1
|
Kakumu Y, Chaudhri AA, Helfrich EJN. The role and mechanisms of canonical and non-canonical tailoring enzymes in bacterial terpenoid biosynthesis. Nat Prod Rep 2025; 42:501-539. [PMID: 39895377 DOI: 10.1039/d4np00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Covering: up to April 2024Terpenoids represent the largest and structurally most diverse class of natural products. According to textbook knowledge, this diversity arises from a two-step biosynthetic process: first, terpene cyclases generate a vast array of mono- and polycyclic hydrocarbon scaffolds with multiple stereocenters from a limited set of achiral precursors, a process extensively studied over the past two decades. Subsequently, tailoring enzymes further modify these complex scaffolds through regio- and stereocontrolled oxidation and other functionalization reactions, a topic of increasing interest in recent years. The resulting highly functionalized terpenoids exhibit a broad spectrum of unique biological activities, making them promising candidates for drug development. Recent advances in genome sequencing technologies along with the development and application of sophisticated genome mining tools have revealed bacteria as a largely untapped resource for the discovery of complex terpenoids. Functional characterization of a limited number of bacterial terpenoid biosynthetic pathways, combined with in-depth mechanistic studies of key enzymes, has begun to reveal the versatility of bacterial enzymatic processes involved in terpenoid modification. In this review, we examine the various tailoring reactions leading to complex bacterial terpenoids. We first discuss canonical terpene-modifying enzymes, that catalyze the functionalization of unactivated C-H bonds, incorporation of diverse functional groups, and oxidative and non-oxidative rearrangements. We then explore non-canonical terpene-modifying enzymes that facilitate oxidative rearrangement, cyclization, isomerization, and dimerization reactions. The increasing number of characterized tailoring enzymes that participate in terpene hydrocarbon scaffold fomation, rather than merely decorating pre-formed scaffolds suggests that a re-evaluation of the traditional two-phase model for terpenoid biosynthesis might be warranted. Finally, we address the potential and challenges of mining bacterial genomes to identify terpene biosynthetic gene clusters and expand the bacterial terpene biosynthetic and chemical space.
Collapse
Affiliation(s)
- Yuya Kakumu
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Ayesha Ahmed Chaudhri
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Eric J N Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany.
- LOEWE Center for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Yang JC, Zhang JP, Wu CY, Bai Y, Guedes RNC, Dewer Y, Li FQ, Zang LS. Diversity and role of volatile terpene and terpenoid pheromones in insects. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:9-18. [PMID: 39578941 DOI: 10.1093/jee/toae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/10/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Insect pheromones are critical chemical signals that regulate intraspecific behavior and play a key role in the dynamic monitoring and control of pest populations. Historically, research on insect pheromones has primarily focused on lipid-based compounds. However, terpenes and terpenoids, which are widely occurring classes of bioactive compounds, also play significant roles in insect pheromone blends. Over 50 terpene and terpenoid-based pheromones have been identified in over 52 insect species, spanning various orders such as Coleoptera, Hymenoptera, Blattodea, Hemiptera, Diptera, and Lepidoptera. These compounds are associated with several types of pheromones, including female or male sex pheromones, aggregation pheromones, alarm pheromones, and aphrodisiac pheromones. Terpenes and terpenoids may act as either primary or secondary components of pheromone blends and influence a wide range of critical insect behaviors. They play essential roles in the physiological and ecological adaptation of insects to their environment. This review provides a comprehensive overview of current research on terpene and terpenoid-based pheromones in insects, examining their structures, types, and physiological and ecological functions. Additionally, we propose future research directions to guide the application of these pheromones in insect behavioral regulation and pest management, while advocating for their broader use in insect pest monitoring and control.
Collapse
Affiliation(s)
- Jiu-Chun Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jin-Ping Zhang
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun-Yan Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yun Bai
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Raul Narciso C Guedes
- Department of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Feng-Qi Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Lian-Sheng Zang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticides and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Kim JH, Park CM, Jeong HC, Lee S, Yun CH. Production of derivatives of α-terpineol by bacterial CYP102A1 enzymes. Biotechnol Lett 2024; 47:1. [PMID: 39585478 DOI: 10.1007/s10529-024-03540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/29/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
The monooxygenase activity of engineered CYP102A1 on α-terpineol was investigated. CYP102A1 M850 mutant (F11Y/R47L/D68G/F81I/F87V/E143G/L188Q/E267V/H408R) showed the highest catalytic activity toward α-terpineol among the engineered mutants produced by random mutagenesis. The major product (P1) of α-terpineol, p-menth-1-ene-3,8-diol, was characterized by high-performance liquid chromatography, gas-chromatography mass spectrometry, and nuclear magnetic resonance spectroscopy. Three minor products (P2-P4) of α-terpineol were considered as 6-hydroxy-α,α,4-trimethyl-3-cyclohexene-1-methanol (P2), trans-sobrerol (P3), and carvone hydrate (P4). Optimal conditions for product formation were determined as pH 7.0 and 30 °C. Production of p-menth-1-ene-3,8-diol was 0.87 mM at 1 h. Structure modeling using PyMOL and CAVER Web 1.2 server indicated that several mutations of CYP102A1 M850 were involved in access tunnels and active sites, resulting in increased activity toward α-terpineol. The major product, p-menth-1-ene-3,8-diol, of α-terpineol was produced by engineered CYP102A1 M850 via regioselective carbon hydroxylation. The engineered CYP102A1 could be a suitable biocatalyst for producing α-terpineol derivatives.
Collapse
Affiliation(s)
- Jeong-Hoon Kim
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, 77 Yongbongro, Gwangju, 61186, Republic of Korea
| | - Chan Mi Park
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju, 61186, Republic of Korea
- Institute of Natural BIO Industry for Namwon, 43 Simyo-gil, Namwon-si, Jeonbuk-do, 55801, Republic of Korea
| | - Hae Chan Jeong
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, 77 Yongbongro, Gwangju, 61186, Republic of Korea
| | - Sungbeom Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea.
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Chul-Ho Yun
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, 77 Yongbongro, Gwangju, 61186, Republic of Korea.
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju, 61186, Republic of Korea.
- Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, 77 Yongbongro, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
4
|
Kim JH, Park CM, Jeong HC, Jeong GH, Cha GS, Lee S, Yun CH. Production of Mono-Hydroxylated Derivatives of Terpinen-4-ol by Bacterial CYP102A1 Enzymes. J Microbiol Biotechnol 2024; 34:725-734. [PMID: 38044690 PMCID: PMC11016761 DOI: 10.4014/jmb.2310.10018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
CYP102A1 from Bacillus megaterium is an important enzyme in biotechnology, because engineered CYP102A1 enzymes can react with diverse substrates and produce human cytochrome P450-like metabolites. Therefore, CYP102A1 can be applied to drug metabolite production. Terpinen-4-ol is a cyclic monoterpene and the primary component of essential tea tree oil. Terpinen-4-ol was known for therapeutic effects, including antibacterial, antifungal, antiviral, and anti-inflammatory. Because terpenes are natural compounds, examining novel terpenes and investigating the therapeutic effects of terpenes represent responses to social demands for eco-friendly compounds. In this study, we investigated the catalytic activity of engineered CYP102A1 on terpinen-4-ol. Among CYP102A1 mutants tested here, the R47L/F81I/F87V/E143G/L188Q/N213S/E267V mutant showed the highest activity to terpinen-4-ol. Two major metabolites of terpinen-4-ol were generated by engineered CYP102A1. Characterization of major metabolites was confirmed by liquid chromatography-mass spectrometry (LC-MS), gas chromatography-MS, and nuclear magnetic resonance spectroscopy (NMR). Based on the LC-MS results, the difference in mass-to-charge ratio of an ion (m/z) between terpinen-4-ol and its major metabolites was 16. One major metabolite was defined as 1,4-dihydroxy-p-menth-2-ene by NMR. Given these results, we speculate that another major metabolite is also a mono-hydroxylated product. Taken together, we suggest that CYP102A1 can be applied to make novel terpene derivatives.
Collapse
Affiliation(s)
- Jeong-Hoon Kim
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Chan Mi Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hae Chan Jeong
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Gyeong Han Jeong
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea
| | - Gun Su Cha
- Namhae Garlic Research Institute, Namhae 52430, Republic of Korea
| | - Sungbeom Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup 56212, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute of Synthetic Biology for Carbon Neutralization, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
5
|
Correddu D, Helmy Aly S, Di Nardo G, Catucci G, Prandi C, Blangetti M, Bellomo C, Bonometti E, Viscardi G, Gilardi G. Enhanced and specific epoxidation activity of P450 BM3 mutants for the production of high value terpene derivatives. RSC Adv 2022; 12:33964-33969. [PMID: 36505709 PMCID: PMC9703296 DOI: 10.1039/d2ra06029a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Terpenes are natural molecules of valuable interest for different industrial applications. Cytochromes P450 enzymes can functionalize terpenoids to form high value oxidized derivatives in a green and sustainable manner, representing a valid alternative to chemical catalysis. In this work, an enhanced and specific epoxidation activity of cytochrome P450 BM3 mutants was found for the terpenes geraniol and linalool. This is the first report showing the epoxidation of linalool by P450 BM3 and its mutant A2 (Asp251Gly/Gln307His) with the formation of valuable oxide derivatives, highlighting the relevance of this enzymes for industrial applications.
Collapse
Affiliation(s)
- Danilo Correddu
- Department of Life Sciences and Systems Biology, University of TorinoVia Accademia Albertina 1310123TorinoItaly
| | - Sabrina Helmy Aly
- Department of Life Sciences and Systems Biology, University of TorinoVia Accademia Albertina 1310123TorinoItaly
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of TorinoVia Accademia Albertina 1310123TorinoItaly
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of TorinoVia Accademia Albertina 1310123TorinoItaly
| | - Cristina Prandi
- Department of Chemistry, University of TorinoVia P. Giuria 710125TorinoItaly
| | - Marco Blangetti
- Department of Chemistry, University of TorinoVia P. Giuria 710125TorinoItaly
| | - Chiara Bellomo
- Department of Chemistry, University of TorinoVia P. Giuria 710125TorinoItaly
| | | | - Guido Viscardi
- Department of Chemistry, University of TorinoVia P. Giuria 710125TorinoItaly
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of TorinoVia Accademia Albertina 1310123TorinoItaly
| |
Collapse
|
6
|
Li X, Ren JN, Fan G, Yang SZ, Zhang LL, Pan SY. Separation and purification of nootkatone from fermentation broth of Yarrowia lipolytica with high-speed counter-current chromatography. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4487-4498. [PMID: 36193467 PMCID: PMC9525468 DOI: 10.1007/s13197-022-05529-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/17/2021] [Accepted: 06/03/2022] [Indexed: 06/08/2023]
Abstract
Nootkatone is an important functional sesquiterpene, which can be obtained by the biotransformation of valencene. It is increasingly important because of its pleasant citrus aroma and physiological effects. Yarrowia lipolytica is beneficial for biotechnology applications and has ability to transform valencene to nootkatone. High-speed counter-current chromatography (HSCCC) was used to isolate and purify the product of nootkatone in this study. The suitable two-phase solvent system was selected and the optimum separation conditions were determined. The partition coefficients of nootkatone and the separation factor between nootkatone and valencene were considered as the indexes. The results showed that there were numerous products during the transformation of valencene by Yarrowia lipolytica, and the content of nootkatone was 13.75%. The obtained nootkatone was separated by HSCCC with a solvent system n-hexane/methanol/water (5/4/1, v/v). The final purity of nootkatone was 91.61 ± 0.20% and the elution time was 290-310 min. The structure of nootkatone was identified by gas chromatography-mass spectrometry (GC-MS), infrared spectrum and nuclear magnetic resonance hydrogen spectroscopy (1H NMR). This was the first report on the separation of nootkatone from the fermentation broth by HSCCC. This study proved that HSCCC could be used as an effective method to separate and purify the nootkatone from valencene transformed by Yarrowia lipolytica with n-hexane/methanol/water (5/4/1, v/v).
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Shu-Zhen Yang
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Lu-Lu Zhang
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 China
| |
Collapse
|
7
|
Mahor D, Cong Z, Weissenborn MJ, Hollmann F, Zhang W. Valorization of Small Alkanes by Biocatalytic Oxyfunctionalization. CHEMSUSCHEM 2022; 15:e202101116. [PMID: 34288540 DOI: 10.1002/cssc.202101116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The oxidation of alkanes into valuable chemical products is a vital reaction in organic synthesis. This reaction, however, is challenging, owing to the inertness of C-H bonds. Transition metal catalysts for C-H functionalization are frequently explored. Despite chemical alternatives, nature has also evolved powerful oxidative enzymes (e. g., methane monooxygenases, cytochrome P450 oxygenases, peroxygenases) that are capable of transforming C-H bonds under very mild conditions, with only the use of molecular oxygen or hydrogen peroxide as electron acceptors. Although progress in alkane oxidation has been reviewed extensively, little attention has been paid to small alkane oxidation. The latter holds great potential for the manufacture of chemicals. This Minireview provides a concise overview of the most relevant enzyme classes capable of small alkanes (C<6 ) oxyfunctionalization, describes the essentials of the catalytic mechanisms, and critically outlines the current state-of-the-art in preparative applications.
Collapse
Affiliation(s)
- Durga Mahor
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- Indian Institute of Science Education and Research Berhampur, Odisha, 760010, India
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, Shandong, 266101, P. R. China
| | - Martin J Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Saale), Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Wuyuan Zhang
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
8
|
Fungal biotransformation of limonene and pinene for aroma production. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep 2022; 39:90-118. [PMID: 34231643 PMCID: PMC8791446 DOI: 10.1039/d1np00025j] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are a diverse group of chemicals used in a wide range of industries. Microbial terpenoid production has the potential to displace traditional manufacturing of these compounds with renewable processes, but further titre improvements are needed to reach cost competitiveness. This review discusses strategies to increase terpenoid titres in Escherichia coli with a focus on alternative metabolic pathways. Alternative pathways can lead to improved titres by providing higher orthogonality to native metabolism that redirects carbon flux, by avoiding toxic intermediates, by bypassing highly-regulated or bottleneck steps, or by being shorter and thus more efficient and easier to manipulate. The canonical 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonate (MVA) pathways are engineered to increase titres, sometimes using homologs from different species to address bottlenecks. Further, alternative terpenoid pathways, including additional entry points into the MEP and MVA pathways, archaeal MVA pathways, and new artificial pathways provide new tools to increase titres. Prenyl diphosphate synthases elongate terpenoid chains, and alternative homologs create orthogonal pathways and increase product diversity. Alternative sources of terpenoid synthases and modifying enzymes can also be better suited for E. coli expression. Mining the growing number of bacterial genomes for new bacterial terpenoid synthases and modifying enzymes identifies enzymes that outperform eukaryotic ones and expand microbial terpenoid production diversity. Terpenoid removal from cells is also crucial in production, and so terpenoid recovery and approaches to handle end-product toxicity increase titres. Combined, these strategies are contributing to current efforts to increase microbial terpenoid production towards commercial feasibility.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Clara A Ferraz
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
10
|
Nowrouzi B, Rios-Solis L. Redox metabolism for improving whole-cell P450-catalysed terpenoid biosynthesis. Crit Rev Biotechnol 2021; 42:1213-1237. [PMID: 34749553 DOI: 10.1080/07388551.2021.1990210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The growing preference for producing cytochrome P450-mediated natural products in microbial systems stems from the challenging nature of the organic chemistry approaches. The P450 enzymes are redox-dependent proteins, through which they source electrons from reducing cofactors to drive their activities. Widely researched in biochemistry, most of the previous studies have extensively utilised expensive cell-free assays to reveal mechanistic insights into P450 functionalities in presence of commercial redox partners. However, in the context of microbial bioproduction, the synergic activity of P450- reductase proteins in microbial systems have not been largely investigated. This is mainly due to limited knowledge about their mutual interactions in the context of complex systems. Hence, manipulating the redox potential for natural product synthesis in microbial chassis has been limited. As the potential of redox state as crucial regulator of P450 biocatalysis has been greatly underestimated by the scientific community, in this review, we re-emphasize their pivotal role in modulating the in vivo P450 activity through affecting the product profile and yield. Particularly, we discuss the applications of widely used in vivo redox engineering methodologies for natural product synthesis to provide further suggestions for patterning on P450-based terpenoids production in microbial platforms.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
11
|
Wang WK, Yang HJ, Wang YL, Yang KL, Jiang LS, Li SL. Gossypol detoxification in the rumen and Helicoverpa armigera larvae: A review. ACTA ACUST UNITED AC 2021; 7:967-972. [PMID: 34703914 PMCID: PMC8521185 DOI: 10.1016/j.aninu.2021.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 11/18/2022]
Abstract
Gossypol, a phenolic compound found in the cotton plant, is widely distributed in cottonseed by-products. Although ruminant animals are believed to be more tolerant of gossypol toxicity than monogastric animals due to rumen microbial fermentation, the actual mechanisms of detoxification remain unclear. In contrast, the metabolic detoxification of gossypol by Helicoverpa armigera (Lepidoptera: Noctuidae) larvae has achieved great advances. The present review discusses the clinical signs of gossypol in ruminant animals, as well as summarizing advances in the study of gossypol detoxification in the rumen. It also examines the regulatory roles of several key enzymes in gossypol detoxification and transformation known in H. armigera. With the rapid development of modern molecular biotechnology and -omics technology strategies, evidence increasingly indicates that research into the biological degradation of gossypol in H. armigera larvae and some microbes, in terms of these key enzymes, could provide scientific insights that would underpin future work on microbial gossypol detoxification in the rumen, with the ultimate aim of further alleviating gossypol toxicity in ruminant animals.
Collapse
Affiliation(s)
- Wei-Kang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hong-Jian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Corresponding author.
| | - Yan-Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kai-Lun Yang
- College of Animal Sciences, Xinjiang Agricultural University, Urumuqi, 830052, China
| | - Lin-Shu Jiang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Sheng-Li Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Khusnutdinova EF, Baikova IP, Lobov AN, Kazakova OB. Uncommon Ozonolysis of 2,3-Seco-24,28-dinorlupa-4(23),20(29)-diene-2,17-dicarbonitrile. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021090049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Grant PS, Brimble MA. seco-Labdanes: A Study of Terpenoid Structural Diversity Resulting from Biosynthetic C-C Bond Cleavage. Chemistry 2021; 27:6367-6389. [PMID: 33289161 DOI: 10.1002/chem.202004574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/08/2022]
Abstract
The cleavage of a C-C bond is a complexity generating process, which complements oxidation and cyclisation events in the biosynthesis of terpenoids. This process leads to increased structural diversity in a cluster of related secondary metabolites by modification of the parent carbocyclic core. In this review, we highlight the diversifying effect of C-C bond cleavage by examining the literature related to seco-labdanes-a class of diterpenoids arising from such C-C bond cleavage events.
Collapse
Affiliation(s)
- Phillip S Grant
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
14
|
Soares-Castro P, Soares F, Santos PM. Current Advances in the Bacterial Toolbox for the Biotechnological Production of Monoterpene-Based Aroma Compounds. Molecules 2020; 26:molecules26010091. [PMID: 33379215 PMCID: PMC7794910 DOI: 10.3390/molecules26010091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Monoterpenes are plant secondary metabolites, widely used in industrial processes as precursors of important aroma compounds, such as vanillin and (-)-menthol. However, the physicochemical properties of monoterpenes make difficult their conventional conversion into value-added aromas. Biocatalysis, either by using whole cells or enzymes, may overcome such drawbacks in terms of purity of the final product, ecological and economic constraints of the current catalysis processes or extraction from plant material. In particular, the ability of oxidative enzymes (e.g., oxygenases) to modify the monoterpene backbone, with high regio- and stereo-selectivity, is attractive for the production of "natural" aromas for the flavor and fragrances industries. We review the research efforts carried out in the molecular analysis of bacterial monoterpene catabolic pathways and biochemical characterization of the respective key oxidative enzymes, with particular focus on the most relevant precursors, β-pinene, limonene and β-myrcene. The presented overview of the current state of art demonstrates that the specialized enzymatic repertoires of monoterpene-catabolizing bacteria are expanding the toolbox towards the tailored and sustainable biotechnological production of values-added aroma compounds (e.g., isonovalal, α-terpineol, and carvone isomers) whose implementation must be supported by the current advances in systems biology and metabolic engineering approaches.
Collapse
|
15
|
Fermentation as an Alternative Process for the Development of Bioinsecticides. FERMENTATION 2020. [DOI: 10.3390/fermentation6040120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Currently, insect pest control is carried out through the application of synthetic insecticides which have been related to harmful effects on both human and environmental health, as well as to the development of resistant pest populations. In this context, the development of new and natural insecticides is necessary. Agricultural and forestry waste or by-products are very low-cost substrates that can be converted by microorganisms into useful value-added bioactive products through fermentation processes. In this review we discuss recent discoveries of compounds obtained from fermented substrates along with their insecticidal, antifeedant, and repellent activities. Fermentation products obtained from agricultural and forestry waste are described in detail. The fermentation of the pure secondary metabolite such as terpenes and phenols is also included.
Collapse
|
16
|
Daletos G, Stephanopoulos G. Protein engineering strategies for microbial production of isoprenoids. Metab Eng Commun 2020; 11:e00129. [PMID: 32612930 PMCID: PMC7322351 DOI: 10.1016/j.mec.2020.e00129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 01/16/2023] Open
Abstract
Isoprenoids comprise one of the most chemically diverse family of natural products with high commercial interest. The structural diversity of isoprenoids is mainly due to the modular activity of three distinct classes of enzymes, including prenyl diphosphate synthases, terpene synthases, and cytochrome P450s. The heterologous expression of these enzymes in microbial systems is suggested to be a promising sustainable way for the production of isoprenoids. Several limitations are associated with native enzymes, such as low stability, activity, and expression profiles. To address these challenges, protein engineering has been applied to improve the catalytic activity, selectivity, and substrate turnover of enzymes. In addition, the natural promiscuity and modular fashion of isoprenoid enzymes render them excellent targets for combinatorial studies and the production of new-to-nature metabolites. In this review, we discuss key individual and multienzyme level strategies for the successful implementation of enzyme engineering towards efficient microbial production of high-value isoprenoids. Challenges and future directions of protein engineering as a complementary strategy to metabolic engineering are likewise outlined.
Collapse
Affiliation(s)
- Georgios Daletos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
17
|
Abstract
Leonuketal is an 8,9-seco-labdane terpenoid with a unique tetracyclic structure, owing to a diversity-generating biosynthetic C-C bond cleavage event. The first total synthesis of leonuketal is reported, featuring a Ti(III)-mediated reductive cyclization of an epoxy nitrile ether, an unusual ring-opening alkyne formation as part of an auxiliary ring strategy, and the previously undescribed Au(I)-catalyzed cyclization of a β-keto(enol)lactone to assemble the core spiroketal motif.
Collapse
Affiliation(s)
- Phillip S Grant
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, 3 Symonds Street, Auckland 1010, New Zealand
| | - Daniel P Furkert
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, 3 Symonds Street, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, 3 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
18
|
Francoeur CB, Khadempour L, Moreira-Soto RD, Gotting K, Book AJ, Pinto-Tomás AA, Keefover-Ring K, Currie CR. Bacteria Contribute to Plant Secondary Compound Degradation in a Generalist Herbivore System. mBio 2020; 11:e02146-20. [PMID: 32934088 PMCID: PMC7492740 DOI: 10.1128/mbio.02146-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Herbivores must overcome a variety of plant defenses, including coping with plant secondary compounds (PSCs). To help detoxify these defensive chemicals, several insect herbivores are known to harbor gut microbiota with the metabolic capacity to degrade PSCs. Leaf-cutter ants are generalist herbivores, obtaining sustenance from specialized fungus gardens that act as external digestive systems and which degrade the diverse collection of plants foraged by the ants. There is in vitro evidence that certain PSCs harm Leucoagaricus gongylophorus, the fungal cultivar of leaf-cutter ants, suggesting a role for the Proteobacteria-dominant bacterial community present within fungus gardens. In this study, we investigated the ability of symbiotic bacteria present within fungus gardens of leaf-cutter ants to degrade PSCs. We cultured fungus garden bacteria, sequenced the genomes of 42 isolates, and identified genes involved in PSC degradation, including genes encoding cytochrome P450 enzymes and genes in geraniol, cumate, cinnamate, and α-pinene/limonene degradation pathways. Using metatranscriptomic analysis, we showed that some of these degradation genes are expressed in situ Most of the bacterial isolates grew unhindered in the presence of PSCs and, using gas chromatography-mass spectrometry (GC-MS), we determined that isolates from the genera Bacillus, Burkholderia, Enterobacter, Klebsiella, and Pseudomonas degrade α-pinene, β-caryophyllene, or linalool. Using a headspace sampler, we show that subcolonies of fungus gardens reduced α-pinene and linalool over a 36-h period, while L. gongylophorus strains alone reduced only linalool. Overall, our results reveal that the bacterial communities in fungus gardens play a pivotal role in alleviating the effect of PSCs on the leaf-cutter ant system.IMPORTANCE Leaf-cutter ants are dominant neotropical herbivores capable of deriving energy from a wide range of plant substrates. The success of leaf-cutter ants is largely due to their external gut, composed of key microbial symbionts, specifically, the fungal mutualist L. gongylophorus and a consistent bacterial community. Both symbionts are known to have critical roles in extracting energy from plant material, yet comparatively little is known about their roles in the detoxification of plant secondary compounds. In this study, we assessed if the bacterial communities associated with leaf-cutter ant fungus gardens can degrade harmful plant chemicals. We identify plant secondary compound detoxification in leaf-cutter ant gardens as a process that depends on the degradative potential of both the bacterial community and L. gongylophorus Our findings suggest that the fungus garden and its associated microbial community influence the generalist foraging abilities of the ants, underscoring the importance of microbial symbionts in plant substrate suitability for herbivores.
Collapse
Affiliation(s)
- Charlotte B Francoeur
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lily Khadempour
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rolando D Moreira-Soto
- Sección de Entomología Medica, Departamento de Parasitología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Kirsten Gotting
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam J Book
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adrián A Pinto-Tomás
- Centro de Investigación en Estructuras Microscópicas, Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Facultad de Medicina, Universidad de Costa Rica, San José, Costa Rica
- Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica, San José, Costa Rica
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Arnesen JA, Kildegaard KR, Cernuda Pastor M, Jayachandran S, Kristensen M, Borodina I. Yarrowia lipolytica Strains Engineered for the Production of Terpenoids. Front Bioeng Biotechnol 2020; 8:945. [PMID: 32923433 PMCID: PMC7456906 DOI: 10.3389/fbioe.2020.00945] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Terpenoids are a diverse group of over 55,000 compounds with potential applications as advanced fuels, bulk and fine chemicals, pharmaceutical ingredients, agricultural chemicals, etc. To facilitate their bio-based production, there is a need for plug-and-play hosts, capable of high-level production of different terpenoids. Here we engineer Yarrowia lipolytica platform strains for the overproduction of mono-, sesqui-, di-, tri-, and tetraterpenoids. The monoterpene platform strain was evaluated by expressing Perilla frutescens limonene synthase, which resulted in limonene titer of 35.9 mg/L and was 100-fold higher than when the same enzyme was expressed in the strain without mevalonate pathway improvement. Expression of Callitropsis nootkatensis valencene synthase in the sesquiterpene platform strain resulted in 113.9 mg/L valencene, an 8.4-fold increase over the control strain. Platform strains for production of squalene, complex triterpenes, or diterpenes and carotenoids were also constructed and resulted in the production of 402.4 mg/L squalene, 22 mg/L 2,3-oxidosqualene, or 164 mg/L β-carotene, respectively. The presented terpenoid platform strains can facilitate the evaluation of terpenoid biosynthetic pathways and are a convenient starting point for constructing efficient cell factories for the production of various terpenoids. The platform strains and exemplary terpenoid strains can be obtained from Euroscarf.
Collapse
Affiliation(s)
- Jonathan Asmund Arnesen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Marc Cernuda Pastor
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sidharth Jayachandran
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
20
|
A First Insight into North American Plant Pathogenic Fungi Armillaria Sinapina Transcriptome. BIOLOGY 2020; 9:biology9070153. [PMID: 32635577 PMCID: PMC7407180 DOI: 10.3390/biology9070153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 12/02/2022]
Abstract
Armillaria sinapina, a fungal pathogen of primary timber species of North American forests, causes white root rot disease that ultimately kills the trees. A more detailed understanding of the molecular mechanisms underlying this illness will support future developments on disease resistance and management, as well as in the decomposition of cellulosic material for further use. In this study, RNA-Seq technology was used to compare the transcriptome profiles of A. sinapina fungal culture grown in yeast malt broth medium supplemented or not with betulin, a natural compound of the terpenoid group found in abundance in white birch bark. This was done to identify enzyme transcripts involved in the metabolism (redox reaction) of betulin into betulinic acid, a potent anticancer drug. De novo assembly and characterization of A. sinapina transcriptome was performed using Illumina technology. A total of 170,592,464 reads were generated, then 273,561 transcripts were characterized. Approximately, 53% of transcripts could be identified using public databases with several metabolic pathways represented. A total of 11 transcripts involved in terpenoid biosynthesis were identified. In addition, 25 gene transcripts that could play a significant role in lignin degradation were uncovered, as well as several redox enzymes of the cytochromes P450 family. To our knowledge, this research is the first transcriptomic study carried out on A. sinapina.
Collapse
|
21
|
Buergler MB, Dennig A, Nidetzky B. Process intensification for cytochrome P450 BM3-catalyzed oxy-functionalization of dodecanoic acid. Biotechnol Bioeng 2020; 117:2377-2388. [PMID: 32369187 PMCID: PMC7384007 DOI: 10.1002/bit.27372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/15/2023]
Abstract
Selective oxy‐functionalization of nonactivated C‐H bonds is a long‐standing “dream reaction” of organic synthesis for which chemical methodology is not well developed. Mono‐oxygenase enzymes are promising catalysts for such oxy‐functionalization to establish. Limitation on their applicability arises from low reaction output. Here, we showed an integrated approach of process engineering to the intensification of the cytochrome P450 BM3‐catalyzed hydroxylation of dodecanoic acid (C12:0). Using P450 BM3 together with glucose dehydrogenase for regeneration of nicotinamide adenine dinucleotide phosphate (NADPH), we compared soluble and co‐immobilized enzymes in O2‐gassed and pH‐controlled conversions at high final substrate concentrations (≥40mM). We identified the main engineering parameters of process output (i.e., O2 supply; mixing correlated with immobilized enzyme stability; foam control correlated with product isolation; substrate solubilization) and succeeded in disentangling their complex interrelationship for systematic process optimization. Running the reaction at O2‐limited conditions at up to 500‐ml scale (10% dimethyl sulfoxide; silicone antifoam), we developed a substrate feeding strategy based on O2 feedback control. Thus, we achieved high reaction rates of 1.86g·L−1·hr−1 and near complete conversion (≥90%) of 80mM (16g/L) C12:0 with good selectivity (≤5% overoxidation). We showed that “uncoupled reaction” of the P450 BM3 (~95% utilization of NADPH and O2 not leading to hydroxylation) with the C12:0 hydroxylated product limited the process efficiency at high product concentration. Hydroxylated product (~7g; ≥92% purity) was recovered from 500ml reaction in 82% yield using ethyl‐acetate extraction. Collectively, these results demonstrate key engineering parameters for the biocatalytic oxy‐functionalization and show their integration into a coherent strategy for process intensification.
Collapse
Affiliation(s)
- Moritz B Buergler
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
22
|
Li Z, Jiang Y, Zhang X, Chang Y, Li S, Zhang X, Zheng S, Geng C, Men P, Ma L, Yang Y, Gao Z, Tang YJ, Li S. Fragrant Venezuelaenes A and B with A 5–5–6–7 Tetracyclic Skeleton: Discovery, Biosynthesis, and Mechanisms of Central Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01575] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yimin Chang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shuai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaomin Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shanmin Zheng
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Ping Men
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ying Yang
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Zhengquan Gao
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
23
|
McCulley CH, Tantillo DJ. Predicting Rearrangement-Competent Terpenoid Oxidation Levels. J Am Chem Soc 2020; 142:6060-6065. [PMID: 32157874 DOI: 10.1021/jacs.9b12398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Results of density functional theory calculations on rearrangements of potential biosynthetic precursors to the sesquiterpenoid illisimonin A reveal that only some possible precursors, those with certain specific oxidation patterns, are rearrangement-competent.
Collapse
Affiliation(s)
- Christina H McCulley
- Department of Chemistry, University of California - Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California - Davis, Davis, California 95616, United States
| |
Collapse
|
24
|
Helfrich EJN, Lin GM, Voigt CA, Clardy J. Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Beilstein J Org Chem 2019; 15:2889-2906. [PMID: 31839835 PMCID: PMC6902898 DOI: 10.3762/bjoc.15.283] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
Terpenoids are the largest and structurally most diverse class of natural products. They possess potent and specific biological activity in multiple assays and against diseases, including cancer and malaria as notable examples. Although the number of characterized terpenoid molecules is huge, our knowledge of how they are biosynthesized is limited, particularly when compared to the well-studied thiotemplate assembly lines. Bacteria have only recently been recognized as having the genetic potential to biosynthesize a large number of complex terpenoids, but our current ability to associate genetic potential with molecular structure is severely restricted. The canonical terpene biosynthetic pathway uses a single enzyme to form a cyclized hydrocarbon backbone followed by modifications with a suite of tailoring enzymes that can generate dozens of different products from a single backbone. This functional promiscuity of terpene biosynthetic pathways renders terpene biosynthesis susceptible to rational pathway engineering using the latest developments in the field of synthetic biology. These engineered pathways will not only facilitate the rational creation of both known and novel terpenoids, their development will deepen our understanding of a significant branch of biosynthesis. The biosynthetic insights gained will likely empower a greater degree of engineering proficiency for non-natural terpene biosynthetic pathways and pave the way towards the biotechnological production of high value terpenoids.
Collapse
Affiliation(s)
- Eric J N Helfrich
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, United States
| | - Geng-Min Lin
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, United States
| | - Christopher A Voigt
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, United States
| | - Jon Clardy
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, United States
| |
Collapse
|
25
|
Tang D, Liu W, Huang L, Cheng L, Xu Z. Efficient biotransformation of vitamin D 3 to 25-hydroxyvitamin D 3 by a newly isolated Bacillus cereus strain. Appl Microbiol Biotechnol 2019; 104:765-774. [PMID: 31776608 DOI: 10.1007/s00253-019-10250-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
25-hydroxyvitamin D3 has attracted considerable attention due to its great medical value and huge market demand in animal husbandry. Microbial production of 25-hydroxyvitamin D3 has been recognized as an alternative superior to traditional chemical synthesis. In this study, a Gram-positive bacteria zju 4-2 (CCTCC M 2019385) was isolated from the soil using vitamin D3 as the sole carbon source and was identified as Bacillus cereus according to its physiological characteristics and 16S rRNA analysis, which also showed a relatively high capacity for 25-hydroxyvitamin D3 production. Through systematic optimization of different catalytic conditions, the optimal solvent system of vitamin D3, vitamin D3 addition time and concentration, temperature, and pH were shown to be propylene glycol/ethanol (v/v = 9:1), early stationary phase, 2 g/L, 37 °C, and pH 7.2, respectively. With these optimal conditions, 796 mg/L of 25-hydroxyvitamin D3 was achieved after 48 h bioconversion with zju 4-2 at the shake flask level. Finally, up to 830 mg/L 25-hydroxyvitamin D3 with a yield of 41.5% was obtained in a 5 L fermentation tank. Our developed biotransformation process with this newly isolated strain provides a platform to produce 25-hydroxyvitamin D3 efficiently at industrialization scale.
Collapse
Affiliation(s)
- Dandan Tang
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.,Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Liu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Leming Cheng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
26
|
Tugcu G, Charehsaz M, Aydın A. Toxicological evaluation of ergocalciferol, cholecalciferol, and their metabolites by a category approach. Drug Chem Toxicol 2019; 44:661-667. [PMID: 31412708 DOI: 10.1080/01480545.2019.1650061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Predictive toxicology plays an integral role in determining the toxicological profiles of chemicals for safety assessment. Vitamin D is an essential vitamin for the regulation of calcium absorption and homeostasis, as well as the treatment and prevention of several diseases such as rickets and osteomalacia. According to European Medicines Agency (EMA) Guideline on setting health-based exposure limits for use in risk identification in the manufacturing of different medicinal products in shared facilities, permitted daily exposure (PDE) calculation for active pharmaceutical ingredients (APIs) should be done by the medicinal product producers. PDE calculation is mainly based on critical toxicological endpoints such as repeated dose toxicity, genotoxicity, carcinogenicity, developmental and reproductive toxicity, and hypersensitivity potential. During this procedure, critical toxicological endpoints data of an API can be used to predict the PDE of another API that has a similar chemical structure. In the present paper, human toxicological endpoints of vitamin D2, D3, and their metabolites were evaluated and afterwards the data gaps in the toxicological endpoints were filled by forming a category. The read-across was justified by the structural and metabolic similarities. Molecular similarity and mechanistic relevance were found to be substantial, resulting in low uncertainty. The untested vitamin D analogs within the category can be read across with confidence to complete the data gaps related to the human health endpoints.
Collapse
Affiliation(s)
- Gulcin Tugcu
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Mohammad Charehsaz
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Ahmet Aydın
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
27
|
Klenk JM, Dubiel P, Sharma M, Grogan G, Hauer B. Characterization and structure-guided engineering of the novel versatile terpene monooxygenase CYP109Q5 from Chondromyces apiculatus DSM436. Microb Biotechnol 2019; 12:377-391. [PMID: 30592153 PMCID: PMC6389848 DOI: 10.1111/1751-7915.13354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 01/12/2023] Open
Abstract
One of the major challenges in chemical synthesis is the selective oxyfunctionalization of non-activated C-H bonds, which can be enabled by biocatalysis using cytochrome P450 monooxygenases. In this study, we report on the characterization of the versatile CYP109Q5 from Chondromyces apiculatus DSM436, which is able to functionalize a wide range of substrates (terpenes, steroids and drugs), including the ring of β-ionone in non-allylic positions. The crystal structure of CYP109Q5 revealed flexibility within the active site pocket that permitted the accommodation of bulky substrates, and enabled a structure-guided approach to engineering the enzyme. Some variants of CYP109Q5 displayed a switch in selectivity towards the non-allylic positions of β-ionone, allowing the simultaneous production of 2- and 3-hydroxy-β-ionone, which are chemically challenging to synthesize and are important precursors for carotenoid synthesis. An efficient whole-cell system finally enabled the production of up to 0.5 g l-1 hydroxylated products of β-ionone; this system can be applied to product identification in further biotransformations. Overall, CYP109Q5 proved to be highly evolvable and active. The studies in this work demonstrate that, using rational mutagenesis, the highly versatile CYP109Q5 generalist can be progressively evolved to be an industrially valuable specialist for the synthesis of specific products.
Collapse
Affiliation(s)
- Jan M. Klenk
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Paulina Dubiel
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Mahima Sharma
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Gideon Grogan
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Bernhard Hauer
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| |
Collapse
|
28
|
Sagadin T, Riehm J, Putkaradze N, Hutter MC, Bernhardt R. Novel approach to improve progesterone hydroxylation selectivity by
CYP
106A2 via rational design of adrenodoxin binding. FEBS J 2019; 286:1240-1249. [DOI: 10.1111/febs.14722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Tanja Sagadin
- Department of Biochemistry Saarland University Saarbrücken Germany
| | - Jan Riehm
- Center for Bioinformatics Saarland University Saarbrücken Germany
| | | | | | - Rita Bernhardt
- Department of Biochemistry Saarland University Saarbrücken Germany
| |
Collapse
|
29
|
Forman V, Bjerg-Jensen N, Dyekjær JD, Møller BL, Pateraki I. Engineering of CYP76AH15 can improve activity and specificity towards forskolin biosynthesis in yeast. Microb Cell Fact 2018; 17:181. [PMID: 30453976 PMCID: PMC6240942 DOI: 10.1186/s12934-018-1027-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Background Forskolin is a high-value diterpenoid produced exclusively by the Lamiaceae plant Coleus forskohlii. Today forskolin is used pharmaceutically for its adenyl-cyclase activating properties. The limited availability of pure forskolin is currently hindering its full utilization, thus a new environmentally friendly, scalable and sustainable strategy is needed for forskolin production. Recently, the entire biosynthetic pathway leading to forskolin was elucidated. The key steps of the pathway are catalyzed by cytochrome P450 enzymes (CYPs), which have been shown to be the limiting steps of the pathway. Here we study whether protein engineering of the substrate recognition sites (SRSs) of CYPs can improve their efficiency towards forskolin biosynthesis in yeast. Results As a proof of concept, we engineered the enzyme responsible for the first putative oxygenation step of the forskolin pathway: the conversion of 13R-manoyl oxide to 11-oxo-13R-manoyl oxide, catalyzed by the CYP76AH15. Four CYP76AH15 variants—engineered in the SRS regions—yielded at least a twofold increase of 11-oxo-13R-manoyl oxide when expressed in yeast cells grown in microtiter plates. The highest titers (5.6-fold increase) were observed with the variant A99I, mutated in the SRS1 region. Double or triple CYP76AH15 mutant variants resulted in additional enzymes with optimized performances. Moreover, in planta CYP76AH15 can synthesize ferruginol from miltiradiene. In this work, we showed that the mutants affecting 11-oxo-13R-manoyl oxide synthesis, do not affect ferruginol production, and vice versa. The best performing variant, A99I, was utilized to reconstruct the forskolin biosynthetic pathway in yeast cells. Although these strains showed increased 11-oxo-manoyl oxide production and higher accumulation of other pathway intermediates compared to the native CYP76AH15, lower production of forskolin was observed. Conclusions As demonstrated for CYP76AH15, site-directed mutagenesis of SRS regions of plant CYPs may be an efficient and targeted approach to increase the performance of these enzymes. Although in this work we have managed to achieve higher efficiency and specificity of the first CYP of the pathway, further work is necessary in order to increase the overall production of forskolin in yeast cells. Electronic supplementary material The online version of this article (10.1186/s12934-018-1027-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Victor Forman
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.,Evolva A/S, Copenhagen, Denmark
| | | | | | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.,bioSYNergy, Center for Synthetic Biology, 1871, Frederiksberg C, Denmark.,VILLUM, Research Center for Plant Plasticity, 1871, Frederiksberg C, Denmark
| | - Irini Pateraki
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark. .,bioSYNergy, Center for Synthetic Biology, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
30
|
Szaleniec M, Wojtkiewicz AM, Bernhardt R, Borowski T, Donova M. Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms. Appl Microbiol Biotechnol 2018; 102:8153-8171. [PMID: 30032434 PMCID: PMC6153880 DOI: 10.1007/s00253-018-9239-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022]
Abstract
The steroid superfamily includes a wide range of compounds that are essential for living organisms of the animal and plant kingdoms. Structural modifications of steroids highly affect their biological activity. In this review, we focus on hydroxylation of steroids by bacterial hydroxylases, which take part in steroid catabolic pathways and play an important role in steroid degradation. We compare three distinct classes of metalloenzymes responsible for aerobic or anaerobic hydroxylation of steroids, namely: cytochrome P450, Rieske-type monooxygenase 3-ketosteroid 9α-hydroxylase, and molybdenum-containing steroid C25 dehydrogenases. We analyze the available literature data on reactivity, regioselectivity, and potential application of these enzymes in organic synthesis of hydroxysteroids. Moreover, we describe mechanistic hypotheses proposed for all three classes of enzymes along with experimental and theoretical evidences, which have provided grounds for their formulation. In case of the 3-ketosteroid 9α-hydroxylase, such a mechanistic hypothesis is formulated for the first time in the literature based on studies conducted for other Rieske monooxygenases. Finally, we provide comparative analysis of similarities and differences in the reaction mechanisms utilized by bacterial steroid hydroxylases.
Collapse
Affiliation(s)
- Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland.
| | - Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - Rita Bernhardt
- Lehrstuhl für Biochemie, Universität des Saarlandes, Campus B2 2, 66123, Saarbrücken, Germany
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - Marina Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Oblast, 142290, Russia
| |
Collapse
|
31
|
Binding modes of CYP106A2 redox partners determine differences in progesterone hydroxylation product patterns. Commun Biol 2018; 1:99. [PMID: 30271979 PMCID: PMC6123783 DOI: 10.1038/s42003-018-0104-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/27/2018] [Indexed: 11/17/2022] Open
Abstract
Natural redox partners of bacterial cytochrome P450s (P450s) are mostly unknown. Therefore, substrate conversions are performed with heterologous redox partners; in the case of CYP106A2 from Bacillus megaterium ATCC 13368, bovine adrenodoxin (Adx) and adrenodoxin reductase (AdR). Our aim was to optimize the redox system for CYP106A2 for improved product formation by testing 11 different combinations of redox partners. We found that electron transfer protein 1(516–618) showed the highest yield of the main product, 15β-hydroxyprogesterone, and, furthermore, produced a reduced amount of unwanted polyhydroxylated side products. Molecular protein–protein docking indicated that this is caused by subtle structural changes leading to alternative binding modes of both redox enzymes. Stopped-flow measurements analyzing the CYP106A2 reduction and showing substantial differences in the apparent rate constants supported this conclusion. The study provides for the first time to our knowledge rational explanations for differences in product patterns of a cytochrome P450 caused by difference in the binding mode of the redox partners. Tanja Sagadin et al. show that different redox systems can be used to tune the rate selectivity and yield of progesterone conversion by the cytochrome P450 CYP106A2. They screen 11 redox partner combinations and identify specific combinations that may be used to improve biotechnological production of mono- and polyhydroxylated products.
Collapse
|
32
|
Schempp FM, Drummond L, Buchhaupt M, Schrader J. Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2247-2258. [PMID: 28418659 DOI: 10.1021/acs.jafc.7b00473] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Terpenoid flavor and fragrance compounds are of high interest to the aroma industry. Microbial production offers an alternative sustainable access to the desired terpenoids independent of natural sources. Genetically engineered microorganisms can be used to synthesize terpenoids from cheap and renewable resources. Due to its modular architecture, terpenoid biosynthesis is especially well suited for the microbial cell factory concept: a platform host engineered for a high flux toward the central C5 prenyl diphosphate precursors enables the production of a broad range of target terpenoids just by varying the pathway modules converting the C5 intermediates to the product of interest. In this review typical terpenoid flavor and fragrance compounds marketed or under development by biotech and aroma companies are given, and the specificities of the aroma market are discussed. The main part of this work focuses on key strategies and recent advances to engineer microbes to become efficient terpenoid producers.
Collapse
Affiliation(s)
- Florence M Schempp
- DECHEMA-Forschungsinstitut, Industrial Biotechnology , Theodor-Heuss-Allee 25 , 60486 Frankfurt am Main , Germany
| | - Laura Drummond
- DECHEMA-Forschungsinstitut, Industrial Biotechnology , Theodor-Heuss-Allee 25 , 60486 Frankfurt am Main , Germany
| | - Markus Buchhaupt
- DECHEMA-Forschungsinstitut, Industrial Biotechnology , Theodor-Heuss-Allee 25 , 60486 Frankfurt am Main , Germany
| | - Jens Schrader
- DECHEMA-Forschungsinstitut, Industrial Biotechnology , Theodor-Heuss-Allee 25 , 60486 Frankfurt am Main , Germany
| |
Collapse
|
33
|
Four New Compounds Obtained from Cultured Cells of Artemisia annua. Molecules 2017; 22:molecules22122264. [PMID: 29258280 PMCID: PMC6150029 DOI: 10.3390/molecules22122264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/06/2017] [Accepted: 12/15/2017] [Indexed: 11/23/2022] Open
Abstract
Four new compounds obtained from cultured cells of Artemisia annua were reported. Products were detected by HPLC-ELSD/GC-MS and isolated by chromatographic methods. The structures of four new compounds, namely 6-hydroxy arteannuin I (1), 1-hydroxy arteannuin I (2), 2-hydroxy arteannuin J (3), and 14-hydroxy arteannuin J (4), were elucidated using their physico-chemical properties by NMR and MS data analyses. The results from the spontaneous oxidative experiment indicated that the biosynthesis of the new compounds was enzyme-catalyzed. Interestingly, the enzymes in the cultured cells of A. annua showed the abilities of substrate-selective and region-selective hydroxylation of the sesquiterpene lactone. Furthermore, the artemisinin contents were increased by 50% and 80% compared to the control group after the addition of arteannuin I/J to the suspension-cultured cells of A. annua under light and dark culture conditions, respectively.
Collapse
|
34
|
Putkaradze N, Litzenburger M, Abdulmughni A, Milhim M, Brill E, Hannemann F, Bernhardt R. CYP109E1 is a novel versatile statin and terpene oxidase from Bacillus megaterium. Appl Microbiol Biotechnol 2017; 101:8379-8393. [PMID: 29018905 DOI: 10.1007/s00253-017-8552-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/22/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022]
Abstract
CYP109E1 is a cytochrome P450 monooxygenase from Bacillus megaterium with a hydroxylation activity for testosterone and vitamin D3. This study reports the screening of a focused library of statins, terpene-derived and steroidal compounds to explore the substrate spectrum of this enzyme. Catalytic activity of CYP109E1 towards the statin drug-precursor compactin and the prodrugs lovastatin and simvastatin as well as biotechnologically relevant terpene compounds including ionones, nootkatone, isolongifolen-9-one, damascones, and β-damascenone was found in vitro. The novel substrates induced a type I spin-shift upon binding to P450 and thus permitted to determine dissociation constants. For the identification of conversion products by NMR spectroscopy, a B. megaterium whole-cell system was applied. NMR analysis revealed for the first time the ability of CYP109E1 to catalyze an industrially highly important reaction, the production of pravastatin from compactin, as well as regioselective oxidations generating drug metabolites (6'β-hydroxy-lovastatin, 3'α-hydroxy-simvastatin, and 4″-hydroxy-simvastatin) and valuable terpene derivatives (3-hydroxy-α-ionone, 4-hydroxy-β-ionone, 11,12-epoxy-nootkatone, 4(R)-hydroxy-isolongifolen-9-one, 3-hydroxy-α-damascone, 4-hydroxy-β-damascone, and 3,4-epoxy-β-damascone). Besides that, a novel compound, 2-hydroxy-β-damascenone, produced by CYP109E1 was identified. Docking calculations using the crystal structure of CYP109E1 rationalized the experimentally observed regioselective hydroxylation and identified important amino acid residues for statin and terpene binding.
Collapse
Affiliation(s)
- Natalia Putkaradze
- Institute of Biochemistry, Saarland University, 66123, Saarbruecken, Germany
| | - Martin Litzenburger
- Institute of Biochemistry, Saarland University, 66123, Saarbruecken, Germany
| | - Ammar Abdulmughni
- Institute of Biochemistry, Saarland University, 66123, Saarbruecken, Germany
| | - Mohammed Milhim
- Institute of Biochemistry, Saarland University, 66123, Saarbruecken, Germany
| | - Elisa Brill
- Institute of Biochemistry, Saarland University, 66123, Saarbruecken, Germany
| | - Frank Hannemann
- Institute of Biochemistry, Saarland University, 66123, Saarbruecken, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, 66123, Saarbruecken, Germany.
| |
Collapse
|
35
|
Loskot SA, Romney DK, Arnold FH, Stoltz BM. Enantioselective Total Synthesis of Nigelladine A via Late-Stage C-H Oxidation Enabled by an Engineered P450 Enzyme. J Am Chem Soc 2017; 139:10196-10199. [PMID: 28721734 DOI: 10.1021/jacs.7b05196] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An enantioselective total synthesis of the norditerpenoid alkaloid nigelladine A is described. Strategically, the synthesis relies on a late-stage C-H oxidation of an advanced intermediate. While traditional chemical methods failed to deliver the desired outcome, an engineered cytochrome P450 enzyme was employed to effect a chemo- and regioselective allylic C-H oxidation in the presence of four oxidizable positions. The enzyme variant was readily identified from a focused library of three enzymes, allowing for completion of the synthesis without the need for extensive screening.
Collapse
Affiliation(s)
- Steven A Loskot
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - David K Romney
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Brian M Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
36
|
Hall EA, Sarkar MR, Lee JHZ, Munday SD, Bell SG. Improving the Monooxygenase Activity and the Regio- and Stereoselectivity of Terpenoid Hydroxylation Using Ester Directing Groups. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01882] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emma A. Hall
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Md. Raihan Sarkar
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Joel H. Z. Lee
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Samuel D. Munday
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Stephen G. Bell
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
37
|
Chu LL, Pandey RP, Jung N, Jung HJ, Kim EH, Sohng JK. Hydroxylation of diverse flavonoids by CYP450 BM3 variants: biosynthesis of eriodictyol from naringenin in whole cells and its biological activities. Microb Cell Fact 2016; 15:135. [PMID: 27495155 PMCID: PMC4974697 DOI: 10.1186/s12934-016-0533-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/27/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cytochrome P450 monooxygenase constitutes a significant group of oxidative enzymes that can introduce an oxygen atom in a high regio- and stereo-selectivity mode. We used the Bacillus megaterium cytochrome P450 BM3 (CYP450 BM3) and its variants namely mutant 13 (M13) and mutant 15 (M15) for the hydroxylation of diverse class of flavonoids. RESULTS Among 20 flavonoids, maximum seven flavonoids were hydroxylated by the variants while none of these molecules were accepted by CYP450 BM3 in in vitro reaction. Moreover, M13 exhibited higher conversion of substrates than M15 and CYP450 BM3 enzymes. We found that M13 carried out regiospecific 3'-hydroxylation reaction of naringenin with the highest conversion among all the tested flavonoids. The apparent K m and k cat values of M13 for naringenin were 446 µM and 1.955 s(-1), respectively. In whole-cell biotransformation experiment with 100 µM of naringenin in M9 minimal medium with 2 % glucose in shake flask culture, M13 showed 2.14- and 13.96-folds higher conversion yield in comparison with M15 (16.11 %) and wild type (2.47 %). The yield of eriodictyol was 46.95 µM [~40.7 mg (13.5 mg/L)] in a 3-L volume lab scale fermentor at 48 h in the same medium exhibiting approximately 49.81 % conversion of the substrate. In addition, eriodictyol exhibited higher antibacterial and anticancer potential than naringenin, flavanone and hesperetin. CONCLUSIONS We elucidated that eriodictyol being produced from naringenin using recombinant CYP450 BM3 and its variants from B. megaterium, which shows an approach for the production of important hydroxylated compounds of various polyphenols that may span pharmaceutical industries.
Collapse
Affiliation(s)
- Luan Luong Chu
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea
| | - Narae Jung
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea
| | - Eun-Hee Kim
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk, 363-883, South Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea. .,Department of BT-Convergent Pharmaceutical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea.
| |
Collapse
|
38
|
Schifrin A, Litzenburger M, Ringle M, Ly TTB, Bernhardt R. New Sesquiterpene Oxidations with CYP260A1 and CYP264B1 fromSorangium cellulosumSo ce56. Chembiochem 2015; 16:2624-32. [DOI: 10.1002/cbic.201500417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Alexander Schifrin
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
| | - Martin Litzenburger
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
| | - Michael Ringle
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
| | - Thuy T. B. Ly
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
- Institute of Biotechnology; Vietnam Academy of Science and Technology (VAST); 18-Hoang Quoc Viet Hanoi Vietnam
| | - Rita Bernhardt
- Universität des Saarlandes; Biochemie; Campus B2.2 66123 Saarbrücken Germany
| |
Collapse
|