1
|
Schlangen M, van der Doef I, van der Goot AJ, Clausen MP, Kodger TE. Meat analogues: The relationship between mechanical anisotropy, macrostructure, and microstructure. Curr Res Food Sci 2025; 10:100980. [PMID: 39975562 PMCID: PMC11836517 DOI: 10.1016/j.crfs.2025.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 02/21/2025] Open
Abstract
Texture of meat analogues is crucial for consumer acceptance, yet it remains poorly defined, but it known that it is influenced by mechanical properties and structure at different length scales. This study describes the relationships between macrostructure, microstructure, and mechanical anisotropy in meat analogues. Two distinct meat analogue product sets are produced with shear cell technology varying in formulations and processing conditions to obtain a wide range of product structures: one based on mung bean protein-rich fractions and the other based on combinations of soy protein isolate and pectin. Mechanical properties are assessed using tensile testing, microstructure is studied using X-ray tomography and confocal laser scanning microscopy, and macrostructure is quantified using a computer vision algorithm based on segmentation and shape features. Both correlation analyses on the response parameters and parameter variance are studied to distinguish the product sets. Strong correlations are found between anisotropy-related parameters, such as fibre score in macrostructure, air anisotropy in microstructure, and the toughness anisotropy index from mechanical properties. Some correlations are found to be product-set independent, such as air bubble anisotropy and fibre score, indicating universal relationships within this study, while other correlations are product-set dependent, such as between fibre score and the anisotropy index of the Young's Modulus in the mung bean fine fraction product set. The relationship between microstructural air bubbles and macrostructure and mechanical properties is apparent in all correlation analyses. Last, univariate feature selection provided insight into which parameters are most important for selected target features.
Collapse
Affiliation(s)
- Miek Schlangen
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA, Wageningen, the Netherlands
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark
| | - Iris van der Doef
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA, Wageningen, the Netherlands
| | - Atze Jan van der Goot
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA, Wageningen, the Netherlands
| | - Mathias P. Clausen
- SDU Biotechnology, Department of Green Technology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark
| | - Thomas E. Kodger
- Physical Chemistry and Soft Matter, Agrotechnology & Food Sciences Group, Wageningen University & Research, Wageningen, WK 6700, the Netherlands
| |
Collapse
|
2
|
Miyata T, Shogatsudani A, Igarashi A, Tsutiya H, Yoshida K. Differences in exercise capacity and muscle glycogen metabolism in C57BL/6J and BALB/cA mice. Exp Anim 2024; 73:101-108. [PMID: 37704434 PMCID: PMC10877153 DOI: 10.1538/expanim.23-0074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
This study compared differences in exercise capacity as well as muscle glycogen content and degradation, and mitochondrial enzyme activity between C57BL/6J and BALB/cA mice. In exercise tests, grip strength was higher in BALB/cA mice. In Rotarod and Inverted screen test, C57BL/6J mice had significantly longer exercise durations and showed differences in motor function and muscle endurance time. Glycogen in the liver and muscle of C57BL/6J mice was significantly decreased after 20 min of swimming. Muscle glycogen content in BALB/cA mice was higher than in C57BL/6J, but swimming induced no decrease in glycogen content. Glycogen phosphorylase in muscle was inactive in the absence of AMP, and its activity increased in a concentration-dependent manner with the addition of AMP in C57BL/6J mice. In BALB/cA mice, phosphorylase activity was increased by AMP, but not further increased by higher concentrations of AMP. The citrate synthase activity in muscle did not differ between C57BL/6J and BALB/cA mice. The results of this study suggested that the reactivity of muscle glycogen phosphorylase to AMP differs among strains of mice and affects glycogen availability during exercise.
Collapse
Affiliation(s)
- Tohru Miyata
- Department of Agri-Production Sciences, College of Agriculture, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan
- Biosystems & Biofunctions Research Center, Tamagawa University Research Institute, 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan
| | - Akira Shogatsudani
- Department of Bioresource Sciences, College of Agriculture, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan
| | - Ayaka Igarashi
- Department of Bioresource Sciences, College of Agriculture, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan
| | - Haruna Tsutiya
- Department of Bioresource Sciences, College of Agriculture, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan
| | - Kyouka Yoshida
- Department of Bioresource Sciences, College of Agriculture, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan
| |
Collapse
|
3
|
Roy BC, Bruce HL. Contribution of intramuscular connective tissue and its structural components on meat tenderness-revisited: a review. Crit Rev Food Sci Nutr 2023; 64:9280-9310. [PMID: 37194652 DOI: 10.1080/10408398.2023.2211671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The tenderness of meat influences consumers' perceptions of its quality. Meat tenderness is a key quality characteristic that influences consumer satisfaction, repeat purchases, and willingness to pay higher prices for meat. Muscle fibers, connective tissues, and adipocytes are the main structural components of meat that contribute to its tenderness and texture. In the present review, we have focused on the role of connective tissue and its components in meat tenderness, specifically perimysial intramuscular connective tissue (IMCT) and its concept as an immutable "background toughness." The collagen contribution to cooked meat toughness can be altered by animal diet, compensatory growth, slaughter age, aging, and cooking. As well, progressive thickening of the perimysium leads to a progressive increase in shear force values in beef, pork, chicken, and this may occur prior to adipocyte formation as cattle finish in feedlots. Conversely, adipocyte accumulation in the perimysium can decrease cooked meat shear force, suggesting that the contribution of IMCT to meat toughness is complex and driven by both collagen structure and content. This review provides a theoretical foundation of information to modify IMCT components to improve meat tenderness.
Collapse
Affiliation(s)
- Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Jaitovich A. Impaired regenerative capacity contributes to skeletal muscle dysfunction in chronic obstructive pulmonary disease. Am J Physiol Cell Physiol 2022; 323:C974-C989. [PMID: 35993519 PMCID: PMC9484993 DOI: 10.1152/ajpcell.00292.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
Locomotor skeletal muscle dysfunction is a relevant comorbidity of chronic obstructive pulmonary disease (COPD) and is strongly associated with worse clinical outcomes including higher mortality. Over the last decades, a large body of literature helped characterize the process, defining the disruptive muscle phenotype caused by COPD that involves reduction in muscle mass, force-generation capacity, fatigue-tolerance, and regenerative potential following injury. A major limitation in the field has been the scarcity of well-calibrated animal models to conduct mechanistic research based on loss- and gain-of-function studies. This article provides an overall description of the process, the tools available to mechanistically investigate it, and the potential role of mitochondrially driven metabolic signals on the regulation muscle regeneration after injury in COPD. Finally, a description of future avenues to further expand on the area is proposed based on very recent evidence involving mitochondrial metabolic cues affecting myogenesis.
Collapse
Affiliation(s)
- Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
5
|
Shi J, Watanabe D, Wada M. Eccentric muscle contraction potentiates titin stiffness-related contractile properties in rat fast-twitch muscles. J Appl Physiol (1985) 2022; 133:710-720. [PMID: 35981734 DOI: 10.1152/japplphysiol.00327.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to examine the effects of an acute bout of eccentric muscle contraction (ECC) on titin stiffness-related contractile properties in rat fast-twitch skeletal muscles. Intact gastrocnemius muscles were electrically stimulated in situ to undergo 200-repeated ECCs. Immediately after cessation of the stimulation, the superficial regions of the muscles were dissected and subjected to biochemical and skinned fiber analyses. Small heat shock protein αB-crystallin in the muscle fraction enriched for myofibrillar proteins was increased by ECC. ECC resulted in an increase in the titin-based passive force. Protein kinase A-treatment decreased the passive force only in ECC-subjected but not in rested fibers. ECC decreased the maximum Ca2+-activated force at a sarcomere length (SL) of 2.4 μm and had no effect on myofibrillar-Ca2+ sensitivity at 2.6-μm SL. In both rested and ECC-subjected fibers, these two variables were higher at 3.0-μm SL than at 2.4- or 2.6-μm SL. The differences in the two variables between the short and long SLs were greater in ECC-subjected than in rested fibers. These results indicate that an acute bout of ECC potentiates titin-based passive force, maximum active force at long SLs, and length-dependent activation and suggest that this potentiation may resist muscle fatigue in the muscles of the exercising body.
Collapse
Affiliation(s)
- Jiayu Shi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.,Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Ren Q, Li H, Xu F, Zhu Y, Zhang X, Fan T, Wei Z, Yuan F, Han F, Cong R. Effect of high-concentrate diets on mRNA expression of genes related to muscle fiber type and metabolism of psoas major muscle in goats. Anim Sci J 2022; 93:e13725. [PMID: 35508764 DOI: 10.1111/asj.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022]
Abstract
In the process of modern breeding, high-concentrate diets are widely used to meet the high energy nutritional requirements of animals but change the form of access to energy and nutrients and the way the organism metabolizes them. Goat psoas major (PM) muscle is a hybrid skeletal muscle whose characteristics are important for the motility and meat quality of goats. However, there are few studies on the effects of high-concentrate diets on the muscle type and metabolic characteristics of PM in goats. In this study, two treatment groups were set up: high concentrate group (HC) and control group (C). The expression of genes related to muscle type and metabolism of the PM was examined by quantitative PCR. The results showed that high concentrate promoted the conversion of PM fibers from intermediate to slow type at the mRNA level, improved the absorption, transport, and oxidation of fat by PM, and upregulated the expression of calpain system. These changes may be regulated by the involvement of differential expression of MSTN, Myf-5, and IGF-2. These results suggest that high concentrate may exert a positive effect on skeletal muscle function, metabolism, and meat quality in goats by affecting the expression of muscle type and metabolism-related genes.
Collapse
Affiliation(s)
- Qijun Ren
- Northwest A&F University, Xianyang, China
| | - Hanmei Li
- Northwest A&F University, Xianyang, China
| | | | - Yihan Zhu
- Northwest A&F University, Xianyang, China
| | | | | | | | | | - Fei Han
- Yangling Vocational & Technical College, Xianyang, China
| | - Rihua Cong
- Northwest A&F University, Xianyang, China
| |
Collapse
|
7
|
Non-linear rheology reveals the importance of elasticity in meat and meat analogues. Sci Rep 2022; 12:1334. [PMID: 35079006 PMCID: PMC8789867 DOI: 10.1038/s41598-021-04478-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
The interest in plant-based meat analogues as an alternative to meat is currently growing. Rheological benchmarking is used to reveal how closely meat analogues resemble the original meat products. Texture maps and dissipation colour schemes were used to reveal similarities in and differences between rheological responses of meat and meat analogues (especially chicken analogues). Under heating, meat analogues differ in terms of their lower elasticity compared with heated meat. The changes caused by heating meat and meat analogues were different as well. Heating of meat resulted in a tougher and more elastic material, while heating has a minor effect on meat analogues. Future developments should therefore focus on routes to create more elasticity and possibly allow heating effects on texture to mimic meat characteristics even better.
Collapse
|
8
|
Li S, Schönke M, Buurstede JC, Moll TJ, Gentenaar M, Schilperoort M, Visser JA, Kaikaew K, van de Vijver D, Abbassi-Daloii T, Raz V, Aartsma-Rus A, van Putten M, Meijer OC, Kroon J. Sexual Dimorphism in Transcriptional and Functional Glucocorticoid Effects on Mouse Skeletal Muscle. Front Endocrinol (Lausanne) 2022; 13:907908. [PMID: 35898460 PMCID: PMC9309696 DOI: 10.3389/fendo.2022.907908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Muscle atrophy is common in patients with increased glucocorticoid exposure. Glucocorticoid effects are often sex-specific, and while different glucocorticoid responses between male and female subjects are reported, it is unclear why this is. In this study, we evaluated the effects of corticosterone and synthetic glucocorticoid treatment on muscle atrophy in male and female mice. We found that corticosterone treatment reduced grip strength in female mice only, whereas muscle mass was reduced in both sexes. Skeletal muscle transcriptional responses to corticosterone treatment were more pronounced and widespread in male mice. Synthetic glucocorticoid treatment reduced grip strength in both sexes, while female mice were more sensitive to muscle atrophy than male mice. To evaluate the role of androgens, chemically-castrated male mice were treated with synthetic glucocorticoids. We observed additively reduced muscle mass, but did not observe any interaction effects. Although sex differences in glucocorticoid responses in skeletal muscle are partly influenced by androgen signaling, further studies are warranted to fully delineate the underlying mechanisms.
Collapse
Affiliation(s)
- Sheng Li
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jacobus C. Buurstede
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Tijmen J.A. Moll
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Max Gentenaar
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Maaike Schilperoort
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jenny A. Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Kasiphak Kaikaew
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Davy van de Vijver
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Tooba Abbassi-Daloii
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Onno C. Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Jan Kroon,
| |
Collapse
|
9
|
Shi J, Watanabe D, Wada M. Effects of vigorous isometric muscle contraction on titin stiffness-related contractile properties in rat fast-twitch muscles. Am J Physiol Regul Integr Comp Physiol 2021; 321:R858-R868. [PMID: 34668430 DOI: 10.1152/ajpregu.00189.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022]
Abstract
This study was conducted to examine the effects of an acute bout of vigorous isometric contractions on titin stiffness-related contractile properties in rat fast-twitch skeletal muscles. Intact gastrocnemius muscles were electrically stimulated in situ until the force was reduced to ∼50% of the initial force. Immediately after cessation of the stimulation, the superficial regions of the muscles were dissected and subjected to biochemical and skinned fiber analyses. The stimulation resulted in a decrease in the titin-based passive force. The amounts of fragmented titin were unchanged by the stimulation. Protein kinase Cα-treatment increased the passive force in stimulated fibers to resting levels. The stimulation had no effect on the maximum Ca2+-activated force (max Ca2+ force) at a sarcomere length (SL) of 2.4 μm and decreased myofibrillar (my)-Ca2+ sensitivity at 2.6-μm SL. Stretching the SL to 3.0 μm led to the augmentation of the max Ca2+ force and my-Ca2+ sensitivity in both rested and stimulated fibers. For the max Ca2+ force, the extent of the increase was smaller in stimulated than in rested fibers, whereas for my-Ca2+ sensitivity, it was higher in stimulated than in rested fibers. These results suggest that vigorous isometric contractions decrease the titin-based passive force, possibly because of a reduction in phosphorylation by protein kinase Cα, and that the decreased titin stiffness may contribute, at least in part, to muscle fatigue.
Collapse
Affiliation(s)
- Jiayu Shi
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima-shi, Japan
| | - Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, Higashihiroshima-shi, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima-shi, Japan
- Graduate School of Humanities and Social Sciences, Hiroshima University, Higashihiroshima-shi, Japan
| |
Collapse
|
10
|
Local versus systemic control of bone and skeletal muscle mass by components of the transforming growth factor-β signaling pathway. Proc Natl Acad Sci U S A 2021; 118:2111401118. [PMID: 34385332 PMCID: PMC8379946 DOI: 10.1073/pnas.2111401118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle and bone homeostasis are regulated by members of the myostatin/GDF-11/activin branch of the transforming growth factor-β superfamily, which share many regulatory components, including inhibitory extracellular binding proteins and receptors that mediate signaling. Here, we present the results of genetic studies demonstrating a critical role for the binding protein follistatin (FST) in regulating both skeletal muscle and bone. Using an allelic series corresponding to varying expression levels of endogenous Fst, we show that FST acts in an exquisitely dose-dependent manner to regulate both muscle mass and bone density. Moreover, by employing a genetic strategy to target Fst expression only in the posterior (caudal) region of the animal, we show that the effects of Fst loss are mostly restricted to the posterior region, implying that locally produced FST plays a much more important role than circulating FST with respect to regulation of muscle and bone. Finally, we show that targeting receptors for these ligands specifically in osteoblasts leads to dramatic increases in bone mass, with trabecular bone volume fraction being increased by 12- to 13-fold and bone mineral density being increased by 8- to 9-fold in humeri, femurs, and lumbar vertebrae. These findings demonstrate that bone, like muscle, has an enormous inherent capacity for growth that is normally kept in check by this signaling system and suggest that the extent to which this regulatory mechanism may be used throughout the body to regulate tissue mass may be more significant than previously appreciated.
Collapse
|
11
|
Eggers B, Schork K, Turewicz M, Barkovits K, Eisenacher M, Schröder R, Clemen CS, Marcus K. Advanced Fiber Type-Specific Protein Profiles Derived from Adult Murine Skeletal Muscle. Proteomes 2021; 9:proteomes9020028. [PMID: 34201234 PMCID: PMC8293376 DOI: 10.3390/proteomes9020028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a heterogeneous tissue consisting of blood vessels, connective tissue, and muscle fibers. The last are highly adaptive and can change their molecular composition depending on external and internal factors, such as exercise, age, and disease. Thus, examination of the skeletal muscles at the fiber type level is essential to detect potential alterations. Therefore, we established a protocol in which myosin heavy chain isoform immunolabeled muscle fibers were laser microdissected and separately investigated by mass spectrometry to develop advanced proteomic profiles of all murine skeletal muscle fiber types. All data are available via ProteomeXchange with the identifier PXD025359. Our in-depth mass spectrometric analysis revealed unique fiber type protein profiles, confirming fiber type-specific metabolic properties and revealing a more versatile function of type IIx fibers. Furthermore, we found that multiple myopathy-associated proteins were enriched in type I and IIa fibers. To further optimize the assignment of fiber types based on the protein profile, we developed a hypothesis-free machine-learning approach, identified a discriminative peptide panel, and confirmed our panel using a public data set.
Collapse
Affiliation(s)
- Britta Eggers
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
- Correspondence: (B.E.); (K.M.)
| | - Karin Schork
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Michael Turewicz
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Katalin Barkovits
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Christoph S. Clemen
- German Aerospace Center, Institute of Aerospace Medicine, 51147 Cologne, Germany;
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
- Correspondence: (B.E.); (K.M.)
| |
Collapse
|
12
|
Foggi G, Ciucci F, Conte M, Casarosa L, Serra A, Giannessi E, Lenzi C, Salvioli S, Conte G, Mele M. Histochemical Characterisation and Gene Expression Analysis of Skeletal Muscles from Maremmana and Aubrac Steers Reared on Grazing and Feedlot Systems. Animals (Basel) 2021; 11:ani11030656. [PMID: 33801206 PMCID: PMC7999344 DOI: 10.3390/ani11030656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary Muscle fibre types and sizes are important factors affecting muscle growth potential and meat quality. Their variability depends on some factors like muscle type, animal breed, physical activity, and they could be going through morphological or metabolic modifications, throughout animal life. Two muscles from Maremmana, an autochthonous breed from Tuscany (Italy), was compared to those from Aubrac, a breed from the Massif Central (France), under histochemical and gene expression points of view. Both these breeds were poorly studied, and the results identified Maremmana muscles were more oxidative in comparison to Aubrac. Moreover, steers of each breed were proportionally divided and reared on grazing or feedlot systems. Conversely to what was expected, the voluntary physical activity on pasture, another aspect poorly studied, influenced neither histochemical characteristics nor the gene expression. Abstract This study aimed to characterise the fibre composition of Triceps brachii (TB) and Semimembranosus (SM) muscles from 20 Maremmana (MA) and 20 Aubrac (AU) steers, and the effect of grazing activity in comparison with feedlot system. The histochemical method was performed with the m-ATPase method with an acid pre-incubation, thus allowing to distinguish type I, IIA, and IIB fibres. Additionally, on total RNA extracted from SM muscle, the expressions of atp1a1, mt-atp6, and capn1 genes were evaluated, in order to find potential associations with muscle fibre histochemical characteristics. In SM muscle, the MA steers had the greater frequency of oxidative fibres (type I and IIA) and the higher atp1a1 expression, in comparison to AU steers. Conversely, AU steers had a greater frequency of type IIB fibres, and the higher capn1 expression. A similar histochemical pattern was observed in TB muscle. The grazing activity was probably insufficient to determine differences both for fibre proportion and size, and gene expressions, except for mt-atp6 expression that was surprisingly highest in feedlot MA in comparison to other steers. These findings further the knowledge of muscle properties belonging to these breeds, and the effect of voluntary physical activity since few studies were available in this regard.
Collapse
Affiliation(s)
- Giulia Foggi
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, 56124 Pisa, Italy; (F.C.); (L.C.); (A.S.); (G.C.); (M.M.)
- Correspondence:
| | - Francesca Ciucci
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, 56124 Pisa, Italy; (F.C.); (L.C.); (A.S.); (G.C.); (M.M.)
| | - Maria Conte
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, University of Bologna, 40126 Bologna, Italy; (M.C.); (S.S.)
| | - Laura Casarosa
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, 56124 Pisa, Italy; (F.C.); (L.C.); (A.S.); (G.C.); (M.M.)
| | - Andrea Serra
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, 56124 Pisa, Italy; (F.C.); (L.C.); (A.S.); (G.C.); (M.M.)
- Centro di Ricerche Agro-Ambientali “Enrico Avanzi”, University of Pisa, 56122 Pisa, Italy
| | - Elisabetta Giannessi
- Dipartimento di Scienze Veterinarie, University of Pisa, 56124 Pisa, Italy; (E.G.); (C.L.)
| | - Carla Lenzi
- Dipartimento di Scienze Veterinarie, University of Pisa, 56124 Pisa, Italy; (E.G.); (C.L.)
| | - Stefano Salvioli
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, University of Bologna, 40126 Bologna, Italy; (M.C.); (S.S.)
| | - Giuseppe Conte
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, 56124 Pisa, Italy; (F.C.); (L.C.); (A.S.); (G.C.); (M.M.)
- Centro di Ricerche Agro-Ambientali “Enrico Avanzi”, University of Pisa, 56122 Pisa, Italy
| | - Marcello Mele
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, University of Pisa, 56124 Pisa, Italy; (F.C.); (L.C.); (A.S.); (G.C.); (M.M.)
- Centro di Ricerche Agro-Ambientali “Enrico Avanzi”, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
13
|
D’Amico D, Fiore R, Caporossi D, Di Felice V, Cappello F, Dimauro I, Barone R. Function and Fiber-Type Specific Distribution of Hsp60 and αB-Crystallin in Skeletal Muscles: Role of Physical Exercise. BIOLOGY 2021; 10:biology10020077. [PMID: 33494467 PMCID: PMC7911561 DOI: 10.3390/biology10020077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Skeletal muscle represents about 40% of the body mass in humans and it is a copious and plastic tissue, rich in proteins that are subject to continuous rearrangements. Physical exercise is considered a physiological stressor for different organs, in particular for skeletal muscle, and it is a factor able to stimulate the cellular remodeling processes related to the phenomenon of adaptation. All cells respond to various stress conditions by up-regulating the expression and/or activation of a group of proteins called heat shock proteins (HSPs). Although their expression is induced by several stimuli, they are commonly recognized as HSPs due to the first experiments showing their increased transcription after application of heat shock. These proteins are molecular chaperones mainly involved in assisting protein transport and folding, assembling multimolecular complexes, and triggering protein degradation by proteasome. Among the HSPs, a special attention needs to be devoted to Hsp60 and αB-crystallin, proteins constitutively expressed in the skeletal muscle, where they are known to be important in muscle physiopathology. Therefore, here we provide a critical update on their role in skeletal muscle fibers after physical exercise, highlighting the control of their expression, their biological function, and their specific distribution within skeletal muscle fiber-types. Abstract Skeletal muscle is a plastic and complex tissue, rich in proteins that are subject to continuous rearrangements. Skeletal muscle homeostasis can be affected by different types of stresses, including physical activity, a physiological stressor able to stimulate a robust increase in different heat shock proteins (HSPs). The modulation of these proteins appears to be fundamental in facilitating the cellular remodeling processes related to the phenomenon of training adaptations such as hypertrophy, increased oxidative capacity, and mitochondrial activity. Among the HSPs, a special attention needs to be devoted to Hsp60 and αB-crystallin (CRYAB), proteins constitutively expressed in the skeletal muscle, where their specific features could be highly relevant in understanding the impact of different volumes of training regimes on myofiber types and in explaining the complex picture of exercise-induced mechanical strain and damaging conditions on fiber population. This knowledge could lead to a better personalization of training protocols with an optimal non-harmful workload in populations of individuals with different needs and healthy status. Here, we introduce for the first time to the reader these peculiar HSPs from the perspective of exercise response, highlighting the control of their expression, biological function, and specific distribution within skeletal muscle fiber-types.
Collapse
Affiliation(s)
- Daniela D’Amico
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX 77554, USA
| | - Roberto Fiore
- Postgraduate School of Sports Medicine, University Hospital of Palermo, 90127 Palermo, Italy;
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
| | - Valentina Di Felice
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
| | - Francesco Cappello
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
- Euro-Mediterranean Institutes of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: (F.C.); (I.D.); (R.B.); Tel.: +39-091-2386-5823 (F.C. & R.B.); +39-06-3673-3562 (I.D.)
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
- Correspondence: (F.C.); (I.D.); (R.B.); Tel.: +39-091-2386-5823 (F.C. & R.B.); +39-06-3673-3562 (I.D.)
| | - Rosario Barone
- Human Anatomy Section, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (D.D.); (V.D.F.)
- Correspondence: (F.C.); (I.D.); (R.B.); Tel.: +39-091-2386-5823 (F.C. & R.B.); +39-06-3673-3562 (I.D.)
| |
Collapse
|
14
|
Yamada T, Sugiyama G, Mori Y. Masticatory muscle function affects the pathological conditions of dentofacial deformities. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:56-61. [PMID: 31956379 PMCID: PMC6957801 DOI: 10.1016/j.jdsr.2019.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The causes of dentofacial deformities include various known syndromes, genetics, environmental and neuromuscular factors, trauma, and tumors. Above all, the functional effects of muscles are important, and deformation of the mandible is often associated with a mechanical imbalance of the masticatory muscles. With the vertical position of the face, weakness of the sling of the masseter muscle and medial pterygoid muscle causes dilatation of the mandibular angle. In patients with a deep bite, excessive function of the masticatory muscles is reported. Myosin heavy chain (MyHC) properties also affect jawbone morphology. In short-face patients, the proportion of type II fibers, which are fast muscles, is high. The proportions of muscle fiber types are genetically determined but can be altered by postnatal environmental factors. Orthognathic surgery may results in the transition of MyHC to type II (fast) fibers, but excessive stretching enhances the release of inflammatory mediators and causes a shift toward a greater proportion of slow muscle fibers. This feature can be related to postoperative relapse. Bones and muscles are in close crosstalk, and it may be possible to use biochemical approaches as well as biomechanical considerations for the treatment of jaw deformities.
Collapse
Affiliation(s)
- Tomohiro Yamada
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Japan
| | - Goro Sugiyama
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Japan
| | - Yoshihide Mori
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Japan
| |
Collapse
|
15
|
Phung LA, Foster AD, Miller MS, Lowe DA, Thomas DD. Super-relaxed state of myosin in human skeletal muscle is fiber-type dependent. Am J Physiol Cell Physiol 2020; 319:C1158-C1162. [PMID: 32997515 DOI: 10.1152/ajpcell.00396.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The myosin super-relaxed state (SRX) in skeletal muscle is hypothesized to play an important role in regulating muscle contractility and thermogenesis in humans but has only been examined in model organisms. Here we report the first human skeletal muscle SRX measurements, using quantitative epifluorescence microscopy of fluorescent 2'/3'-O-(N-methylanthraniloyl) ATP (mantATP) single-nucleotide turnover. Myosin heavy chain (MHC) isoform expression was determined using gel electrophoresis for each permeabilized vastus lateralis fiber, to allow for novel comparisons of SRX between fiber types. We find that the fraction of myosin in SRX is less in MHC IIA fibers than in MHC I and IIAX fibers (P = 0.008). ATP turnover of SRX is faster in MHC IIAX fibers compared with MHC I and IIA fibers (P = 0.001). We conclude that SRX biochemistry is measurable in human skeletal muscle, and our data indicate that SRX depends on fiber type as classified by MHC isoform. Extension from this preliminary work would provide further understanding regarding the role of SRX in human muscle physiology.
Collapse
Affiliation(s)
- Lien A Phung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Aurora D Foster
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Mark S Miller
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Dawn A Lowe
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
16
|
The New Frontier in Oxytocin Physiology: The Oxytonic Contraction. Int J Mol Sci 2020; 21:ijms21145144. [PMID: 32708109 PMCID: PMC7404128 DOI: 10.3390/ijms21145144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Oxytocin (Oxt) is a nine amino acid peptide important in energy regulation and is essential to stress-related disorders. Specifically, low Oxt levels are associated with obesity in human subjects and diet-induced or genetically modified animal models. The striking evidence that Oxt is linked to energy regulation is that Oxt- and oxytocin receptor (Oxtr)-deficient mice show a phenotype characterized by late onset obesity. Oxt-/- or Oxtr-/- develop weight gain without increasing food intake, suggesting that a lack of Oxt reduce metabolic rate. Oxt is differentially expressed in skeletal muscle exerting a protective effect toward the slow-twitch muscle after cold stress challenge in mice. We hypothesized that Oxt potentiates the slow-twitch muscle as it does with the uterus, triggering "the oxytonic contractions". Physiologically, this is important to augment muscle strength in fight/flight response and is consistent with the augmented energetic need at time of labor and for the protection of the offspring when Oxt secretion spikes. The normophagic obesity of Oxt-/- or Oxtr-/- mice could have been caused by decreased skeletal muscle tonicity which drove the metabolic phenotype. In this review, we summarized our findings together with the recent literature on this fascinating subjects in a "new oxytonic perspective" over the physicology of Oxt.
Collapse
|
17
|
Pérez-Gómez J, Villafaina S, Adsuar JC, Merellano-Navarro E, Collado-Mateo D. Effects of Ashwagandha ( Withania somnifera) on VO 2max: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:E1119. [PMID: 32316411 PMCID: PMC7230697 DOI: 10.3390/nu12041119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to systematically review the scientific literature about the effects of supplementation with Ashwagandha (Withania somnifera) on maximum oxygen consumption (VO2max), as well as to provide directions for clinical practice. A systematic search was conducted in three electronic databases following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA). The inclusion criteria were: (a) VO2max data, with means ± standard deviation before and after the supplement intervention, (b) the study was randomized controlled trial (RCT), (c) the article was written in English. The quality of evidence was evaluated according to the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. A meta-analysis was performed to determine effect sizes. Five studies were selected in the systematic review (162 participants) and four were included in the meta-analysis (142 participants). Results showed a significant enhancement in VO2max in healthy adults and athletes (p = 0.04). The mean difference was 3.00 (95% CI from 0.18 to 5.82) with high heterogeneity. In conclusion, Ashwagandha supplementation might improve the VO2max in athlete and non-athlete people. However, further research is need to confirm this hypothesis since the number of studies is limited and the heterogeneity was high.
Collapse
Affiliation(s)
- Jorge Pérez-Gómez
- HEME Research Group, Faculty of Sport Sciences, University of Extremadura, 10003 Caceres, Spain; (J.P.-G.)
| | - Santos Villafaina
- Physical Activity and Quality of Life Research Group (AFYCAV), Faculty of Sport Science, University of Extremadura, 10003 Cáceres, Spain
| | - José Carmelo Adsuar
- HEME Research Group, Faculty of Sport Sciences, University of Extremadura, 10003 Caceres, Spain; (J.P.-G.)
| | | | - Daniel Collado-Mateo
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, 28943 Madrid, Spain;
| |
Collapse
|
18
|
Pataky MW, Van Acker SL, Dhingra R, Freeburg MM, Arias EB, Oki K, Wang H, Treebak JT, Cartee GD. Fiber type-specific effects of acute exercise on insulin-stimulated AS160 phosphorylation in insulin-resistant rat skeletal muscle. Am J Physiol Endocrinol Metab 2019; 317:E984-E998. [PMID: 31573845 PMCID: PMC6957376 DOI: 10.1152/ajpendo.00304.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Muscle is a heterogeneous tissue composed of multiple fiber types. Earlier research revealed fiber type-selective postexercise effects on insulin-stimulated glucose uptake (ISGU) from insulin-resistant rats (increased for type IIA, IIB, IIBX, and IIX, but not type I). In whole muscle from insulin-resistant rats, the exercise increase in ISGU is accompanied by an exercise increase in insulin-stimulated AS160 phosphorylation (pAS160), an ISGU-regulating protein. We hypothesized that, in insulin-resistant muscle, the fiber type-selective exercise effects on ISGU would correspond to the fiber type-selective exercise effects on pAS160. Rats were fed a 2-wk high-fat diet (HFD) and remained sedentary (SED) or exercised before epitrochlearis muscles were dissected either immediately postexercise (IPEX) or at 3 h postexercise (3hPEX) using an exercise protocol that previously revealed fiber type-selective effects on ISGU. 3hPEX muscles and SED controls were incubated ± 100µU/mL insulin. Individual myofibers were isolated and pooled on the basis of myosin heavy chain (MHC) expression, and key phosphoproteins were measured. Myofiber glycogen and MHC expression were evaluated in muscles from other SED, IPEX, and 3hPEX rats. Insulin-stimulated pAktSer473 and pAktThr308 were unaltered by exercise in all fiber types. Insulin-stimulated pAS160 was greater for 3hPEX vs. SED on at least one phosphosite (Ser588, Thr642, and/or Ser704) in type IIA, IIBX, and IIB fibers, but not in type I or IIX fibers. Both IPEX and 3hPEX glycogen were decreased versus SED in all fiber types. These results provided evidence that fiber type-specific pAS160 in insulin-resistant muscle may play a role in the previously reported fiber type-specific elevation in ISGU in some, but not all, fiber types.
Collapse
Affiliation(s)
- Mark W Pataky
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Sydney L Van Acker
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Rhea Dhingra
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Marina M Freeburg
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Kentaro Oki
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
19
|
Pataky MW, Yu CS, Nie Y, Arias EB, Singh M, Mendias CL, Ploutz-Snyder RJ, Cartee GD. Skeletal muscle fiber type-selective effects of acute exercise on insulin-stimulated glucose uptake in insulin-resistant, high-fat-fed rats. Am J Physiol Endocrinol Metab 2019; 316:E695-E706. [PMID: 30753114 PMCID: PMC6580167 DOI: 10.1152/ajpendo.00482.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Insulin-stimulated glucose uptake (GU) by skeletal muscle is enhanced several hours after acute exercise in rats with normal or reduced insulin sensitivity. Skeletal muscle is composed of multiple fiber types, but exercise's effect on fiber type-specific insulin-stimulated GU in insulin-resistant muscle was previously unknown. Male rats were fed a high-fat diet (HFD; 2 wk) and were either sedentary (SED) or exercised (2-h exercise). Other, low-fat diet-fed (LFD) rats remained SED. Rats were studied immediately postexercise (IPEX) or 3 h postexercise (3hPEX). Epitrochlearis muscles from IPEX rats were incubated in 2-deoxy-[3H]glucose (2-[3H]DG) without insulin. Epitrochlearis muscles from 3hPEX rats were incubated with 2-[3H]DG ± 100 µU/ml insulin. After single fiber isolation, GU and fiber type were determined. Glycogen and lipid droplets (LDs) were assessed histochemically. GLUT4 abundance was determined by immunoblotting. In HFD-SED vs. LFD-SED rats, insulin-stimulated GU was decreased in type IIB, IIX, IIAX, and IIBX fibers. Insulin-independent GU IPEX was increased and glycogen content was decreased in all fiber types (types I, IIA, IIB, IIX, IIAX, and IIBX). Exercise by HFD-fed rats enhanced insulin-stimulated GU in all fiber types except type I. Single fiber analyses enabled discovery of striking fiber type-specific differences in HFD and exercise effects on insulin-stimulated GU. The fiber type-specific differences in insulin-stimulated GU postexercise in insulin-resistant muscle were not attributable to a lack of fiber recruitment, as indirectly evidenced by insulin-independent GU and glycogen IPEX, differences in multiple LD indexes, or altered GLUT4 abundance, implicating fiber type-selective differences in the cellular processes responsible for postexercise enhancement of insulin-mediated GLUT4 translocation.
Collapse
MESH Headings
- Animals
- Diet, High-Fat
- Glucose/metabolism
- Glucose Transporter Type 4/metabolism
- Glycogen/metabolism
- Insulin/pharmacology
- Insulin Resistance
- Lipid Droplets/metabolism
- Male
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Physical Conditioning, Animal
- Rats
- Rats, Wistar
- Sedentary Behavior
Collapse
Affiliation(s)
- Mark W Pataky
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan , Ann Arbor, Michigan
| | - Carmen S Yu
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan , Ann Arbor, Michigan
| | - Yilin Nie
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan , Ann Arbor, Michigan
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan , Ann Arbor, Michigan
| | - Manak Singh
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan , Ann Arbor, Michigan
| | - Christopher L Mendias
- Hospital for Special Surgery and Department of Physiology and Biophysics, Weill Cornell Medical College , New York, New York
| | | | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan , Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
- Institute of Gerontology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
20
|
Watanabe D, Aibara C, Wada M. Treatment with EUK-134 improves sarcoplasmic reticulum Ca2+ release but not myofibrillar Ca2+ sensitivity after fatiguing contraction of rat fast-twitch muscle. Am J Physiol Regul Integr Comp Physiol 2019; 316:R543-R551. [DOI: 10.1152/ajpregu.00387.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscles undergoing vigorous activity can enter a state of prolonged low-frequency force depression (PLFFD). This study was conducted to examine whether antioxidant treatment is capable of accelerating the recovery from PLFFD, with a focus on the function of the sarcoplasmic reticulum (SR) and myofibril. One hour before fatiguing stimulation (FS) was administered, rats received an intraperitoneal injection of Eukarion (EUK-134), which mimics the activities of superoxide dismutase and catalase. Intact muscles of the hindlimbs were electrically stimulated via the sciatic nerve until the force was reduced to ~50% of the initial force (FS). Thirty minutes after cessation of FS, the superficial regions of gastrocnemius muscles were dissected and used for biochemical and skinned-fiber analyses. Whole muscle analyses revealed that antioxidant alleviated the FS-induced decrease in the reduced glutathione content. Skinned-fiber analyses showed that the antioxidant did not affect the FS-induced decrease in the ratio of force at 1 Hz to that at 50 Hz. However, the antioxidant partially inhibited the FS-mediated decrease in the ratio of depolarization-induced force to the maximum Ca2+-activated force. Furthermore, the antioxidant completely suppressed the FS-induced increase in myofibrillar Ca2+ sensitivity. These results suggest that antioxidant treatment is ineffective in facilitating the restoration of PLFFD, probably due to its negative effect on myofibrillar Ca2+ sensitivity, which supersedes its positive effect on SR Ca2+ release.
Collapse
Affiliation(s)
- Daiki Watanabe
- Department of Engineering Science, University of Electro-Communication, Tokyo, Japan
| | - Chihiro Aibara
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
21
|
Takisawa S, Funakoshi T, Yatsu T, Nagata K, Aigaki T, Machida S, Ishigami A. Vitamin C deficiency causes muscle atrophy and a deterioration in physical performance. Sci Rep 2019; 9:4702. [PMID: 30894591 PMCID: PMC6426981 DOI: 10.1038/s41598-019-41229-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/26/2019] [Indexed: 11/29/2022] Open
Abstract
L-Ascorbic acid (AsA) is a water-soluble antioxidant. We examined the effect of AsA deficiency on skeletal muscle using senescence marker protein-30 (SMP30)-knockout (KO) mice that are defective in AsA biosynthesis, which makes this mouse model similar to humans, to clarify the function of AsA in skeletal muscle. Eight-week-old female SMP30-KO mice were divided into the following two groups: an AsA-sufficient group [AsA(+)] that was administered 1.5 g/L AsA and an AsA-deficient group [AsA(-)] that was administered tap (AsA-free) water. At 4 weeks, the AsA content in the gastrocnemius muscle of AsA(-) mice was 0.7% compared to that in the gastrocnemius muscle of AsA(+) mice. Significantly lower weights of all muscles were observed in AsA(-) mice than those in AsA(+) mice at 12 and 16 weeks. The cross-sectional area of the soleus was significantly smaller in AsA(-) mice at 16 weeks than that in AsA(+) mice. The physical performance of AsA(-) mice was significantly less than that of AsA(+) mice at 12 weeks. Following AsA deficiency for 12 weeks, the expression of ubiquitin ligases, such as atrogin1/muscle atrophy F-box (MAFbx) and muscle RING-finger protein 1 (MuRF1), was upregulated. Furthermore, all detected effects of AsA deficiency on muscles of the AsA(-) group at 12 weeks were restored following AsA supplementation for 12 weeks. Thus, longer-term AsA deficiency is associated with muscle wasting, that this can be reversed by restoring AsA levels.
Collapse
Affiliation(s)
- Shoko Takisawa
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
- Cellular Genetics, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, 274-8510, Japan
| | - Tomoko Funakoshi
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Tomofumi Yatsu
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Kisaburo Nagata
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba, 274-8510, Japan
| | - Toshiro Aigaki
- Cellular Genetics, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Shuichi Machida
- Graduate School of Health and Sports Science, Juntendo University, Chiba, 270-1695, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.
| |
Collapse
|
22
|
Watanabe D, Aibara C, Okada N, Wada M. Thermal pretreatment facilitates recovery from prolonged low-frequency force depression in rat fast-twitch muscle. Physiol Rep 2018; 6:e13853. [PMID: 30175495 PMCID: PMC6119698 DOI: 10.14814/phy2.13853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to examine whether thermal pretreatment can accelerate recovery from prolonged low-frequency force depression. The hindlimbs of thermal treated (T-treated) rats were immersed in water heated to 42.0°C for 20 min (thermal pretreatment). The thermal pretreatment was performed once a day for 5 days before fatiguing stimulation. Intact gastrocnemius muscles were electrically stimulated via the sciatic nerve until force was reduced to ~50% of the initial and dissected immediately [recovery 0 (REC0)] or 60 min [recovery 60 (REC60)] following the cessation of stimulation. Using skinned fiber prepared from the superficial region, the ratio of force at 1 Hz to that at 50 Hz (low-to-high force ratio), the ratio of depolarization (depol)-induced force to maximum Ca2+ -activated force (depol/max Ca2+ force ratio), the steepness of force-Ca2+ concentration curves, and myofibrillar Ca2+ sensitivity were measured. At REC0, the low-to-high force ratio and depol/max Ca2+ force ratio decreased in stimulated muscles from both non- and thermal-treated rats. At REC60, these two parameters remained depressed in non-treated rats, whereas they reverted to resting levels in T-treated rats. Thermal pretreatment exerted no effect on myofibrillar Ca2+ sensitivity. The present results reveal that thermal pretreatment can facilitate recovery of submaximum force after vigorous contraction, which is mediated via a quick return of Ca2+ release from the sarcoplasmic reticulum to resting levels.
Collapse
Affiliation(s)
- Daiki Watanabe
- Graduate School of Integrated Arts and SciencesHiroshima UniversityHiroshimaJapan
- Research Fellow of Japan Society for the Promotion of ScienceTokyoJapan
| | - Chihiro Aibara
- Graduate School of Integrated Arts and SciencesHiroshima UniversityHiroshimaJapan
| | - Naoki Okada
- Graduate School of Integrated Arts and SciencesHiroshima UniversityHiroshimaJapan
| | - Masanobu Wada
- Graduate School of Integrated Arts and SciencesHiroshima UniversityHiroshimaJapan
| |
Collapse
|
23
|
The regulation of skeletal muscle fiber-type composition by betaine is associated with NFATc1/MyoD. J Mol Med (Berl) 2018; 96:685-700. [PMID: 29876588 DOI: 10.1007/s00109-018-1657-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/03/2023]
Abstract
Increasing evidence indicates that muscular dysfunction or alterations in skeletal muscle fiber-type composition not only are involved in muscle metabolism and function but also can limit functional capacity. Therefore, understanding the mechanisms regulating key events during skeletal myogenesis is necessary. Betaine is a naturally occurring component of commonly eaten foods. Here, we showed that 10 mM betaine supplementation in vitro significantly repressed myoblast proliferation and enhanced myoblast differentiation. This effect can be mediated by regulation of miR-29b-3p. Further analysis showed that betaine supplementation in vitro regulated skeletal muscle fiber-type composition through the induction of NFATc1 and the negative regulation of MyoD expression. Furthermore, mice fed with 10 mM betaine in water for 133 days showed no impairment in overall health. Consistently, betaine supplementation increased muscle mass, promoted muscle formation, and modulated the ratio of fiber types in skeletal muscle in vivo. These findings shed light on the diverse biological functions of betaine and indicate that betaine supplementation may lead to new therapies for diseases such as muscular dystrophy or other diseases related to muscle dysfunction. KEY MESSAGES: Betaine supplementation inhibits proliferation and promotes differentiation of C2C12 myoblasts. Betaine supplementation regulates fast to slow muscle fiber-type conversion and is associated with NFATc1/MyoD. Betaine supplementation enhances skeletal myogenesis in vivo. Betaine supplementation does not impair health of mice.
Collapse
|
24
|
Yamauchi M, Yamamoto M, Kitamura K, Morita S, Nagakura R, Matsunaga S, Abe S. Morphological classification and comparison of suboccipital muscle fiber characteristics. Anat Cell Biol 2018; 50:247-254. [PMID: 29354295 PMCID: PMC5768560 DOI: 10.5115/acb.2017.50.4.247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 11/27/2022] Open
Abstract
In an attempt to clarify the function of the suboccipital muscles, we performed morphological observation of the suboccipital muscles for variations in the muscle belly and compared the morphology of their muscle fibers in terms of cross-sectional area by immunostaining with anti-myosin heavy chain antibodies. The cadavers of 25 Japanese individuals were used: 22 for morphological examinations and three for histological examinations. Among samples of the rectus capitis posterior major muscle (RCPma) and rectus capitis posterior minor muscle (RCPmi), 86.4% had a typical muscle appearance with a single belly, and 13.6% had an anomalous morphology. None of the samples of the obliquus capitis superior (OCS) or obliquus capitis inferior (OCI) muscles had an anomalous appearance. Measurement of cross-sectional area revealed that fast-twitch muscle fibers in the RCPma and OCI had a significantly greater cross-sectional area than those of the RCPmi and OCS. The cross-sectional area of intermediate muscle fibers was also significantly greater in the OCS than in the RCPma, RCPmi, and OCI. The cross-sectional area of slow-twitch muscle fibers was significantly greater in the OCS than in the RCPma, RCPmi, and OCI, and the RCPmi showed a significantly greater cross-sectional area for slow-twitch muscle fibers than did the RCPma, and OCI. Our findings indicate that the RCPmi and OCS exert a greater force than the RCPma and OCI, and act as anti-gravity agonist muscles of the head. Prolonged head extension in individuals with anomalous suboccipital muscle groups could result in dysfunction due to undue stress.
Collapse
Affiliation(s)
| | | | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | | | | | | | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
25
|
Kaup D, Keller J, Most E, Geyer J, Eder K, Ringseis R. The carnitine status does not affect the contractile and metabolic phenotype of skeletal muscle in pigs. Nutr Metab (Lond) 2018; 15:2. [PMID: 29344054 PMCID: PMC5764002 DOI: 10.1186/s12986-017-0238-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/29/2017] [Indexed: 02/24/2023] Open
Abstract
Background Recently, supplementation of L-carnitine to obese rats was found to improve the carnitine status and to counteract an obesity-induced muscle fiber transition from type I to type II. However, it has not been resolved if the change of muscle fiber distribution induced in obese rats and the restoration of the "normal" muscle fiber distribution, which is found in lean rats, in obese rats by supplemental L-carnitine is causally linked with the carnitine status. In the present study we hypothesized that fiber type distribution in skeletal muscle is dependent on carnitine status. Methods To test this, an experiment with 48 piglets which were randomly allocated to four groups (n = 12) was performed. All piglets were given orally either 60 mg sodium bicarbonate/kg body weight (group CON), 20 mg L-carnitine and 60 mg sodium bicarbonate/kg body weight (group CARN), 30 mg pivalate (dissolved in sodium bicarbonate)/kg body weight (group PIV) or 20 mg L-carnitine and 30 mg pivalate/kg body weight (group CARN + PIV) each day for a period of 4 weeks. Results Concentrations of total carnitine in plasma, liver and longissimus dorsi and biceps femoris muscles were 2.0-2.7 fold higher in group CARN than in group CON, whereas these concentrations were 1.9-2.5-fold lower in group PIV than in group CON. The concentrations of total carnitine in these tissues did not statistically differ between group CARN + PIV and group CON. Fiber type distribution of longissimus dorsi and biceps femoris muscles, mRNA and protein levels of molecular regulators of fiber distribution in longissimus dorsi and biceps femoris muscles and mRNA levels of genes reflecting the metabolic phenotype of longissimus dorsi and biceps femoris muscles did not differ between groups. Conclusion Changes in the systemic carnitine status and the muscle carnitine concentration induced by either supplementing L-carnitine or administering pivalate have no impact on the contractile and metabolic phenotype of skeletal muscles in pigs.
Collapse
Affiliation(s)
- Daniel Kaup
- 1Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Janine Keller
- 1Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Erika Most
- 1Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Joachim Geyer
- 2Institute of Pharmacology and Toxicology, Justus-Liebig-University of Giessen, Schubertstr 81, 35392, Giessen, Germany
| | - Klaus Eder
- 1Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Robert Ringseis
- 1Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
26
|
Joo SH, Lee KW, Hwang YH, Joo ST. Histochemical Characteristics in Relation to Meat Quality Traits of Eight Major Muscles from Hanwoo Steers. Korean J Food Sci Anim Resour 2017; 37:716-725. [PMID: 29147095 PMCID: PMC5686330 DOI: 10.5851/kosfa.2017.37.5.716] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 11/06/2022] Open
Abstract
The objective of this study was to determine the relationship between composition of muscle fiber types and meat quality traits of eight major muscles from Hanwoo steers. Longissimus lumborum (LL), psoas major (PM), semimembranosus (SM), semitendinosus (ST), gluteus medius (GM), triceps brachii (TB), rectus abdominis (RA) and superficialis flexor (SF) muscles were obtained from 9 Hanwoo steers and subjected to histochemical analysis. There were significant (p<0.05) differences in fiber number percentage (FNP) and fiber area percentage (FAP) of fiber types among these 8 major muscles. SF had the highest FNP of type I (55.9%), followed by PM (46.4%), TB (45.4%), RA (38.5%), LD (36.8%), GM (36.0%), SM (22.2%), and ST (18.8%). FAP of type IIB ranged from 9.9% in SF to 58.7% in ST. Meat quality traits, including fat content, myoglobin content, collagen content, CIE L* and a*, drip and cooking loss, sarcomere length and Warner-Bratzler shear force, were all significantly (p<0.05) different among these muscles. Due to such diversities among these 8 muscles, lack of correlations were found between fiber type composition and meat quality traits. These results suggest that correlation for each individual muscle should be used to improve meat quality and profitability of retail beef cuts.
Collapse
Affiliation(s)
- Sung-Hyun Joo
- Department of Animal Science, Gyeongsang National University, Jinju 52852, Korea
| | - Kyu-Won Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52852, Korea
| | - Young-Hwa Hwang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52852, Korea
| | - Seon-Tea Joo
- Department of Animal Science, Gyeongsang National University, Jinju 52852, Korea.,Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52852, Korea
| |
Collapse
|
27
|
Pataky MW, Wang H, Yu CS, Arias EB, Ploutz-Snyder RJ, Zheng X, Cartee GD. High-Fat Diet-Induced Insulin Resistance in Single Skeletal Muscle Fibers is Fiber Type Selective. Sci Rep 2017; 7:13642. [PMID: 29057943 PMCID: PMC5651812 DOI: 10.1038/s41598-017-12682-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/18/2017] [Indexed: 11/17/2022] Open
Abstract
Skeletal muscle is the major site for insulin-stimulated glucose disposal, and muscle insulin resistance confers many negative health outcomes. Muscle is composed of multiple fiber types, and conventional analysis of whole muscles cannot elucidate fiber type differences at the cellular level. Previous research demonstrated that a brief (two weeks) high fat diet (HFD) caused insulin resistance in rat skeletal muscle. The primary aim of this study was to determine in rat skeletal muscle the influence of a brief (two weeks) HFD on glucose uptake (GU) ± insulin in single fibers that were also characterized for fiber type. Epitrochlearis muscles were incubated with [3H]-2-deoxyglucose (2DG) ± 100 µU/ml insulin. Fiber type (myosin heavy chain expression) and 2DG accumulation were measured in whole muscles and single fibers. Although fiber type composition of whole muscles did not differ between diet groups, GU of insulin-stimulated whole muscles from LFD rats significantly exceeded HFD values (P < 0.005). For HFD versus LFD rats, GU of insulin-stimulated single fibers was significantly (P < 0.05) lower for IIA, IIAX, IIBX, IIB, and approached significance for IIX (P = 0.100), but not type I (P = 0.776) fibers. These results revealed HFD-induced insulin resistance was attributable to fiber type selective insulin resistance and independent of altered fiber type composition.
Collapse
Affiliation(s)
- Mark W Pataky
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Carmen S Yu
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | | | - Xiaohua Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA. .,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA. .,Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Chao YP, Lai YF, Kao TW, Peng TC, Lin YY, Shih MT, Chen WL, Wu LW. Mid-arm muscle circumference as a surrogate in predicting insulin resistance in non-obese elderly individuals. Oncotarget 2017; 8:79775-79784. [PMID: 29108358 PMCID: PMC5668091 DOI: 10.18632/oncotarget.19340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
The homeostatic model assessment of insulin resistance (HOMA-IR) was used to measure the degree of insulin resistance (IR). Previous literature revealed that mid-arm muscle circumference (MAMC) is one of the anthropometric indicators for nutritional status and the relationship between MAMC and HOMA-IR remains uncertain in the obese and non-obese elderly individuals. The present study included 5,607 participants aged between 60 to 84 years old, using data from the 1999 to 2006 National Health and Nutrition Examination Survey (NHANES). To further explore the association between HOMA-IR and MAMC in the obese and non-obese elderly population using multivariate Cox regression analyses, we divided the participants into obese (BMI ≥ 30 kg/m2) group and non-obese (19 ≤ BMI < 30 kg/m2) group in this study; each group was then divided into quartiles based on their MAMC levels. A positive association was noted between the MAMC and HOMA-IR in all of the designed models initially. After adjusting for multiple covariates, a higher level of the MAMC was significantly associated with elevated HOMA-IR (P < 0.05) in the non-obesity group, which was not the case in the obesity group. Additionally, subjects in the higher quartiles of MAMC tended to have higher HOMA-IR with a significant association (P for trend = 0.003 in model 1; P for trend < 0.001 in model 2, 3, and 4). These results demonstrated that the MAMC can be an auxiliary indicator of HOMA-IR in non-obese elderly individuals and may have substantial additional value in screening for IR if well extrapolated.
Collapse
Affiliation(s)
- Yuan-Ping Chao
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yi-Fen Lai
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tung-Wei Kao
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tao-Chun Peng
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yuan-Yung Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Mu-Tsun Shih
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Urology, Department of Surgery, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Li-Wei Wu
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
29
|
Schilder RJ. (How) do animals know how much they weigh? ACTA ACUST UNITED AC 2017; 219:1275-82. [PMID: 27208031 DOI: 10.1242/jeb.120410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
Animal species varying in size and musculoskeletal design all support and move their body weight. This implies the existence of evolutionarily conserved feedback between sensors that produce quantitative signals encoding body weight and proximate determinants of musculoskeletal designs. Although studies at the level of whole organisms and tissue morphology and function clearly indicate that musculoskeletal designs are constrained by body weight variation, the corollary to this - i.e. that the molecular-level composition of musculoskeletal designs is sensitive to body weight variation - has been the subject of only minimal investigation. The main objective of this Commentary is to briefly summarize the former area of study but, in particular, to highlight the latter hypothesis and the relevance of understanding the mechanisms that control musculoskeletal function at the molecular level. Thus, I present a non-exhaustive overview of the evidence - drawn from different fields of study and different levels of biological organization - for the existence of body weight sensing mechanism(s).
Collapse
Affiliation(s)
- Rudolf J Schilder
- Department of Entomology and Biology, Pennsylvania State University, 501 Ag Sci Ind Bldg, University Park, PA 16802, USA
| |
Collapse
|
30
|
Chagnot C, Venien A, Renier S, Caccia N, Talon R, Astruc T, Desvaux M. Colonisation of Meat by Escherichia coli O157:H7: Investigating Bacterial Tropism with Respect to the Different Types of Skeletal Muscles, Subtypes of Myofibres, and Postmortem Time. Front Microbiol 2017; 8:1366. [PMID: 28790986 PMCID: PMC5524725 DOI: 10.3389/fmicb.2017.01366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022] Open
Abstract
Escherichia coli O157:H7 is an enterohaemorrhagic E. coli (EHEC) responsible for serious diseases, especially pediatric, and of great concern for the meat industry. Meat contamination by EHEC occurs at slaughtering, especially at dehiding stage, where bacteria can be transferred from hides to carcasses. The skeletal muscle tissues comprise four major types of myofibres, which differ in their contraction velocity and metabolism. Myofibres are surrounded by the extracellular matrix (ECM). Adhesion of E. coli O157:H7 to meat was investigated considering well-defined types of skeletal muscle and their constituent myofibres as well as postmortem changes in muscle, using fluorescence microscopy and immunohistochemical analyses. By analysing the adhesion of E. coli O157:H7 to model oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] skeletal muscles, it first appeared that differential adhesion occurred at the surface of these extreme skeletal muscle types. At a cellular level, bacterial adhesion appeared to occur essentially at the ECM. Considering the different constituent myofibres of types I, IIA, IIX and IIB, no significant differences were observed for adhering bacteria. However, bacterial adhesion to the ECM was significantly influenced by postmortem structural modifications of muscle tissues. By providing information on spatial localisation of E. coli O157:H7 on meat, this investigation clearly demonstrated their ability to adhere to skeletal muscle, especially at the ECM, which consequently resulted in their heterogeneous distribution in meat. As discussed, these new findings should help in reassessing and mitigating the risk of contamination of meat, the food chain and ultimately human infection by EHEC.
Collapse
Affiliation(s)
- Caroline Chagnot
- UMR454 MEDiS, INRA, Université Clermont AuvergneClermont-Ferrand, France
- INRA, UR370 Qualité des Produits AnimauxSaint-Genès Champanelle, France
| | - Annie Venien
- INRA, UR370 Qualité des Produits AnimauxSaint-Genès Champanelle, France
| | - Sandra Renier
- UMR454 MEDiS, INRA, Université Clermont AuvergneClermont-Ferrand, France
| | - Nelly Caccia
- UMR454 MEDiS, INRA, Université Clermont AuvergneClermont-Ferrand, France
| | - Régine Talon
- UMR454 MEDiS, INRA, Université Clermont AuvergneClermont-Ferrand, France
| | - Thierry Astruc
- INRA, UR370 Qualité des Produits AnimauxSaint-Genès Champanelle, France
| | - Mickaël Desvaux
- UMR454 MEDiS, INRA, Université Clermont AuvergneClermont-Ferrand, France
| |
Collapse
|
31
|
Pette D, Vrbová G. The Contribution of Neuromuscular Stimulation in Elucidating Muscle Plasticity Revisited. Eur J Transl Myol 2017; 27:6368. [PMID: 28458806 PMCID: PMC5391529 DOI: 10.4081/ejtm.2017.6368] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Studies carried out during the past 45 years on the effects of chronic low-frequency stimulation on skeletal muscle have revealed a multiplicity of adaptive changes of muscle fibres in response to increased activity. As reflected by induced changes in the metabolic properties, protein profiles of the contractile machinery and elements of the Ca2+-regulatory system, all essential components of the muscle fibre undergo pronounced changes in their properties that ultimately lead to their reversible transformation from fast-to-slow phenotype. The chronic low-frequency stimulation experiment thus allows exploring many aspects of the plasticity of mammalian skeletal muscle. Moreover it offers the possibility of elucidating molecular mechanisms that remodel phenotypic properties of a differentiated post-mitotic cell during adaptation to altered functional demands. The understanding of the adaptive potential of muscle can be taken advantage of for repairing muscle damage in various muscle diseases. In addition it can be used to prevent muscle wasting during inactivity and aging. Indeed, pioneering studies are still the sound grounds for the many current applications of Functional Electrical Stimulation and for the related research activities that are still proposed and funded.
Collapse
Affiliation(s)
- Dirk Pette
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Gerta Vrbová
- Department of Anatomy and Developmental Biology, University College London, London, UK
| |
Collapse
|
32
|
Valkovič L, Chmelík M, Krššák M. In-vivo 31P-MRS of skeletal muscle and liver: A way for non-invasive assessment of their metabolism. Anal Biochem 2017; 529:193-215. [PMID: 28119063 PMCID: PMC5478074 DOI: 10.1016/j.ab.2017.01.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 01/18/2023]
Abstract
In addition to direct assessment of high energy phosphorus containing metabolite content within tissues, phosphorus magnetic resonance spectroscopy (31P-MRS) provides options to measure phospholipid metabolites and cellular pH, as well as the kinetics of chemical reactions of energy metabolism in vivo. Even though the great potential of 31P-MR was recognized over 30 years ago, modern MR systems, as well as new, dedicated hardware and measurement techniques provide further opportunities for research of human biochemistry. This paper presents a methodological overview of the 31P-MR techniques that can be used for basic, physiological, or clinical research of human skeletal muscle and liver in vivo. Practical issues of 31P-MRS experiments and examples of potential applications are also provided. As signal localization is essential for liver 31P-MRS and is important for dynamic muscle examinations as well, typical localization strategies for 31P-MR are also described.
Collapse
Affiliation(s)
- Ladislav Valkovič
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Marek Chmelík
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Martin Krššák
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Kim JA, Roy RR, Zhong H, Alaynick WA, Embler E, Jang C, Gomez G, Sonoda T, Evans RM, Edgerton VR. PPARδ preserves a high resistance to fatigue in the mouse medial gastrocnemius after spinal cord transection. Muscle Nerve 2015; 53:287-96. [PMID: 26044200 DOI: 10.1002/mus.24723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 05/21/2015] [Accepted: 05/29/2015] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Skeletal muscle oxidative capacity decreases and fatigability increases after spinal cord injury. Transcription factor peroxisome proliferator-activated receptor δ (PPARδ) promotes a more oxidative phenotype. METHODS We asked whether PPARδ overexpression could ameliorate these deficits in the medial gastrocnemius of spinal cord transected (ST) adult mice. RESULTS Time-to-peak tension and half-relaxation times were longer in PPARδ-Con and PPARδ-ST compared with littermate wild-type (WT) controls. Fatigue index was 50% higher in PPARδ-Con than WT-Con and 70% higher in the PPARδ-ST than WT-ST. There was an overall higher percent of darkly stained fibers for succinate dehydrogenase in both PPARδ groups. CONCLUSIONS The results indicate a conversion toward slower, more oxidative, and less fatigable muscle properties with overexpression of PPARδ. Importantly, the elevated fatigue resistance was maintained after ST, suggesting that enhanced PPARδ expression, and possibly small molecule agonists, could ameliorate the increased fatigability routinely observed in chronically paralyzed muscles.
Collapse
Affiliation(s)
- Jung A Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, California, 90095-7239, USA
| | - Roland R Roy
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, California, 90095-7239, USA.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Hui Zhong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, California, 90095-7239, USA
| | | | - Emi Embler
- Gene Expression Laboratory, Salk Institute, La Jolla, California, USA
| | - Claire Jang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, California, 90095-7239, USA
| | - Gabriel Gomez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, California, 90095-7239, USA
| | - Takuma Sonoda
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, California, 90095-7239, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute, La Jolla, California, USA.,Howard Hughes Medical Institute, La Jolla, California, USA
| | - V Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, California, 90095-7239, USA.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA.,Department of Neurobiology, University of California, Los Angeles, Los Angeles, California, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
34
|
Gokhin DS, Ochala J, Domenighetti AA, Fowler VM. Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle. Development 2015; 142:4351-62. [PMID: 26586224 DOI: 10.1242/dev.129171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/05/2015] [Indexed: 01/10/2023]
Abstract
The sarcomeric tropomodulin (Tmod) isoforms Tmod1 and Tmod4 cap thin filament pointed ends and functionally interact with the leiomodin (Lmod) isoforms Lmod2 and Lmod3 to control myofibril organization, thin filament lengths, and actomyosin crossbridge formation in skeletal muscle fibers. Here, we show that Tmod4 is more abundant than Tmod1 at both the transcript and protein level in a variety of muscle types, but the relative abundances of sarcomeric Tmods are muscle specific. We then generate Tmod4(-/-) mice, which exhibit normal thin filament lengths, myofibril organization, and skeletal muscle contractile function owing to compensatory upregulation of Tmod1, together with an Lmod isoform switch wherein Lmod3 is downregulated and Lmod2 is upregulated. However, RNAi depletion of Tmod1 from either wild-type or Tmod4(-/-) muscle fibers leads to thin filament elongation by ∼15%. Thus, Tmod1 per se, rather than total sarcomeric Tmod levels, controls thin filament lengths in mouse skeletal muscle, whereas Tmod4 appears to be dispensable for thin filament length regulation. These findings identify Tmod1 as the key direct regulator of thin filament length in skeletal muscle, in both adult muscle homeostasis and in developmentally compensated contexts.
Collapse
Affiliation(s)
- David S Gokhin
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Julien Ochala
- Centre of Human and Aerospace Physiological Sciences, King's College London, London SE1 1UL, UK
| | - Andrea A Domenighetti
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA Rehabilitation Institute of Chicago, Chicago, IL 60611, USA
| | - Velia M Fowler
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
35
|
Bakou SN, Nteme Ella GS, Aoussi S, Guiguand L, Cherel Y, Fantodji A. Fiber Composition of the Grasscutter ( Thryonomys swinderianus, Temminck 1827) Thigh Muscle: An Enzyme-histochemical Study. JOURNAL OF CYTOLOGY & HISTOLOGY 2015; 6:311. [PMID: 26167391 PMCID: PMC4496929 DOI: 10.4172/2157-7099.1000311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The aim of this study was to describe de fiber composition in the thigh muscles of grass cutter (Thryonomys swinderianus, Temminck 1827). Ten 4 to 6-month-old (3 to 4 kg) male grasscutter were used in this study. Eleven skeletal muscles of the thigh [M. biceps femoris (BF), M. rectus femoris (RF), M. vastus lateralis (VL), M. vastus medialis (VM), M. tensor fasciae latae (TFL), M. semitendinosus (ST), M. semimembranosus (SM), M. semimembranosus accessorius (SMA), M. Sartorius (SRT), M. pectineus (PCT), M. adductor magnus (AM)] were collected after animals euthanasia and examined by light microscopy. Three muscle fiber types (I, IIB and IIA) were found in these muscles using enzyme histochemical techniques [myosine adenosine triphosphatase (ATPase) and nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR)]. Ten of these eleven muscles are composed by 89% to 100% of fast contracting fibers (types IIA and IIB), while the SMA was almost exclusively formed by slow contracting fibers.
Collapse
Affiliation(s)
- Serge Niangoran Bakou
- Department of Biological Sciences and Animal Production, E.I.S.M.V. de Dakar, B.P. 5077, Senegal-Dakar fann
| | - Gualbert Simon Nteme Ella
- Department of Biological Sciences and Animal Production, E.I.S.M.V. de Dakar, B.P. 5077, Senegal-Dakar fann
| | - Serge Aoussi
- Institut Pasteur de Côte d’Ivoire (IPCI), Senegal
| | - Lydie Guiguand
- Department of Food Science and Engineering, Nantes-Atlantic National College of Veterinary Medicine, Nantes-France
| | - Yannick Cherel
- Department of Food Science and Engineering, Nantes-Atlantic National College of Veterinary Medicine, Nantes-France
| | - Agathe Fantodji
- Laboratory of Animal Biology and Cytology, Abidjan 02, Côte d’Ivoire
| |
Collapse
|
36
|
Murgia M, Nagaraj N, Deshmukh AS, Zeiler M, Cancellara P, Moretti I, Reggiani C, Schiaffino S, Mann M. Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO Rep 2015; 16:387-95. [PMID: 25643707 PMCID: PMC4364878 DOI: 10.15252/embr.201439757] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mammalian skeletal muscles are composed of multinucleated cells termed slow or fast fibers according to their contractile and metabolic properties. Here, we developed a high-sensitivity workflow to characterize the proteome of single fibers. Analysis of segments of the same fiber by traditional and unbiased proteomics methods yielded the same subtype assignment. We discovered novel subtype-specific features, most prominently mitochondrial specialization of fiber types in substrate utilization. The fiber type-resolved proteomes can be applied to a variety of physiological and pathological conditions and illustrate the utility of single cell type analysis for dissecting proteomic heterogeneity.
Collapse
Affiliation(s)
- Marta Murgia
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Nagarjuna Nagaraj
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Atul S Deshmukh
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marlis Zeiler
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Pasqua Cancellara
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Irene Moretti
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | | | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Guellich A, Negroni E, Decostre V, Demoule A, Coirault C. Altered cross-bridge properties in skeletal muscle dystrophies. Front Physiol 2014; 5:393. [PMID: 25352808 PMCID: PMC4196474 DOI: 10.3389/fphys.2014.00393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022] Open
Abstract
Force and motion generated by skeletal muscle ultimately depends on the cyclical interaction of actin with myosin. This mechanical process is regulated by intracellular Ca2+ through the thin filament-associated regulatory proteins i.e.; troponins and tropomyosin. Muscular dystrophies are a group of heterogeneous genetic affections characterized by progressive degeneration and weakness of the skeletal muscle as a consequence of loss of muscle tissue which directly reduces the number of potential myosin cross-bridges involved in force production. Mutations in genes responsible for skeletal muscle dystrophies (MDs) have been shown to modify the function of contractile proteins and cross-bridge interactions. Altered gene expression or RNA splicing or post-translational modifications of contractile proteins such as those related to oxidative stress, may affect cross-bridge function by modifying key proteins of the excitation-contraction coupling. Micro-architectural change in myofilament is another mechanism of altered cross-bridge performance. In this review, we provide an overview about changes in cross-bridge performance in skeletal MDs and discuss their ultimate impacts on striated muscle function.
Collapse
Affiliation(s)
- Aziz Guellich
- Service de Cardiologie, Hôpital Henri Mondor, University Paris-Est Créteil Créteil, France ; Equipe 8, Institut National de la Santé et de la Recherche Médicale Créteil, France
| | - Elisa Negroni
- UMRS 974, Institut National de la Santé et de la Recherche Médicale Paris, France ; UM 76, Université Pierre et Marie Curie, Sorbonne Universités Paris, France ; UMR 7215, Centre National de la Recherche Scientifique Paris, France ; Institut de Myologie Paris, France
| | | | - Alexandre Demoule
- UMRS 974, Institut National de la Santé et de la Recherche Médicale Paris, France ; UM 76, Université Pierre et Marie Curie, Sorbonne Universités Paris, France ; UMR 7215, Centre National de la Recherche Scientifique Paris, France ; Institut de Myologie Paris, France ; Assistance Publique-Hopitaux de Paris, Service de Pneumologie et Reanimation Medicale Paris, France
| | - Catherine Coirault
- UMRS 974, Institut National de la Santé et de la Recherche Médicale Paris, France ; UM 76, Université Pierre et Marie Curie, Sorbonne Universités Paris, France ; UMR 7215, Centre National de la Recherche Scientifique Paris, France ; Institut de Myologie Paris, France
| |
Collapse
|
38
|
Kanzaki K, Kuratani M, Matsunaga S, Yanaka N, Wada M. Three calpain isoforms are autolyzed in rat fast-twitch muscle after eccentric contractions. J Muscle Res Cell Motil 2014; 35:179-89. [PMID: 24557809 DOI: 10.1007/s10974-014-9378-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
The present study investigated changes in autolysis of three calpain isoforms in skeletal muscles undergoing eccentric contractions (ECC), leading to prolonged force deficits. Rat extensor digitorum longus and tibialis anterior muscles were exposed to 200-repeated ECC in situ, excised immediately after or 3 or 6 days after cessation of ECC, and used for measures of force output and for biochemical analyses. Full restoration of tetanic force in ECC-treated muscles was not attained until 6 days of recovery. Maximal calpain activity determined by a fluorogenic substrate was unaltered immediately after ECC, but increased to 313 and 450 % after 3 and 6 days, respectively. Increases in the amount of autolyzed calpain-3 were apparent immediately and developed progressively with recovery time, whereas elevations of autolyzed μ- and m-calpain occurred after 3 and 6 days, respectively. The protein content was augmented only in m-calpain. It is suggested that the three calpain isoforms may be involved in the dismantling, repair, remodeling and/or regeneration processes in ECC-treated muscles.
Collapse
Affiliation(s)
- Keita Kanzaki
- Faculty of Food Culture, Kurashiki Sakuyo University, 3515 Nagao-Tamashima, Kurashiki-shi, Okayama, 710-0292, Japan
| | | | | | | | | |
Collapse
|
39
|
Hassan N, Tchao J, Tobita K. Concise review: skeletal muscle stem cells and cardiac lineage: potential for heart repair. Stem Cells Transl Med 2013; 3:183-93. [PMID: 24371329 DOI: 10.5966/sctm.2013-0122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Valuable and ample resources have been spent over the last two decades in pursuit of interventional strategies to treat the unmet demand of heart failure patients to restore myocardial structure and function. At present, it is clear that full restoration of myocardial structure and function is outside our reach from both clinical and basic research studies, but it may be achievable with a combination of ongoing research, creativity, and perseverance. Since the 1990s, skeletal myoblasts have been extensively investigated for cardiac cell therapy of congestive heart failure. Whereas the Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial revealed that transplanted skeletal myoblasts did not integrate into the host myocardium and also did not transdifferentiate into cardiomyocytes despite some beneficial effects on recipient myocardial function, recent studies suggest that skeletal muscle-derived stem cells have the ability to adopt a cardiomyocyte phenotype in vitro and in vivo. This brief review endeavors to summarize the importance of skeletal muscle stem cells and how they can play a key role to surpass current results in the future and enhance the efficacious implementation of regenerative cell therapy for heart failure.
Collapse
Affiliation(s)
- Narmeen Hassan
- Department of Developmental Biology, Department of Bioengineering, and McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
40
|
Khan M, Couturier A, Kubens JF, Most E, Mooren FC, Krüger K, Ringseis R, Eder K. Niacin supplementation induces type II to type I muscle fiber transition in skeletal muscle of sheep. Acta Vet Scand 2013; 55:85. [PMID: 24267720 PMCID: PMC4176759 DOI: 10.1186/1751-0147-55-85] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 11/12/2013] [Indexed: 11/24/2022] Open
Abstract
Background It was recently shown that niacin supplementation counteracts the obesity-induced muscle fiber transition from oxidative type I to glycolytic type II and increases the number of type I fibers in skeletal muscle of obese Zucker rats. These effects were likely mediated by the induction of key regulators of fiber transition, PPARδ (encoded by PPARD), PGC-1α (encoded by PPARGC1A) and PGC-1β (encoded by PPARGC1B), leading to type II to type I fiber transition and upregulation of genes involved in oxidative metabolism. The aim of the present study was to investigate whether niacin administration also influences fiber distribution and the metabolic phenotype of different muscles [M. longissimus dorsi (LD), M. semimembranosus (SM), M. semitendinosus (ST)] in sheep as a model for ruminants. For this purpose, 16 male, 11 wk old Rhoen sheep were randomly allocated to two groups of 8 sheep each administered either no (control group) or 1 g niacin per day (niacin group) for 4 wk. Results After 4 wk, the percentage number of type I fibers in LD, SM and ST muscles was greater in the niacin group, whereas the percentage number of type II fibers was less in niacin group than in the control group (P < 0.05). The mRNA levels of PPARGC1A, PPARGC1B, and PPARD and the relative mRNA levels of genes involved in mitochondrial fatty acid uptake (CPT1B, SLC25A20), tricarboxylic acid cycle (SDHA), mitochondrial respiratory chain (COX5A, COX6A1), and angiogenesis (VEGFA) in LD, SM and ST muscles were greater (P < 0.05) or tended to be greater (P < 0.15) in the niacin group than in the control group. Conclusions The study shows that niacin supplementation induces muscle fiber transition from type II to type I, and thereby an oxidative metabolic phenotype of skeletal muscle in sheep as a model for ruminants. The enhanced capacity of skeletal muscle to utilize fatty acids in ruminants might be particularly useful during metabolic states in which fatty acids are excessively mobilized from adipose tissue, such as during the early lactating period in high producing cows.
Collapse
|
41
|
Baldwin KM, Haddad F, Pandorf CE, Roy RR, Edgerton VR. Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms. Front Physiol 2013; 4:284. [PMID: 24130531 PMCID: PMC3795307 DOI: 10.3389/fphys.2013.00284] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/18/2013] [Indexed: 01/30/2023] Open
Abstract
Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a motor unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC) gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s). Hence, this review will examine findings from three different animal models of unloading: (1) space flight (SF), i.e., microgravity; (2) hindlimb suspension (HS), a procedure that chronically eliminates weight bearing of the lower limbs; and (3) spinal cord isolation (SI), a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: (1) all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; (2) transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and (3) signaling pathways impacting these alterations appear to be similar in each of the models investigated.
Collapse
Affiliation(s)
- Kenneth M Baldwin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine CA, USA
| | | | | | | | | |
Collapse
|
42
|
Khan M, Ringseis R, Mooren FC, Krüger K, Most E, Eder K. Niacin supplementation increases the number of oxidative type I fibers in skeletal muscle of growing pigs. BMC Vet Res 2013; 9:177. [PMID: 24010567 PMCID: PMC3846775 DOI: 10.1186/1746-6148-9-177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/02/2013] [Indexed: 11/20/2022] Open
Abstract
Background A recent study showed that niacin supplementation counteracts the obesity-induced muscle fiber switching from oxidative type I to glycolytic type II and increases the number of type I fibers in skeletal muscle of obese Zucker rats. These effects were likely mediated by the induction of key regulators of fiber transition, PGC-1α and PGC-1β, leading to muscle fiber switching and up-regulation of genes involved in mitochondrial fatty acid import and oxidation, citrate cycle, oxidative phosphorylation, mitochondrial biogenesis. The aim of the present study was to investigate whether niacin supplementation causes type II to type I muscle and changes the metabolic phenotype of skeletal muscles in growing pigs. Results 25 male, 11 wk old crossbred pigs (Danzucht x Pietrain) with an average body weight of 32.8 ± 1.3 (mean ± SD) kg were randomly allocated to two groups of 12 (control group) and 13 pigs (niacin group) which were fed either a control diet or a diet supplemented with 750 mg niacin/kg diet. After 3 wk, the percentage number of type I fibers in three different muscles (M. longissismus dorsi, M. quadriceps femoris, M. gastrocnemius) was greater in the niacin group and the percentage number of type II fibers was lower in the niacin group than in the control group (P < 0.05). The mRNA levels of PGC-1β and genes involved in mitochondrial fatty acid catabolism (CACT, FATP1, OCTN2), citrate cycle (SDHA), oxidative phosphorylation (COX4/1, COX6A1), and thermogenesis (UCP3) in M. longissimus dorsi were greater in the niacin group than in the control group (P < 0.05). Conclusions The study demonstrates that niacin supplementation induces type II to type I muscle fiber switching, and thereby an oxidative metabolic phenotype of skeletal muscle in pigs. Given that oxidative muscle types tend to develop dark, firm and dry pork in response to intense physical activity and/or high psychological stress levels preslaughter, a niacin-induced change in the muscle´s fiber type distribution may influence meat quality of pigs.
Collapse
Affiliation(s)
- Muckta Khan
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, Giessen 35390, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
ŽURMANOVÁ J, SOUKUP T. Comparison of Myosin Heavy Chain mRNAs, Protein Isoforms and Fiber Type Proportions in the Rat Slow and Fast Muscles. Physiol Res 2013; 62:445-53. [DOI: 10.33549/physiolres.932418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We studied the expression of myosin heavy chain isoforms at mRNA and protein levels as well as fiber type composition in the fast extensor digitorum longus (EDL) and slow soleus (SOL) twitch muscles of adult inbred Lewis strain rats. Comparison of the results from Real Time RT-PCR, SDS-PAGE and fiber type analysis showed corresponding proportions of MyHC transcripts (MyHC-1, -2a, -2x/d, -2b), protein isoforms (MyHC-1, -2a, -2x/d, -2b) and fiber types (type 1, 2A, 2X/D, 2B) in both muscles. Furthermore, we found that slow MyHC-1 mRNA expression in the SOL was up to three orders higher than that of fast MyHC transcripts. This finding can explain the predominance of MyHC-1 isoform and fiber type 1 and the absence of pure 2X/D and 2B fibers in the SOL muscle. Based on our data presenting quantitative evidence of corresponding proportions between mRNA level, protein content and fiber type composition, we suggest that the Real Time RT-PCR technique can be used as a routine method for analysis of muscle composition changes and could be advantageous for the analysis of scant biological samples such as muscle biopsies in humans.
Collapse
Affiliation(s)
| | - T. SOUKUP
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
44
|
Couturier A, Ringseis R, Mooren FC, Krüger K, Most E, Eder K. Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle. Nutr Metab (Lond) 2013; 10:48. [PMID: 23842456 PMCID: PMC3717057 DOI: 10.1186/1743-7075-10-48] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/29/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the present study, we tested the hypothesis that carnitine supplementation counteracts obesity-induced muscle fiber transition from type I to type II. METHODS 24 obese Zucker rats were randomly divided into two groups of 12 rats each (obese control, obese carnitine) and 12 lean Zucker rats were selected for lean control group. A control diet was given to both control groups and a carnitine supplemented diet (3 g/kg diet) was given to obese carnitine group for 4 wk. Components of the muscle fiber transformation in skeletal muscle were examined. RESULTS The plasma level of carnitine were lower in the obese control group compared to the lean control group and higher in the obese carnitine group than in the other groups (P < 0.05). Plasma concentrations of triglycerides and non-esterified fatty acids were increased in obese animals compared to lean animals and the obese carnitine group had lower level compared to the obese control group (P < 0.05). The obese carnitine group had an increased number of type I muscle fibers and higher mRNA levels of type I fiber-specific myosin heavy chain, regulators of muscle fiber transition and of genes involved in carnitine uptake, fatty acid transport, β-oxidation, angiogenesis, tricarboxylic acid cycle and thermo genesis in M. rectus femoris compared to the other groups (P < 0.05). CONCLUSION The results demonstrate that carnitine supplementation to obese Zucker a rat counteracts the obesity-induced muscle fiber transition and restores the muscle oxidative metabolic phenotype. Carnitine supplementation is supposed to be beneficial for the treatment of elevated levels of plasma lipids during obesity or diabetes.
Collapse
Affiliation(s)
- Aline Couturier
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Frank-Christoph Mooren
- Department of Sports Medicine, Justus-Liebig-University Giessen, Kugelberg 62, 35394 Giessen, Germany
| | - Karsten Krüger
- Department of Sports Medicine, Justus-Liebig-University Giessen, Kugelberg 62, 35394 Giessen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| |
Collapse
|
45
|
Zhang J, Zhou C, Ma J, Chen L, Jiang A, Zhu L, Shuai S, Wang J, Li M, Li X. Breed, sex and anatomical location-specific gene expression profiling of the porcine skeletal muscles. BMC Genet 2013; 14:53. [PMID: 23768211 PMCID: PMC3703266 DOI: 10.1186/1471-2156-14-53] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/07/2013] [Indexed: 11/10/2022] Open
Abstract
Background Skeletal muscle is one of the most important economic traits in agricultural animals, especially in pigs. In the modern pig industry, lean type pigs have undergone strong artificial selection for muscle growth, which has led to remarkable phenotypic variations compared with fatty type pigs, making these different breeds an ideal model for comparative studies. Results Here, we present comprehensive gene expression profiling for the white (longissimus dorsi muscle) and the red (psoas major muscle) skeletal muscles among male and female fatty Rongchang, feral Tibetan and lean Landrace pigs, using a microarray approach. We identified differentially expressed genes that may be associated the phenotypic differences of porcine muscles among the breeds, between the sexes and the anatomical locations. We also used a clustering method to identify sets of functionally coexpressed genes that are linked to different muscle phenotypes. We showed that, compared with the white muscles, which primarily modulate metabolic processes, the red muscles show a tendency to be a risk factor for inflammation and immune-related disorders. Conclusions This analysis presents breed-, sex- and anatomical location-specific gene expression profiles and further identified genes that may be associated with the phenotypic differences in porcine muscles among breeds, between the sexes and the anatomical locations.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an, Sichuan 625000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shenoy S, Chaskar U, Sandhu JS, Paadhi MM. Effects of eight-week supplementation of Ashwagandha on cardiorespiratory endurance in elite Indian cyclists. J Ayurveda Integr Med 2013; 3:209-14. [PMID: 23326093 PMCID: PMC3545242 DOI: 10.4103/0975-9476.104444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 05/16/2012] [Indexed: 11/08/2022] Open
Abstract
Background: Cycling is an endurance sport relying mainly on aerobic capacity to provide fuel during long-duration cycling events. Athletes are constantly searching for new methods to improve this capacity through various nutritional and ergogenic aids.s Purpose: The aim of the study was to find out the effect of Ashwagandha on the cardiorespiratory endurance capacity, that is, aerobic capacity of elite Indian cyclists. Materials and Methods: Forty elite (elite here refers to the participation of the athlete in at least state-level events) Indian cyclists were chosen randomly and were equally divided into experimental and placebo groups. The experimental group received 500 mg capsules of aqueous roots of Ashwagandha twice daily for eight weeks, whereas the placebo group received starch capsules. Outcome Measures: The baseline treadmill test for the cyclists were performed to measure their aerobic capacity in terms of maximal aerobic capacity (VO2 max), metabolic equivalent, respiratory exchange ratio (RER), and total time for the athlete to reach his exhaustion stage. After eight weeks of supplementation, the treadmill test was again performed and results were obtained. Results: There was significant improvement in the experimental group in all parameters, whereas the placebo group did not show any change with respect to their baseline parameters. There was significant improvement in the experimental group in all parameters, namely, VO2 max (t = 5.356; P < 0.001), METS (t = 4.483; P < 0.001), and time for exhaustion on treadmill (t = 4.813; P < 0.001) in comparison to the placebo group which did not show any change with respect to their baseline parameters. Conclusion: Ashwagandha improved the cardiorespiratory endurance of the elite athletes.
Collapse
Affiliation(s)
- Shweta Shenoy
- Faculty of Sports Medicine and Physiotherapy, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | | | | |
Collapse
|
47
|
Sakiyama K, Takizawa S, Bando Y, Inoue K, Sasaki A, Kurokawa K, Shimoo Y, Suzuki M, Abe S, Amano O. Characteristics and Effects of Muscle Fibers surrounding Lingual Carcinoma. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Chen CNJ, Thompson LV. Interplay between aging and unloading on oxidative stress in fast-twitch muscles. J Gerontol A Biol Sci Med Sci 2012; 68:793-802. [PMID: 23213028 DOI: 10.1093/gerona/gls240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study evaluated the effect of aging on the adaptation potential of antioxidants and the accumulation of oxidative damage in fast-twitch muscles in response to non-weight-bearing conditions. Adult and old rats were randomized into 4 groups: normal weight bearing, hind-limb unloading for 3, 7, and 14 days. Activities of manganese superoxide dismutase, copper-zinc superoxide dismutase, catalase, and glutathione peroxidase and contents of glutathione, carbonylated proteins, and malondialdehyde were determined in tibialis anterior muscles. We found that the adaptability of most antioxidants in fast-twitch muscles with unloading is intact in aged rats except copper-zinc superoxide dismutase where its activity decreased with 14 days of unloading. Additionally, malondialdehyde accumulated in aged muscles with 14 days of unloading but not adult muscles. Collectively, the adaptation of copper-zinc superoxide dismutase in fast-twitch muscles with unloading is impaired with aging, which may be related to the greater accumulation of malondialdehyde.
Collapse
Affiliation(s)
- Chiao-nan Joyce Chen
- Department of Physical Therapy, Chang Gung University, 259 Wen-Hwa 1st Rd, Kweishan, Taoyuan, Taiwan.
| | | |
Collapse
|
49
|
Clause KC, Tchao J, Powell MC, Liu LJ, Huard J, Keller BB, Tobita K. Developing cardiac and skeletal muscle share fast-skeletal myosin heavy chain and cardiac troponin-I expression. PLoS One 2012; 7:e40725. [PMID: 22808244 PMCID: PMC3393685 DOI: 10.1371/journal.pone.0040725] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 06/14/2012] [Indexed: 01/26/2023] Open
Abstract
Skeletal muscle derived stem cells (MDSCs) transplanted into injured myocardium can differentiate into fast skeletal muscle specific myosin heavy chain (sk-fMHC) and cardiac specific troponin-I (cTn-I) positive cells sustaining recipient myocardial function. We have recently found that MDSCs differentiate into a cardiomyocyte phenotype within a three-dimensional gel bioreactor. It is generally accepted that terminally differentiated myocardium or skeletal muscle only express cTn-I or sk-fMHC, respectively. Studies have shown the presence of non-cardiac muscle proteins in the developing myocardium or cardiac proteins in pathological skeletal muscle. In the current study, we tested the hypothesis that normal developing myocardium and skeletal muscle transiently share both sk-fMHC and cTn-I proteins. Immunohistochemistry, western blot, and RT-PCR analyses were carried out in embryonic day 13 (ED13) and 20 (ED20), neonatal day 0 (ND0) and 4 (ND4), postnatal day 10 (PND10), and 8 week-old adult female Lewis rat ventricular myocardium and gastrocnemius muscle. Confocal laser microscopy revealed that sk-fMHC was expressed as a typical striated muscle pattern within ED13 ventricular myocardium, and the striated sk-fMHC expression was lost by ND4 and became negative in adult myocardium. cTn-I was not expressed as a typical striated muscle pattern throughout the myocardium until PND10. Western blot and RT-PCR analyses revealed that gene and protein expression patterns of cardiac and skeletal muscle transcription factors and sk-fMHC within ventricular myocardium and skeletal muscle were similar at ED20, and the expression patterns became cardiac or skeletal muscle specific during postnatal development. These findings provide new insight into cardiac muscle development and highlight previously unknown common developmental features of cardiac and skeletal muscle.
Collapse
Affiliation(s)
- Kelly C. Clause
- Cardiovascular Development Research Program, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jason Tchao
- Cardiovascular Development Research Program, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mary C. Powell
- Cardiovascular Development Research Program, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Li J. Liu
- Cardiovascular Development Research Program, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Johnny Huard
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institutes for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bradley B. Keller
- Department of Pediatrics, University of Louisville, Louisville, Kentucky, United States of America
| | - Kimimasa Tobita
- Cardiovascular Development Research Program, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- McGowan Institutes for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
50
|
Bloemberg D, Quadrilatero J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One 2012; 7:e35273. [PMID: 22530000 PMCID: PMC3329435 DOI: 10.1371/journal.pone.0035273] [Citation(s) in RCA: 471] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 03/14/2012] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle is a heterogeneous tissue comprised of fibers with different morphological, functional, and metabolic properties. Different muscles contain varying proportions of fiber types; therefore, accurate identification is important. A number of histochemical methods are used to determine muscle fiber type; however, these techniques have several disadvantages. Immunofluorescence analysis is a sensitive method that allows for simultaneous evaluation of multiple MHC isoforms on a large number of fibers on a single cross-section, and offers a more precise means of identifying fiber types. In this investigation we characterized pure and hybrid fiber type distribution in 10 rat and 10 mouse skeletal muscles, as well as human vastus lateralis (VL) using multicolor immunofluorescence analysis. In addition, we determined fiber type-specific cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, and α-glycerophosphate dehydrogenase (GPD) activity. Using this procedure we were able to easily identify pure and hybrid fiber populations in rat, mouse, and human muscle. Hybrid fibers were identified in all species and made up a significant portion of the total population in some rat and mouse muscles. For example, rat mixed gastrocnemius (MG) contained 12.2% hybrid fibers whereas mouse white tibialis anterior (WTA) contained 12.1% hybrid fibers. Collectively, we outline a simple and time-efficient method for determining MHC expression in skeletal muscle of multiple species. In addition, we provide a useful resource of the pure and hybrid fiber type distribution, fiber CSA, and relative fiber type-specific SDH and GPD activity in a number of rat and mouse muscles.
Collapse
Affiliation(s)
- Darin Bloemberg
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|