins. The in situ monitoring system was suitable in batch, fed-batch and perfusion modes, and was particularly useful for the online determination of cell concentration, specific growth rate (µ) and cell viability. These data were used to pinpoint the optimal timing of the key transitional events (induction and harvest) during batch and fed-batch cultivation, achieving a total protein yield of ~25 mg at the 1-L scale. During cultivation in perfusion mode, the OD880 signal was used to control the bleed line in order to maintain a constant cell concentration of 5 × 107 cells/mL, thus establishing a turbidostat/permittistat culture. With this setup, a five-fold increase in productivity was achieved and 130 mg of protein was recovered after 2 days of induced perfusion. Our results demonstrate that both sensors are suitable for advanced monitoring and integration into online control strategies.
Collapse
|
5
|
Grein TA, Loewe D, Dieken H, Salzig D, Weidner T, Czermak P. High titer oncolytic measles virus production process by integration of dielectric spectroscopy as online monitoring system. Biotechnol Bioeng 2018; 115:1186-1194. [DOI: 10.1002/bit.26538] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/30/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Tanja A. Grein
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
| | - Daniel Loewe
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
| | - Hauke Dieken
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
| | - Tobias Weidner
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
- Faculty of Biology and Chemistry; Justus Liebig University; Giessen Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME); Project group Bioresources; Giessen Germany
| |
Collapse
|
6
|
Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A. Diversity, evolution and medical applications of insect antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0290. [PMID: 27160593 PMCID: PMC4874388 DOI: 10.1098/rstb.2015.0290] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 12/30/2022] Open
Abstract
Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus. We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides. The article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’.
Collapse
Affiliation(s)
- Eleftherios Mylonakis
- Division of Infectious Disease, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Lars Podsiadlowski
- Institute of Evolutionary Biology and Zooecology, University of Bonn, Bonn, Germany
| | - Maged Muhammed
- Division of Infectious Disease, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, USA
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| |
Collapse
|
7
|
Zitzmann J, Weidner T, Czermak P. Optimized expression of the antimicrobial protein Gloverin from Galleria mellonella using stably transformed Drosophila melanogaster S2 cells. Cytotechnology 2017; 69:371-389. [PMID: 28132128 PMCID: PMC5366974 DOI: 10.1007/s10616-017-0068-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial proteins and peptides (AMPs) are valuable as leads in the pharmaceutical industry for the development of novel anti-infective drugs. Here we describe the efficient heterologous expression and basic characterization of a Gloverin-family AMP derived from the greater wax moth Galleria mellonella. Highly productive single-cell clones prepared by limiting dilution achieved a 100% increase in productivity compared to the original polyclonal Drosophila melanogaster S2 cell line. Comprehensive screening for suitable expression conditions using statistical experimental designs revealed that optimal induction was achieved using 600 µM CuSO4 at the mid-exponential growth phase. Under these conditions, 25 mg/L of the AMP was expressed at the 1-L bioreactor scale, with optimal induction and harvest times ensured by dielectric spectroscopy and the online measurement of optical density. Gloverin was purified from the supernatant by immobilized metal ion affinity chromatography followed by dialysis. In growth assays, the purified protein showed specific antimicrobial activity against two different strains of Escherichia coli.
Collapse
Affiliation(s)
- Jan Zitzmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Tobias Weidner
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany.
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA.
- Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, Giessen, Germany.
- Project Group Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany.
| |
Collapse
|
8
|
Fan R, Ebrahimi M, Quitmann H, Czermak P. Lactic acid production in a membrane bioreactor system with thermophilic Bacillus coagulans: Online monitoring and process control using an optical sensor. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1213747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rong Fan
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Mehrdad Ebrahimi
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Hendrich Quitmann
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas, USA
- Faculty of Biology and Chemistry, Justus Liebig University, Giessen, Germany
| |
Collapse
|
9
|
Fan R, Ebrahimi M, Quitmann H, Aden M, Czermak P. An Innovative Optical Sensor for the Online Monitoring and Control of Biomass Concentration in a Membrane Bioreactor System for Lactic Acid Production. SENSORS 2016; 16:s16030411. [PMID: 27007380 PMCID: PMC4813986 DOI: 10.3390/s16030411] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 01/12/2023]
Abstract
Accurate real-time process control is necessary to increase process efficiency, and optical sensors offer a competitive solution because they provide diverse system information in a noninvasive manner. We used an innovative scattered light sensor for the online monitoring of biomass during lactic acid production in a membrane bioreactor system because biomass determines productivity in this type of process. The upper limit of the measurement range in fermentation broth containing Bacillus coagulans was ~2.2 g·L−1. The specific cell growth rate (µ) during the exponential phase was calculated using data representing the linear range (cell density ≤ 0.5 g·L−1). The results were consistently and reproducibly more accurate than offline measurements of optical density and cell dry weight, because more data were gathered in real-time over a shorter duration. Furthermore, µmax was measured under different filtration conditions (transmembrane pressure 0.3–1.2 bar, crossflow velocity 0.5–1.5 m·s−1), showing that energy input had no significant impact on cell growth. Cell density was monitored using the sensor during filtration and was maintained at a constant level by feeding with glucose according to the fermentation kinetics. Our novel sensor is therefore suitable for integration into control strategies for continuous fermentation in membrane bioreactor systems.
Collapse
Affiliation(s)
- Rong Fan
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Wiesenstr. 14, 35390 Giessen, Germany.
| | - Mehrdad Ebrahimi
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Wiesenstr. 14, 35390 Giessen, Germany.
| | - Hendrich Quitmann
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Wiesenstr. 14, 35390 Giessen, Germany.
| | - Matthias Aden
- FAUDI Aviation GmbH, Scharnhorststr. 7B, 35260 Stadtallendorf, Germany.
| | - Peter Czermak
- Institute of Bioprocess Engineering and Membrane Technology, University of Applied Sciences Mittelhessen, Wiesenstr. 14, 35390 Giessen, Germany.
- Department of Chemical Engineering, Kansas State University, 1005 Durland Hall, Manhattan, KS 66506, USA.
- Faculty of Biology and Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany.
| |
Collapse
|
10
|
Druzinec D, Weiss K, Elseberg C, Salzig D, Kraume M, Pörtner R, Czermak P. Process analytical technology (PAT) in insect and mammalian cell culture processes: dielectric spectroscopy and focused beam reflectance measurement (FBRM). Methods Mol Biol 2014; 1104:313-341. [PMID: 24297424 DOI: 10.1007/978-1-62703-733-4_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Modern bioprocesses demand for a careful definition of the critical process parameters (CPPs) already during the early stages of process development in order to ensure high-quality products and satisfactory yields. In this context, online monitoring tools can be applied to recognize unfavorable changes of CPPs during the production processes and to allow for early interventions in order to prevent losses of production batches due to quality issues. Process analytical technologies such as the dielectric spectroscopy or focused beam reflectance measurement (FBRM) are possible online monitoring tools, which can be applied to monitor cell growth as well as morphological changes. Since the dielectric spectroscopy only captures cells with intact cell membranes, even information about dead cells with ruptured or leaking cell membranes can be derived. The following chapter describes the application of dielectric spectroscopy on various virus-infected and non-infected cell lines with respect to adherent as well as suspension cultures in common stirred tank reactors. The adherent mammalian cell lines Vero (African green monkey kidney cells) and hMSC-TERT (telomerase-immortalized human mesenchymal stem cells) are thereby cultured on microcarrier, which provide the required growth surface and allow the cultivation of these cells even in dynamic culture systems. In turn, the insect-derived cell lines S2 and Sf21 are used as examples for cells typically cultured in suspension. Moreover, the FBRM technology as a further monitoring tool for cell culture applications has been included in this chapter using the example of Drosophila S2 insect cells.
Collapse
Affiliation(s)
- Damir Druzinec
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|