1
|
Eraky SM, Ramadan NM, Atif HM, Mahmoud AM, Abo El-Magd NF. The ameliorating effect of intermittent fasting on intestinal glucagon-like peptide 1 in rats fed a high-fat diet via the Farnesoid X receptor and the Melanocortin-4 receptor. Life Sci 2025; 361:123327. [PMID: 39716568 DOI: 10.1016/j.lfs.2024.123327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/08/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Obesity and its associated intestinal inflammatory responses represent a significant global challenge. (IF) is a dietary intervention demonstrating various health benefits, including weight loss, enhanced metabolic health, and increased longevity. However, its effect on the intestinal inflammation induced by high-fat diet (HFD) is still not fully comprehended. Thirty-four male Sprague-Dawley rats were randomized into three groups: Control (fed standard chow diet for 24 weeks); the HFD group (fed HFD for 24 weeks); and the HFD + IF group (fed HFD for 12 weeks, followed by an alternate day regimen of fasting and HFD for 12 weeks). The results revealed that IF significantly reduced body weight, food intake, and blood glucose levels compared to the HFD group. Furthermore, rats undergoing the intermittent fasting regimen exhibited a significant reduction in resting time, along with increased durations of grooming and exploration when compared to those on HFD. IF significantly reduced HFD-induced intestinal oxidative stress by lowering malondialdehyde levels and substantially increasing intestinal total antioxidant capacity, consistent with histopathological findings of gastric and intestinal tissues. The investigation of the underlying mechanisms revealed that IF significantly increased the intestinal expression of Farnesoid X receptor (FXR), glucagon-like peptide 1 (GLP-1), and melanocortin-4 receptors (MC4R), with a significant decrease in gastrointestinal peroxisome proliferator-activated receptor-γ (PPAR-γ) compared to the HFD group. The findings indicate that IF can mitigate HFD-induced intestinal inflammation via the FXR/GLP-1/MC4R/ PPAR-γ pathway. This highlights the need for further research to elucidate these mechanisms.
Collapse
Affiliation(s)
- Salma M Eraky
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Huda M Atif
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini, Cairo 11562, Egypt
| | - Nada F Abo El-Magd
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Egypt.
| |
Collapse
|
2
|
Liu P, Jin M, Hu P, Sun W, Tang Y, Wu J, Zhang D, Yang L, He H, Xu X. Gut microbiota and bile acids: Metabolic interactions and impacts on diabetic kidney disease. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100315. [PMID: 39726973 PMCID: PMC11670419 DOI: 10.1016/j.crmicr.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
The intestinal microbiota comprises approximately 1013-1014 species of bacteria and plays a crucial role in host metabolism by facilitating various chemical reactions. Secondary bile acids (BAs) are key metabolites produced by gut microbiota.Initially synthesized by the liver, BA undergoes structural modifications through the activity of various intestinal microbiota enzymes, including eukaryotic, bacterial, and archaeal enzymes. These modified BA then activate specific receptors that regulate multiple metabolic pathways in the host, such as lipid and glucose metabolism, energy balance, inflammatory response, and cell proliferation and death. Recent attention has been given to intestinal flora disorders in diabetic kidney disease (DKD), where activation of BA receptors has shown promise in alleviating diabetic kidney damage by modulating renal lipid metabolism and mitochondrial production. Imbalances in the intestinal flora can influence the progression of DKD through the regulation of bile acid and its receptor pathways. This review aims to propose a mechanism involving the gut-BA-diabetes and nephropathy axes with the goal of optimizing new strategies for treating DKD.
Collapse
Affiliation(s)
| | | | - Ping Hu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Weiqian Sun
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuyan Tang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiajun Wu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Dongliang Zhang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Licai Yang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Haidong He
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xudong Xu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Li Y, Liu X, Sun X, Li H, Wang S, Tian W, Xiang C, Zhang X, Zheng J, Wang H, Zhang L, Cao L, Wong CCL, Liu Z. Gut dysbiosis impairs intestinal renewal and lipid absorption in Scarb2 deficiency-associated neurodegeneration. Protein Cell 2024; 15:818-839. [PMID: 38635907 PMCID: PMC11528516 DOI: 10.1093/procel/pwae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
Scavenger receptor class B, member 2 (SCARB2) is linked to Gaucher disease and Parkinson's disease. Deficiency in the SCARB2 gene causes progressive myoclonus epilepsy (PME), a rare group of inherited neurodegenerative diseases characterized by myoclonus. We found that Scarb2 deficiency in mice leads to age-dependent dietary lipid malabsorption, accompanied with vitamin E deficiency. Our investigation revealed that Scarb2 deficiency is associated with gut dysbiosis and an altered bile acid pool, leading to hyperactivation of FXR in intestine. Hyperactivation of FXR impairs epithelium renewal and lipid absorption. Patients with SCARB2 mutations have a severe reduction in their vitamin E levels and cannot absorb dietary vitamin E. Finally, inhibiting FXR or supplementing vitamin E ameliorates the neuromotor impairment and neuropathy in Scarb2 knockout mice. These data indicate that gastrointestinal dysfunction is associated with SCARB2 deficiency-related neurodegeneration, and SCARB2-associated neurodegeneration can be improved by addressing the nutrition deficits and gastrointestinal issues.
Collapse
Affiliation(s)
- Yinghui Li
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Liu
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xue Sun
- First School of Clinical Medicine, Peking University First Hospital, Peking University, Beijing 100034, China
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Hui Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shige Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Wotu Tian
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chen Xiang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyuan Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Haifang Wang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Catherine C L Wong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Peking University, Beijing 100084, China
| | - Zhihua Liu
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Fang H, Wang X, Wang Z, Ma X, Zhang L, Yang L. Modulation of PI3K/AKT/mTOR signaling pathway in the ovine liver and duodenum during early pregnancy. Domest Anim Endocrinol 2024; 89:106870. [PMID: 38954983 DOI: 10.1016/j.domaniend.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The liver and intestine play a critical role in nutrient absorption, storage, and metabolism. The aim of this study was to evaluate expression pattern of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of the rapamycin (mTOR) signaling pathway that included PI3K, AKT1, mTOR, FoxO1, SREBP-1, PPARα, PTEN and FXR in the maternal liver and duodenum. Ovine livers and duodenums were sampled at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation, and RT-qPCR, western blot and immunohistochemistry analysis were used to detect mRNA and protein expression. The results showed that expression of PI3K, AKT1, p-mTOR, FoxO1, SREBP-1 and PTEN upregulated in the maternal liver, and PPARα upregulated in the duodenum. However, expression of FoxO1, SREBP-1 and PTEN in the duodenum downregulated during early pregnancy. In addition, expression levels of SREBP-1, PTEN and PPARα in the maternal liver, and PI3K in the duodenum peaked at day 13 of pregnancy. In addition, expression levels of PI3K, p-mTOR and FoxO1 in the liver, and AKT1 and p-mTOR in the duodenum peaked at day 16 of pregnancy. Nevertheless, expression levels of FXR both in the maternal liver duodenum downregulated at days 13 and 16 of pregnancy. In conclusion, early pregnancy regulated expression pattern of PI3K/AKT/mTOR signaling pathway in the ovine liver and duodenum in a pregnancy stage-specific and tissue-specific manner, which may be necessary for the adaptations in maternal hepatic nutrient metabolism and intestinal nutrient absorption early pregnancy.
Collapse
Affiliation(s)
- Hongxu Fang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Xinxin Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Zhongyue Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Xiaoxin Ma
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Leying Zhang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China
| | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan 056038, PR China.
| |
Collapse
|
5
|
Wang J, Yang N, Xu Y. Natural Products in the Modulation of Farnesoid X Receptor Against Nonalcoholic Fatty Liver Disease. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:291-314. [PMID: 38480498 DOI: 10.1142/s0192415x24500137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health concern with a high prevalence and increasing economic burden, but official medicine remains unavailable. Farnesoid X receptor (FXR), a nuclear receptor member, is one of the most promising drug targets for NAFLD therapy that plays a crucial role in modulating bile acid, glucose, and lipid homeostasis, as well as inhibits hepatic inflammation and fibrosis. However, the rejection of the FXR agonist, obecholic acid, by the Food and Drug Administration for treating hepatic fibrosis raises a question about the functions of FXR in NAFLD progression and the therapeutic strategy to be used. Natural products, such as FXR modulators, have become the focus of attention for NAFLD therapy with fewer adverse reactions. The anti-NAFLD mechanisms seem to act as FXR agonists and antagonists or are involved in the FXR signaling pathway activation, indicating a promising target of FXR therapeutic prospects using natural products. This review discusses the effective mechanisms of FXR in NAFLD alleviation, and summarizes currently available natural products such as silymarin, glycyrrhizin, cycloastragenol, berberine, and gypenosides, for targeting FXR, which can facilitate development of naturally targeted drug by medicinal specialists for effective treatment of NAFLD.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, P. R. China
| | - Na Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, P. R. China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, P. R. China
| |
Collapse
|
6
|
Petito-da-Silva TI, Villardi FM, Penna-de-Carvalho A, Mandarim-de-Lacerda CA, Souza-Mello V, Barbosa-da-Silva S. An Intestinal FXR Agonist Mitigates Dysbiosis, Intestinal Tight Junctions, and Inflammation in High-Fat Diet-Fed Mice. Mol Nutr Food Res 2024; 68:e2300148. [PMID: 38085111 DOI: 10.1002/mnfr.202300148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/23/2023] [Indexed: 03/01/2024]
Abstract
SCOPE To analyze the effects of fexaramine (FEX), as an intestinal FXR agonist, on the modulation of the intestinal microbiota and ileum of mice fed a high-fat (HF) diet. METHODS AND RESULTS Three-month-old C57Bl/6 male mice are divided into two groups and received a control (C, 10% of energy from lipids) or HF (50% of energy from lipids) diet for 12 weeks. They are subdivided into the C, C + FEX, HF, and HF + FEX groups. FEX is administered (FEX-5 mg kg-1 ) via orogastric gavage for three weeks. Body mass (BM), glucose metabolism, qPCR 16S rRNA gene expression, and ileum gene expression, bile acids (BAs), tight junctions (TJs), and incretin are analyzed. FEX reduces BM and glucose intolerance, reduces plasma lipid concentrations and the Firmicutes/Bacteroidetes ratio, increases the Lactobacillus sp. and Prevotella sp. abundance, and reduces the Escherichia coli abundance. Consequently, the ileal gene expression of Fxr-Fgf15, Tgr5-Glp1, and Cldn-Ocldn-Zo1 is increased, and Tlr4-Il6-Il1beta is decreased. CONCLUSION FEX stimulates intestinal FXR and improves dysbiosis, intestinal TJs, and the release of incretins, mitigating glucose intolerance and BM increases induced by an HF diet. However, FEX results in glucose intolerance, insulin resistance, and reduces intestinal TJs in a control group, thus demonstrating limitations to this dietary model.
Collapse
Affiliation(s)
- Tamiris Ingrid Petito-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Missiba Villardi
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Penna-de-Carvalho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Dvořák Z, Li H, Mani S. Microbial Metabolites as Ligands to Xenobiotic Receptors: Chemical Mimicry as Potential Drugs of the Future. Drug Metab Dispos 2023; 51:219-227. [PMID: 36184080 PMCID: PMC9900867 DOI: 10.1124/dmd.122.000860] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/28/2022] [Accepted: 09/19/2022] [Indexed: 01/31/2023] Open
Abstract
Xenobiotic receptors, such as the pregnane X receptor, regulate multiple host physiologic pathways including xenobiotic metabolism, certain aspects of cellular metabolism, and innate immunity. These ligand-dependent nuclear factors regulate gene expression via genomic recognition of specific promoters and transcriptional activation of the gene. Natural or endogenous ligands are not commonly associated with this class of receptors; however, since these receptors are expressed in a cell-type specific manner in the liver and intestines, there has been significant recent effort to characterize microbially derived metabolites as ligands for these receptors. In general, these metabolites are thought to be weak micromolar affinity ligands. This journal anniversary minireview focuses on recent efforts to derive potentially nontoxic microbial metabolite chemical mimics that could one day be developed as drugs combating xenobiotic receptor-modifying pathophysiology. The review will include our perspective on the field and recommend certain directions for future research. SIGNIFICANCE STATEMENT: Xenobiotic receptors (XRs) regulate host drug metabolism, cellular metabolism, and immunity. Their presence in host intestines allows them to function not only as xenosensors but also as a response to the complex metabolic environment present in the intestines. Specifically, this review focuses on describing microbial metabolite-XR interactions and the translation of these findings toward discovery of novel chemical mimics as potential drugs of the future for diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Zdeněk Dvořák
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hao Li
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sridhar Mani
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
8
|
Duan S, Li X, Fan G, Liu R. Targeting bile acid signaling for the treatment of liver diseases: From bench to bed. Biomed Pharmacother 2022; 152:113154. [PMID: 35653887 DOI: 10.1016/j.biopha.2022.113154] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022] Open
Abstract
Liver diseases and related complications have become one of the leading causes of morbidity and mortality worldwide, yet effective medicine or approved treatment approach is still limited. Thus, novel therapy is urgently required to prevent or at least slow down the growing burden of liver transplantation or even death caused by malignant liver diseases. As the irreplaceable modulator of hepatic and intestinal signaling cascades, bile acids (BAs) play complex physiological as well as pathological roles in regulating energy and immune homeostasis in various liver diseases, including but not limited to metabolic diseases and cholangiopathies, making them highly attractive therapeutic targets. In the current review, recent progress in the research of enterohepatic circulation of BAs and potential therapeutic targets of BAs signaling, especially the development of currently available treatments, including agonizts of FXR and TGR5, analogs of FGF19, inhibitors of ASBT, and the regulation of gut microbiome through fecal microbiota transplantation were extensively summarized. Their protective effects, molecular mechanisms, and outcomes of clinical trials were highlighted. The structural features of these candidates and perspectives for their future development were further discussed. In conclusion, we believe that pharmacological therapies targeting BAs signaling represent promising and efficient strategies for the treatment of complex and multifactorial liver disorders.
Collapse
Affiliation(s)
- Shuni Duan
- School of Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Guifang Fan
- School of Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Runping Liu
- School of Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China.
| |
Collapse
|
9
|
Wu H, Lei Y, Mao J. Non-alcoholic fatty liver disease and intestinal immune status: a narrative review. Scand J Gastroenterol 2022; 57:642-649. [PMID: 35188038 DOI: 10.1080/00365521.2022.2032320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Background and objectives: Non-alcoholic fatty liver disease (NAFLD) interacts with the gut immunity. However, the mechanisms underlying alternations of intestinal immune system in NAFLD remains unclear. To date, no effective medical interventions exist that completely reverse the disease. In this review, we mainly elaborates on the impact of NAFLD on intestinal immune cells and briefly summarize the new treatment methods for NAFLD targeting at intestinal immune cells.Methods: We searched MEDLINE, EMBASE and Web of Science for English-language sources. The preferred citations were meta-analyses and systematic or narrative reviews. Citation tracking was completed for all identified studies included in the refined library, using Google Scholar. No restriction was placed on the year of publication for the included reports.Results: The intestinal immune imbalance promotes liver inflammation and fibrosis in the process of NAFLD, and meanwhile, NAFLD influences disorders of immune cells in the liver and intestinal tract. Biological agents targeting at intestinal immunity has been shown in preclinical studies to be an effective method for systemic immune modulation and alleviates immune-mediated injury.Conclusions: Intestinal immune disorder plays an important role in triggering and amplifying hepatic inflammation in NAFLD. Advances in knowledge of the gut-liver axis are driving the development of diagnostic, prognostic and therapeutic tools based on intestine immunity for the management of NAFLD.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yalan Lei
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Gastroenterology, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China
| | - Jingwei Mao
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
10
|
Tian SY, Chen SM, Pan CX, Li Y. FXR: structures, biology, and drug development for NASH and fibrosis diseases. Acta Pharmacol Sin 2022; 43:1120-1132. [PMID: 35217809 PMCID: PMC9061771 DOI: 10.1038/s41401-021-00849-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
The nuclear receptor farnesoid-X-receptor (FXR) plays an essential role in bile acid, glucose, and lipid homeostasis. In the last two decades, several diseases, such as obesity, type 2 diabetes, nonalcoholic fatty liver disease, cholestasis, and chronic inflammatory diseases of the liver and intestine, have been revealed to be associated with alterations in FXR functions. FXR has become a promising therapeutic drug target, particularly for enterohepatic diseases. Despite the large number of FXR modulators reported, only obeticholic acid (OCA) has been approved for primary biliary cholangitis (PBC) therapy as FXR modulator. In this review, we summarize the structure and function of FXR, the development of FXR modulators, and the structure-activity relationships of FXR modulators. Based on the structural analysis, we discuss potential strategies for developing future therapeutic FXR modulators to overcome current limitations, providing new perspectives for enterohepatic and metabolic diseases treatment.
Collapse
Affiliation(s)
- Si-yu Tian
- grid.12955.3a0000 0001 2264 7233The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Shu-ming Chen
- grid.12955.3a0000 0001 2264 7233The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Cheng-xi Pan
- grid.12955.3a0000 0001 2264 7233The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Yong Li
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
11
|
Fiorucci S, Distrutti E. Linking liver metabolic and vascular disease via bile acid signaling. Trends Mol Med 2021; 28:51-66. [PMID: 34815180 DOI: 10.1016/j.molmed.2021.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder affecting over one quarter of the global population. Liver fat accumulation in NAFLD is promoted by increased de novo lipogenesis leading to the development of a proatherosclerotic lipid profile and atherosclerotic cardiovascular disease (CVD). The CVD component of NAFLD is the main determinant of patient outcome. The farnesoid X receptor (FXR) and the G protein bile acid-activated receptor 1 (GPBAR1) are bile acid-activated receptors that modulate inflammation and lipid and glucose metabolism in the liver and CV system, and are thus potential therapeutic targets. We review bile acid signaling in liver, metabolic tissues, and the CV system, and we propose the development of dual FXR/GPBAR1 ligands, intestine-restricted FXR ligands, or statin combinations to limit side effects and effectively manage the liver and CV components of NAFLD.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Eleonora Distrutti
- Struttura Complessa di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| |
Collapse
|
12
|
Stefela A, Kaspar M, Drastik M, Kronenberger T, Micuda S, Dracinsky M, Klepetarova B, Kudova E, Pavek P. (E)-7-Ethylidene-lithocholic Acid (7-ELCA) Is a Potent Dual Farnesoid X Receptor (FXR) Antagonist and GPBAR1 Agonist Inhibiting FXR-Induced Gene Expression in Hepatocytes and Stimulating Glucagon-like Peptide-1 Secretion From Enteroendocrine Cells. Front Pharmacol 2021; 12:713149. [PMID: 34483922 PMCID: PMC8414367 DOI: 10.3389/fphar.2021.713149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BAs) are key signaling steroidal molecules that regulate glucose, lipid, and energy homeostasis via interactions with the farnesoid X receptor (FXR) and G-protein bile acid receptor 1 (GPBAR1). Extensive medicinal chemistry modifications of the BA scaffold led to the discovery of potent selective or dual FXR and GPBAR1 agonists. Herein, we discovered 7-ethylidene-lithocholic acid (7-ELCA) as a novel combined FXR antagonist/GPBAR1 agonist (IC50 = 15 μM/EC50 = 26 nM) with no off-target activation in a library of 7-alkyl substituted derivatives of BAs. 7-ELCA significantly suppressed the effect of the FXR agonist obeticholic acid in BSEP and SHP regulation in human hepatocytes. Importantly, 7-ELCA significantly stimulated the production of glucagon-like peptide-1 (GLP-1), an incretin with insulinotropic effect in postprandial glucose utilization, in intestinal enteroendocrine cells. We can suggest that 7-ELCA may be a prospective approach to the treatment of type II diabetes as the dual modulation of GPBAR1 and FXR has been supposed to be effective in the synergistic regulation of glucose homeostasis in the intestine.
Collapse
Affiliation(s)
- Alzbeta Stefela
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Miroslav Kaspar
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia.,Faculty of Sciences, Charles University, Prague, Czechia
| | - Martin Drastik
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Thales Kronenberger
- Department of Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Germany.,School of Pharmacy, University of Eastern Finland, Faculty of Health Sciences, Kuopio, Finland
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Martin Dracinsky
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Blanka Klepetarova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| |
Collapse
|
13
|
Fiorucci S, Biagioli M, Baldoni M, Ricci P, Sepe V, Zampella A, Distrutti E. The identification of farnesoid X receptor modulators as treatment options for nonalcoholic fatty liver disease. Expert Opin Drug Discov 2021; 16:1193-1208. [PMID: 33849361 DOI: 10.1080/17460441.2021.1916465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The farnesoid-x-receptor (FXR) is a ubiquitously expressed nuclear receptor selectively activated by primary bile acids. AREA COVERED FXR is a validated pharmacological target. Herein, the authors review preclinical and clinical data supporting the development of FXR agonists in the treatment of nonalcoholic fatty liver disease. EXPERT OPINION Development of systemic FXR agonists to treat the metabolic liver disease has been proven challenging because the side effects associated with these agents including increased levels of cholesterol and LDL-c and reduced HDL-c raising concerns over their long-term cardiovascular safety. Additionally, pruritus has emerged as a common, although poorly explained, dose-related side effect with all FXR ligands, but is especially common with OCA. FXR agonists that are currently undergoing phase 2/3 trials are cilofexor, tropifexor, nidufexor and MET409. Some of these agents are currently being developed as combination therapies with other agents including cenicriviroc, a CCR2/CCR5 inhibitor, or firsocostat an acetyl CoA carboxylase inhibitor. Additional investigations are needed to evaluate the beneficial effects of combination of these agents with statins. It is expected that in the coming years, FXR agonists will be developed as a combination therapy to minimize side effects and increase likelihood of success by targeting different metabolic pathways.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Michele Biagioli
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Monia Baldoni
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Patrizia Ricci
- Dipartimento Di Medicina E Chirurgia, Università Di Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy University of Napoli, Federico II, Napoli, Italy
| | - Angela Zampella
- Department of Pharmacy University of Napoli, Federico II, Napoli, Italy
| | - Eleonora Distrutti
- SC Di Gastroenterologia Ed Epatologia, Azienda Ospedaliera Di Perugia, Perugia, Italy
| |
Collapse
|
14
|
Jiang L, Zhang H, Xiao D, Wei H, Chen Y. Farnesoid X receptor (FXR): Structures and ligands. Comput Struct Biotechnol J 2021; 19:2148-2159. [PMID: 33995909 PMCID: PMC8091178 DOI: 10.1016/j.csbj.2021.04.029] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/10/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023] Open
Abstract
Farnesoid X receptor (FXR) is a bile acid activated nuclear receptor (BAR) and is mainly expressed in the liver and intestine. Upon ligand binding, FXR regulates key genes involved in the metabolic process of bile acid synthesis, transport and reabsorption and is also involved in the metabolism of carbohydrates and lipids. Because of its important functions, FXR is considered as a promising drug target for the therapy of bile acid-related liver diseases. With the approval of obeticholic acid (OCA) as the first small molecule to target FXR, many other small molecules are being evaluated in clinical trials. This review summarizes the structures of FXR, especially its ligand binding domain, and the development of small molecules (including agonists and antagonists) targeting FXR.
Collapse
Affiliation(s)
- Longying Jiang
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huajun Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Desheng Xiao
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hudie Wei
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Department of Pathology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
15
|
Fiorucci S, Distrutti E, Carino A, Zampella A, Biagioli M. Bile acids and their receptors in metabolic disorders. Prog Lipid Res 2021; 82:101094. [PMID: 33636214 DOI: 10.1016/j.plipres.2021.101094] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Bile acids are a large family of atypical steroids which exert their functions by binding to a family of ubiquitous cell membrane and nuclear receptors. There are two main bile acid activated receptors, FXR and GPBAR1, that are exclusively activated by bile acids, while other receptors CAR, LXRs, PXR, RORγT, S1PR2and VDR are activated by bile acids in addition to other more selective endogenous ligands. In the intestine, activation of FXR and GPBAR1 promotes the release of FGF15/19 and GLP1 which integrate their signaling with direct effects exerted by theother receptors in target tissues. This network is tuned in a time ordered manner by circadian rhythm and is critical for the regulation of metabolic process including autophagy, fast-to-feed transition, lipid and glucose metabolism, energy balance and immune responses. In the last decade FXR ligands have entered clinical trials but development of systemic FXR agonists has been proven challenging because their side effects including increased levels of cholesterol and Low Density Lipoproteins cholesterol (LDL-c) and reduced High-Density Lipoprotein cholesterol (HDL-c). In addition, pruritus has emerged as a common, dose related, side effect of FXR ligands. Intestinal-restricted FXR and GPBAR1 agonists and dual FXR/GPBAR1 agonists have been developed. Here we review the last decade in bile acids physiology and pharmacology.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Adriana Carino
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli, Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
16
|
Yin Y, Wang M, Gu W, Chen L. Intestine-specific FXR agonists as potential therapeutic agents for colorectal cancer. Biochem Pharmacol 2021; 186:114430. [PMID: 33556338 DOI: 10.1016/j.bcp.2021.114430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most malignant cancers in the world. A major cause of death in CRC patients is the limited therapeutic options in its advanced stages. The Farnesoid X receptor (FXR) is a member of the nuclear superfamily, which is effective in slowing the progression of colorectal cancer in addition to its extraordinary role in regulating metabolic disorders. Due to the systemic side-effects caused by non-selective agonists, the intestine-restricted FXR agonists can induce a whole-body benefit without activating the hepatic FXR, suggesting intestinal FXR activation as a potentially safer therapy in the treatment of CRC. This review highlights the effects of FXR on the disturbed bile acid circulation and the carcinogenesis of CRC and with a specific emphasis on listing the functions of several intestinal-restricted FXR agonists.
Collapse
Affiliation(s)
- Yiming Yin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Mengge Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Wenjie Gu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Lili Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
17
|
Zhang C, Wang Z, Feng Q, Chen WD, Wang YD. Farnesoid X receptor: a potential therapeutic target in multiple organs. Histol Histopathol 2021; 35:1403-1414. [PMID: 33393073 DOI: 10.14670/hh-18-301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Farnesoid X receptor (FXR), a member of the nuclear receptor family, is a common receptor found in the intestine and liver, and helps to maintain systemic metabolic homeostasis through regulating bile acid, glucose, lipid metabolism, and energy homeostatsis. In addition, FXR regulates the functions of various organs, such as liver, intestine, kidney, breast, pancreas, cardiovascular system and brain. FXR also plays a key role in regulation of gut-microbiota through mediating the various signaling pathways. Accordingly, FXR has become an attractive therapeutic target in a variety of diseases. This review combines classical and recent research reports to introduce the basic information about FXR and its important roles in various organs of the body.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Zixuan Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Qingqing Feng
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Wei-Dong Chen
- Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China.,Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, the People's Hospital of Hebi, School of Medicine, Henan University, Henan, PR China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China.
| |
Collapse
|
18
|
Абатуров А, Никулина А. Antibiotic Therapy as a Risk Factor of Obesity Development in Children. ПЕДИАТРИЯ. ВОСТОЧНАЯ ЕВРОПА 2020:268-290. [DOI: 10.34883/pi.2020.8.2.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Настоящий обзор научной литературы посвящен вопросам, связанным с механизмами антибактериально-индуцированного адипогенеза. Антибиотиками, наиболее высоко ассоциированными с развитием ожирения у детей, считают: амоксициллин, цефотаксим, макролиды, тетрациклины, ванкомицин. На основании результатов филогенетических, метагеномных исследований эффектов антибиотиков установлено, что их применение в антенатальном, раннем постнатальном периоде приводит к пролонгированным изменениям как состава, так и функционирования микробиома, которые ассоциированы с повышенным риском последующего увеличения массы тела ребенка. Механизмы непосредственного влияния антибиотиков на адипогенез связаны с их способностью повышать аппетит за счет стимуляции высвобождения орексина и меланин-концентрирующего гормона; увеличивать абсорбцию пищевых ингредиентов; активировать липогенез; индуцировать митохондриальную дисфункцию и тем самым способствовать накоплению жирных кислот. Применение антибиотиков существенно изменяет структуру микробиома кишечника, а именно: развитие ожирения связано с высоким уровнем представительства бактерий филюмов Actinobacteria и Firmicutes в сочетании со снижением численности бактерий Bacteroidetes, Verrucomicrobia и Faecalibacterium prausnitzii. Антибиотик-индуцированные изменения микробиома могут существенно влиять на аппетит, так как уровень грелина, вызывающего аппетит, положительно коррелирует с представительством бактерий Bacteroides и Prevotella, и отрицательно – с численностью бактерий Bifidobacterium, Lactobacillus, Blautia coccoides и Eubacterium rectale. Доказано, что применение некоторых антибиотиков сопровождается не только накоплением висцерального жира, но и приводит к развитию как неалкогольной болезни печени, так и инсулинорезистентности. Рецепторы FXR и TGR5 являются сенсорами изменений микробиоты кишечника, которые участвуют в регуляции метаболических процессов макроорганизма. Развитие ожирения характеризуется наличием низкоуровневого системного воспаления. При развитии ожирения по мере увеличения размеров адипоцитов фенотип макрофагов меняется на провоспалительный фенотип М1. Накопление провоспалительных клеток в висцеральной жировой ткани является важной причиной развития инсулинорезистентности. В настоящее время необходимость применения антибиотиков при лечении инфекционных заболеваний, вызванных бактериальными агентами, не вызывает никаких клинических сомнений. Однако появление научных сведений о метаболических эффектах, возникновение которых ассоциировано с антибиотикотерапией, ставит клинические новые задачи, решение которых, вероятно, лежит в оптимизации режимов применения антибиотиков и выборе сопровождающих лекарственных средств.
This review of scientific literature is devoted to issues related to the mechanisms of antibacterial- induced adipogenesis. The antibiotics most highly associated with the development of obesity in children are the following: amoxicillin, cefotaxime, macrolides, tetracyclines, vancomycin. On the base of the results of phylogenetic, metagenomic studies of the effects of antibiotics, it was found that their use in the antenatal, early postnatal period leads to prolonged changes in both the composition and functioning of the microbiome, which is associated with the increased risk of subsequent increase of body weight of the child. The mechanisms of direct effect of antibiotics on adipogenesis are associated with their ability to increase appetite, by stimulating the release of orexin and melanin-concentrating hormone; increase the absorption of food ingredients; activate lipogenesis; induce mitochondrial dysfunction and thereby contribute to accumulation of fatty acids. The use of antibiotics significantly changes the structure of the intestinal microbiome, namely, the development of obesity is associated with a high representation of phylum bacteria Actinobacteria and Firmicutes in combination with the decrease of the number of bacteria Bacteroidetes, Verrucomicrobia and Faecalibacterium prausnitzii. Antibiotic-induced changes in the microbiome can significantly affect appetite, because the level of ghrelin that causes appetite positively correlates with the presence of bacteria Bacteroides and Prevotella, and negatively with the number of bacteria Bifidobacterium, Lactobacillus, Blautia coccoides and Eubacterium rectale. It was proved that the use of certain antibiotics is accompanied not only by the accumulation of visceral fat, but also leads to the development of both non-alcoholic liver disease and insulin resistance. The FXR and TGR5 receptors are the sensors of changes in the intestinal microbiota, which is involved in the regulation of the metabolic processes of the macroorganism. The development of obesity is characterized by the presence of low-level systemic inflammation. With the development of obesity, as the size of adipocytes increases, the macrophage phenotype changes to the pro- inflammatory M1 phenotype. The accumulation of pro-inflammatory cells in visceral adipose tissue is an important reason for development of insulin resistance. Currently, the need for antibiotics in the treatment of infectious diseases caused by bacterial agents does not raise any clinical doubts. However, the emergence of scientific information about metabolic effects, the occurrence of which is associated with antibiotic therapy, presents new clinical challenges, the solution of which probably lies in optimizing antibiotic regimens and choosing the accompanying drugs.
Collapse
|
19
|
Fiorucci S, Biagioli M, Sepe V, Zampella A, Distrutti E. Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2020; 29:623-632. [PMID: 32552182 DOI: 10.1080/13543784.2020.1763302] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease (NAFLD) for which therapy is suboptimal. The farnesoid-X-receptor (FXR) and the G protein bile acid receptor (GPBAR)1 are two bile acid-activated receptors that exert regulatory effects on lipid, glucose, energy, and immune homeostasis. GPBAR1 and FXR ligands have shown efficacy in reversing steatohepatitis and fibrosis in preclinical models of NASH. AREA COVERED This article evaluates the efficacy and pitfalls of GPBAR1 and FXR-based therapies in the treatment of NASH. While there are no GPBAR1 agonist in clinical development, several FXR ligands have completed phase 2 and phase 3 trials in NASH. EDP305, tropifexor, cilofexor, nidufexor, TERN.101, Px-104, EYP001, MET409. Individual FXR agonists have shown variable efficacy in reversing liver steatohepatitis and fibrosis. Class-related, dose-dependent side effects: pruritus, increased plasma levels of cholesterol and LDLc, and reduction of HDL have been reported. EXPERT OPINION Efficacy of FXR agonists as stand-alone therapy is limited by dose-related side effects. Efficacy of combining an FXR agonist with statins, CCR2, and ACC inhibitors is currently investigated. Identification of patient subsets would allow development of patients tailored therapy using a combination of drugs acting on different molecular mechanisms.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento Di Scienze Biomediche E Chirurgiche, Università Di Perugia , Perugia, Italy
| | - Michele Biagioli
- Dipartimento Di Scienze Biomediche E Chirurgiche, Università Di Perugia , Perugia, Italy
| | - Valentina Sepe
- Dipartimento Di Farmacia, Università Di Napoli ' Federico II' , Napoli, Italy
| | - Angela Zampella
- Dipartimento Di Farmacia, Università Di Napoli ' Federico II' , Napoli, Italy
| | - Eleonora Distrutti
- SC Di Gastroenterologia Ed Epatologia, Azienda Ospedaliera Di Perugia , Perugia, Italy
| |
Collapse
|