1
|
Punetha M, Saini S, Chaudhary S, Yadav PS, Whitworth K, Green J, Kumar D, Kues WA. Induced Pluripotent Stem Cells in the Era of Precise Genome Editing. Curr Stem Cell Res Ther 2024; 19:307-315. [PMID: 36880183 DOI: 10.2174/1574888x18666230307115326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2023]
Abstract
Genome editing has enhanced our ability to understand the role of genetics in a number of diseases by facilitating the development of more precise cellular and animal models to study pathophysiological processes. These advances have shown extraordinary promise in a multitude of areas, from basic research to applied bioengineering and biomedical research. Induced pluripotent stem cells (iPSCs) are known for their high replicative capacity and are excellent targets for genetic manipulation as they can be clonally expanded from a single cell without compromising their pluripotency. Clustered, regularly interspaced short palindromic repeats (CRISPR) and CRISPR/Cas RNA-guided nucleases have rapidly become the method of choice for gene editing due to their high specificity, simplicity, low cost, and versatility. Coupling the cellular versatility of iPSCs differentiation with CRISPR/Cas9-mediated genome editing technology can be an effective experimental technique for providing new insights into the therapeutic use of this technology. However, before using these techniques for gene therapy, their therapeutic safety and efficacy following models need to be assessed. In this review, we cover the remarkable progress that has been made in the use of genome editing tools in iPSCs, their applications in disease research and gene therapy as well as the hurdles that remain in the actual implementation of CRISPR/Cas systems.
Collapse
Affiliation(s)
- Meeti Punetha
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Sheetal Saini
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Suman Chaudhary
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Prem Singh Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Kristin Whitworth
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jonathan Green
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Höltystr 10, 31535, Neustadt, Germany
| |
Collapse
|
2
|
Hong Y, Yang Q, Song H, Ming GL. Opportunities and limitations for studying neuropsychiatric disorders using patient-derived induced pluripotent stem cells. Mol Psychiatry 2023; 28:1430-1439. [PMID: 36782062 PMCID: PMC10213114 DOI: 10.1038/s41380-023-01990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Neuropsychiatric disorders affect a large proportion of the global population and there is an urgent need to understand the pathogenesis and to develop novel and improved treatments of these devastating disorders. However, the diverse symptomatology combined with complex polygenic etiology, and the limited access to disorder-relevant cell types in human brains represent a major obstacle for mechanistic disease research. Conventional animal models, such as rodents, are limited by inherent species differences in brain development, architecture, and function. Advances in human induced pluripotent stem cells (hiPSCs) technologies have provided platforms for new discoveries in neuropsychiatric disorders. First, hiPSC-based disease models enable unprecedented investigation of psychiatric disorders at the molecular, cellular, and structural levels. Second, hiPSCs derived from patients with known genetics, symptoms, and drug response profiles offer an opportunity to recapitulate pathogenesis in relevant cell types and provide novel approaches for understanding disease mechanisms and for developing effective treatments. Third, genome-editing technologies have extended the potential of hiPSCs for generating models to elucidate the genetic basis of rare monogenetic and complex polygenic psychiatric disorders and to establish the causality between genotype and phenotype. Here we review opportunities and limitations for studying psychiatric disorders using various hiPSC-derived model systems.
Collapse
Affiliation(s)
- Yan Hong
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qian Yang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Bravo-Pérez C, Toderici M, Chambers JE, Martínez-Menárguez JA, Garrido-Rodriguez P, Pérez-Sanchez H, de la Morena-Barrio B, Padilla J, Miñano A, Cifuentes-Riquelme R, Vicente V, Lozano ML, Marciniak SJ, de la Morena-Barrio ME, Corral J. Full-length antithrombin frameshift variant with aberrant C-terminus causes endoplasmic reticulum retention with a dominant-negative effect. JCI Insight 2022; 7:161430. [PMID: 36214221 PMCID: PMC9675572 DOI: 10.1172/jci.insight.161430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/24/2022] [Indexed: 02/02/2023] Open
Abstract
Antithrombin, a major endogenous anticoagulant, is a serine protease inhibitor (serpin). We characterized the biological and clinical impact of variants involving C-terminal antithrombin. We performed comprehensive molecular, cellular, and clinical characterization of patients with C-terminal antithrombin variants from a cohort of 444 unrelated individuals with confirmed antithrombin deficiency. We identified 17 patients carrying 12 C-terminal variants, 5 of whom had the p.Arg445Serfs*17 deletion. Five missense variants caused qualitative deficiency, and 7, including 4 insertion-deletion variants, induced severe quantitative deficiency, particularly p.Arg445Serfs*17 (antithrombin <40%). This +1 frameshift variant had a molecular size similar to that of WT antithrombin but possessed a different C-terminus. Morphologic and cotransfection experiments showed that recombinant p.Arg445Serfs*17 was retained at the endoplasmic reticulum and had a dominant-negative effect on WT antithrombin. Characterization of different 1+ frameshift, aberrant C-terminal variants revealed that protein secretion was determined by frameshift site. The introduction of Pro441 in the aberrant C-terminus, shared by 5 efficiently secreted variants, partially rescued p.Arg445Serfs*17 secretion. C-terminal antithrombin mutants have notable heterogeneity, related to variant type and localization. Aberrant C-terminal variants caused by 1+ frameshift, with similar size as WT antithrombin, may be secreted or not, depending on frameshift site. The severe clinical phenotypes of these genetic changes are consistent with their dominant-negative effects.
Collapse
Affiliation(s)
- Carlos Bravo-Pérez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Mara Toderici
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Joseph E. Chambers
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - José A. Martínez-Menárguez
- Department of Cell Biology and Histology, Medical School, Biomedical Research Institute of Murcia, University of Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Pedro Garrido-Rodriguez
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Horacio Pérez-Sanchez
- Structural Bioinformatics and High Performance Computing Research Group, Universidad Católica de Murcia, Murcia, Spain
| | - Belén de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - José Padilla
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Antonia Miñano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Rosa Cifuentes-Riquelme
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Vicente Vicente
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Maria L. Lozano
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Maria Eugenia de la Morena-Barrio
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| | - Javier Corral
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, Biomedical Research Institute of Murcia, CB15/00055-CIBERER, Murcia, Spain
| |
Collapse
|
4
|
Nishiga M, Liu C, Qi LS, Wu JC. The use of new CRISPR tools in cardiovascular research and medicine. Nat Rev Cardiol 2022; 19:505-521. [PMID: 35145236 PMCID: PMC10283450 DOI: 10.1038/s41569-021-00669-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Many novel CRISPR-based genome-editing tools, with a wide variety of applications, have been developed in the past few years. The original CRISPR-Cas9 system was developed as a tool to alter genomic sequences in living organisms in a simple way. However, the functions of new CRISPR tools are not limited to conventional genome editing mediated by non-homologous end-joining or homology-directed repair but expand into gene-expression control, epigenome editing, single-nucleotide editing, RNA editing and live-cell imaging. Furthermore, genetic perturbation screening by multiplexing guide RNAs is gaining popularity as a method to identify causative genes and pathways in an unbiased manner. New CRISPR tools can also be applied to ex vivo or in vivo therapeutic genome editing for the treatment of conditions such as hyperlipidaemia. In this Review, we first provide an overview of the diverse new CRISPR tools that have been developed to date. Second, we summarize how these new CRISPR tools are being used to study biological processes and disease mechanisms in cardiovascular research and medicine. Finally, we discuss the prospect of therapeutic genome editing by CRISPR tools to cure genetic cardiovascular diseases.
Collapse
Affiliation(s)
- Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Ma L, Xing J, Li Q, Zhang Z, Xu K. Development of a universal antibiotic resistance screening reporter for improving efficiency of cytosine and adenine base editing. J Biol Chem 2022; 298:102103. [PMID: 35671823 PMCID: PMC9287484 DOI: 10.1016/j.jbc.2022.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Base editing has emerged as a revolutionary technology for single nucleotide modifications. The cytosine and adenine base editors (CBEs and ABEs) have demonstrated great potential in clinical and fundamental research. However, screening and isolating target-edited cells remains challenging. In the current study, we developed a universal Adenine and Cytosine Base-Editing Antibiotic Resistance Screening Reporter (ACBE-ARSR) for improving the editing efficiency. To develop the reporter, the CBE-ARSR was first constructed and shown to be capable of enriching cells for those that had undergone CBE editing activity. Then, the ACBE-ARSR was constructed and was further validated in the editing assays by four different CBEs and two versions of ABE at several different genomic loci. Our results demonstrated that ACBE-ARSR, compared to the reporter of transfection (RoT) screening strategy, improved the editing efficiency of CBE and ABE by 4.6- and 1.9-fold on average, respectively. We found the highest CBE and ABE editing efficiencies as enriched by ACBE-ARSR reached 90% and 88.7%. Moreover, we also demonstrated ACBE-ARSR could be employed for enhancing simultaneous multiplexed genome editing. In conclusion, both CBE and ABE activity can be improved significantly using our novel ACBE-ARSR screening strategy, which we believe will facilitate the development of base editors and their application in biomedical and fundamental research studies.
Collapse
Affiliation(s)
- Lixia Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China; Central Laboratory, Changzhi Medical College, Changzhi, Shanxi, China
| | - Jiani Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qian Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiying Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Kun Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
6
|
Li H, Cheng W, Chen B, Pu S, Fan N, Zhang X, Jiao D, Shi D, Guo J, Li Z, Qing Y, Jia B, Zhao HY, Wei HJ. Efficient Generation of P53 Biallelic Mutations in Diannan Miniature Pigs Using RNA-Guided Base Editing. Life (Basel) 2021; 11:life11121417. [PMID: 34947951 PMCID: PMC8706133 DOI: 10.3390/life11121417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
The base editing 3 (BE3) system, a single-base gene editing technology developed using CRISPR/Cas9n, has a broad range of applications for human disease model construction and gene therapy, as it is highly efficient, accurate, and non-destructive. P53 mutations are present in more than 50% of human malignancies. Due to the similarities between humans and pigs at the molecular level, pig models carrying P53 mutations can be used to research the mechanism of tumorigenesis and improve tumor diagnosis and treatment. According to pathogenic mutations of the human P53 gene at W146* and Q100*, sgRNAs were designed to target exon 4 and exon 5 of the porcine P53 gene. The target editing efficiencies of the two sgRNAs were 61.9% and 50.0%, respectively. The editing efficiency of the BE3 system was highest (about 60%) when C (or G) was at the 5th base. Puromycin screening revealed that 75.0% (21/28) and 68.7% (22/32) of cell colonies contained a P53 mutation at sgRNA-Exon5 and sgRNA-Exon4, respectively. The reconstructed embryos from sgRNA-Exon5-5# were transferred into six recipient gilts, all of which aborted. The reconstructed embryos from sgRNA-Exon4-7# were transferred into 6 recipient gilts, 3 of which became pregnant, resulting in 14 live and 3 dead piglets. Sequencing analyses of the target site confirmed 1 P53 monoallelic mutation and 16 biallelic mutations. The qPCR analysis showed that the P53 mRNA expression level was significantly decreased in different tissues of the P53 mutant piglets (p < 0.05). Additionally, confocal microscopy and western blot analysis revealed an absence of P53 expression in the P53 mutant fibroblasts, livers, and lung tissues. In conclusion, a porcine cancer model with a P53 point mutation can be obtained via the BE3 system and somatic cell nuclear transfer (SCNT).
Collapse
Affiliation(s)
- Honghui Li
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Wenmin Cheng
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Bowei Chen
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Shaoxia Pu
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Ninglin Fan
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaolin Zhang
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Deling Jiao
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dejia Shi
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jianxiong Guo
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
| | - Zhuo Li
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yubo Qing
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Baoyu Jia
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Hong-Ye Zhao
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (H.-Y.Z.); (H.-J.W.)
| | - Hong-Jiang Wei
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (H.-Y.Z.); (H.-J.W.)
| |
Collapse
|
7
|
van Essen M, Riepsaame J, Jacob J. CRISPR-Cas Gene Perturbation and Editing in Human Induced Pluripotent Stem Cells. CRISPR J 2021; 4:634-655. [PMID: 34582693 DOI: 10.1089/crispr.2021.0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Directing the fates of human pluripotent stem cells (hPSC) to generate a multitude of differentiated cell types allows the study of the genetic regulation of human development and disease. The translational potential of hPSC is maximized by exploiting CRISPR to silence or activate genes with spatial and temporal precision permanently or reversibly. Here, we summarize the increasingly refined and diverse CRISPR toolkit for the latter forms of gene perturbation in hPSC and their downstream applications. We discuss newer methods to install edits efficiently with single nucleotide resolution and describe pooled CRISPR screens as a powerful means of unbiased discovery of genes associated with a phenotype of interest. Last, we discuss the potential of these combined technologies in the treatment of hitherto intractable human diseases and the challenges to their implementation in the clinic.
Collapse
Affiliation(s)
- Max van Essen
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; and University of Oxford, Oxford, United Kingdom
| | - Joey Riepsaame
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - John Jacob
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; and University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Tekel SJ, Brookhouser N, Standage-Beier K, Wang X, Brafman DA. Cytosine and adenosine base editing in human pluripotent stem cells using transient reporters for editing enrichment. Nat Protoc 2021; 16:3596-3624. [PMID: 34172975 DOI: 10.1038/s41596-021-00552-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Deaminase fused-Cas9 base editing technologies have enabled precise single-nucleotide genomic editing without the need for the introduction of damaging double-stranded breaks and inefficient homology-directed repair. However, current methods to isolate base-edited cell populations are ineffective, especially when utilized with human pluripotent stem cells, a cell type resistant to genome modification. Here, we outline a series of methods that employ transient reporters of editing enrichment (TREE) to facilitate the highly efficient single-base editing of human cells at precise genomic loci. Briefly, these transient reporters of editing enrichment based methods employ a transient episomal fluorescent reporter that allows for the real-time, flow-cytometry-based enrichment of cells that have had single nucleotide changes at precise genomic locations. This protocol details how these approaches can enable the rapid (~3-4 weeks) and efficient (clonal editing efficiencies >80%) generation of biallelic or multiplexed edited isogenic hPSC lines using adenosine and cytosine base editors.
Collapse
Affiliation(s)
- Stefan J Tekel
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Kylie Standage-Beier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
- Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
9
|
Bayarsaikhan D, Bayarsaikhan G, Lee B. Recent advances in stem cells and gene editing: Drug discovery and therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:231-269. [PMID: 34127195 DOI: 10.1016/bs.pmbts.2021.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recently introduced genome editing technology has had a remarkable impact on genetic medicine. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas nucleases are the three major platforms used for priming of stem cells or correction of mutated genes. Among these nucleases, CRISPR/Cas is the most easily applicable. Various CRISPR/Cas variants such as base editors, prime editors, mad7 nucleases, RESCUE, REPAIR, digenome sequencing, and SHERLOCK are being developed and considered as a promising tool for gene therapy and drug discovery. These advances in the CRISPR/Cas platform have enabled the correction of gene mutations from DNA to RNA level and validation of the safety of genome editing performance at a very precise level by allowing the detection of one base-pair mismatch. These promising alternatives of the CRISPR/Cas system can benefit millions of patients with intractable diseases. Although the therapeutic effects of stem cells have been confirmed in a wide range of disease models, their safety still remains an issue. Hence, scientists are concentrating on generating functionally improved stem cells by using programmable nucleases such as CRISPR. Therefore, in this chapter, we have summarized the applicable options of the CRISPR/Cas platforms by weighing their advantages and limitations in drug discovery and gene therapy.
Collapse
Affiliation(s)
- Delger Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon City, Republic of Korea
| | - Govigerel Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon City, Republic of Korea
| | - Bonghee Lee
- Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon City, Republic of Korea.
| |
Collapse
|
10
|
Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors. Genes (Basel) 2020. [PMID: 32384610 DOI: 10.3390/genes11050511.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In contrast to CRISPR/Cas9 nucleases, CRISPR base editors (BE) and prime editors (PE) enable predefined nucleotide exchanges in genomic sequences without generating DNA double strand breaks. Here, we employed BE and PE mRNAs in conjunction with chemically synthesized sgRNAs and pegRNAs for efficient editing of human induced pluripotent stem cells (iPSC). Whereas we were unable to correct a disease-causing mutation in patient derived iPSCs using a CRISPR/Cas9 nuclease approach, we corrected the mutation back to wild type with high efficiency utilizing an adenine BE. We also used adenine and cytosine BEs to introduce nine different cancer associated TP53 mutations into human iPSCs with up to 90% efficiency, generating a panel of cell lines to investigate the biology of these mutations in an isogenic background. Finally, we pioneered the use of prime editing in human iPSCs, opening this important cell type for the precise modification of nucleotides not addressable by BEs and to multiple nucleotide exchanges. These approaches eliminate the necessity of deriving disease specific iPSCs from human donors and allows the comparison of different disease-causing mutations in isogenic genetic backgrounds.
Collapse
|
11
|
Sürün D, Schneider A, Mircetic J, Neumann K, Lansing F, Paszkowski-Rogacz M, Hänchen V, Lee-Kirsch MA, Buchholz F. Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors. Genes (Basel) 2020; 11:E511. [PMID: 32384610 PMCID: PMC7288465 DOI: 10.3390/genes11050511] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
In contrast to CRISPR/Cas9 nucleases, CRISPR base editors (BE) and prime editors (PE) enable predefined nucleotide exchanges in genomic sequences without generating DNA double strand breaks. Here, we employed BE and PE mRNAs in conjunction with chemically synthesized sgRNAs and pegRNAs for efficient editing of human induced pluripotent stem cells (iPSC). Whereas we were unable to correct a disease-causing mutation in patient derived iPSCs using a CRISPR/Cas9 nuclease approach, we corrected the mutation back to wild type with high efficiency utilizing an adenine BE. We also used adenine and cytosine BEs to introduce nine different cancer associated TP53 mutations into human iPSCs with up to 90% efficiency, generating a panel of cell lines to investigate the biology of these mutations in an isogenic background. Finally, we pioneered the use of prime editing in human iPSCs, opening this important cell type for the precise modification of nucleotides not addressable by BEs and to multiple nucleotide exchanges. These approaches eliminate the necessity of deriving disease specific iPSCs from human donors and allows the comparison of different disease-causing mutations in isogenic genetic backgrounds.
Collapse
Affiliation(s)
- Duran Sürün
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
| | - Aksana Schneider
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
| | - Jovan Mircetic
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
- Mildred Scheel Early Career Center, National Center for Tumor Diseases Dresden (NCT/UCC), Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Katrin Neumann
- Stem Cell Engineering Facility, Center for Molecular and Cellular Bioengineering (CMCB), TU Dresden, 01307 Dresden, Germany;
| | - Felix Lansing
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
| | - Vanessa Hänchen
- Department of Pediatrics, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (V.H.); (M.A.L.-K.)
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (V.H.); (M.A.L.-K.)
| | - Frank Buchholz
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; (D.S.); (A.S.); (J.M.); (F.L.); (M.P.-R.)
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW We review the ways in which stem cells are used in psychiatric disease research, including the related advances in gene editing and directed cell differentiation. RECENT FINDINGS The recent development of induced pluripotent stem cell (iPSC) technologies has created new possibilities for the study of psychiatric disease. iPSCs can be derived from patients or controls and differentiated to an array of neuronal and non-neuronal cell types. Their genomes can be edited as desired, and they can be assessed for a variety of phenotypes. This makes them especially interesting for studying genetic variation, which is particularly useful today now that our knowledge on the genetics of psychiatric disease is quickly expanding. The recent advances in cell engineering have led to powerful new methods for studying psychiatric illness including schizophrenia, bipolar disorder, and autism. There is a wide array of possible applications as illustrated by the many examples from the literature, most of which are cited here.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyra Feuer
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marah Wahbeh
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|