1
|
Liu Y, Wang L, Jiao S, Yang X, Liu G, Fan K, Zhao H, Ma J. Cardiac dilation, energy stress, and ventricular remodeling: insights from prolonged voluntary exercise in male mice with TAC-induced HFpEF. J Appl Physiol (1985) 2025; 138:746-760. [PMID: 39873300 DOI: 10.1152/japplphysiol.00275.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Exercise in heart failure with preserved ejection fraction (HFpEF) remains a hot topic, although current treatment strategies have not been shown to improve the long-term prognosis of HFpEF. Previous studies have mostly focused on the roles of endurance training; the mechanisms underlying long-term voluntary exercise have not been elucidated. The purpose of the present analysis was to evaluate alterations in cardiac function in HFpEF mice (HFpEF-Sed) after 6 wk of voluntary running (HFpEF-Ex), investigate mechanisms, and compare the effects with fluoxetine (HFpEF-FLX). We found that voluntary exercise, instead of fluoxetine intervention, significantly improved left ventricular end-diastolic internal diameter (LVIDd) and the rate of change in anterior wall thickness (AWT) in HFpEF mice. The exercise capacity of HFpEF-Sed mice was significantly reduced, but prolonged voluntary running significantly reversed the expression of myocardial brain natriuretic peptide (BNP), TNF-α, and IL-6, α-myosin heavy chain (α-MHC), and β-MHC in HFpEF-Sed mice, along with myocardial fiber disorders accompanied by massive inflammatory cell infiltrates. Importantly, myocardial complex III and complex V, Mfn2, Drp1, p62, and LC3 II/I expression in HFpEF-Sed mice were all significantly different from those of normal mice, whereas voluntary exercise significantly reversed these expressions. These findings strongly suggest that long-term voluntary exercise is effective in avoiding acute and chronic energy stress in HFpEF-Sed mice, which is consistent with the mechanism of current first-line treatment for HFpEF. This notion was further supported by electron microscopy results, which showed no pathological features in cardiomyocyte mitochondrial morphology after prolonged voluntary exercise. In addition, fluoxetine was found to inhibit depressive-like behavior in HFpEF mice.NEW & NOTEWORTHY As a self-initiating, self-sustaining, and low-cost treatment for patients with heart failure, how voluntary exercise plays its roles in interfering with the pathophysiologic pathways associated with HFpEF is still largely unknown. The results of this study indicate that long-term voluntary exercise can effectively antagonize acute and chronic dual-energy stress and avoid diastolic function limitation caused by pathological ventricular remodeling.
Collapse
Affiliation(s)
- Yanna Liu
- Department of Anatomy, Dalian Medical University, Dalian, People's Republic of China
| | - Li Wang
- Department of Anatomy, Dalian Medical University, Dalian, People's Republic of China
| | - Sirui Jiao
- Department of Anatomy, Dalian Medical University, Dalian, People's Republic of China
| | - Xiaohan Yang
- Department of Anatomy, Dalian Medical University, Dalian, People's Republic of China
| | - Gang Liu
- Department of Anatomy, Dalian Medical University, Dalian, People's Republic of China
| | - Kai Fan
- Department of Anatomy, Dalian Medical University, Dalian, People's Republic of China
| | - Henan Zhao
- Department of Pathophysiology, Dalian Medical University, Dalian, People's Republic of China
| | - Jianmei Ma
- Department of Anatomy, Dalian Medical University, Dalian, People's Republic of China
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
2
|
Zhang LL, Chen GH, Tang RJ, Xiong YY, Pan Q, Jiang WY, Gong ZT, Chen C, Li XS, Yang YJ. Levosimendan Reverses Cardiac Malfunction and Cardiomyocyte Ferroptosis During Heart Failure with Preserved Ejection Fraction via Connexin 43 Signaling Activation. Cardiovasc Drugs Ther 2024; 38:705-718. [PMID: 36881213 DOI: 10.1007/s10557-023-07441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE In recent decades, the occurrence of heart failure with preserved ejection fraction (HFpEF) has outweighed that of heart failure with reduced ejection fraction by degrees, but few drugs have been demonstrated to improve long-term clinical outcomes in patients with HFpEF. Levosimendan, a calcium-sensitizing cardiotonic agent, improves decompensated heart failure clinically. However, the anti-HFpEF activities of levosimendan and underlying molecular mechanisms are unclear. METHODS In this study, a double-hit HFpEF C57BL/6N mouse model was established, and levosimendan (3 mg/kg/week) was administered to HFpEF mice aged 13 to 17 weeks. Different biological experimental techniques were used to verify the protective effects of levosimendan against HFpEF. RESULTS After four weeks of drug treatment, left ventricular diastolic dysfunction, cardiac hypertrophy, pulmonary congestion, and exercise exhaustion were significantly alleviated. Junction proteins in the endothelial barrier and between cardiomyocytes were also improved by levosimendan. Among the gap junction channel proteins, connexin 43, which was especially highly expressed in cardiomyocytes, mediated mitochondrial protection. Furthermore, levosimendan reversed mitochondrial malfunction in HFpEF mice, as evidenced by increased mitofilin and decreased ROS, superoxide anion, NOX4, and cytochrome C levels. Interestingly, after levosimendan administration, myocardial tissue from HFpEF mice showed restricted ferroptosis, indicated by an increased GSH/GSSG ratio; upregulated GPX4, xCT, and FSP-1 expression; and reduced intracellular ferrous ion, MDA, and 4-HNE levels. CONCLUSION Regular long-term levosimendan administration can benefit cardiac function in a mouse model of HFpEF with metabolic syndromes (namely, obesity and hypertension) by activating connexin 43-mediated mitochondrial protection and sequential ferroptosis inhibition in cardiomyocytes.
Collapse
MESH Headings
- Animals
- Ferroptosis/drug effects
- Heart Failure/drug therapy
- Heart Failure/physiopathology
- Heart Failure/metabolism
- Simendan/pharmacology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Connexin 43/metabolism
- Mice, Inbred C57BL
- Disease Models, Animal
- Stroke Volume/drug effects
- Ventricular Function, Left/drug effects
- Male
- Signal Transduction/drug effects
- Mice
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/metabolism
- Cardiotonic Agents/pharmacology
Collapse
Affiliation(s)
- Li-Li Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Gui-Hao Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Rui-Jie Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yu-Yan Xiong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Wen-Yang Jiang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Xiao-Song Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
3
|
Li X, Zhou X, Gao L. Diabetes and Heart Failure: A Literature Review, Reflection and Outlook. Biomedicines 2024; 12:1572. [PMID: 39062145 PMCID: PMC11274420 DOI: 10.3390/biomedicines12071572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Heart failure (HF) is a complex clinical syndrome caused by structural or functional dysfunction of the ventricular filling or blood supply. Diabetes mellitus (DM) is an independent predictor of mortality for HF. The increase in prevalence, co-morbidity and hospitalization rates of both DM and HF has further fueled the possibility of overlapping disease pathology between the two. For decades, antidiabetic drugs that are known to definitively increase the risk of HF are the thiazolidinediones (TZDs) and saxagliptin in the dipeptidyl peptidase-4 (DPP-4) inhibitor, and insulin, which causes sodium and water retention, and whether metformin is effective or safe for HF is not clear. Notably, sodium-glucose transporter 2 (SGLT2) inhibitors and partial glucagon-like peptide-1 receptor agonists (GLP-1 RA) all achieved positive results for HF endpoints, with SGLT2 inhibitors in particular significantly reducing the composite endpoint of cardiovascular mortality and hospitalization for heart failure (HHF). Further understanding of the mutual pathophysiological mechanisms between HF and DM may facilitate the detection of novel therapeutic targets to improve the clinical outcome. This review focuses on the association between HF and DM, emphasizing the efficacy and safety of antidiabetic drugs and HF treatment. In addition, recent therapeutic advances in HF and the important mechanisms by which SGLT2 inhibitors/mineralocorticoid receptor antagonist (MRA)/vericiguat contribute to the benefits of HF are summarized.
Collapse
Affiliation(s)
| | | | - Ling Gao
- Department of Endocrinology, Renmin Hospital, Wuhan University, Wuhan 430060, China; (X.L.); (X.Z.)
| |
Collapse
|
4
|
Tang Z, Huang X, Mei H, Zheng Z. Silencing of METTL3 suppressed ferroptosis of myocardial cells by m6A modification of SLC7A11 in a YTHDF2 manner. J Bioenerg Biomembr 2024; 56:149-157. [PMID: 38319402 DOI: 10.1007/s10863-024-10006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Myocardial infarction (MI) is the main cause of heart failure (HF). N6-methyladenosine (m6A) methylation is associated with the progression of HF. The study aimed to explore whether METTL3 regulates ferroptosis of cardiomyocytes in HF. We evaluated ferroptosis by detecting lactic dehydrogenase (LDH) release, lipid reactive oxygen species (ROS), Fe2+, glutathione (GSH), and malonaldehyde (MDA) levels. M6A methylation was assessed using methylated RNA immunoprecipitation assay. The binding relationship was assessed using RNA immunoprecipitation assays. The mRNA stability was assessed using actinomycin D treatment. The results showed that METTL3 was upregulated in oxygen glucose deprivation/recovery (OGD/R) cells, which knockdown suppressed OGD/R-induced ferroptosis. Moreover, METTL3 could bind to SLC7A11, promoting m6A methylation of SLC7A11. Silencing of SLC7A11 abrogated the suppression of ferroptosis induced by METTL3 knockdown. Additionally, YTHDF2 was the reader that recognized the methylation of SLC7A11, reducing the stability of SLC7A11. The silencing of METTL3 inhibited OGD/R-induced ferroptosis by suppressing the m6A methylation of SLC7A11, which is recognized by YTHDF2. The findings suggested that METTL3-mediated ferroptosis might be a new strategy for MI-induced HF therapy.
Collapse
Affiliation(s)
- Zengyao Tang
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwaizheng Street, Donghu District, Nanchang City, Jiangxi Province, 330000, China
- The First People's Hospital of Jiujiang, Jiujiang, Jiangxi Province, China
| | - Xin Huang
- Department of Cardiology, The First Hospital of Nanchang, Nanchang City, Jiangxi Province, 330000, China
| | - Hanying Mei
- Department of Rheumatology Immunology, The First People's Hospital of Jiujiang, Jiujiang, Jiangxi Province, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwaizheng Street, Donghu District, Nanchang City, Jiangxi Province, 330000, China.
| |
Collapse
|
5
|
Bryl R, Kulus M, Bryja A, Domagała D, Mozdziak P, Antosik P, Bukowska D, Zabel M, Dzięgiel P, Kempisty B. Cardiac progenitor cell therapy: mechanisms of action. Cell Biosci 2024; 14:30. [PMID: 38444042 PMCID: PMC10913616 DOI: 10.1186/s13578-024-01211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure (HF) is an end-stage of many cardiac diseases and one of the main causes of death worldwide. The current management of this disease remains suboptimal. The adult mammalian heart was considered a post-mitotic organ. However, several reports suggest that it may possess modest regenerative potential. Adult cardiac progenitor cells (CPCs), the main players in the cardiac regeneration, constitute, as it may seem, a heterogenous group of cells, which remain quiescent in physiological conditions and become activated after an injury, contributing to cardiomyocytes renewal. They can mediate their beneficial effects through direct differentiation into cardiac cells and activation of resident stem cells but majorly do so through paracrine release of factors. CPCs can secrete cytokines, chemokines, and growth factors as well as exosomes, rich in proteins, lipids and non-coding RNAs, such as miRNAs and YRNAs, which contribute to reparation of myocardium by promoting angiogenesis, cardioprotection, cardiomyogenesis, anti-fibrotic activity, and by immune modulation. Preclinical studies assessing cardiac progenitor cells and cardiac progenitor cells-derived exosomes on damaged myocardium show that administration of cardiac progenitor cells-derived exosomes can mimic effects of cell transplantation. Exosomes may become new promising therapeutic strategy for heart regeneration nevertheless there are still several limitations as to their use in the clinic. Key questions regarding their dosage, safety, specificity, pharmacokinetics, pharmacodynamics and route of administration remain outstanding. There are still gaps in the knowledge on basic biology of exosomes and filling them will bring as closer to translation into clinic.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, Poznań, Poznan, 61-614, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Artur Bryja
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Dominika Domagała
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, 27695, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra, 65-046, Poland
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw, 50-368, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, 87-100, Poland.
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, 50-367, Poland.
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, Brno, 62500, Czech Republic.
| |
Collapse
|
6
|
Zhang Z, Xiao Y, Dai Y, Lin Q, Liu Q. Device therapy for patients with atrial fibrillation and heart failure with preserved ejection fraction. Heart Fail Rev 2024; 29:417-430. [PMID: 37940727 PMCID: PMC10943171 DOI: 10.1007/s10741-023-10366-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Device therapy is a nonpharmacological approach that presents a crucial advancement for managing patients with atrial fibrillation (AF) and heart failure with preserved ejection fraction (HFpEF). This review investigated the impact of device-based interventions and emphasized their potential for optimizing treatment for this complex patient demographic. Cardiac resynchronization therapy, augmented by atrioventricular node ablation with His-bundle pacing or left bundle-branch pacing, is effective for enhancing cardiac function and establishing atrioventricular synchrony. Cardiac contractility modulation and vagus nerve stimulation represent novel strategies for increasing myocardial contractility and adjusting the autonomic balance. Left ventricular expanders have demonstrated short-term benefits in HFpEF patients but require more investigation for long-term effectiveness and safety, especially in patients with AF. Research gaps regarding complications arising from left ventricular expander implantation need to be addressed. Device-based therapies for heart valve diseases, such as transcatheter aortic valve replacement and transcatheter edge-to-edge repair, show promise for patients with AF and HFpEF, particularly those with mitral or tricuspid regurgitation. Clinical evaluations show that these device therapies lessen AF occurrence, improve exercise tolerance, and boost left ventricular diastolic function. However, additional studies are required to perfect patient selection criteria and ascertain the long-term effectiveness and safety of these interventions. Our review underscores the significant potential of device therapy for improving the outcomes and quality of life for patients with AF and HFpEF.
Collapse
Affiliation(s)
- Zixi Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, People's Republic of China
| | - Yichao Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, People's Republic of China.
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, Hubei Province, People's Republic of China
| | - Qiuzhen Lin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, People's Republic of China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
7
|
Ahmed F, Kahlon T, Mohamed TMA, Ghafghazi S, Settles D. Literature Review: Pathophysiology of Heart Failure with Preserved Ejection Fraction. Curr Probl Cardiol 2023; 48:101745. [PMID: 37087081 DOI: 10.1016/j.cpcardiol.2023.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Heart failure with preserved ejection fraction is a growing public health concern, a disease with poor health outcomes, and is showing increased prevalence globally. This review paper explores the literature with a focus on the pathophysiology and microbiology of preserved ejection fraction heart failure while drawing connections between preserved and reduced ejection fraction states. The discussion teases out the cellular level changes that affect the overall dysfunction of the cardiac tissue, including the clinical manifestations, microbiological changes (endothelial cells, fibroblasts, cardiomyocytes, and excitation-contraction coupling), and the burden of structural diastolic dysfunction. The goal of this review is to summarize the pathophysiological disease state of heart failure with preserved ejection fraction to enhance understanding, knowledge, current treatment models of this pathology.
Collapse
Affiliation(s)
- Faizan Ahmed
- Department of Anesthesiology, University of Louisville School of Medicine, Louisville, Kentucky, USA.
| | - Tani Kahlon
- Department of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tamer M A Mohamed
- Department of Cardiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shahab Ghafghazi
- Department of Cardiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Dana Settles
- Department of Cardiothoracic Anesthesia, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
8
|
Booth D, Davis JA, McEwan P, Solomon SD, McMurray JJV, De Boer RA, Comin-Colet J, Bachus E, Chen J. The cost-effectiveness of dapagliflozin in heart failure with preserved or mildly reduced ejection fraction: A European health-economic analysis of the DELIVER trial. Eur J Heart Fail 2023; 25:1386-1395. [PMID: 37344985 DOI: 10.1002/ejhf.2940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023] Open
Abstract
AIMS To determine the cost-effectiveness of dapagliflozin, added to usual care, in patients with heart failure (HF) with mildly reduced or preserved ejection fraction for the UK, German and Spanish payers using detailed patient-level data from the Dapagliflozin Evaluation to Improve the LIVEs of Patients with Preserved Ejection Fraction Heart Failure (DELIVER) trial. METHODS AND RESULTS A lifetime Markov state-transition cohort model was developed. Quartiles of the Kansas City Cardiomyopathy Questionnaire total symptom score (KCCQ-TSS) defined health states and monthly transition count data informed transition probabilities. Multivariable generalized estimating equations captured the incidence of HF hospitalizations and urgent HF visits, while cardiovascular deaths and all-cause mortality were estimated using adjusted parametric survival models. Health state costs were assigned to KCCQ-TSS quartiles (2021 British pound [GBP]/Euro) and patient-reported outcomes were sourced from DELIVER. Future values of costs and effects were discounted according to country-specific rates. In the UK, dapagliflozin treatment was predicted to increase quality-adjusted life years (QALYs) and life-years by 0.231 and 0.354, respectively, and extend the time spent in the best quartile of KCCQ-TSS by 4.2 months. Comparable outcomes were projected for Germany and Spain. The incremental cost-effectiveness ratios were £7761, €9540 and €5343/QALY in the UK, Germany and Spain, respectively. According to regional willingness-to-pay thresholds, 91%, 89% and 92% of simulations in the UK, Germany and Spain, respectively, were cost-effective following probabilistic sensitivity analyses. CONCLUSION Dapagliflozin, added to usual care, is very likely cost-effective for HF with mildly reduced or preserved ejection fraction in several European countries.
Collapse
Affiliation(s)
- David Booth
- Health Economics and Outcomes Research Ltd., Cardiff, UK
| | - Jason A Davis
- Health Economics and Outcomes Research Ltd., Cardiff, UK
| | - Phil McEwan
- Health Economics and Outcomes Research Ltd., Cardiff, UK
| | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John J V McMurray
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Rudolf A De Boer
- Erasmus Medical Center, Department of Cardiology, Rotterdam, The Netherlands
| | - Josep Comin-Colet
- Cardiology Department, Bellvitge University Hospital (IDIBELL), University of Barcelona and CIBERCV, Barcelona, Spain
| | - Erasmus Bachus
- AstraZeneca R&D BioPharmaceuticals, One Medimmune Way, Gaithersburg, MD, USA
| | - Jieling Chen
- AstraZeneca R&D BioPharmaceuticals, One Medimmune Way, Gaithersburg, MD, USA
| |
Collapse
|
9
|
Wu M, Ni D, Huang L, Qiu S. Association between the beta-blockers, calcium channel blockers, all-cause mortality and length of hospitalization in patients with heart failure with preserved ejection fraction: A meta-analysis of randomized controlled trials. Clin Cardiol 2023; 46:845-852. [PMID: 37272188 PMCID: PMC10436801 DOI: 10.1002/clc.24058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
PURPOSE To establish an association between beta-blockers (BBs), calcium channel blockers (CCBs), all-cause mortality, and hospitalization in patients with Heart failure with preserved Ejection Fraction (HFpEF). METHODS The present meta-analysis has been performed as per the guidelines of (PRISMA). An inclusive literature search was made without any limitations on language using the electronic databases Cochrane Library, EMBASE, and PubMed up to November 2022. The outcomes evaluated in this meta-analysis involved all-cause mortality and hospitalization due to heart failure. The number of patients with HFpEF and their positive outcomes was extracted and analyzed using RevMan software. RESULTS In total, 10 articles were included in the present meta-analysis, with a pooled sample size of 12 940 HFpEF patients. In comparison with placebo, both BB and CCB substantially reduced the risk of all-cause mortality and hospitalization. However, BB are more effective because they provide a significant reduction in all-cause mortality (risk ratio (RR) = 0.60; 95% confidence interval [CI] = 0.43-0.83; p = .002] and hospitalization (RR = 0.54; 95% CI = 0.37-0.80; p = .002) as compared with CCB with a risk ratio of all-cause mortality (RR = 0.77; 95% CI = 0.60-0.98; p = .03) and hospitalization (RR = 0.63; 95% CI = 0.44-0.90; p < .00001). A random-effects model was used because of high heterogeneity between the studies (I2 > 70%). CONCLUSIONS The current meta-analysis suggests that BBs were more beneficial than CCB in reducing all-cause mortality and hospitalization duration in patients with HFpEF.
Collapse
Affiliation(s)
- Mingming Wu
- Department of CardiologyJiangsu Rudong County People's HospitalNantongJiangsuChina
| | - Dan Ni
- Department of GeriatricsMeishan People's HospitalSichuanMeishanChina
| | - Lin‐ling Huang
- Department of CardiologyJiangsu Rudong County People's HospitalNantongJiangsuChina
| | - Shengjun Qiu
- Department of Medical CollegeWuhan Railway Vocational College of TechnologyWuhanHubeiChina
| |
Collapse
|
10
|
Genome Editing and Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:75-85. [DOI: 10.1007/978-981-19-5642-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
11
|
Baccouche BM, Rhodenhiser E. Galectin-3 and HFpEF: Clarifying an Emerging Relationship. Curr Cardiol Rev 2023; 19:19-26. [PMID: 36959138 PMCID: PMC10518880 DOI: 10.2174/1573403x19666230320165821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 03/25/2023] Open
Abstract
INTRODUCTION HFpEF is one of the leading causes of death whose burden is estimated to expand in the coming decades. This paper examines the relationship between circulating levels of galectin-3, an emerging risk factor for cardiovascular disease, and the clinical diagnosis of HFpEF. METHODS The authors reviewed peer-reviewed literature and 18 studies met the inclusion criteria. Study characteristics, study outcome definitions, assay characteristics, main findings, and measures of association were tabulated and summarized. RESULTS Five studies found significant associations between galectin-3 and HFpEF diagnosis compared to healthy controls, and one did not. Five studies found significant associations between galectin- 3 concentration in circulation and severity of diastolic dysfunction. Three studies found a statistically significant association between circulating galectin-3 and all-cause mortality or rehospitalization. Two studies found levels of circulating galectin-3 to be a statistically significant predictor of later HFpEF onset. Finally, two studies examined whether galectin-3 was associated with incident HFpEF, one found a significant association and the other did not. CONCLUSION Given the paucity of effective therapeutics for HFpEF, galectin-3 shows promise as a possible HFpEF-linked biomarker that may, with further study, inform and predict treatment course to reduce morbidity and mortality.
Collapse
|
12
|
Baccouche BM, Mahmoud MA, Nief C, Patel K, Natterson-Horowitz B. Galectin-3 is Associated with Heart Failure Incidence: A Meta-Analysis. Curr Cardiol Rev 2023; 19:e171122211004. [PMID: 36397629 PMCID: PMC10280995 DOI: 10.2174/1573403x19666221117122012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/29/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Heart failure (HF) is a leading cause of death worldwide. The global prevalence of heart failure is projected to increase rapidly in the coming decades, and significant attention has turned to improving biomarker-based risk prediction of incident HF. This paper aimed to qualitatively and quantitatively evaluate the evidence associating levels of galectin-3 with the risk of incident HF. METHODS A review of PUBMED-indexed peer-reviewed literature was performed. Nine studies met the inclusion criteria, and all nine had data eligible for conversion and pooling. A randomeffects meta-analysis was performed using hazard ratios and 95% confidence intervals from a minimally adjusted model, a further adjusted model, and from subgroups within the further-adjusted model. RESULTS The minimally-adjusted model provided an HR of 1.97 (95% CI 1.74-2.23) when comparing the top quartile of log-gal-3 to the bottom quartile. The further-adjusted model provided an HR of 1.32 (95% CI 1.21-1.44) for the same comparison. The positive, significant association was conserved during sensitivity analysis. CONCLUSION There is a significant positive association between circulating galectin-3 and the risk of incident heart failure. Given the complex mechanistic relationship between galectin-3 and cardiovascular pathophysiology, further investigation is recommended for the possible implementation of galectin-3 into clinical risk prediction models.
Collapse
Affiliation(s)
- Basil M. Baccouche
- Stanford University School of Medicine, Stanford, California, USA
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Mattia A. Mahmoud
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Corrine Nief
- Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
13
|
Pereyra K, Díaz-Jara E, Arias P, Bravo L, Toledo C, Schwarz K, Del Rio R. Role of Peripheral Chemoreceptors on Enhanced Central Chemoreflex Drive in Nonischemic Heart Failure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1427:107-114. [PMID: 37322341 DOI: 10.1007/978-3-031-32371-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Heart failure (HF) is a prevalent disease in elderly population. Potentiation of the ventilatory chemoreflex drive plays a pivotal role in disease progression, at least in part, through their contribution to the generation/maintenance of breathing disorders. Peripheral and central chemoreflexes are mainly regulated by carotid body (CB) and the retrotrapezoid nuclei (RTN), respectively. Recent evidence showed an enhanced central chemoreflex drive in rats with nonischemic HF along with breathing disorders. Importantly, increase activity from RTN chemoreceptors contribute to the potentiation of central chemoreflex response to hypercapnia. The precise mechanism driving RTN potentiation in HF is still elusive. Since interdependency of RTN and CB chemoreceptors has been described, we hypothesized that CB afferent activity is required to increase RTN chemosensitivity in the setting of HF. Accordingly, we studied central/peripheral chemoreflex drive and breathing disorders in HF rats with and without functional CBs (CB denervation). We found that CB afferent activity was required to increase central chemoreflex drive in HF. Indeed, CB denervation restored normal central chemoreflex drive and reduced the incidence of apneas by twofold. Our results support the notion that CB afferent activity plays an important role in central chemoreflex potentiation in rats with HF.
Collapse
Affiliation(s)
- Katherin Pereyra
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Arias
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Liena Bravo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
14
|
Zhan Q, Peng W, Wang S, Gao J. Heart Failure with Preserved Ejection Fraction: Pathogenesis, Diagnosis, Exercise, and Medical Therapies. J Cardiovasc Transl Res 2022; 16:310-326. [PMID: 36171526 DOI: 10.1007/s12265-022-10324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for more than one-half of total heart failure cases, with a high prevalence and poor prognosis, especially in older and female patients. Patients with HFpEF are characterized by hypertension, left ventricular hypertrophy, and diastolic dysfunction, and the main symptoms are dyspnea and exercise intolerance. HFpEF is currently poorly studied, and pharmacological treatment for HFpEF is still underexplored. Accumulating clinical trials have shown that exercise could exert benefits on diastolic dysfunction and quality of life in patients with HFpEF. However, there is a high limitation for applying exercise therapy due to exercise intolerance in patients with HFpEF. Key effectors of exercise-protection could be novel therapeutic targets for developing drugs to prevent and treat HFpEF. In this review article, we provide an overview of the pathogenic factors, diagnostic methods, research animal models, the mechanisms of exercise-mediated cardiac protection, and current treatments for HFpEF.
Collapse
Affiliation(s)
- Qingyi Zhan
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Wenjing Peng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Siqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Juan Gao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China. .,Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
15
|
Xu Y, Zhang C, Jiang K, Yang X, Chen F, Cheng Z, Zhao J, Cheng J, Li X, Chen X, Zhou L, Duan H, Huang Y, Xiang Y, Li J. Structural repurposing of SGLT2 inhibitor empagliflozin for strengthening anti-heart failure activity with lower glycosuria. Acta Pharm Sin B 2022; 13:1671-1685. [PMID: 37139418 PMCID: PMC10149898 DOI: 10.1016/j.apsb.2022.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have been reapproved for heart failure (HF) therapy in patients with and without diabetes. However, the initial glucose-lowering indication of SGLT2i has impeded their uses in cardiovascular clinical practice. A challenge of SGLT2i then becomes how to separate their anti-HF activity from glucose-lowering side-effect. To address this issue, we conducted structural repurposing of EMPA, a representative SGLT2 inhibitor, to strengthen anti-HF activity and reduce the SGLT2-inhibitory activity according to structural basis of inhibition of SGLT2. Compared to EMPA, the optimal derivative JX01, which was produced by methylation of C2-OH of the glucose ring, exhibited weaker SGLT2-inhibitory activity (IC50 > 100 nmol/L), and lower glycosuria and glucose-lowering side-effect, better NHE1-inhibitory activity and cardioprotective effect in HF mice. Furthermore, JX01 showed good safety profiles in respect of single-dose/repeat-dose toxicity and hERG activity, and good pharmacokinetic properties in both mouse and rat species. Collectively, the present study provided a paradigm of drug repurposing to discover novel anti-HF drugs, and indirectly demonstrated that SGLT2-independent molecular mechanisms play an important role in cardioprotective effects of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Jiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xinchun Yang
- East China University of Science and Technology-Tengbai Pharmaceutical Innovative Drugs Joint Research Institute, Zhuhai Tengbai Pharmaceutical Co., Ltd., Zhuhai 519000, China
| | - Feng Chen
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiyang Cheng
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jinlong Zhao
- East China University of Science and Technology-Tengbai Pharmaceutical Innovative Drugs Joint Research Institute, Zhuhai Tengbai Pharmaceutical Co., Ltd., Zhuhai 519000, China
| | - Jiaxing Cheng
- East China University of Science and Technology-Tengbai Pharmaceutical Innovative Drugs Joint Research Institute, Zhuhai Tengbai Pharmaceutical Co., Ltd., Zhuhai 519000, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Luoyifan Zhou
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Duan
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yunyuan Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
- Corresponding authors. Tel./fax: +86 21 64252584 (Jian Li and Yunyuan Huang), +86 21 65981041 (Yaozu Xiang).
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Corresponding authors. Tel./fax: +86 21 64252584 (Jian Li and Yunyuan Huang), +86 21 65981041 (Yaozu Xiang).
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from West Yunnan, College of Pharmacy, Dali University, Dali 671000, China
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, China
- Corresponding authors. Tel./fax: +86 21 64252584 (Jian Li and Yunyuan Huang), +86 21 65981041 (Yaozu Xiang).
| |
Collapse
|
16
|
Ateş K, Demir M. Importance of epicardial adipose tissue as a predictor of heart failure with preserved ejection fraction. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2022; 68:1178-1184. [PMID: 36228249 PMCID: PMC9575025 DOI: 10.1590/1806-9282.20220069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Epicardial adipose tissue is a special form of visceral fat surrounding the heart. It is associated with cardiac and metabolic diseases. Epicardial adipose tissue is associated with risk factors for heart failure with preserved ejection fraction, such as obesity, metabolic syndrome, hypertension, and diabetes. In this study, we examined the importance of Epicardial adipose tissue as a predictor of heart failure with preserved ejection fraction. METHODS Patients who were admitted to the Dicle University Medicine Faculty Heart Hospital between November 2013 and August 2014 were recruited for the study. The heart failure group consisted of 30 patients who were admitted to the cardiac intensive care unit, and the control group consisted of 30 patients who were admitted to cardiology polyclinics. We care about patients' demographic and clinical features to be similar. Heart failure was diagnosed according to the European Cardiology Society 2012 heart failure guidelines. Epicardial adipose tissue was measured with a transthoracic parasternal long axis with an echocardiography device (GE Vivid S6). We compared the Epicardial adipose tissue measurements between the two groups. RESULTS Epicardial adipose tissue was higher in patients with heart failure with preserved ejection fraction than in the control group (9.21±0.82 and 7.13±1.39 mm, respectively; p<0.001). Echocardiographic findings associated with left ventricular hypertrophy were intact ventricular septum (13.03±0.57 and 12.11±2.22 mm, respectively; p=0.013) and left ventricular mass index (131.13±18.00 and 117.90±20.30 g/m2, respectively; p=0.010). Findings associated with left ventricular diastolic dysfunction were as follows: left atrial volume index (60.71±21.53 and 44.92±9.93 mL/m2, respectively; p<0.001) and E/è (13.87±3.88 and 10.12±2.44, respectively; p<0.001) were higher in patients with heart failure with preserved ejection fraction than in the control group. Body mass index was not a significant indicator of obesity (p=0.097), but waist circumference was a significant indicator of visceral obesity (p<0.001). Logistic regression analyses indicated that Epicardial adipose tissue, age, left atrial volume index, left ventricular mass index, waist circumference, and E/é were significant in the Heart failure group; Epicardial adipose tissue was significant (p=0.012), and waist circumference significance was borderline (p=0.045). CONCLUSIONS Epicardial adipose tissue was higher in patients with HF than in the control group, and Epicardial adipose tissue was a predictor of heart failure with preserved ejection fraction. In patients with heart failure with preserved ejection fraction, increased Epicardial adipose tissue means that Epicardial adipose tissue can be used as a biomarker of inflammation in the pathophysiology of heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Kenan Ateş
- Baglar Private Hospital, Department of Cardiology – Diyarbakir, Turkey
| | - Muhammed Demir
- Dicle University, School of Medicine, Department of Cardiology – Diyarbakir, Turkey
| |
Collapse
|
17
|
Gavina C, Carvalho DS, Valente F, Bernardo F, Dinis-Oliveira RJ, Santos-Araújo C, Taveira-Gomes T. 20 Years of Real-World Data to Estimate the Prevalence of Heart Failure and Its Subtypes in an Unselected Population of Integrated Care Units. J Cardiovasc Dev Dis 2022; 9:149. [PMID: 35621860 PMCID: PMC9146196 DOI: 10.3390/jcdd9050149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Introduction: Heart failure (HF) is a clinical syndrome caused by structural and functional cardiac abnormalities resulting in the impairment of cardiac function, entailing significant mortality. The prevalence of HF has reached epidemic proportions in the last few decades, mainly in the elderly, but recent evidence suggests that its epidemiology may be changing. Objective: Our objective was to estimate the prevalence of HF and its subtypes, and to characterize HF in a population of integrated care users. Material and Methods: A non-interventional cross-sectional study was performed in a healthcare center that provides primary, secondary and tertiary health cares. Echocardiographic parameters (left ventricle ejection fraction (LVEF) and evidence of structural heart disease) and elevated levels of natriuretic peptides were used to define two HF phenotypes: (i) HF with a reduced ejection fraction (HFrEF, LVEF ≤ 40% and either NT-proBNP ≥ 400 pg/mL (≥600 pg/mL if atrial fibrillation (AF)/flutter) or BNP ≥ 100 pg/mL (≥125 pg/mL if AF/flutter)) and (ii) HF with a non-reduced ejection fraction (HFnrEF), which encompasses both HFpEF (LVEF ≥ 50% and either NT-proBNP ≥ 200 pg/mL (≥600 pg/mL if AF/flutter) or BNP ≥ 100 pg/mL (≥125 pg/mL if AF/flutter) in the presence of at least one structural cardiac abnormality) and HF with a mildly reduced fraction (HFmrEF, LVEF within 40−50% and either NT-proBNP ≥ 200 pg/mL (≥600 pg/mL if AF/flutter) or BNP ≥ 100 pg/mL (≥125 pg/mL if AF/flutter) in the presence of at least one structural cardiac abnormality). The significance threshold was set at p ≤ 0.001. Results: We analyzed 126,636 patients with a mean age of 52.2 (SD = 18.3) years, with 57% (n = 72,290) being female. The prevalence of HF was 2.1% (n = 2700). The HF patients’ mean age was 74.0 (SD = 12.1) years, and 51.6% (n = 1394) were female. Regarding HF subtypes, HFpEF accounted for 65.4% (n = 1765); 16.1% (n = 434) had HFmrEF and 16.3% (n = 439) had HFrEF. The patients with HFrEF were younger (p < 0.001) and had a history of myocardial infarction more frequently (p < 0.001) compared to HFnrEF, with no other significant differences between the HF groups. The HFrEF patients were more frequently prescribed CV medications than HFnrEF patients. Type 2 Diabetes Mellitus (T2D) was present in 44.7% (n = 1207) of the HF patients. CKD was more frequently present in T2D vs. non-T2D HF patients at every stage (p < 0.001), as well as stroke, peripheral artery disease, and microvascular disease (p < 0.001). Conclusions: In this cohort, considering a contemporary definition, the prevalence of HF was 2.1%. HFrEF accounted for 16.3% of the cases, with a similar clinical−epidemiological profile having been previously reported in the literature. Our study revealed a high prevalence of patients with HFpEF (65.4%), raising awareness for the increasing prevalence of this entity in cardiology practice. These results may guide local and national health policies and strategies for HF diagnosis and management.
Collapse
Affiliation(s)
- Cristina Gavina
- Cardiology Department, Pedro Hispano Hospital, Senhora da Hora, 4464-513 Matosinhos, Portugal; (C.G.); (D.S.C.)
| | - Daniel Seabra Carvalho
- Cardiology Department, Pedro Hispano Hospital, Senhora da Hora, 4464-513 Matosinhos, Portugal; (C.G.); (D.S.C.)
| | - Filipa Valente
- Medical Department, Evidence Generation, AstraZeneca, 2730-097 Barcarena, Portugal; (F.V.); (F.B.)
| | - Filipa Bernardo
- Medical Department, Evidence Generation, AstraZeneca, 2730-097 Barcarena, Portugal; (F.V.); (F.B.)
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, Advanced Polytechnic and University Cooperative (CESPU), CRL, 4585-116 Gandra, Portugal;
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- MTG Research and Development Lab, 4200-604 Porto, Portugal
| | - Carla Santos-Araújo
- Nephrology Department, Pedro Hispano Hospital, Senhora da Hora, 4464-513 Matosinhos, Portugal;
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Tiago Taveira-Gomes
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, Advanced Polytechnic and University Cooperative (CESPU), CRL, 4585-116 Gandra, Portugal;
- MTG Research and Development Lab, 4200-604 Porto, Portugal
- Department of Community Medicine, Information and Decision in Health, Faculty of Medicine, University of Porto, 4050-313 Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa (FCS-UFP), 4249-004 Porto, Portugal
| |
Collapse
|
18
|
Nikolic M, Zivkovic V, Jovic JJ, Sretenovic J, Davidovic G, Simovic S, Djokovic D, Muric N, Bolevich S, Jakovljevic V. SGLT2 inhibitors: a focus on cardiac benefits and potential mechanisms. Heart Fail Rev 2022; 27:935-949. [PMID: 33534040 DOI: 10.1007/s10741-021-10079-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 12/16/2022]
Abstract
This paper highlights the cardioprotective potential of sodium-glucose cotransporter 2 inhibitors (SLGT2i), as well as several most discussed mechanisms responsible for their cardioprotection. Cardiovascular diseases are considered a primary cause of death in nearly 80% of type 2 diabetes mellitus (T2DM) patients, with a 2-4-fold greater incidence of heart failure (HF) among diabetics. As novel hypoglycemics, SGLT2i showed exceptional cardiovascular benefits, reflected through robust reductions of cardiovascular mortality and hospitalization for HF in T2DM patients. Recently, those effects have been reported even in patients with HF and reduced ejection fraction irrespectively of diabetic status, suggesting that cardioprotective effects of SGLT2i are driven independently of their hypoglycemic actions. SGLT2i exerted hemodynamic and metabolic effects, partially driven by natriuresis and osmotic diuresis. However, those systemic effects are modest, and therefore cannot be completely related to the cardiac benefits of these agents in T2DM patients. Hence, increased circulating ketone levels during SGLT2i administration have brought out another hypothesis of a cardiac metabolic switch. Moreover, SGLT2i influence ion homeostasis and exert anti-inflammatory and antifibrotic effects. Their enviable influence on oxidative stress markers, as well as anti- and pro-apoptotic factors, have also been reported. However, since the main mechanistical contributor of their cardioprotection has not been elucidated yet, a joint action of systemic and molecular mechanisms has been suggested. In the light of ongoing trials evaluating the effects of SGLT2i in patients with HF and preserved ejection fraction, a new chapter of beneficial SGLT2i mechanisms is expected, which might resolve their main underlying action.
Collapse
Affiliation(s)
- Maja Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Joksimovic Jovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jasmina Sretenovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Goran Davidovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Clinic of Cardiology, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Stefan Simovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Clinic of Cardiology, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Danijela Djokovic
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Clinic of Psychiatry, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Nemanja Muric
- Department of Psychiatry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Clinic of Psychiatry, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
- Department of Human Pathology, 1st Moscow State Medical University IM Sechenov, Moscow, Russia.
| |
Collapse
|
19
|
Elmadi J, Satish Kumar L, Pugalenthi LS, Ahmad M, Reddy S, Barkhane Z. Cardiovascular Magnetic Resonance Imaging: A Prospective Modality in the Diagnosis and Prognostication of Heart Failure. Cureus 2022; 14:e23840. [PMID: 35530891 PMCID: PMC9072284 DOI: 10.7759/cureus.23840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure (HF) is a clinical syndrome resulting from structural cardiac remodeling and altered function that impairs tissue perfusion. This article aimed to highlight the current diagnostic and prognostic value of cardiac magnetic resonance (CMR) in the management of HF and prospective future applications. Reviewed are the physics associated with CMR, its use in ischemic and non-ischemic causes of HF, and its role in quantifying left ventricular ejection fraction. It also emphasized that CMR allows for noninvasive morphologic and functional assessment, tissue characterization, blood flow, and perfusion evaluation in patients with suspected or diagnosed HF. CMR has become a crucial instrument for the diagnosis, prognosis, and therapy planning in patients with HF and cardiomyopathy due to its accuracy in quantifying cardiac volumes and ejection fraction (considered the gold standard) as well as native and post-contrast myocardial tissue characterization.
Collapse
|
20
|
Albani S, Mesin L, Roatta S, De Luca A, Giannoni A, Stolfo D, Biava L, Bonino C, Contu L, Pelloni E, Attena E, Russo V, Antonini-Canterin F, Pugliese NR, Gallone G, De Ferrari GM, Sinagra G, Scacciatella P. Inferior Vena Cava Edge Tracking Echocardiography: A Promising Tool with Applications in Multiple Clinical Settings. Diagnostics (Basel) 2022; 12:427. [PMID: 35204518 PMCID: PMC8871248 DOI: 10.3390/diagnostics12020427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/29/2022] [Indexed: 01/25/2023] Open
Abstract
Ultrasound (US)-based measurements of the inferior vena cava (IVC) diameter are widely used to estimate right atrial pressure (RAP) in a variety of clinical settings. However, the correlation with invasively measured RAP along with the reproducibility of US-based IVC measurements is modest at best. In the present manuscript, we discuss the limitations of the current technique to estimate RAP through IVC US assessment and present a new promising tool developed by our research group, the automated IVC edge-to-edge tracking system, which has the potential to improve RAP assessment by transforming the current categorical classification (low, normal, high RAP) in a continuous and precise RAP estimation technique. Finally, we critically evaluate all the clinical settings in which this new tool could improve current practice.
Collapse
Affiliation(s)
- Stefano Albani
- Division of Cardiology, Umberto Parini Regional Hospital, 11100 Aosta, Italy; (L.B.); (C.B.); (L.C.); (E.P.); (P.S.)
- Cardio-Thoraco-Vascular Department, Division of Cardiology and Postgraduate School in Cardiovascular Sciences, University of Trieste, 34127 Trieste, Italy; (A.D.L.); (D.S.); (G.S.)
| | - Luca Mesin
- Mathematical Biology & Physiology, Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy;
| | - Silvestro Roatta
- Integrative Physiology Lab, Department of Neuroscience, University of Turin, 10125 Turin, Italy;
| | - Antonio De Luca
- Cardio-Thoraco-Vascular Department, Division of Cardiology and Postgraduate School in Cardiovascular Sciences, University of Trieste, 34127 Trieste, Italy; (A.D.L.); (D.S.); (G.S.)
| | - Alberto Giannoni
- Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
- Fondazione Toscana G. Monasterio, 56124 Pisa, Italy
| | - Davide Stolfo
- Cardio-Thoraco-Vascular Department, Division of Cardiology and Postgraduate School in Cardiovascular Sciences, University of Trieste, 34127 Trieste, Italy; (A.D.L.); (D.S.); (G.S.)
| | - Lorenza Biava
- Division of Cardiology, Umberto Parini Regional Hospital, 11100 Aosta, Italy; (L.B.); (C.B.); (L.C.); (E.P.); (P.S.)
| | - Caterina Bonino
- Division of Cardiology, Umberto Parini Regional Hospital, 11100 Aosta, Italy; (L.B.); (C.B.); (L.C.); (E.P.); (P.S.)
| | - Laura Contu
- Division of Cardiology, Umberto Parini Regional Hospital, 11100 Aosta, Italy; (L.B.); (C.B.); (L.C.); (E.P.); (P.S.)
| | - Elisa Pelloni
- Division of Cardiology, Umberto Parini Regional Hospital, 11100 Aosta, Italy; (L.B.); (C.B.); (L.C.); (E.P.); (P.S.)
| | - Emilio Attena
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli-Monaldi Hospital—A.O.R.N. Dei Colli, 80131 Naples, Italy; (E.A.); (V.R.)
| | - Vincenzo Russo
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli-Monaldi Hospital—A.O.R.N. Dei Colli, 80131 Naples, Italy; (E.A.); (V.R.)
| | | | | | - Guglielmo Gallone
- Division of Cardiology, Città della Salute e della Scienza, University of Turin, 10124 Turin, Italy; (G.G.); (G.M.D.F.)
| | - Gaetano Maria De Ferrari
- Division of Cardiology, Città della Salute e della Scienza, University of Turin, 10124 Turin, Italy; (G.G.); (G.M.D.F.)
| | - Gianfranco Sinagra
- Cardio-Thoraco-Vascular Department, Division of Cardiology and Postgraduate School in Cardiovascular Sciences, University of Trieste, 34127 Trieste, Italy; (A.D.L.); (D.S.); (G.S.)
| | - Paolo Scacciatella
- Division of Cardiology, Umberto Parini Regional Hospital, 11100 Aosta, Italy; (L.B.); (C.B.); (L.C.); (E.P.); (P.S.)
| |
Collapse
|
21
|
Boulmpou A, Theodorakopoulou MP, Alexandrou ME, Boutou AK, Papadopoulos CE, Pella E, Sarafidis P, Vassilikos V. Meta-analysis addressing the impact of cardiovascular-acting medication on peak oxygen uptake of patients with HFpEF. Heart Fail Rev 2022; 27:609-623. [DOI: 10.1007/s10741-021-10207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
|
22
|
Natali A, Nesti L, Tricò D, Ferrannini E. Effects of GLP-1 receptor agonists and SGLT-2 inhibitors on cardiac structure and function: a narrative review of clinical evidence. Cardiovasc Diabetol 2021; 20:196. [PMID: 34583699 PMCID: PMC8479881 DOI: 10.1186/s12933-021-01385-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023] Open
Abstract
The impressive results of recent clinical trials with glucagon-like peptide-1 receptor agonists (GLP-1Ra) and sodium glucose transporter 2 inhibitors (SGLT-2i) in terms of cardiovascular protection prompted a huge interest in these agents for heart failure (HF) prevention and treatment. While both classes show positive effects on composite cardiovascular endpoints (i.e. 3P MACE), their actions on the cardiac function and structure, as well as on volume regulation, and their impact on HF-related events have not been systematically evaluated and compared. In this narrative review, we summarize and critically interpret the available evidence emerging from clinical studies. While chronic exposure to GLP-1Ra appears to be essentially neutral on both systolic and diastolic function, irrespective of left ventricular ejection fraction (LVEF), a beneficial impact of SGLT-2i is consistently detectable for both systolic and diastolic function parameters in subjects with diabetes with and without HF, with a gradient proportional to the severity of baseline dysfunction. SGLT-2i have a clinically significant impact in terms of HF hospitalization prevention in subjects at high and very high cardiovascular risk both with and without type 2 diabetes (T2D) or HF, while GLP-1Ra have been proven to be safe (and marginally beneficial) in subjects with T2D without HF. We suggest that the role of the kidney is crucial for the effect of SGLT-2i on the clinical outcomes not only because these drugs slow-down the time-dependent decline of kidney function and enhance the response to diuretics, but also because they attenuate the meal-related anti-natriuretic pressure (lowering postprandial hyperglycemia and hyperinsulinemia and preventing proximal sodium reabsorption), which would reduce the individual sensitivity to day-to-day variations in dietary sodium intake.
Collapse
Affiliation(s)
- Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56100, Pisa, Italy.
| | - Lorenzo Nesti
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56100, Pisa, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56100, Pisa, Italy
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
23
|
Campos-Martins A, Bragança B, Correia-de-Sá P, Fontes-Sousa AP. Pharmacological Tuning of Adenosine Signal Nuances Underlying Heart Failure With Preserved Ejection Fraction. Front Pharmacol 2021; 12:724320. [PMID: 34489711 PMCID: PMC8417789 DOI: 10.3389/fphar.2021.724320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) roughly represents half of the cardiac failure events in developed countries. The proposed 'systemic microvascular paradigm' has been used to explain HFpHF presentation heterogeneity. The lack of effective treatments with few evidence-based therapeutic recommendations makes HFpEF one of the greatest unmet clinical necessities worldwide. The endogenous levels of the purine nucleoside, adenosine, increase significantly following cardiovascular events. Adenosine exerts cardioprotective, neuromodulatory, and immunosuppressive effects by activating plasma membrane-bound P1 receptors that are widely expressed in the cardiovascular system. Its proven benefits have been demonstrated in preclinical animal tests. Here, we provide a comprehensive and up-to-date critical review about the main therapeutic advantages of tuning adenosine signalling pathways in HFpEF, without discounting their side effects and how these can be seized.
Collapse
Affiliation(s)
- Alexandrina Campos-Martins
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Bruno Bragança
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal.,Department of Cardiology, Centro Hospitalar Tâmega e Sousa, Penafiel, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Ana Patrícia Fontes-Sousa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
24
|
Sopek Merkaš I, Slišković AM, Lakušić N. Current concept in the diagnosis, treatment and rehabilitation of patients with congestive heart failure. World J Cardiol 2021; 13:183-203. [PMID: 34367503 PMCID: PMC8326153 DOI: 10.4330/wjc.v13.i7.183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/20/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a major public health problem with a prevalence of 1%-2% in developed countries. The underlying pathophysiology of HF is complex and as a clinical syndrome is characterized by various symptoms and signs. HF is classified according to left ventricular ejection fraction (LVEF) and falls into three groups: LVEF ≥ 50% - HF with preserved ejection fraction (HFpEF), LVEF < 40% - HF with reduced ejection fraction (HFrEF), LVEF 40%-49% - HF with mid-range ejection fraction. Diagnosing HF is primarily a clinical approach and it is based on anamnesis, physical examination, echocardiogram, radiological findings of the heart and lungs and laboratory tests, including a specific markers of HF - brain natriuretic peptide or N-terminal pro-B-type natriuretic peptide as well as other diagnostic tests in order to elucidate possible etiologies. Updated diagnostic algorithms for HFpEF have been recommended (H2FPEF, HFA-PEFF). New therapeutic options improve clinical outcomes as well as functional status in patients with HFrEF (e.g., sodium-glucose cotransporter-2 - SGLT2 inhibitors) and such progress in treatment of HFrEF patients resulted in new working definition of the term "HF with recovered left ventricular ejection fraction". In line with rapid development of HF treatment, cardiac rehabilitation becomes an increasingly important part of overall approach to patients with chronic HF for it has been proven that exercise training can relieve symptoms, improve exercise capacity and quality of life as well as reduce disability and hospitalization rates. We gave an overview of latest insights in HF diagnosis and treatment with special emphasize on the important role of cardiac rehabilitation in such patients.
Collapse
Affiliation(s)
- Ivana Sopek Merkaš
- Department of Cardiology, Special Hospital for Medical Rehabilitation Krapinske Toplice, Krapinske Toplice 49217, Croatia.
| | - Ana Marija Slišković
- Department of Cardiology, University Hospital Centre Zagreb, Zagreb 10000, Croatia
| | - Nenad Lakušić
- Department of Cardiology, Special Hospital for Medical Rehabilitation Krapinske Toplice, Krapinske Toplice 49217, Croatia
| |
Collapse
|
25
|
Ghionzoli N, Gentile F, Del Franco AM, Castiglione V, Aimo A, Giannoni A, Burchielli S, Cameli M, Emdin M, Vergaro G. Current and emerging drug targets in heart failure treatment. Heart Fail Rev 2021; 27:1119-1136. [PMID: 34273070 PMCID: PMC9197912 DOI: 10.1007/s10741-021-10137-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
After initial strategies targeting inotropism and congestion, the neurohormonal interpretative model of heart failure (HF) pathophysiology has set the basis for current pharmacological management of HF, as most of guideline recommended drug classes, including beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and mineralocorticoid receptor antagonists, blunt the activation of detrimental neurohormonal axes, namely sympathetic and renin–angiotensin–aldosterone (RAAS) systems. More recently, sacubitril/valsartan, a first-in-class angiotensin receptor neprilysin inhibitor, combining inhibition of RAAS and potentiation of the counter-regulatory natriuretic peptide system, has been consistently demonstrated to reduce mortality and HF-related hospitalization. A number of novel pharmacological approaches have been tested during the latest years, leading to mixed results. Among them, drugs acting directly at a second messenger level, such as the soluble guanylate cyclase stimulator vericiguat, or other addressing myocardial energetics and mitochondrial function, such as elamipretide or omecamtiv-mecarbil, will likely change the therapeutic management of patients with HF. Sodium glucose cotransporter 2 inhibitors, initially designed for the management of type 2 diabetes mellitus, have been recently demonstrated to improve outcome in HF, although mechanisms of their action on cardiovascular system are yet to be elucidated. Most of these emerging approaches have shifted the therapeutic target from neurohormonal systems to the heart, by improving cardiac contractility, metabolism, fibrosis, inflammation, and remodeling. In the present paper, we review from a pathophysiological perspective current and novel therapeutic strategies in chronic HF.
Collapse
Affiliation(s)
- Nicolò Ghionzoli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | | | - Anna Maria Del Franco
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy
| | | | - Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Giannoni
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Matteo Cameli
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy
| | - Michele Emdin
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giuseppe Vergaro
- Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1 - 56124, Pisa, Italy.
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW This review aims to give an update on recent findings related to the cardiac splicing factor RNA-binding motif protein 20 (RBM20) and RBM20 cardiomyopathy, a form of dilated cardiomyopathy caused by mutations in RBM20. RECENT FINDINGS While most research on RBM20 splicing targets has focused on titin (TTN), multiple studies over the last years have shown that other splicing targets of RBM20 including Ca2+/calmodulin-dependent kinase IIδ (CAMK2D) might be critically involved in the development of RBM20 cardiomyopathy. In this regard, loss of RBM20 causes an abnormal intracellular calcium handling, which may relate to the arrhythmogenic presentation of RBM20 cardiomyopathy. In addition, RBM20 presents clinically in a highly gender-specific manner, with male patients suffering from an earlier disease onset and a more severe disease progression. Further research on RBM20, and treatment of RBM20 cardiomyopathy, will need to consider both the multitude and relative contribution of the different splicing targets and related pathways, as well as gender differences.
Collapse
|
27
|
Paz PA, Mantilla BD, Argueta EE, Mukherjee D. Narrative review: the holy grail: update on pharmacotherapy for heart failure with preserved ejection fraction. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:523. [PMID: 33850920 PMCID: PMC8039660 DOI: 10.21037/atm-20-4602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the presence of clinical signs and/or symptoms of heart failure with a left ventricular ejection fraction (LVEF) ≥50%. Risk factors associated with this disease include hypertension, hyperlipidemia, atrial fibrillation (AF), obesity, diabetes and coronary artery disease (CAD). Despite the multiple risk factors identified for this condition, treatment and management remain challenging and a subject of ongoing research. Since a treatment approach that alters the natural course or lowers mortality for this disease has not been found, treating co-morbidities and symptom management is essential. From the comorbidities, hypertension is identified as the main risk factor for disease development. Thus, after congestive symptom control with diuretics, blood pressure (BP) management is considered one of the most important preventive measures and also a target for treatment. Amongst antihypertensives, angiotensin receptor blockers (ARBs) and aldosterone antagonists are the therapeutic agents used that have a role in reducing hospitalizations. Implantable monitoring devices have also been shown to reduce hospitalizations in comparison to standard heart failure therapies by allowing to tailor diuretic therapy based on ongoing hemodynamic data. In this manuscript we discuss pharmacologic strategies for HFpEF patients by risk factors, including those with and without a potential role.
Collapse
Affiliation(s)
- Pablo Alejandro Paz
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Erwin E Argueta
- Division of Cardiovascular medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Debabrata Mukherjee
- Division of Cardiovascular Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
28
|
Garg P, Dakshi A, Assadi H, Swift AJ, Naveed U, Fent G, Lewis N, Rogers D, Charalampopoulos A, Al-Mohammad A. Characterisation of the patients with suspected heart failure: experience from the SHEAF registry. Open Heart 2021; 8:openhrt-2020-001448. [PMID: 33431617 PMCID: PMC7802648 DOI: 10.1136/openhrt-2020-001448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To characterise and risk-stratify patients presenting to a heart failure (HF) clinic according to the National Institute for health and Care Excellence (NICE) algorithm. METHODS This is an observational study of prospectively collected data in the Sheffield HEArt Failure registry of consecutive patients with suspected HF between April 2012 and January 2020. Outcome was defined as all-cause mortality. RESULTS 6144 patients were enrolled: 71% had HF and 29% had no HF. Patients with N-terminal pro-brain-type natriuretic peptide (NT-proBNP) >2000 pg/mL were more likely to have HF than those with NT-proBNP of 400-2000 pg/mL (92% vs 64%, respectively). Frequency of HF phenotypes include: HF with preserved ejection fraction (HFpEF) (33%), HF with reduced ejection fraction (HFrEF) (29%), HF due to valvular heart disease (4%), HF due to pulmonary hypertension (5%) and HF due to right ventricular systolic dysfunction (1%). There were 1485 (24%) deaths over a maximum follow-up of 6 years. The death rate was higher in HF versus no HF (11.49 vs 7.29 per 100 patient-years follow-up, p<0.0001). Patients with HF and an NT-proBNP >2000 pg/mL had lower survival than those with NT-proBNP 400-2000 pg/mL (3.8 years vs 5 years, p<0.0001). Propensity matched survival curves were comparable between HFpEF and HFrEF (p=0.88). CONCLUSION Our findings support the use by NICE's HF diagnostic algorithm of tiered triage of patients with suspected HF based on their NT-proBNP levels. The two pathways yielded distinctive groups of patients with varied diagnoses and prognosis. HFpEF is the most frequent diagnosis, with its challenges of poor prognosis and paucity of therapeutic options.
Collapse
Affiliation(s)
- Pankaj Garg
- IICD, The University of Sheffield, Sheffield, UK
| | - Ahmed Dakshi
- Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Andrew J Swift
- Academic Unit of Radiology, The University of Sheffield, Sheffield, UK
| | - Umna Naveed
- IICD, The University of Sheffield, Sheffield, UK
| | - Graham Fent
- Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Nigel Lewis
- IICD, The University of Sheffield, Sheffield, UK
| | - Dominic Rogers
- Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Abdallah Al-Mohammad
- IICD, The University of Sheffield, Sheffield, UK .,Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
29
|
Snapshot evaluation of acute and chronic heart failure in real-life in Turkey: A follow-up data for mortality. Anatol J Cardiol 2020; 23:160-168. [PMID: 32120368 PMCID: PMC7222636 DOI: 10.14744/anatoljcardiol.2019.87894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Objective: Heart failure (HF) is a progressive clinical syndrome. SELFIE-TR is a registry illustrating the overall HF patient profile of Turkey. Herein, all-cause mortality (ACM) data during follow-up were provided. Methods: This is a prospective outcome analysis of SELFIE-TR. Patients were classified as acute HF (AHF) versus chronic HF (CHF) and HF with reduced ejection fraction (HFrEF), HF with mid-range ejection fraction, and HF with preserved ejection fraction and were followed up for ACM. Results: There were 1054 patients with a mean age of 63.3±13.3 years and with a median follow-up period of 16 (7–17) months. Survival data within 1 year were available in 1022 patients. Crude ACM was 19.9% for 1 year in the whole group. ACM within 1 year was 13.7% versus 32.6% in patients with CHF and AHF, respectively (p<0.001). Angiotensin-converting enzyme inhibitor/angiotensin receptor blocker, beta blocker, and mineralocorticoid receptor antagonist were present in 70.6%, 88.2%, and 50.7%, respectively. In the whole cohort, survival curves were graded according to guideline-directed medical therapy (GDMT) scores ≤1 versus 2 versus 3 as 28% versus 20.2% versus 12.2%, respectively (p<0.001). Multivariate analysis of the whole cohort yielded age (p=0.009) and AHF (p=0.028) as independent predictors of mortality in 1 year. Conclusion: One-year mortality is high in Turkish patients with HF compared with contemporary cohorts with AHF and CHF. Of note, GDMT score is influential on 1-year mortality being the most striking one on chronic HFrEF. On the other hand, in the whole cohort, age and AHF were the only independent predictors of death in 1 year. (Anatol J Cardiol 2020; 23: 160-8)
Collapse
|
30
|
Mucke HA. Drug Repurposing Patent Applications January–March 2020. Assay Drug Dev Technol 2020; 18:341-346. [DOI: 10.1089/adt.2020.1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
31
|
Adamczak DM, Oduah MT, Kiebalo T, Nartowicz S, Bęben M, Pochylski M, Ciepłucha A, Gwizdała A, Lesiak M, Straburzyńska-Migaj E. Heart Failure with Preserved Ejection Fraction-a Concise Review. Curr Cardiol Rep 2020; 22:82. [PMID: 32648130 PMCID: PMC7347676 DOI: 10.1007/s11886-020-01349-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review Heart failure with preserved ejection fraction (HFpEF) is a relatively new disease entity used in medical terminology; however, both the number of patients and its clinical significance are growing. HFpEF used to be seen as a mild condition; however, the symptoms and quality of life of the patients are comparable to those with reduced ejection fraction. The disease is much more complex than previously thought. In this article, information surrounding the etiology, diagnosis, prognosis, and possible therapeutic options of HFpEF are reviewed and summarized. Recent Findings It has recently been proposed that heart failure (HF) is rather a heterogeneous syndrome with a spectrum of overlapping and distinct characteristics. HFpEF itself can be distilled into different phenotypes based on the underlying biology. The etiological factors of HFpEF are unclear; however, systemic low-grade inflammation and microvascular damage as a consequence of comorbidities associated with endothelial dysfunction, oxidative stress, myocardial remodeling, and fibrosis are considered to play a crucial role in the pathogenesis of a disease. The H2FPEF score and the HFpEF nomogram are recently validated highly sensitive tools employed for risk assessment of subclinical heart failure. Summary Despite numerous studies, there is still no evidence-based pharmacotherapy for HFpEF and the mortality and morbidity associated with HFpEF remain high. A better understanding of the etiological factors, the impact of comorbidities, the phenotypes of the disease, and implementation of machine learning algorithms may play a key role in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Daria M Adamczak
- Ist Department of Cardiology, Poznan University of Medical Sciences, Dluga Street ½, 61-848, Poznan, Poland.
| | - Mary-Tiffany Oduah
- Center for Medical Education in English, Poznan University of Medical Sciences, Poznan, Poland
| | - Thomas Kiebalo
- Center for Medical Education in English, Poznan University of Medical Sciences, Poznan, Poland
| | - Sonia Nartowicz
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Bęben
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Mateusz Pochylski
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Ciepłucha
- Ist Department of Cardiology, Poznan University of Medical Sciences, Dluga Street ½, 61-848, Poznan, Poland
| | - Adrian Gwizdała
- Ist Department of Cardiology, Poznan University of Medical Sciences, Dluga Street ½, 61-848, Poznan, Poland
| | - Maciej Lesiak
- Ist Department of Cardiology, Poznan University of Medical Sciences, Dluga Street ½, 61-848, Poznan, Poland
| | - Ewa Straburzyńska-Migaj
- Ist Department of Cardiology, Poznan University of Medical Sciences, Dluga Street ½, 61-848, Poznan, Poland
| |
Collapse
|
32
|
Mokotedi L, Michel FS, Mogane C, Gomes M, Woodiwiss AJ, Norton GR, Millen AME. Associations of inflammatory markers with impaired left ventricular diastolic and systolic function in collagen-induced arthritis. PLoS One 2020; 15:e0230657. [PMID: 32208438 PMCID: PMC7092986 DOI: 10.1371/journal.pone.0230657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background High-grade inflammation may play a pivotal role in the pathogenesis of left ventricular (LV) dysfunction. Evidence to support a role of systemic inflammation in mediating impaired LV function in experimental models of rheumatoid arthritis (RA) remains limited. The aim of the present study was to determine the effects of high-grade systemic inflammation on LV diastolic and systolic function in collagen-induced arthritis (CIA). Methods To induce CIA, bovine type-II collagen emulsified in incomplete Freund’s adjuvant was injected at the base of the tail into 21 three-month old Sprague Dawley rats. Nine-weeks after the first immunisation, LV function was assessed by pulsed Doppler, tissue Doppler imaging and Speckle tracking echocardiography. Cardiac collagen content was determined by picrosirius red staining; circulating inflammatory markers were measured using ELISA. Results Compared to controls (n = 12), CIA rats had reduced myocardial relaxation as indexed by lateral e’ (early diastolic mitral annular velocity) and e’/a’ (early-to-late diastolic mitral annular velocity) and increased filling pressures as indexed by E/e’. No differences in ejection fraction and LV endocardial fractional shortening between the groups were recorded. LV global radial and circumferential strain and strain rate were reduced in CIA rats compared to controls. Higher concentrations of circulating inflammatory markers were associated with reduced lateral e’, e’/a’, radial and circumferential strain and strain rate. Greater collagen content was associated with increased concentrations of circulating inflammatory markers and E/e’. Conclusion High-grade inflammation is associated with impaired LV diastolic function and greater myocardial deformation independent of haemodynamic load in CIA rats.
Collapse
Affiliation(s)
- Lebogang Mokotedi
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Frederic S. Michel
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Conrad Mogane
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Monica Gomes
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Angela J. Woodiwiss
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gavin R. Norton
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aletta M. E. Millen
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
33
|
Heart Failure with Reduced Ejection Fraction (HFrEF) and Preserved Ejection Fraction (HFpEF): The Diagnostic Value of Circulating MicroRNAs. Cells 2019; 8:cells8121651. [PMID: 31888288 PMCID: PMC6952981 DOI: 10.3390/cells8121651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/28/2022] Open
Abstract
Circulating microRNAs offer attractive potential as epigenetic disease biomarkers by virtue of their biological stability and ready accessibility in liquid biopsies. Numerous clinical cohort studies have revealed unique microRNA profiles in different disease settings, suggesting utility as markers with diagnostic and prognostic applications. Given the complex network of microRNA functions in modulating gene expression and post-transcriptional modifications, the circulating microRNA landscape in disease may reflect pathophysiological status, providing valuable information for delineating distinct subtypes and/or stages of complex diseases. Heart failure (HF) is an increasingly significant global health challenge, imposing major economic liability and health care burden due to high hospitalization, morbidity, and mortality rates. Although HF is defined as a syndrome characterized by symptoms and findings on physical examination, it may be further differentiated based on left ventricular ejection fraction (LVEF) and categorized as HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). The presenting clinical syndromes in HFpEF and HFrEF are similar but mortality differs, being somewhat lower in HFpEF than in HFrEF. However, while HFrEF is responsive to an array of therapies, none has been shown to improve survival in HFpEF. Herein, we review recent HF cohort studies focusing on the distinct microRNA profiles associated with HF subtypes to reveal new insights to underlying mechanisms and explore the possibility of exploiting these differences for diagnostic/prognostic applications.
Collapse
|
34
|
Wang Z, Koenig AL, Lavine KJ, Apte RS. Macrophage Plasticity and Function in the Eye and Heart. Trends Immunol 2019; 40:825-841. [PMID: 31422901 DOI: 10.1016/j.it.2019.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
Macrophages are important mediators of inflammation and tissue remodeling. Recent insights into the heterogeneity of macrophage subpopulations have renewed interest in their functional diversity in homeostasis and disease. In addition, their plasticity enables them to perform a variety of functions in response to changing tissue contexts, such as those imposed by aging. These qualities make macrophages particularly intriguing cells given their dichotomous role in protecting against, or accelerating, diseases of the cardiovascular system and the eye, two tissues that are particularly susceptible to the effects of aging. We review novel perspectives on macrophage biology, as informed by recent studies detailing the diversity of macrophage identity and function, as well as mechanisms influencing macrophage behavior that might offer opportunities for new therapeutic strategies.
Collapse
Affiliation(s)
- Zelun Wang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew L Koenig
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kory J Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|