1
|
Leddy E, Attachaipanich T, Chattipakorn N, Chattipakorn SC. Investigating the effect of metformin on chemobrain: Reports from cells to bedside. Exp Neurol 2025; 385:115129. [PMID: 39733854 DOI: 10.1016/j.expneurol.2024.115129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/10/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
Chemobrain can be defined as the development of cognitive side effects following chemotherapy, which is increasingly reported in cancer survivor patients. Chemobrain leads to reduced patients' quality of life by causing different symptoms ranging from strokes and seizures to memory loss and mood disorders. Metformin, an antidiabetic drug, has been proposed as a potential treatment to improve the symptoms of chemotherapy-induced cognitive dysfunction. Several benefits of metformin on chemobrain have been suggested, including anti-inflammation, anti-oxidative stress, restoring impaired mitochondrial function, stabilizing apoptosis, ameliorating impairments to dendritic spine density, normalizing brain senescence protein levels, and attenuating reductions in cell viability, along with reversing learning and memory deficits. These benefits occur through various pathways of metformin, including adenosine monophosphate-activated protein kinase (AMPK), TAp73, and phosphatidylinositol 3-kinase/protein kinase B (Akt) pathways. In addition, metformin can exert neuroprotective effects and restore deficits in brain homeostasis caused by chemotherapy. Furthermore, activation of AMPK following metformin therapy promotes autophagy, stimulates energy production, and improves cell survival. Metformin's interaction with Tap73 and Akt pathways allows for regulated cell proliferation in adult neural precursor cells and cell growth, respectively. Although the negative effects on cerebral function induced by chemotherapeutics have been alleviated by metformin in several instances, further studies are required to confirm its beneficial effects. This research is essential as it addresses the pressing issue of chemobrain, which is on the rise alongside global increases in cancer. Exploring metformin's potential as a neuroprotective agent offers a promising avenue for mitigating these cognitive impairments and highlights the need for further studies to validate its therapeutic mechanisms. This review comprehensively summarises evidence from both in vitro and in vivo studies to demonstrate metformin's effects on cognitive function when co-administered with chemotherapy and identifies gaps in knowledge for further investigation.
Collapse
Affiliation(s)
- Evelyn Leddy
- School of Biological Sciences, The University of Manchester, Greater Manchester M13 9PL, United Kingdom; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanawat Attachaipanich
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
2
|
Brunet J, Sharma S, Zadravec K, Taljaard M, LeVasseur N, Srikanthan A, Bland KA, Sabri E, Collins B, Hayden S, Simmons C, Smith AM, Campbell KL. Aerobic exercise and CogniTIVe functioning in women with breAsT cancEr (ACTIVATE): A randomized controlled trial. Cancer 2025; 131:e35540. [PMID: 39428863 PMCID: PMC11694240 DOI: 10.1002/cncr.35540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND As the prevalence of chemotherapy-related cognitive impairment rises, investigation into treatment options is critical. The objectives of this study were to test the effects of an aerobic exercise intervention initiated during chemotherapy compared to usual care (wait list control condition) on (1) objectively measured cognitive function and self-reported cognitive function, as well as on (2) the impact of cognitive impairment on quality of life (QOL) postintervention (commensurate with chemotherapy completion). METHODS The Aerobic exercise and CogniTIVe functioning in women with breAsT cancEr (ACTIVATE) trial was a two-arm, two-center randomized controlled trial conducted in Ottawa and Vancouver (Canada). Fifty-seven women (Mage, 48.8 ± 10 years) diagnosed with stage I-III breast cancer and awaiting chemotherapy were randomized to aerobic exercise initiated with chemotherapy (nEX = 28) or usual care during chemotherapy with aerobic exercise after chemotherapy completion (nUC = 29). The intervention lasted 12-24 weeks and consisted of supervised aerobic training and at-home exercise. The primary outcome was objective cognitive function measured via 13 neuropsychological tests (standardized to M ± SD, 0 ± 1); secondary outcomes of self-reported cognitive function and its impact on QOL were assessed via questionnaires. Data collected pre- and postintervention (the primary end point) were analyzed. RESULTS Although no significant differences between groups were found for objective cognitive function outcomes postintervention after accounting for multiple testing, four of six self-reported cognitive function outcomes showed significant differences favoring the aerobic exercise group. CONCLUSIONS Among women initiating chemotherapy for breast cancer, aerobic exercise did not result in significant differences in objective cognitive function postintervention after chemotherapy completion; however, the results do support the use of this intervention for improving self-reported cognitive function and its impact on QOL.
Collapse
Affiliation(s)
- Jennifer Brunet
- School of Human KineticsFaculty of Health SciencesUniversity of OttawaOttawaOntarioCanada
- Cancer Therapeutic ProgramOttawa Hospital Research InstituteThe Ottawa HospitalOttawaOntarioCanada
- Institut du Savoir MontfortHôpital MontfortOttawaOntarioCanada
| | - Sitara Sharma
- School of Human KineticsFaculty of Health SciencesUniversity of OttawaOttawaOntarioCanada
| | - Kendra Zadravec
- Rehabilitation SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Monica Taljaard
- Clinical Epidemiology ProgramOttawa Hospital Research InstituteOttawaOntarioCanada
- School of Epidemiology and Public HealthUniversity of OttawaOttawaOntarioCanada
| | | | | | - Kelcey A. Bland
- Department of Physical TherapyFaculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Elham Sabri
- Clinical Epidemiology ProgramOttawa Hospital Research InstituteOttawaOntarioCanada
| | - Barbara Collins
- School of PsychologyFaculty of Social SciencesUniversity of OttawaOttawaOntarioCanada
| | - Sherri Hayden
- Division of NeurologyFaculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Andra M. Smith
- School of PsychologyFaculty of Social SciencesUniversity of OttawaOttawaOntarioCanada
| | - Kristin L. Campbell
- Rehabilitation SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Physical TherapyFaculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
3
|
Gao Z, Peng J, Zhang Y, Chen Z, Song R, Song Z, Feng Q, Sun M, Zhu H, Lu X, Yang R, Huang C. Hippocampal SENP3 mediates chronic stress-induced depression-like behaviors by impairing the CREB-BDNF signaling. Neuropharmacology 2025; 262:110203. [PMID: 39486575 DOI: 10.1016/j.neuropharm.2024.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Impaired signaling between cyclic adenosine monophosphate response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus is generally considered to be the cause of depression. The mechanisms underlying the impairment of CREB-BDNF signaling under stress conditions are largely unclear. Small ubiquitin-like modifier (SUMO) specific peptidase 3 (SENP3) is a molecule that can regulate SUMOylation of target proteins related to synaptic plasticity. Its dynamic changes have been reported to be associated with neuronal damage in various models of central nervous disorders such as cerebral ischemia and traumatic brain injury. However, its role in depression is completely unknown. This problem was addressed in the present study. Our results showed that chronic unpredictable stress (CUS) triggered a specific increase in SENP3 expression in the hippocampus of non-stressed mice. Overexpression of SENP3 in the hippocampus of non-stressed mice elicited depression-like behaviors in the tail suspension test, forced swimming test, and sucrose preference test, accompanied by impairment of the CREB-BDNF signaling cascade in the hippocampus. Conversely, genetic silencing of SENP3 in the hippocampus suppressed the development of depression-like behaviors. Furthermore, infusion of SENP3-shRNA into the hippocampus failed to suppress CUS-induced depression-like behaviors when mice received genetic silencing CREB or BDNF in the hippocampus or inhibition of the BDNF receptor by K252a. Taken together, these results suggest that abnormally elevated SENP3 in the hippocampus leads to the development of depression-like behavior by impairing the CREB-BDNF signaling cascade. SENP3 in the hippocampus could be a promising target for the development of new antidepressants.
Collapse
Affiliation(s)
- Zhiwei Gao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20 Xisi Road, Nantong 226001, Jiangsu Province, China
| | - Jie Peng
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Yi Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu Province, China
| | - Rongrong Song
- Department of Emergency and Critical Care Medicine, Tongzhou People's Hospital, 999 Jianshe Road, Nantong 226300, Jiangsu Province, China
| | - Ze Song
- Department of Neurosurgery, Tongzhou People's Hospital, 999 Jianshe Road, Nantong 226300, Jiangsu Province, China
| | - Qijie Feng
- Department of Orthopedics, Tongzhou People's Hospital, 999 Jianshe Road, Nantong 226300, Jiangsu Province, China
| | - Micona Sun
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20 Xisi Road, Nantong 226001, Jiangsu Province, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
4
|
Mishra P, Bhurani D, Nidhi. Elevated neopterin and decreased IL-4, BDNF levels and depression in lymphoma patients receiving R-CHOP chemotherapy. Front Neurol 2024; 15:1392275. [PMID: 39355088 PMCID: PMC11442289 DOI: 10.3389/fneur.2024.1392275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Objective Depression is the most commonly observed psychological manifestation experienced by individuals diagnosed with cancer. The purpose of the study was to investigate the association between levels of IL-4, BDNF, neopterin, and depressive symptoms in lymphoma patients receiving consecutive cycles of chemotherapy. Methods Newly diagnosed lymphoma patients scheduled to receive R-CHOP chemotherapy were enrolled. Effects of R-CHOP on circulatory biomarkers and depressive symptoms were assessed at three-time points [baseline assessment 7 days before the first dose of chemotherapy (TP1), interim assessment after the third cycle of chemotherapy (TP2), and follow-up assessment after the 6th cycle of chemotherapy (TP3)]. Results Seventy lymphoma patients, with a mean age of 44.17 ± 13.67 years, were enrolled. Patients receiving R-CHOP were found significantly increased neopterin levels between given time points TP1 vs. TP2, TP1 vs. TP3, and TP2 vs. TP3 (p < 0.001). However, IL-4 and BDNF levels significantly decreased with consecutive cycles of chemotherapy (p < 0.001). On Patient Health Questionnaire assessment (PHQ-9), scores of items like loss of interest, feeling depressed, sleep problems, loss of energy, and appetite problems were found significantly affected with consecutive cycles of chemotherapy (p < 0.001). The study found weak negative correlations between IL-4, BDNF, and neopterin levels and changes in PHQ-9 scores at both TP2 and TP3, suggesting a potential inverse relationship between these markers and depression symptoms. Conclusion In conclusion, the present study suggests a potential link between elevated neopterin levels, decreased IL-4, and BDNF levels, and the presence of depression in lymphoma patients receiving R-CHOP chemotherapy. This study provides valuable insights into understanding the emotional challenges faced by cancer patients, offering information for more personalized interventions and comprehensive support approaches within the oncology setting.
Collapse
Affiliation(s)
- Pinki Mishra
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Dinesh Bhurani
- Department of Hemato-Oncology and Bone Marrow Transplant, Rajiv Gandhi Cancer Institute and Research Centre, Rohini, India
| | - Nidhi
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
5
|
Qutifan S, Saleh T, Abu Shahin N, ELBeltagy M, Obeidat F, Qattan D, Kalbouneh H, Barakat NA, Alsalem M. Melatonin mitigates cisplatin-induced cognitive impairment in rats and improves hippocampal dendritic spine density. Neuroreport 2024; 35:657-663. [PMID: 38813907 DOI: 10.1097/wnr.0000000000002049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Cisplatin-induced cognitive impairment (chemobrain) affects a considerable percentage of cancer patients and has no established pharmacological treatment. Chemobrain can be associated with neuroinflammation and oxidative stress. Melatonin, a pineal hormone, is known to have antioxidant, anti-inflammatory and neuroprotective potential. In this study, we investigated cisplatin-induced cognitive impairment in rats and whether melatonin can improve or reverse this impairment. Behavioral testing involved measuring working memory using the novel location recognition test (NLRT) under conditions of cisplatin or cisplatin + melatonin treatment, followed by the collection of rats' brains. The brains were subsequently stained with Golgi-Cox stain and then the hippocampus area CA3 of each one was examined, and dendritic spine density was calculated. Treatment with cisplatin resulted in deficits in the rats' performance in the NLRT (P < 0.05). These deficits were prevented by the coadministration of melatonin (P < 0.05). Cisplatin also reduced the density of dendritic spines in the hippocampus (P < 0.0001), specifically CA3 area, while the coadministration of melatonin significantly reversed this reduction (P < 0.001). This study showed that melatonin can ameliorate cisplatin-induced spatial memory deficits and dendritic spines density abnormalities in rats. Given that melatonin is a safe and wildly used supplement, it is feasible to explore its use as a palliative intervention in cancer treatment.
Collapse
Affiliation(s)
- Shahd Qutifan
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa
| | - Nisreen Abu Shahin
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Maha ELBeltagy
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman
- Human Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Fatimah Obeidat
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Duaa Qattan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Heba Kalbouneh
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman
| | - Noor A Barakat
- Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Mohammad Alsalem
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman
| |
Collapse
|
6
|
Hunter H, Qin E, Wallingford A, Hyon A, Patel A. Neurorehabilitation for Adults with Brain and Spine Tumors. Semin Neurol 2024; 44:64-73. [PMID: 38049116 DOI: 10.1055/s-0043-1777407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Central nervous system (CNS) malignancies (i.e. brain and spine tumors) and their treatments can result in a multitude of neurologic deficits. Patients with CNS malignancies experience physical, cognitive, and psychosocial sequelae that can impact their mobility and quality of life. Neurorehabilitation can play a critical role in maintaining independence, preventing disability, and optimizing safety with activities of daily living. This review provides an overview of the neurorehabilitation approaches for patients with CNS malignancies, neurologic impairments frequently treated, and rehabilitation interventions in various health care settings. In addition, we will highlight rehabilitative outcomes between patients with nononcologic neurologic conditions compared to brain and spine tumors. Finally, we address medical challenges that may impact rehabilitation care in these medically complex cancer patients.
Collapse
Affiliation(s)
- Hanna Hunter
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| | - Evelyn Qin
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| | - Allison Wallingford
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| | - April Hyon
- Department of Rehabilitation Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Amar Patel
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Pasquini L, Tao A, Ferraro GD, Jenabi M, Peck KK, Napolitano A, Fahy TA, Brennan C, Moss NS, Tabar V, Makse H, Holodny AI. Association of Lack of Speech Arrest During Cortical Stimulation With Interhemispheric Reorganization of the Functional Language Network in Patients With Brain Tumors. AJR Am J Roentgenol 2023; 221:806-816. [PMID: 37377358 PMCID: PMC12001089 DOI: 10.2214/ajr.23.29434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
BACKGROUND. Brain tumors induce language reorganization, which may influence the extent of resection in surgical planning. Direct cortical stimulation (DCS) allows definitive language mapping during awake surgery by locating areas of speech arrest (SA) surrounding the tumor. Although functional MRI (fMRI) combined with graph theory analysis can illustrate whole-brain network reorganization, few studies have corroborated these findings with DCS intraoperative mapping and clinical language performance. OBJECTIVE. We evaluated whether patients with low-grade gliomas (LGGs) without SA during DCS show increased right-hemispheric connections and better speech performance compared with patients with SA. METHODS. We retrospectively recruited 44 consecutive patients with left perisylvian LGG, preoperative language task-based fMRI, speech performance evaluation, and awake surgery with DCS. We generated language networks from ROIs corresponding to known language areas (i.e., language core) on fMRI using optimal percolation. Language core connectivity in the left and right hemispheres was quantified as fMRI laterality index (LI) and connectivity LI on the basis of fMRI activation maps and connectivity matrices. We compared fMRI LI and connectivity LI between patients with SA and without SA and used multivariable logistic regression (p < .05) to assess associations between DCS and connectivity LI, fMRI LI, tumor location, Broca area and Wernicke area involvement, prior treatments, age, handedness, sex, tumor size, and speech deficit before surgery, within 1 week after surgery, and 3-6 months after surgery. RESULTS. Patients with SA showed left-dominant connectivity; patients without SA lateralized more to the right hemisphere (p < .001). Between patients with SA and those without, fMRI LI was not significantly different. Patients without SA showed right-greater-than-left connectivity of Broca area and premotor area compared with patients with SA. Regression analysis showed significant association between no SA and right-lateralized connectivity LI (p < .001) and fewer speech deficits before (p < .001) and 1 week after (p = .02) surgery. CONCLUSION. Patients without SA had increased right-hemispheric connections and right translocation of the language core, suggesting language reorganization. Lack of interoperative SA was associated with fewer speech deficits both before and immediately after surgery. CLINICAL IMPACT. These findings support tumor-induced language plasticity as a compensatory mechanism, which may lead to fewer postsurgical deficits and allow extended resection.
Collapse
Affiliation(s)
- Luca Pasquini
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alice Tao
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | | | - Mehrnaz Jenabi
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | - Kyung K Peck
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Tara A Fahy
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | - Cameron Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nelson S Moss
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vivian Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hernan Makse
- Levich Institute and Physics Department, City College of New York, New York, NY
| | - Andrei I Holodny
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
- Department of Neuroscience, Weill Cornell Medicine Graduate School of the Medical Sciences, New York, NY
- Department of Radiology, Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
8
|
Fayette D, Juríčková V, Kozák T, Mociková H, Gaherová L, Fajnerová I, Horáček J. Cognitive impairment associated with Hodgkin's lymphoma and chemotherapy. Neurosci Lett 2023; 797:137082. [PMID: 36693557 DOI: 10.1016/j.neulet.2023.137082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Chemotherapy-related cognitive impairment (CRCI) is a well-documented side effect of cancer treatment in various types of tumors including Hodgkin's lymphoma (HL). However, a longitudinal study evaluating the cognitive performance of HL patients has been completely lacking. The aim of the study was to determine the presence of CRCI in HL patients before, promptly after, and 6 months after treatment. Thirty-six patients newly diagnosed with HL and 45 healthy controls (HC) completed the neuropsychological battery and psychological measures of affective distress and quality of life. The results indicate that HL patients have impaired performance compared to HC which cannot be explained by emotional factors. Cognitive impairments prior to treatment were found in 3 of 6 cognitive domains, i.e., verbal memory and learning, speed of processing/psychomotor speed, and abstraction/executive function. Promptly after the chemotherapy, deficits were found in the domains of memory and learning, verbal memory, speed of processing/psychomotor speed, and abstraction/executive function. Weaker cognitive performance persist even 6 months after the end of chemotherapy, specifically in domains of verbal memory and learning, and abstraction/executive function. Our results indicate the presence of cognitive impairment in HL patients already prior to treatment and increased damages caused by chemotherapy, while some of them may last for up to 6 months after the treatment.
Collapse
Affiliation(s)
- Dan Fayette
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic.
| | - Veronika Juríčková
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; First Faculty of Medicine, Charles University, Kateřinská 1660/32, 121 08 Prague 2, Czech Republic.
| | - Tomáš Kozák
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic; University Hospital Královské Vinohrady, Šrobárova 50, 100 34, Prague 10, Czech Republic.
| | - Heidi Mociková
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic; University Hospital Královské Vinohrady, Šrobárova 50, 100 34, Prague 10, Czech Republic.
| | - Lubica Gaherová
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic; University Hospital Královské Vinohrady, Šrobárova 50, 100 34, Prague 10, Czech Republic.
| | - Iveta Fajnerová
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic.
| | - Jiří Horáček
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague 10, Czech Republic.
| |
Collapse
|
9
|
Salama A, Elgohary R, M Amin M, Elwahab SA. Immunomodulatory effect of protocatechuic acid on cyclophosphamide induced brain injury in rat: Modulation of inflammosomes NLRP3 and SIRT1. Eur J Pharmacol 2022; 932:175217. [PMID: 36007603 DOI: 10.1016/j.ejphar.2022.175217] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
Abstract
Modulation of the inflammasome NLRP3 and SIRT1 are new combat strategy for brain injury protection. The inflammasome activates proinflammatory cytokines releasing interleukin-1β and interleukin-18 which in turn affect the toxins release from immune cells. In addition, SIRT1 controls many biological functions, such as immune response and oxidative stress. Protocatechuic has versatile biological activities and possesses antioxidant, anti-inflammatory and neuroprotective effects. So this work aims to study immunomodulatory effect of protocatechuic acid on cyclophosphamide chemotherapy drug-induced brain injury via modulation of inflammosomes NLRP3 and SIRT1. Rats were randomly assigned to four experimental groups. Normal control group was injected with a single i.p injection of saline. Cyclophosphamide group was injected with a single i.p injection of cyclophosphamide (200 mg/kg). Protocatechuic acid groups were orally administered (50 &100 mg/kg) once daily for 10 consecutive days after cyclophosphamide injection. Protocatechuic acid administration exhibited improvements of the cognition function and memory, a reduction in brain contents of MDA, NLRP3, IL-1 β, NF-κB, IKBKB and Galectin 3 and an elevation of GSH and SIRT1 compared to cyclophosphamide group. In addition, protocatechuic acid administration ameliorated the elevation of caspase 3 and iNOS gene expression and alleviated the neuron degeneration caused by cyclophosphamide. In conclusion, the therapeutic action of protocatechuic acid and its cellular and molecular mechanisms are new insights against various human ailments, especially, neuroprotective disease as brain injury induced by cyclophosphamide chemotherapy drug in rats through modulation of inflammosomes NLRP3 and SIRT1.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El-Tahrir St.), 12622, Dokki, Cairo, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El-Tahrir St.), 12622, Dokki, Cairo, Egypt.
| | - Mohamed M Amin
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El-Tahrir St.), 12622, Dokki, Cairo, Egypt
| | - Sahar Abd Elwahab
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Lim KY, Kim SI, Kim H, Kang J, Park JW, Won JK, Shin DY, Park SH. Toxic leukoencephalopathy with axonal spheroids caused by chemotherapeutic drugs other than methotrexate. BMC Neurol 2022; 22:288. [PMID: 35922754 PMCID: PMC9347126 DOI: 10.1186/s12883-022-02818-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/23/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The objective of this report is to share the clinicopathological features of chemotherapy-induced toxic leukoencephalopathy, which is a rare and under-recognized disease, clinically characterized by rapidly progressive cognitive loss that often leads to sudden death. CASE PRESENTATION A 64-year-old woman and a 63-year-old man, who had both suffered from a rapid deterioration of consciousness, were autopsied under the clinical impressions of either the central nervous system graft versus host disease (CNS-GVHD), infectious encephalitis, or autoimmune encephalitis. Both patients had been treated with multiple chemotherapy regimens, including adriamycin, cytarabine arabinoside, daunorubicin, fludarabine, azacitidine, and allogeneic peripheral blood stem cell transplantation to treat hematological malignancies (acute myelogenous leukemia and myelodysplastic syndrome). Neuropathological findings at autopsy revealed rarefaction and vacuolar changes of the white matter with axonal spheroids, reactive gliosis, and foamy macrophage infiltration, predominantly in the visual pathways of the occipital and temporal lobes. Damaged axons exhibited immunoreactivity to beta-amyloid, consistent with axonopathy. However, there was no lymphocyte infiltration that suggested CNS-GVHD or any type of encephalitis. CONCLUSION The neuropathology found in the presented cases had the characteristic features of toxic leukoencephalopathy (chemobrain). Our cases showed that toxic leukoencephalopathy can also be caused by chemotherapy drugs other than methotrexate.
Collapse
Affiliation(s)
- Ka Young Lim
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Seong-Ik Kim
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyunhee Kim
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jeongwan Kang
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jin Woo Park
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jae Kyung Won
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong-Yeop Shin
- Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Institute of Neuroscience, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
11
|
Gupta P, Makkar TK, Goel L, Pahuja M. Role of inflammation and oxidative stress in chemotherapy-induced neurotoxicity. Immunol Res 2022; 70:725-741. [PMID: 35859244 DOI: 10.1007/s12026-022-09307-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Chemotherapeutic agents may adversely affect the nervous system, including the neural precursor cells as well as the white matter. Although the mechanisms are not completely understood, several hypotheses connecting inflammation and oxidative stress with neurotoxicity are now emerging. The proposed mechanisms differ depending on the class of drug. For example, toxicity due to cisplatin occurs due to activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which alters hippocampal long-term potentiation. Free radical injury is also involved in the cisplatin-mediated neurotoxicity as dysregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) has been seen which protects against the free radical injury by regulating glutathione S-transferases and hemeoxygenase-1 (HO-1). Thus, correcting the imbalance between NF-κB and Nrf2/HO-1 pathways may alleviate cisplatin-induced neurotoxicity. With newer agents like bortezomib, peripheral neuropathy occurs due to up-regulation of TNF-α and IL-6 in the sensory neurons. Superoxide dismutase dysregulation is also involved in bortezomib-induced neuropathy. This article reviews the available literature on inflammation and oxidative stress in neurotoxicity caused by various classes of chemotherapeutic agents. It covers the conventional medicines like platinum compounds, vinca alkaloids, and methotrexate, as well as the newer therapeutic agents like immunomodulators and immune checkpoint inhibitors. A better understanding of the pathophysiology will lead to further advancement in strategies for management of chemotherapy-induced neurotoxicity.
Collapse
Affiliation(s)
- Pooja Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India. .,Coordinator, AIIMS Adverse Drug Reaction Monitoring Centre, Pharmacovigilance Program of India, New Delhi, India.
| | - Tavneet Kaur Makkar
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Lavisha Goel
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Monika Pahuja
- Division of Basic Medical Sciences, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
12
|
Tartt AN, Mariani MB, Hen R, Mann JJ, Boldrini M. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Mol Psychiatry 2022; 27:2689-2699. [PMID: 35354926 PMCID: PMC9167750 DOI: 10.1038/s41380-022-01520-y] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) was previously hypothesized to be a disease of monoamine deficiency in which low levels of monoamines in the synaptic cleft were believed to underlie depressive symptoms. More recently, however, there has been a paradigm shift toward a neuroplasticity hypothesis of depression in which downstream effects of antidepressants, such as increased neurogenesis, contribute to improvements in cognition and mood. This review takes a top-down approach to assess how changes in behavior and hippocampal-dependent circuits may be attributed to abnormalities at the molecular, structural, and synaptic level. We conclude with a discussion of how antidepressant treatments share a common effect in modulating neuroplasticity and consider outstanding questions and future perspectives.
Collapse
Affiliation(s)
| | | | - Rene Hen
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Neuroscience, Columbia University, New York, NY, USA
- Pharmacology, Columbia University, New York, NY, USA
- Integrative Neuroscience, NYS Psychiatric Institute, New York, NY, USA
| | - J John Mann
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA
| | - Maura Boldrini
- Departments of Psychiatry, Columbia University, New York, NY, USA.
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
13
|
Was H, Borkowska A, Bagues A, Tu L, Liu JYH, Lu Z, Rudd JA, Nurgali K, Abalo R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front Pharmacol 2022; 13:750507. [PMID: 35418856 PMCID: PMC8996259 DOI: 10.3389/fphar.2022.750507] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Since the first clinical trials conducted after World War II, chemotherapeutic drugs have been extensively used in the clinic as the main cancer treatment either alone or as an adjuvant therapy before and after surgery. Although the use of chemotherapeutic drugs improved the survival of cancer patients, these drugs are notorious for causing many severe side effects that significantly reduce the efficacy of anti-cancer treatment and patients’ quality of life. Many widely used chemotherapy drugs including platinum-based agents, taxanes, vinca alkaloids, proteasome inhibitors, and thalidomide analogs may cause direct and indirect neurotoxicity. In this review we discuss the main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis. Understanding mechanisms involved in chemotherapy-induced neurotoxicity is crucial for the development of drugs that can protect the nervous system, reduce symptoms experienced by millions of patients, and improve the outcome of the treatment and patients’ quality of life.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Longlong Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Medicine Western Health, University of Melbourne, Melbourne, VIC, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain.,Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
14
|
Sahu K, Singh S, Devi B, Singh C, Singh A. A review on the neuroprotective effect of berberine against chemotherapy-induced cognitive impairment. Curr Drug Targets 2022; 23:913-923. [PMID: 35240956 DOI: 10.2174/1389450123666220303094752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
Chemobrain is one of the major side effects of chemotherapy, despite increased research, the mechanisms underlying chemotherapy-induced cognitive changes remain unknown. Though, several possibly important candidate mechanisms have been identified and will be studied further in the future. Chemobrain is characterized by memory loss, cognitive impairment, difficulty in language, concentration, acceleration, and learning. The major characteristic of chemobrain is oxidative stress, mitochondrial dysfunction, immune dysregulation, hormonal alteration, white matter abnormalities, and DNA damage. Berberine (BBR) is an isoquinoline alkaloid extracted from various berberine species. BBR is a small chemical that easily passes the blood-brain barrier (BBB), making it useful for treating neurodegenerative diseases. Many studies on the pharmacology of BBR have been reported in the past. Furthermore, several clinical and experimental research indicates that BBR has a variety of pharmacological effects. So, in this review, we explore the pathogenesis of chemobrain and the neuroprotective potential of BBR against chemobrain. We also introduced the therapeutic role of BBR in various neurodegenerative and neurological diseases such as Alzheimer's, Parkinson's disease, mental depression, schizophrenia, anxiety, and also some stroke.
Collapse
Affiliation(s)
- Kuleshwar Sahu
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| | - Sukhdev Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| | - Bhawna Devi
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| | - Charan Singh
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab-144603, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| |
Collapse
|
15
|
Leigh SJ, Lynch CMK, Bird BRH, Griffin BT, Cryan JF, Clarke G. Gut microbiota-drug interactions in cancer pharmacotherapies: implications for efficacy and adverse effects. Expert Opin Drug Metab Toxicol 2022; 18:5-26. [PMID: 35176217 DOI: 10.1080/17425255.2022.2043849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The gut microbiota is involved in host physiology and health. Reciprocal microbiota-drug interactions are increasingly recognized as underlying some individual differences in therapy response and adverse events. Cancer pharmacotherapies are characterized by a high degree of interpatient variability in efficacy and side effect profile and recently, the microbiota has emerged as a factor that may underlie these differences. AREAS COVERED The effects of cancer pharmacotherapy on microbiota composition and function are reviewed with consideration of the relationship between baseline microbiota composition, microbiota modification, antibiotics exposure and cancer therapy efficacy. We assess the evidence implicating the microbiota in cancer therapy-related adverse events including impaired gut function, cognition and pain perception. Finally, potential mechanisms underlying microbiota-cancer drug interactions are described, including direct microbial metabolism, and microbial modulation of liver metabolism and immune function. This review focused on preclinical and clinical studies conducted in the last 5 years. EXPERT OPINION Preclinical and clinical research supports a role for baseline microbiota in cancer therapy efficacy, with emerging evidence that the microbiota modification may assist in side effect management. Future efforts should focus on exploiting this knowledge towards the development of microbiota-targeted therapies. Finally, a focus on specific drug-microbiota-cancer interactions is warranted.
Collapse
Affiliation(s)
| | | | | | | | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Whittaker AL, George RP, O'Malley L. Prevalence of cognitive impairment following chemotherapy treatment for breast cancer: a systematic review and meta-analysis. Sci Rep 2022; 12:2135. [PMID: 35136066 PMCID: PMC8826852 DOI: 10.1038/s41598-022-05682-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Breast cancer survival rates have markedly improved. Consequently, survivorship issues have received increased attention. One common sequel of treatment is chemotherapy-induced cognitive impairment (CICI). CICI causes a range of impairments that can have a significant negative impact on quality of life. Knowledge of the prevalence of this condition is required to inform survivorship plans, and ensure adequate resource allocation and support is available for sufferers, hence a systematic review of prevalence data was performed. Medline, Scopus, CINAHL and PSYCHInfo were searched for eligible studies which included prevalence data on CICI, as ascertained though the use of self-report, or neuropsychological tests. Methodological quality of included studies was assessed. Findings were synthesised narratively, with meta-analyses being used to calculate pooled prevalence when impairment was assessed by neuropsychological tests. The review included 52 studies. Time-points considered ranged from the chemotherapy treatment period to greater than 10 years after treatment cessation. Summary prevalence figures (across time-points) using self-report, short cognitive screening tools and neuropsychological test batteries were 44%, 16% and 21-34% respectively (very low GRADE evidence). Synthesised findings demonstrate that 1 in 3 breast cancer survivors may have clinically significant cognitive impairment. Prevalence is higher when self-report based on patient experience is considered. This review highlights a number of study design issues that may have contributed to the low certainty rating of the evidence. Future studies should take a more consistent approach to the criteria used to assess impairment. Larger studies are urgently needed.
Collapse
Affiliation(s)
- Alexandra L Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA, 5371, Australia.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Rebecca P George
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA, 5371, Australia
| | - Lucy O'Malley
- Division of Dentistry, School of Medical Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Tesi EP, Ben‐Azu B, Mega OO, Mordi J, Knowledge OO, Awele ED, Rotu RA, Emojevwe V, Adebayo OG, Eneni OA. Kolaviron, a flavonoid‐rich extract ameliorates busulfan‐induced chemo‐brain and testicular damage in male rats through inhibition of oxidative stress, inflammatory, and apoptotic pathways. J Food Biochem 2022; 46:e14071. [DOI: 10.1111/jfbc.14071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Edesiri P. Tesi
- Department of Science Laboratory Technology Delta State Polytechnic Ogwashi‐Uku Nigeria
| | - Benneth Ben‐Azu
- Department of Pharmacology Faculty of Basic Medical Science, College of Health Sciences Delta State University Abraka Nigeria
| | - Oyovwi O. Mega
- Department of Basic Medical Sciences Achievers University Owo Nigeria
| | - Joseph Mordi
- Department of Biochemistry Faculty of Basic Medical Science, College of Health Sciences Delta State University Abraka Nigeria
| | - Obed O. Knowledge
- Department of Science Laboratory Technology Delta State Polytechnic Ogwashi‐Uku Nigeria
| | - Egbuchua D. Awele
- Department of Science Laboratory Technology Delta State Polytechnic Ogwashi‐Uku Nigeria
| | - Rume A. Rotu
- Department of Physiology Faculty of Basic Medical Science College of Medicine University of Ibadan Ibadan Nigeria
| | - Victor Emojevwe
- Department of Physiology Faculty of Basic Medical Science University of Medical Sciences Ondo Nigeria
| | - Olusegun G. Adebayo
- Neurophysiology Unit, Department of Physiology PAMO University of Medical Sciences Port‐Harcourt Nigeria
| | - Okubo Aya‐Ebi Eneni
- Department of Pharmacology and Toxicology Faculty of Pharmacy Niger Delta University Amassoma Nigeria
| |
Collapse
|
18
|
Bajic JE, Howarth GS, Mashtoub S, Whittaker AL, Bobrovskaya L, Hutchinson MR. Neuroimmunological complications arising from chemotherapy-induced gut toxicity and opioid exposure in female dark agouti rats. J Neurosci Res 2022; 100:237-250. [PMID: 34510524 DOI: 10.1002/jnr.24959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022]
Abstract
Cancer patients may experience symptom clusters, including chemotherapy-induced (CI) gut toxicity (CIGT) and cognitive impairment. Analgesic selection for pain associated with CIGT is difficult as opioids induce glial reactivity and unwanted side effects. This study quantified central glial reactivity and proinflammatory effects in rats with CIGT using three mechanistically different analgesics. Regional adaptations were indicative of immune-to-brain signaling routes. Utilizing a 5-fluorouracil-induced GT (5IGT) rat model and analgesic intervention (carprofen (CAR), buprenorphine (BUP), and tramadol (TRAM)), spinal and brain neuroimmune modulation was examined via microglial, astrocyte, and proinflammatory (cluster of differentiation molecule 11b; CD11b, glial fibrillary associated protein; GFAP, and interleukin-1 beta; IL1β) reactivity marker expression changes by western blot analysis. 5IGT significantly increased thoracic GFAP (p < 0.05) and IL-1β (p < 0.0001) expression, CAR and BUP ameliorated these effects. BUP and TRAM with 5-FU synergistically increased hippocampal GFAP expression. CAR administered with 5IGT significantly elevated hippocampal and thoracic CD11b expression levels (p < 0.05). The neuroimmune responses observed in this study suggest activation of peripheral-to-central immune signaling pathways. We speculate that the opioid-induced hippocampal changes inferred a humorally mediated mechanism, whereas thoracic neuroimmune modifications indicated activation of an indirect neural route. Although TRAM ameliorated 5IGT-intestinal inflammation, this opioid presents complications relating to bodyweight and regional glial dysregulation (neuroinflammation) and may not be optimal in the management of pain associated with 5IGT. The chemotherapy-induced gut-derived neuroimmune consequences observed suggest a potential mechanistic contribution to central components of the cancer symptom cluster experience, while the opioid-related glial changes have implications for optimal pain management in this setting warranting further investigation.
Collapse
Affiliation(s)
- Juliana Esma Bajic
- Discipline of Physiology, Adelaide Medical School, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia
| | - Gordon Stanley Howarth
- Discipline of Physiology, Adelaide Medical School, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
- Gastroenterology Department, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - Suzanne Mashtoub
- Discipline of Physiology, Adelaide Medical School, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia
- Gastroenterology Department, Women's and Children's Hospital, North Adelaide, SA, Australia
- School of Medicine, University of Western Australia, Fiona Stanley Hospital, Murdoch, WA, Australia
| | | | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mark Rowland Hutchinson
- Discipline of Physiology, Adelaide Medical School, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
19
|
Sahu K, Langeh U, Singh C, Singh A. Crosstalk between anticancer drugs and mitochondrial functions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100047. [PMID: 34909674 PMCID: PMC8663961 DOI: 10.1016/j.crphar.2021.100047] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy is an important component of cancer treatment, which has side effects like vomiting, peripheral neuropathy, and numerous organ toxicity but the most significant outcomes of chemotherapy are cognitive impairment, which is mainly referred to as chemobrain or CICI (chemotherapy-induced cognitive impairment). It is characterized by difficulty with language, concentrating, processing speed, learning, and memory, as it affects the hippocampus areas of the brain. Mitochondrial dysfunction and oxidative stress are one of the major mechanisms causing chemobrain. The generation of reactive oxygen species (byproducts of oxidative phosphorylation) mainly occurs in mitochondria that play a prominent role in the induction of oxidative stress. The homeostasis of ROS in the mitochondria is maintained by mitochondrial antioxidant mechanism via enzymes like catalase, glutathione, and superoxide dismutase. Lungs and breast cancer are the two most common types of cancer, which are the most leading cancers in the world with about 4.18 million cases. In this review we exposed the current knowledge regarding chemotherapy-induced oxidative stress and mitochondrial dysfunction to cause cognitive impairment.We especially focused on the antineoplastic agent (ADRIAMYCIN, CYCLOPHOSPHAMIDE), platinum group agent CISPLATIN, antimetabolite agents (METHOTREXATE), and nitrogen mustard agent (CARMUSTINE) which increase oxidative stress and inflammatory markers in the PNS (peripheral nervous system) as well as the central nervous system. We also highlight the behavioural and functional changes in the brain.
Collapse
Affiliation(s)
- Kuleshwar Sahu
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Urvashi Langeh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
20
|
Imosemi IO, Owumi SE, Arunsi UO. Biochemical and histological alterations of doxorubicin-induced neurotoxicity in rats: Protective role of luteolin. J Biochem Mol Toxicol 2021; 36:e22962. [PMID: 34766659 DOI: 10.1002/jbt.22962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/22/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic drug used in the treatment of various cancer types. DOX toxic side effects include neuronopathy and memory deficits. We investigated the effect of the antioxidant luteolin (LUT: 50 or 100 mg/kg; per os) on DOX (2 mg/kg; intraperitoneal)-induced oxidative stress (OS), inflammation, and apoptosis in the brain of Wistar rats for 14 days. We observed that LUT reduced DOX-mediated increase in OS biomarkers-catalase, superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase. LUT increased glutathione and total sulphydryl levels and alleviated DOX-induced increases in the levels of reactive oxygen and nitrogen species, lipid peroxidation, myeloperoxidase, nitric oxide, tumor necrosis factor-α, and interleukin-1β (IL-1β). Additionally, LUT suppressed caspase-3 activity, increased anti-inflammatory cytokine-IL-10 level, and reduced pathological lesions in the examined organs of rats cotreated with LUT and DOX. Collectively, cotreatment with LUT lessened DOX-induced neurotoxicity. Supplementation of LUT as a chemopreventive agent might be useful in patients undergoing DOX chemotherapy.
Collapse
Affiliation(s)
- Innocent O Imosemi
- Neuroanatomy Research Laboratories, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Solomon E Owumi
- CRMB Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham, UK
| |
Collapse
|
21
|
Semendric I, Pollock D, Haller OJ, George RP, Collins-Praino LE, Whittaker AL. "Chemobrain" in childhood cancer survivors - the impact on social, academic, and daily living skills: a qualitative systematic review protocol. JBI Evid Synth 2021; 20:222-228. [PMID: 34341312 DOI: 10.11124/jbies-21-00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE The objective of this review is to examine children's experiences of chemotherapy-induced cognitive impairment--also known as "chemobrain"--and the impact of chemobrain on children's social, academic, and daily living skills. INTRODUCTION The effect of childhood chemotherapy treatment on cognition is of concern because of the vulnerable nature of children's developing brains and the potential to cause lifelong detriments socially, academically, and economically. Furthermore, this population is underrepresented in the chemobrain literature and in survivorship care plans. As cancer survivorship among this group increases, it is important to understand childhood experiences so that rehabilitation strategies and suitable supports can be put in place. INCLUSION CRITERIA This review of qualitative studies will focus on the pediatric population (0-18 years of age) during and/or following chemotherapy treatment to identify their experiences with chemobrain. The review will include any studies using a qualitative research methodology (eg, surveys, focus groups, interview transcripts), conducted in any geographic location, where experiences are presented from the child's perspective. Studies assessing children's experiences of cancer, other chemotherapy-related side effects, or the parent's personal experience will be excluded. METHODS A search of MEDLINE, Embase, PsycINFO, and CINAHL databases will be conducted. Full-text, English-only articles employing a qualitative research methodology will be included in the screening process. Two independent reviewers will retrieve and screen full-text studies, and assess methodological quality of the included studies. Meta-aggregation will be performed and a ConQual Summary of Findings will present the confidence in the findings. SYSTEMATIC REVIEW REGISTRATION NUMBER PROSPERO CRD42021240573.
Collapse
Affiliation(s)
- Ines Semendric
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia JBI, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA Australia School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Yoo KH, Tang JJ, Rashid MA, Cho CH, Corujo-Ramirez A, Choi J, Bae MG, Brogren D, Hawse JR, Hou X, Weroha SJ, Oliveros A, Kirkeby LA, Baur JA, Jang MH. Nicotinamide Mononucleotide Prevents Cisplatin-Induced Cognitive Impairments. Cancer Res 2021; 81:3727-3737. [PMID: 33771896 PMCID: PMC8277702 DOI: 10.1158/0008-5472.can-20-3290] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/17/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is often reported as a neurotoxic side effect of chemotherapy. Although CICI has emerged as a significant medical problem, meaningful treatments are not currently available due to a lack of mechanistic understanding underlying CICI pathophysiology. Using the platinum-based chemotherapy cisplatin as a model for CICI, we show here that cisplatin suppresses nicotinamide adenine dinucleotide (NAD+) levels in the adult female mouse brain in vivo and in human cortical neurons derived from induced pluripotent stem cells in vitro. Increasing NAD+ levels through nicotinamide mononucleotide (NMN) administration prevented cisplatin-induced abnormalities in neural progenitor proliferation, neuronal morphogenesis, and cognitive function without affecting tumor growth and antitumor efficacy of cisplatin. Mechanistically, cisplatin inhibited expression of the NAD+ biosynthesis rate-limiting enzyme nicotinamide phosphoribosyl transferase (Nampt). Selective restoration of Nampt expression in adult-born neurons was sufficient to prevent cisplatin-induced defects in dendrite morphogenesis and memory function. Taken together, our findings suggest that aberrant Nampt-mediated NAD+ metabolic pathways may be a key contributor in cisplatin-induced neurogenic impairments, thus causally leading to memory dysfunction. Therefore, increasing NAD+ levels could represent a promising and safe therapeutic strategy for cisplatin-related neurotoxicity. SIGNIFICANCE: Increasing NAD+ through NMN supplementation offers a potential therapeutic strategy to safely prevent cisplatin-induced cognitive impairments, thus providing hope for improved quality of life in cancer survivors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/13/3727/F1.large.jpg.
Collapse
Affiliation(s)
- Ki Hyun Yoo
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jason J Tang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Chang Hoon Cho
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Ana Corujo-Ramirez
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
- The Mayo Clinic Post-Baccalaureate Research Education Program (PREP), Rochester, Minnesota
| | - Jonghoon Choi
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Mun Gyeong Bae
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Danielle Brogren
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Xiaonan Hou
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - S John Weroha
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Alfredo Oliveros
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Lindsey A Kirkeby
- Center for Regenerative Medicine Biotrust, Mayo Clinic, Rochester, Minnesota
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mi-Hyeon Jang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
23
|
El-Derany MO, Noureldein MH. Bone marrow mesenchymal stem cells and their derived exosomes resolve doxorubicin-induced chemobrain: critical role of their miRNA cargo. Stem Cell Res Ther 2021; 12:322. [PMID: 34090498 PMCID: PMC8180158 DOI: 10.1186/s13287-021-02384-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background Doxorubicin (DOX), a widely used chemotherapeutic agent, can cause neurodegeneration in the brain, which leads to a condition known as chemobrain. In fact, chemobrain is a deteriorating condition which adversely affects the lives of cancer survivors. This study aimed to examine the potential therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) and their derived exosomes (BMSCs-Exo) in DOX-induced chemobrain in rat models. Methods Chemobrain was induced by exposing rats to DOX (2 mg/kg, i.p) once weekly for 4 consecutive weeks. After 48 h of the last DOX dose, a subset of rats was supplied with either an intravenous injection of BMSCs (1 × 106) or a single dose of 150 μg of BMSCs-Exo. Behavioral tests were conducted 7 days post injection. Rats were sacrificed after 14 days from BMSCs or BMSCs-Exo injection. Results BMSCs and BMSCs-Exo successfully restored DOX-induced cognitive and behavioral distortion. These actions were mediated via decreasing hippocampal neurodegeneration and neural demyelination through upregulating neural myelination factors (myelin%, Olig2, Opalin expression), neurotropic growth factors (BDNF, FGF-2), synaptic factors (synaptophysin), and fractalkine receptor expression (Cx3cr1). Halting neurodegeneration in DOX-induced chemobrain was achieved through epigenetic induction of key factors in Wnt/β-catenin and hedgehog signaling pathways mediated primarily by the most abundant secreted exosomal miRNAs (miR-21-5p, miR-125b-5p, miR-199a-3p, miR-24-3p, let-7a-5p). Moreover, BMSCs and BMSCs-Exo significantly abrogate the inflammatory state (IL-6, TNF-α), apoptotic state (BAX/Bcl2), astrocyte, and microglia activation (GFAP, IBA-1) in DOX-induced chemobrain with a significant increase in the antioxidant mediators (GSH, GPx, SOD activity). Conclusions BMSCs and their derived exosomes offer neuroprotection against DOX-induced chemobrain via genetic and epigenetic abrogation of hippocampal neurodegeneration through modulating Wnt/β-catenin and hedgehog signaling pathways and through reducing inflammatory, apoptotic, and oxidative stress state. Graphical abstract Proposed mechanisms of the protective effects of bone marrow stem cells (BMSCs) and their exosomes (BMSCs-Exo) in doxorubicin (DOX)-induced chemobrain. Blue arrows: induce. Red arrows: inhibit.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02384-9.
Collapse
Affiliation(s)
- Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Mohamed H Noureldein
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,American University of Beirut Diabetes Program, Beirut, Lebanon
| |
Collapse
|
24
|
Anderson JE, Trujillo M, McElroy T, Groves T, Alexander T, Kiffer F, Allen AR. Early Effects of Cyclophosphamide, Methotrexate, and 5-Fluorouracil on Neuronal Morphology and Hippocampal-Dependent Behavior in a Murine Model. Toxicol Sci 2021; 173:156-170. [PMID: 31651976 DOI: 10.1093/toxsci/kfz213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Breast cancer (BC) is the most common cancer among women. Fortunately, BC survival rates have increased because the implementation of adjuvant chemotherapy leading to a growing population of survivors. However, chemotherapy-induced cognitive impairments (CICIs) affect up to 75% of BC survivors and may be driven by inflammation and oxidative stress. Chemotherapy-induced cognitive impairments can persist 20 years and hinder survivors' quality of life. To identify early effects of CMF administration in mice, we chose to evaluate adult female mice at 2-week postchemotherapy. Mice received weekly IP administration of CMF (or saline) for 4 weeks, completed behavioral testing, and were sacrificed 2 weeks following their final CMF injection. Behavioral results indicated long-term memory (LTM) impairments postchemotherapy, but did not reveal short-term memory deficits. Dendritic morphology and spine data found increases in overall spine density within CA1 basal and CA3 basal dendrites, but no changes in DG, CA1 apical, or CA3 apical dendrites. Further analysis revealed decreases in arborization across the hippocampus (DG, CA1 apical and basal, CA3 apical and basal). These physiological changes within the hippocampus correlate with our behavioral data indicating LTM impairments following CMF administration in female mice 2-week postchemotherapy. Hippocampal cytokine analysis identified decreases in IL-1α, IL-1β, IL-3, IL-10, and TNF-α levels.
Collapse
Affiliation(s)
- Julie E Anderson
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Taylor McElroy
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Thomas Groves
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Tyler Alexander
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Frederico Kiffer
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
25
|
Yap NY, Toh YL, Tan CJ, Acharya MM, Chan A. Relationship between cytokines and brain-derived neurotrophic factor (BDNF) in trajectories of cancer-related cognitive impairment. Cytokine 2021; 144:155556. [PMID: 33985854 PMCID: PMC8585614 DOI: 10.1016/j.cyto.2021.155556] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Cytokines facilitate the peripheral immune and cerebral response, through their ability to modulate the expression of brain derived neurotrophic factor (BDNF). Cytokines and BDNF are implicated in cancer-related cognitive impairment (CRCI), but their relationship has not been clearly defined for this condition. The aim of this study was to evaluate the associations of cytokines and BDNF among early stage breast cancer (ESBC) patients with different CRCI trajectories. This was a multicenter longitudinal study involving 136 ESBC patients. CRCI was assessed using the FACT-Cog (V3) questionnaire. Plasma cytokines and BDNF levels were quantified at three time points throughout chemotherapy. The associations between cytokines and BDNF were analyzed using linear mixed models, with interaction terms for CRCI status. All cytokines analyzed showed inverse associations with BDNF levels. There was a significant interaction between IL-6 and the persistent impairment trajectory, which would impact on BDNF levels (p = 0.026). The inverse associations with BDNF were more pronounced for IFN-γ, IL-1β, IL-4, IL-8, and GM-CSF in patients with persistent CRCI. The coefficient values for IL-2, IL-4, and TNF-α also indicate that there was a greater magnitude of decrease in BDNF level for every unit of cytokine increase in patients with acute and persistent CRCI, compared to patients without CRCI. The differential associations between cytokines and BDNF may be indicative of probable susceptibility to the elevation of cytokines. Further research is required to elucidate the specific associations of cytokines and BDNF, along with their contributions to acute and persistent CRCI.
Collapse
Affiliation(s)
- Ning Yi Yap
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Yi Long Toh
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Chia Jie Tan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, USA
| | - Alexandre Chan
- Department of Clinical Pharmacy Practice, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, USA; Department of Pharmacy, National Cancer Centre Singapore, Singapore.
| |
Collapse
|
26
|
Subramaniam CB, Bowen JM, Gladman MA, Lustberg MB, Mayo SJ, Wardill HR. The microbiota-gut-brain axis: An emerging therapeutic target in chemotherapy-induced cognitive impairment. Neurosci Biobehav Rev 2020; 116:470-479. [PMID: 32681936 DOI: 10.1016/j.neubiorev.2020.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/05/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is an ill-defined complication of chemotherapy treatment that places a significant psychosocial burden on survivors of cancer and has a considerable impact on the activities of daily living. CICI pathophysiology has not been clearly defined, with candidate mechanisms relating to both the direct cytotoxicity of chemotherapy drugs on the central nervous system (CNS) and more global, indirect mechanisms such as neuroinflammation and blood brain barrier (BBB) damage. A growing body of research demonstrates that changes to the composition of the gastrointestinal microbiota is an initiating factor in numerous neurocognitive conditions, profoundly influencing both CNS immunity and BBB integrity. Importantly, chemotherapy causes significant disruption to the gastrointestinal microbiota. While microbial disruption is a well-established factor in the development of chemotherapy-induced gastrointestinal toxicities (largely diarrhoea), its role in CICI remains unknown, limiting microbial-based therapeutics or risk prediction strategies. Therefore, this review aims to synthesise and critically evaluate the evidence addressing the microbiota-gut-brain axis as a critical factor influencing the development of CICI.
Collapse
Affiliation(s)
- Courtney B Subramaniam
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, SA, Australia.
| | - Joanne M Bowen
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Marc A Gladman
- Discipline of Anatomy & Pathology, Adelaide Medical School, University of Adelaide, SA Australia
| | - Maryam B Lustberg
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, USA
| | - Samantha J Mayo
- Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, ON, Canada
| | - Hannah R Wardill
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, SA, Australia; Department of Pediatric Oncology/Hematology, University of Groningen, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
27
|
Akomolafe SF, Olasehinde TA, Oyeleye SI, Aluko TB, Adewale OO, Ijomone OM. Curcumin Administration Mitigates Cyclophosphamide-Induced Oxidative Damage and Restores Alteration of Enzymes Associated with Cognitive Function in Rats' Brain. Neurotox Res 2020; 38:199-210. [PMID: 32405958 DOI: 10.1007/s12640-020-00205-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 03/19/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
The use of chemotherapeutic drugs is associated with oxidative damage, cognitive dysfunction, and brain damage. This study sought to investigate the neuroprotective effect of curcumin against cognitive problems associated with treatment with cyclophosphamide via assessment of biomolecules associated with cognitive function in rats' brain homogenates. Rats were divided in to five groups: Control (vehicle), CUR (curcumin [20 mg/kg]), CPA (cyclophosphamide [150 mg/kg]), CUR1 + CPA (curcumin [20 mg/kg] and cyclophosphamide [150 mg/kg]), and CPA + CUR2 (cyclophosphamide [150 mg/kg] and curcumin [20 mg/kg]). After the treatment, cognitive behavior was assessed and enzymes [cholinesterases, purinergic enzymes, arginase, and angiotensin I-converting enzyme] associated with cognitive function were examined. Oxidative stress parameters [total thiol, non-protein thiol, malondialdehyde, and nitric oxide] including the expression of caspase-3 were also assessed in rats' brain. Our results showed that curcumin improved cognitive behavior, attenuated cholinergic deficit as revealed by the inhibition of cholinesterases, and improved purinergic signaling in cyclophosphamide-treated rats. Furthermore, curcumin reduced angiotensin-I-converting enzyme and arginase activities before and after treatment with cyclophosphamide. Curcumin also improved redox balance and showed protection against cyclophosphamide-induced oxidative damage to rats' brain via an increase in protein and non-protein thiols and nitric oxide levels as well as a significant reduction in malondialdehyde levels. Curcumin also prevented neuronal degeneration in different brain regions and reduced caspase-3 expression. Hence this study suggests that pre and post-treatment with curcumin improved neurobehavior, modulates some biomarkers associated with cognitive function and exhibit neuroprotection against cyclophosphamide-induced neurotoxicity in rats.
Collapse
Affiliation(s)
| | - Tosin A Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria. .,Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa.
| | - Sunday Idowu Oyeleye
- Department of Biomedical Technology, Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Tola B Aluko
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Omowumi O Adewale
- Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | - Omamuyovwi M Ijomone
- The Neuro-Lab, Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Akure, Ondo State, Nigeria
| |
Collapse
|
28
|
Campbell KL, Zadravec K, Bland KA, Chesley E, Wolf F, Janelsins MC. The Effect of Exercise on Cancer-Related Cognitive Impairment and Applications for Physical Therapy: Systematic Review of Randomized Controlled Trials. Phys Ther 2020; 100:523-542. [PMID: 32065236 PMCID: PMC8559683 DOI: 10.1093/ptj/pzz090] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 04/11/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cancer-related cognitive impairment (CRCI), often called "chemo-brain" or "chemo-fog," is a common side effect among adults with cancer, which can persist well after treatment completion. Accumulating evidence demonstrates exercise can improve cognitive function in healthy older adults and adults with cognitive impairments, suggesting exercise may play a role in managing CRCI. PURPOSE The purpose was to perform a systematic review of randomized controlled trials (RCTs) to understand the effect of exercise on CRCI. DATA SOURCES Relevant literature was retrieved from CINAHL, Medline (Ovid), and EMBASE. STUDY SELECTION Eligible articles were RCTs that prescribed aerobic, resistance, combined aerobic/resistance, or mind-body (eg, yoga or Qigong) exercise during or following cancer treatment and included cognitive function outcome measures. DATA EXTRACTION Descriptive information and Cohen d effect sizes were directly extracted or calculated for included trials. DATA SYNTHESIS Twenty-nine trials were included in the final analysis. A statistically significant effect of exercise on self-reported cognitive function, both during and postadjuvant treatment, was reported in 12 trials (41%) (Cohen d range: 0.24-1.14), most commonly using the EORTC QLQ-C30. Ten trials (34%) performed neuropsychological testing to evaluate cognitive function; however, only 3 trials in women with breast cancer reported a significant effect of exercise (Cohen d range: 0.41-1.47). LIMITATIONS Few RCTs to date have evaluated the effect of exercise on CRCI as a primary outcome. Twenty-six trials (90%) in this review evaluated CRCI as secondary analyses. CONCLUSIONS Evidence supporting exercise as a strategy to address CRCI is limited. Future research evaluating CRCI as a primary outcome, including self-reported and objective measures, is needed to confirm the possible role of exercise in preventing and managing cognitive impairments in adults with cancer.
Collapse
Affiliation(s)
- Kristin L Campbell
- Department of Physical Therapy, University of British Columbia 212-2177
Wesbrook Mall, Vancouver, British Columbia, Canada V7J 3K6,Address all correspondence to Dr Campbell at:
| | | | - Kelcey A Bland
- Mary MacKillop Institute for Health Research, Australian Catholic
University, Melbourne, Victoria, Australia
| | | | - Florian Wolf
- Institute for Cardiovascular Research and Sports Medicine, German Sport
University, Cologne, Germany
| | | |
Collapse
|
29
|
Caruso R, Breitbart W. Mental health care in oncology. Contemporary perspective on the psychosocial burden of cancer and evidence-based interventions. Epidemiol Psychiatr Sci 2020; 29:e86. [PMID: 31915100 PMCID: PMC7214708 DOI: 10.1017/s2045796019000866] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 12/18/2022] Open
Abstract
With cancer incidence increasing over time worldwide, attention to the burden of psychiatric and psychosocial consequences of the disease is now mandatory for both cancer and mental health care professionals. Psychiatric disorders have been shown to affect at least 30-35% of cancer patients during all phases of the disease trajectory, and differ in nature according to stage and type of cancer. Other clinically relevant distressing psychosocial and existential conditions (e.g. demoralisation, health anxiety, loss of meaning and existential distress) not included as 'disorders' in the usual diagnostic and nosological systems (i.e. meta-diagnostic conditions) have also been shown to be present in another 15-20% of cancer patients. In this editorial, we will present a summary of the extensive literature regarding the epidemiology of the several psychosocial disorders affecting cancer patients as a cause of distress and burden to be taken into consideration and addressed in cancer care through evidence-based intervention.
Collapse
Affiliation(s)
- R. Caruso
- Department of Biomedical and Specialty Surgical Sciences, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
| | - W. Breitbart
- Department of Psychiatry & Behavioral Sciences, Jimmie C. Holland Chair in Psychiatric Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
30
|
Shrot S, Abebe-Campino G, Toren A, Ben-Haim S, Hoffmann C, Davidson T. Fluorodeoxyglucose Detected Changes in Brain Metabolism After Chemotherapy in Pediatric Non-Hodgkin Lymphoma. Pediatr Neurol 2019; 92:37-42. [PMID: 30630683 DOI: 10.1016/j.pediatrneurol.2018.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Potential neurocognitive dysfunction after chemotherapy is a worrisome long-term outcome. Our objective was to evaluate the effect on brain metabolism in pediatric patients with non-central nervous system cancer treated with chemotherapy by analyzing brain data from serial whole-body fluorodeoxyglucose positron emission tomography/computed-tomography (FDG-PET/CT) scans taken before and sequentially after therapy. METHODS Fourteen pediatric patients diagnosed with lymphoma and treated with systemic and prophylactic intrathecal chemotherapy were included. All patients had baseline pretreatment whole-body FDG-PET/CT and at least one post-therapy study preformed as part of standard surveillance. Brain positron emission tomography data were quantitatively analyzed for normalized fluorodeoxyglucose uptake in various brain regions. A generalized estimating equation approach was used to evaluate temporal changes after chemotherapy. RESULTS Median time of follow-up surveillance positron emission tomography-computed-tomography was 456 days after chemotherapy course. Various brain regions demonstrated significant changes in fluorodeoxyglucose uptake as a function of time passed since chemotherapy. Increased fluorodeoxyglucose uptake was noted in the parietal and cingulate cortexes. Decreased fluorodeoxyglucose uptake was demonstrated in deep gray matter nuclei and in the brainstem. CONCLUSIONS Our study provides novel insights into long-standing and progressive changes in regional glucose metabolism after chemotherapy in pediatric cancer population, lasting long after the end of therapy and reaching clinical remission. Expanding the utility of regular surveillance fluorodeoxyglucose positron emission tomography to a detailed quantitative assessment of regional brain metabolism after chemotherapy can provide valuable information on individual chemotherapy-related neuromodulation and facilitate the development of strategies to minimize neurocognitive side effects.
Collapse
Affiliation(s)
- Shai Shrot
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Gadi Abebe-Campino
- Department of Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Amos Toren
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital and Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Simona Ben-Haim
- Department of Nuclear Medicine, Chaim Sheba Medical Center, Tel Hashomer, Israel; Institute of Nuclear Medicine, University College London, UCL Hospitals, NHS Trust, London, UK
| | - Chen Hoffmann
- Department of Diagnostic Imaging, Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tima Davidson
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Nuclear Medicine, Chaim Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
31
|
Speidell AP, Demby T, Lee Y, Rodriguez O, Albanese C, Mandelblatt J, Rebeck GW. Development of a Human APOE Knock-in Mouse Model for Study of Cognitive Function After Cancer Chemotherapy. Neurotox Res 2019; 35:291-303. [PMID: 30284204 PMCID: PMC6333492 DOI: 10.1007/s12640-018-9954-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 01/12/2023]
Abstract
Cancer-related cognitive impairment in breast cancer patients exposed to multi-agent chemotherapy regimens is associated with the apolipoprotein E4 (APOE4) allele. However, it is difficult to determine the effects of specific agents on cognitive impairment in human studies. We describe the development of a human APOE knock-in congenic C57BL/6J mouse model to study cancer-related cognitive impairment. Female APOE3 and APOE4 homozygous mice were either left untreated or treated with the most commonly used breast cancer therapeutic agent, doxorubicin. APOE3 and APOE4 mice had similar behaviors in exploratory and anxiety assays, which were affected transiently by doxorubicin treatment. Spatial learning and memory were measured in a Barnes maze: after 4 days of training, control APOE3 and APOE4 mice were able to escape with similar latencies. In contrast, doxorubicin-treated APOE4 mice had markedly impaired learning compared to doxorubicin-treated APOE3 mice at all time points. Voxel-based morphometry of magnetic resonance images revealed that doxorubicin treatment caused significant changes in the cortex and hippocampus of in both APOE3 and APOE4 mouse brains, but the differences were significantly greater in the APOE4 brains. The results indicate that doxorubicin-exposed APOE4 mice recapitulate key aspects of human cancer-related cognitive impairment. These data support the usefulness of this novel preclinical model for future elucidation of the genetic and molecular interactions of APOE genotype with chemotherapy; this model can also allow extension to prospective studies of older mice to study these interactions in the context of aging.
Collapse
Affiliation(s)
- Andrew P Speidell
- Department of Neuroscience, Georgetown University, Washington, DC, USA
| | - Tamar Demby
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Yichien Lee
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Olga Rodriguez
- Department of Oncology, Georgetown University, Washington, DC, USA
| | | | | | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, DC, USA.
| |
Collapse
|
32
|
Asor E, Ben-Shachar D. Gene expression dynamics following mithramycin treatment: A possible model for post-chemotherapy cognitive impairment. Clin Exp Pharmacol Physiol 2018; 45:1028-1037. [PMID: 29851136 DOI: 10.1111/1440-1681.12975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022]
Abstract
Chemotherapy-induced cognitive changes is a major burden on a substantial number of cancer survivors. The mechanism of this sequel is unknown. In this study, we followed long-term effects of early in life mithramycin (MTR) treatment on behaviour and on the normal course of alterations of gene expression in brain. Between post-natal days (PND) 7 and 10, male rats were divided into 2 groups, 1 receiving MTR (0.1 mg/kg s.c. per day) and the other receiving saline. At PND11, frontal cortex tissue samples were dissected from 4 rats from each group. At PND 65 the remaining rats underwent behavioural tests after which all the rats were decapitated and their prefrontal cortex incised. Rats treated transiently with MTR early in life, showed impairments in spatial working memory and anxious-like behaviour in adulthood. The immediate molecular effect of MTR was expressed in a limited number of altered genes of different unconnected trajectories, which were simultaneously distorted by the drug. In contrast, 3 months later we observed a change in the expression of more than 1000 genes that converged into specific cellular processes. Time-dependent gene expression dynamics of several genes was significantly different between treated and untreated rats. The differences in the total number of altered genes and in gene expression trends, immediately and long after MTR treatment cessation, suggest the evolution of a new cellular homeostatic set point, which can lead to behavioural abnormalities following chemotherapy treatment.
Collapse
Affiliation(s)
- Eyal Asor
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Haifa, Israel.,B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Haifa, Israel.,B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel.,The Rappaport Family Institute for Research in Medical Sciences, Technion-IIT, Haifa, Israel
| |
Collapse
|
33
|
Jordan KR, Loman BR, Bailey MT, Pyter LM. Gut microbiota-immune-brain interactions in chemotherapy-associated behavioral comorbidities. Cancer 2018; 124:3990-3999. [PMID: 29975400 DOI: 10.1002/cncr.31584] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/06/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Increasing scientific attention is focused on the gut-brain axis, including the ability of the gastrointestinal (GI) tract to modulate central nervous system function. Changes in the intestinal microbiome can influence affective-like behavior, cognitive performance, fatigue, and sleep in rodents and humans. Patients with cancer who are receiving chemotherapy experience similar negative behavioral changes and concurrent GI symptoms. These chemotherapy comorbidities can be long-lasting and may reduce patients' quality of life and motivation to comply with treatment. This review summarizes the clinical and preclinical evidence supporting a role for the intestinal microbiome in mediating behavioral comorbidities through peripheral immune activation in patients with cancer who are receiving chemotherapy. In addition, evidence suggesting that targeted modification of the intestinal microbiome during cancer treatment could ameliorate associated behavioral comorbidities is reviewed.
Collapse
Affiliation(s)
- Kelley R Jordan
- The Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio.,Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Brett R Loman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Michael T Bailey
- The Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio.,Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Leah M Pyter
- The Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio.,Department of Neuroscience, The Ohio State University, Columbus, Ohio.,Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio
| |
Collapse
|
34
|
Bajic JE, Johnston IN, Howarth GS, Hutchinson MR. From the Bottom-Up: Chemotherapy and Gut-Brain Axis Dysregulation. Front Behav Neurosci 2018; 12:104. [PMID: 29872383 PMCID: PMC5972222 DOI: 10.3389/fnbeh.2018.00104] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
The central nervous system and gastrointestinal tract form the primary targets of chemotherapy-induced toxicities. Symptoms associated with damage to these regions have been clinically termed chemotherapy-induced cognitive impairment and mucositis. Whilst extensive literature outlines the complex etiology of each pathology, to date neither chemotherapy-induced side-effect has considered the potential impact of one on the pathogenesis of the other disorder. This is surprising considering the close bidirectional relationship shared between each organ; the gut-brain axis. There are complex multiple pathways linking the gut to the brain and vice versa in both normal physiological function and disease. For instance, psychological and social factors influence motility and digestive function, symptom perception, and behaviors associated with illness and pathological outcomes. On the other hand, visceral pain affects central nociception pathways, mood and behavior. Recent interest highlights the influence of functional gut disorders, such as inflammatory bowel diseases and irritable bowel syndrome in the development of central comorbidities. Gut-brain axis dysfunction and microbiota dysbiosis have served as key portals in understanding the potential mechanisms associated with these functional gut disorders and their effects on cognition. In this review we will present the role gut-brain axis dysregulation plays in the chemotherapy setting, highlighting peripheral-to-central immune signaling mechanisms and their contribution to neuroimmunological changes associated with chemotherapy exposure. Here, we hypothesize that dysregulation of the gut-brain axis plays a major role in the intestinal, psychological and neurological complications following chemotherapy. We pay particular attention to evidence surrounding microbiota dysbiosis, the role of intestinal permeability, damage to nerves of the enteric and peripheral nervous systems and vagal and humoral mediated changes.
Collapse
Affiliation(s)
- Juliana E. Bajic
- Discipline of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Ian N. Johnston
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Gastroenterology, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - Mark R. Hutchinson
- Discipline of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
35
|
Liao D, Guo Y, Xiang D, Dang R, Xu P, Cai H, Cao L, Jiang P. Dysregulation of Neuregulin-1/ErbB signaling in the hippocampus of rats after administration of doxorubicin. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:231-239. [PMID: 29430172 PMCID: PMC5796460 DOI: 10.2147/dddt.s151511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective Long-term use of doxorubicin (Dox) can cause neurobiological side effects associated with depression, but the underlying mechanisms remain equivocal. While recent evidence has indicated that Neuregulin-1 (NRG1) and its ErbB receptors play an essential role in neural function, much is still unknown concerning the biological link between the NRG1/ErbB pathway and the Dox-induced neurotoxicity. Therefore, we examined the protein expression of NRG1 and ErbB receptors in the hippocampus of rats following Dox treatment. Materials and methods The drug was administered every 2 days at a dose of 2.5 mg/kg, and the animals in different groups were treated with intraperitoneal injection for three or seven times, respectively. Results Our data showed that the rats treated with Dox for seven times (DoxL group) exhibited depression-like behaviors, whereas the short-term treatment (DoxS group) had no effect on the behavioral changes. Dox treatment also induced the neural apoptosis with more severe neurotoxicity. Intriguingly, the expression of NRG1 and the ratio of pErbB4/ErbB4 and pErbB2/ErbB2 were significantly decreased in the DoxL group, but enhanced activation of ErbB receptors was observed in the DoxS group. In parallel, administration of Dox for seven times suppressed the downstream Akt and ERK phosphorylation, while the Akt phosphorylation was enhanced with the administration of Dox for three times. Conclusion Our data first showed the Dox-induced alterations of the NRG1/ErbB system in the hippocampus, indicating the potential involvement of the NRG1/ErbB pathway in the Dox-induced nervous system dysfunction.
Collapse
Affiliation(s)
- Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital.,Department of Pharmacy, Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha
| | - Yujin Guo
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Daxiong Xiang
- Department of Pharmacy, Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha
| | - Ruili Dang
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Pengfei Xu
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| | - Hualin Cai
- Department of Pharmacy, Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha
| | - Lizhi Cao
- Department of Pharmacy, Hunan Cancer Hospital
| | - Pei Jiang
- Department of Pharmacy, Jining First People's Hospital, Jining Medical University, Jining, People's Republic of China
| |
Collapse
|
36
|
Matsos A, Loomes M, Zhou I, Macmillan E, Sabel I, Rotziokos E, Beckwith W, Johnston I. Chemotherapy-induced cognitive impairments: White matter pathologies. Cancer Treat Rev 2017; 61:6-14. [DOI: 10.1016/j.ctrv.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
|
37
|
Caruso R, Nanni MG, Riba MB, Sabato S, Grassi L. The burden of psychosocial morbidity related to cancer: patient and family issues. Int Rev Psychiatry 2017; 29:389-402. [PMID: 28753076 DOI: 10.1080/09540261.2017.1288090] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
With cancer incidence increasing over time, attention to the burden of related psychiatric and psychosocial consequences of the disease and treatment is a major topic for both cancer patients and their caregivers. Among cancer patients, psychiatric (e.g. adjustment, anxiety, depressive disorders) and neuropsychiatric disorders (e.g. cognitive disorders secondary to treatment, delirium) have been shown to affect an average of 30-35% patients, with differences according to stage and type of cancer. Also other psychosocial syndromes (e.g. demoralization, health anxiety, irritable mood) not taken into account in usual nosological systems should be considered for their impact on the patient's quality-of-life. Also, it has been repeatedly reported that psychological distress reverberates substantially throughout the nuclear family, and that a family approach is necessary in cancer care, with the caregiver-patient dyad as a unit to be the focus and direction of assessment and intervention. In this review the most significant psychosocial disorders causing burden for cancer patients and their caregivers are examined, and the main methods of assessment for more proper referral and treatment are summarized.
Collapse
Affiliation(s)
- Rosangela Caruso
- a Institute of Psychiatry, Department of Biomedical and Specialty Surgical Sciences , University of Ferrara , Ferrara , Italy.,b University Hospital Psychiatric Unit , Program of Psycho-Oncology and Psychiatry in Palliative Care, Integrated Department of Mental Health and Addictive Behavior , S. Anna University Hospital and Health Authority , Ferrara , Italy
| | - Mara Giulia Nanni
- a Institute of Psychiatry, Department of Biomedical and Specialty Surgical Sciences , University of Ferrara , Ferrara , Italy.,b University Hospital Psychiatric Unit , Program of Psycho-Oncology and Psychiatry in Palliative Care, Integrated Department of Mental Health and Addictive Behavior , S. Anna University Hospital and Health Authority , Ferrara , Italy
| | - Michelle B Riba
- c Department of Psychiatry , University of Michigan , Ann Arbor , MI , USA.,d University of Michigan Comprehensive Cancer Center , Ann Arbor , MI , USA.,e Psycho-oncology Program , University of Michigan Comprehensive Cancer Center , Ann Arbor , MI , USA
| | - Silvana Sabato
- a Institute of Psychiatry, Department of Biomedical and Specialty Surgical Sciences , University of Ferrara , Ferrara , Italy
| | - Luigi Grassi
- a Institute of Psychiatry, Department of Biomedical and Specialty Surgical Sciences , University of Ferrara , Ferrara , Italy.,b University Hospital Psychiatric Unit , Program of Psycho-Oncology and Psychiatry in Palliative Care, Integrated Department of Mental Health and Addictive Behavior , S. Anna University Hospital and Health Authority , Ferrara , Italy
| |
Collapse
|
38
|
Rendeiro C, Sheriff A, Bhattacharya TK, Gogola JV, Baxter JH, Chen H, Helferich WG, Roy EJ, Rhodes JS. Long-lasting impairments in adult neurogenesis, spatial learning and memory from a standard chemotherapy regimen used to treat breast cancer. Behav Brain Res 2016; 315:10-22. [PMID: 27478140 DOI: 10.1016/j.bbr.2016.07.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/27/2022]
Abstract
The negative impact of chemotherapy on cognitive function in cancer patients has gained increasing attention in the last decade. Whilst the short-term acute effects on cognition are expected following chemotherapy, the persistence of such impairments in the long-term is still in question. This is despite clinical evidence indicating cognitive difficulties may persist well beyond treatment and affect quality of life. In the present study, we assessed the long-term (3 months) cognitive impact of chemotherapy in a mouse model intended to mimic the human female post-menopausal population receiving chemotherapy for breast cancer. Ovariectomized, female, C57BL/6J mice received two doses of Doxorubicin, Cyclophosphamide, and 5-Fluorouracil or saline vehicle (control), separated by one week. During this interval, mice received BrdU injections to label dividing cells. Results indicate a persistent impairment in learning and recall (1h, 24h and 48h) on the Morris water maze, reduced survival and differentiation of new neurons (BrdU+/NeuN+), and a persistent decline in proliferation of new cells (Ki67(+)) in the dentate gyrus. Locomotor activity, motor performance, and anxiety-like behavior were unaffected. We further evaluated the efficacy of a diet enriched in omega-3-fatty acids (DHA+EPA+DPA), in reversing long-term chemotherapy deficits but no rescue was observed. The model described produces long-term cognitive and cellular impairments from chemotherapy that mimic those observed in humans. It could be useful for identifying mechanisms of action and to test further the ability of lifestyle interventions (e.g., diet) for ameliorating chemotherapy-induced cognitive impairments.
Collapse
Affiliation(s)
- Catarina Rendeiro
- Beckman Institute for Advanced Science and Technology, 405 N. Mathews Ave., Urbana, IL 61801, United States; Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, IL, United States.
| | - Andrew Sheriff
- Beckman Institute for Advanced Science and Technology, 405 N. Mathews Ave., Urbana, IL 61801, United States
| | - Tushar K Bhattacharya
- Beckman Institute for Advanced Science and Technology, 405 N. Mathews Ave., Urbana, IL 61801, United States
| | - Joseph V Gogola
- Beckman Institute for Advanced Science and Technology, 405 N. Mathews Ave., Urbana, IL 61801, United States
| | | | - Hong Chen
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL, United States
| | - William G Helferich
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL, United States
| | - Edward J Roy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, IL, United States
| | - Justin S Rhodes
- Beckman Institute for Advanced Science and Technology, 405 N. Mathews Ave., Urbana, IL 61801, United States; Center for Nutrition, Learning and Memory, University of Illinois at Urbana-Champaign, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, IL, United States; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL, United States.
| |
Collapse
|
39
|
Salas-Ramirez KY, Bagnall C, Frias L, Abdali SA, Ahles TA, Hubbard K. Doxorubicin and cyclophosphamide induce cognitive dysfunction and activate the ERK and AKT signaling pathways. Behav Brain Res 2015; 292:133-41. [PMID: 26099816 DOI: 10.1016/j.bbr.2015.06.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 01/03/2023]
Abstract
Chemotherapy is associated with long-term cognitive deficits in breast cancer survivors. Studies suggest that these impairments result in the loss of cognitive reserve and/or induce a premature aging of the brain. This study has been aimed to determine the potential underlying mechanisms that induce cognitive impairments by chemotherapeutic agents commonly used in breast cancer. Intact and ovariectomized (OVX) female rats were treated intravenously with either saline or a combination of cyclophosphamide (40 mg/kg) and doxorubicin (4 mg/kg). All subjects were tested for anxiety, locomotor activity, working, visual and spatial memory consecutively. Although anxiety and visual memory were not affected, chemotherapy significantly decreased locomotor activity and impaired working and spatial memory in female rats, independent of their hormonal status. The cognitive deficits observed are hippocampal dependent. Therefore, as a first step to identity the potential signaling pathways involved in this cognitive dysfunction, the protein levels of extracellular signal-regulated kinase 1/2 (Erk1/2), Akt (neuroprotectant) BDNF and (structural protein) PSD95 in hippocampal lysates were measured. Erk1/2 and Akt pathways are known to modulate synaptic plasticity, neuronal survival, aging and cancer. We found an increased activation of Erk1/2 and Akt as well as an increase in the protein levels of PSD95 in OVX female rodents. However, OVX females had a higher overall BDNF level, independent of chemotherapy. These studies provide additional evidence that commonly used chemotherapeutic agents affect cognitive function and impact synaptic plasticity/aging molecules which may be part of the underlying biology explaining cognitive change and can be potential therapeutic targets.
Collapse
Affiliation(s)
- Kaliris Y Salas-Ramirez
- Department of Physiology, Pharmacology and Neuroscience, The Sophie Davis School of Biomedical Education, New York, NY 10031, USA
| | - Ciara Bagnall
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | - Leslie Frias
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | - Syed A Abdali
- Department of Physiology, Pharmacology and Neuroscience, The Sophie Davis School of Biomedical Education, New York, NY 10031, USA
| | - Tim A Ahles
- Department of Psychiatry and Behavioral Science, Memorial Sloan-Kettering Cancer Center, New York, NY 10022, USA
| | - Karen Hubbard
- Department of Biology, The City College of New York, New York, NY 10031, USA.
| |
Collapse
|
40
|
Dietrich J, Prust M, Kaiser J. Chemotherapy, cognitive impairment and hippocampal toxicity. Neuroscience 2015; 309:224-32. [PMID: 26086545 DOI: 10.1016/j.neuroscience.2015.06.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/23/2015] [Accepted: 06/08/2015] [Indexed: 12/19/2022]
Abstract
Cancer therapies can be associated with significant central nervous system (CNS) toxicity. While radiation-induced brain damage has been long recognized both in pediatric and adult cancer patients, CNS toxicity from chemotherapy has only recently been acknowledged. Clinical studies suggest that the most frequent neurotoxic adverse effects associated with chemotherapy include memory and learning deficits, alterations of attention, concentration, processing speed and executive function. Preclinical studies have started to shed light on how chemotherapy targets the CNS both on cellular and molecular levels to disrupt neural function and brain plasticity. Potential mechanisms include direct cellular toxicity, alterations in cellular metabolism, oxidative stress, and induction of pro-inflammatory processes with subsequent disruption of normal cellular and neurological function. Damage to neural progenitor cell populations within germinal zones of the adult CNS has been identified as one of the key mechanisms by which chemotherapy might exert long-lasting and progressive neurotoxic effects. Based on the important role of the hippocampus for maintenance of brain plasticity throughout life, several experimental studies have focused on the study of chemotherapy effects on hippocampal neurogenesis and associated learning and memory. An increasing body of literature from both animal studies and neuroimaging studies in cancer patients suggests a possible relationship between chemotherapy induced hippocampal damage and the spectrum of neurocognitive deficits and mood alterations observed in cancer patients. This review aims to briefly summarize current preclinical and neuroimaging studies that are providing a potential link between the neurotoxic effects of chemotherapy and hippocampal dysfunction, highlighting challenges and future directions in this field of investigation.
Collapse
Affiliation(s)
- J Dietrich
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - M Prust
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - J Kaiser
- Institute of Medical Psychology, Medical Faculty, Goethe University, Heinrich-Hoffmann-Str. 10, 60528 Frankfurt am Main, Germany
| |
Collapse
|
41
|
Wardill HR, Van Sebille YZ, Mander KA, Gibson RJ, Logan RM, Bowen JM, Sonis ST. Toll-like receptor 4 signaling: A common biological mechanism of regimen-related toxicities. Cancer Treat Rev 2015; 41:122-8. [DOI: 10.1016/j.ctrv.2014.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 01/02/2023]
|
42
|
Costa V, Lugert S, Jagasia R. Role of adult hippocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers. Handb Exp Pharmacol 2015; 228:99-155. [PMID: 25977081 DOI: 10.1007/978-3-319-16522-6_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Adult hippocampal neurogenesis is a remarkable form of brain structural plasticity by which new functional neurons are generated from adult neural stem cells/precursors. Although the precise role of this process remains elusive, adult hippocampal neurogenesis is important for learning and memory and it is affected in disease conditions associated with cognitive impairment, depression, and anxiety. Immature neurons in the adult brain exhibit an enhanced structural and synaptic plasticity during their maturation representing a unique population of neurons to mediate specific hippocampal function. Compelling preclinical evidence suggests that hippocampal neurogenesis is modulated by a broad range of physiological stimuli which are relevant in cognitive and emotional states. Moreover, multiple pharmacological interventions targeting cognition modulate adult hippocampal neurogenesis. In addition, recent genetic approaches have shown that promoting neurogenesis can positively modulate cognition associated with both physiology and disease. Thus the discovery of signaling pathways that enhance adult neurogenesis may lead to therapeutic strategies for improving memory loss due to aging or disease. This chapter endeavors to review the literature in the field, with particular focus on (1) the role of hippocampal neurogenesis in cognition in physiology and disease; (2) extrinsic and intrinsic signals that modulate hippocampal neurogenesis with a focus on pharmacological targets; and (3) efforts toward novel strategies pharmacologically targeting neurogenesis and identification of biomarkers of human neurogenesis.
Collapse
Affiliation(s)
- Veronica Costa
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases (NORD), Roche Innovation Center Basel, 124 Grenzacherstrasse, 4070, Basel, Switzerland
| | | | | |
Collapse
|
43
|
Slattery EL, Oshima K, Heller S, Warchol ME. Cisplatin exposure damages resident stem cells of the mammalian inner ear. Dev Dyn 2014; 243:1328-37. [PMID: 24888499 DOI: 10.1002/dvdy.24150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/29/2014] [Accepted: 05/10/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cisplatin is a widely used chemotherapeutic agent that can also cause ototoxic injury. One potential treatment for cisplatin-induced hearing loss involves the activation of endogenous inner ear stem cells, which may then produce replacement hair cells. In this series of experiments, we examined the effects of cisplatin exposure on both hair cells and resident stem cells of the mouse inner ear. RESULTS Treatment for 24 hr with 10 µM cisplatin caused significant loss of hair cells in the mouse utricle, but such damage was not evident until 4 days after the cisplatin exposure. In addition to killing hair cells, cisplatin treatment also disrupted the actin cytoskeleton in remaining supporting cells, and led to increased histone H2AX phosphorylation within the sensory epithelia. Finally, treatment with 10 µM cisplatin appeared to have direct toxic effects on resident stem cells in the mouse utricle. Exposure to cisplatin blocked the proliferation of isolated stem cells and prevented sphere formation when those cells were maintained in suspension culture. CONCLUSION The results suggest that inner ear stem cells may be injured during cisplatin ototoxicity, thus limiting their ability to mediate sensory repair.
Collapse
Affiliation(s)
- Eric L Slattery
- Department of Otolaryngology, Washington University School of Medicine, Saint Louis, Missouri
| | | | | | | |
Collapse
|
44
|
Pereira Dias G, Hollywood R, Bevilaqua MCDN, da Luz ACDDS, Hindges R, Nardi AE, Thuret S. Consequences of cancer treatments on adult hippocampal neurogenesis: implications for cognitive function and depressive symptoms. Neuro Oncol 2014; 16:476-92. [PMID: 24470543 DOI: 10.1093/neuonc/not321] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human brain is capable of generating new functional neurons throughout life, a phenomenon known as adult neurogenesis. The generation of new neurons is sustained throughout adulthood due to the proliferation and differentiation of adult neural stem cells. This process in humans is uniquely located in the subgranular zone of the dentate gyrus in the hippocampus. Adult hippocampal neurogenesis (AHN) is thought to play a major role in hippocampus-dependent functions, such as spatial awareness, long-term memory, emotionality, and mood. The overall aim of current treatments for cancer (such as radiotherapy and chemotherapy) is to prevent aberrant cell division of cell populations associated with malignancy. However, the treatments in question are absolutist in nature and hence inhibit all cell division. An unintended consequence of this cessation of cell division is the impairment of adult neural stem cell proliferation and AHN. Patients undergoing treatment for cancerous malignancies often display specific forms of memory deficits, as well as depressive symptoms. This review aims to discuss the effects of cancer treatments on AHN and propose a link between the inhibition of the neurogenetic process in the hippocampus and the advent of the cognitive and mood-based deficits observed in patients and animal models undergoing cancer therapies. Possible evidence for coadjuvant interventions aiming to protect neural cells, and subsequently the mood and cognitive functions they regulate, from the ablative effects of cancer treatment are discussed as potential clinical tools to improve mental health among cancer patients.
Collapse
Affiliation(s)
- Gisele Pereira Dias
- Institute of Psychiatry, King's College London, The James Black Centre, London, UK (G.P.D., R.H., S.T.); Translational Neurobiology Unit, Laboratory of Panic and Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil (G.P.D., M.C.N.B., A.C.D.dS.d.L., A.E.N.); MRC Centre for Developmental Neurobiology, King's College London, London, UK (M.C.N.B., R.H.)
| | | | | | | | | | | | | |
Collapse
|