1
|
Bigdeli TB, Harvey PD. Recent Advances in Schizophrenia Genomics and Emerging Clinical Implications. Psychiatr Clin North Am 2025; 48:311-330. [PMID: 40348420 DOI: 10.1016/j.psc.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The conceptualization of schizophrenia has evolved from Emil Kraepelin's identification of "dementia praecox" as a distinct illness characterized by cognitive and functional deficits to the modern understanding of its complex nature. Recent research, including the "deficit syndrome," highlights enduring negative symptoms that correlate with poor functional outcomes. Genetic epidemiologic studies reveal a strong heritable basis (60%-80%) for schizophrenia, with its polygenic architecture overlapping with various mental health disorders. This complexity raises questions about targeted precision medicine. Recent advancements in biobanks and neurogenomics research are providing valuable insights that aim to improve patient outcomes through enhanced genomic understanding.
Collapse
Affiliation(s)
- Tim B Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA; Veterans Affairs (VA) New York Harbor Healthcare System, New York, USA.
| | - Philip D Harvey
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 900 NW 17th Street, Miami, FL 33136, USA; Bruce W. Carter Miami Veterans Affairs (VA) Medical Center, Miami, FL, USA.
| |
Collapse
|
2
|
Kristof Z, Szabo D, Sperlagh B, Torok D, Gonda X. From Childhood Woes to Adult Blues: Unmasking the Role of Early Traumas, P2X7 Receptor, and Neuroinflammation in Anxiety and Depression. Int J Mol Sci 2025; 26:4687. [PMID: 40429831 PMCID: PMC12111330 DOI: 10.3390/ijms26104687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Early-life stress may increase the risk of neuropsychiatric disorders via immune activation. While the purinergic signaling pathway is implicated in psychiatric disorders, the specific role of the P2X7 receptor (P2X7R) in anxiety, depression, and childhood trauma still requires further clarification. Upon chronic stress, excessive ATP release activates purinergic P2X7R signalling in the brain contributing to long-lasting neuroinflammation, which potentially promotes the development of psychiatric disorders. There is also a putative link between the P2X7 receptor gene, located on chromosome 12q24, and the development of anxiety and depression. This review aims to systematically examine how P2X7R contributes to the pathophysiology of anxiety and depressive disorders, with a particular focus on early-life stress (ELS). It offers a comprehensive synthesis of the current findings, emphasizing the previously unexplored intersections between P2X7R signaling, early-life stress, and psychiatric disorders. These interactions may shape long-term neuroinflammation, contributing to the development of anxiety and depression, and offer new insights into potential therapeutic targets. The review integrates the role of P2X7R regarding both indirect mechanisms-such as the modulation and long-term transmission of neuroinflammation following environmental stressors and vulnerability-and direct genetic associations with psychiatric conditions, including the influence of single-nucleotide polymorphisms (SNPs), haplotypes, and other variants within the P2X7 gene. Special emphasis is placed on the impact of early-life stress, drawing primarily on preclinical findings to elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Zsuliet Kristof
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia;
| | - Dorottya Szabo
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary; (D.S.); (B.S.)
- Janos Szentagothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary; (D.S.); (B.S.)
| | - Dora Torok
- Department of Pharmacodynamics, Semmelweis University, 1089 Budapest, Hungary;
- Center of Pharmacology and Drug Research & Development, Semmelweis University, 1089 Budapest, Hungary
- Hungarian Brain Research Program, NAP3.0-SE Neuropsychopharmacology Research Group, 1089 Budapest, Hungary
| | - Xenia Gonda
- Department of Pharmacodynamics, Semmelweis University, 1089 Budapest, Hungary;
- Center of Pharmacology and Drug Research & Development, Semmelweis University, 1089 Budapest, Hungary
- Hungarian Brain Research Program, NAP3.0-SE Neuropsychopharmacology Research Group, 1089 Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, 1082 Budapest, Hungary
- Department of Clinical Psychology, Semmelweis University, 1092 Budapest, Hungary
| |
Collapse
|
3
|
Einstein D, Jurgens S, Howard E, Hayes JP. Inflammation following childhood maltreatment is associated with episodic memory decline in older adults. J Trauma Stress 2025. [PMID: 40082728 DOI: 10.1002/jts.23138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 03/16/2025]
Abstract
Childhood maltreatment is recognized as a risk factor for cognitive decline in adulthood. However, the mechanisms underlying this association, particularly the role of systemic inflammation, remain understudied. To address this gap, this study investigated the indirect effects of inflammation on the associations between childhood maltreatment and both episodic memory (EM) and executive functioning (EF) performance 10 years after inflammatory measurement in older adults. We selected 590 participants (Mage = 65.5 years) from the Midlife in the United States Study based on available childhood maltreatment, inflammation, and composite cognitive data. Spearman's rank correlations were calculated to test associations among childhood maltreatment, cognition, and inflammation. The results informed follow-up analyses testing the indirect effects of inflammation on the associations between childhood maltreatment and cognition. Correlations demonstrated that inflammation was associated with overall childhood maltreatment as well as with specific domains of childhood maltreatment (i.e., physical abuse, sexual abuse, emotional abuse, and physical neglect), ps = .002-.010. Inflammation was negatively associated with EF, p = .001, and EM, p = .028. Follow-up analyses revealed significant indirect pathways linking overall childhood maltreatment, β = -.0088, SE = 0.0058, 95% CI [-0.0223, -0.00000], to EM performance through inflammation, but no specific domain of maltreatment drove this association. The results suggest that inflammation may help explain links between childhood maltreatment exposure and EM deficits in adulthood. These results elucidate the importance of evaluating childhood maltreatment as a risk factor for later-life cognitive decline, particularly within the context of heightened inflammatory biomarkers.
Collapse
Affiliation(s)
- Dalia Einstein
- Psychology Department, The Ohio State University, Columbus, Ohio, USA
| | - Savana Jurgens
- Psychology Department, The Ohio State University, Columbus, Ohio, USA
| | - Erica Howard
- Psychology Department, The Ohio State University, Columbus, Ohio, USA
| | - Jasmeet P Hayes
- Psychology Department, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Initiative, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Petruso F, Giff A, Milano B, De Rossi M, Saccaro L. Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal 2023; 7:NS20220077. [PMID: 38026703 PMCID: PMC10653990 DOI: 10.1042/ns20220077] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Emotion dysregulation (ED) describes a difficulty with the modulation of which emotions are felt, as well as when and how these emotions are experienced or expressed. It is a focal overarching symptom in many severe and prevalent neuropsychiatric diseases, including bipolar disorders (BD), attention deficit/hyperactivity disorder (ADHD), and borderline personality disorder (BPD). In all these disorders, ED can manifest through symptoms of depression, anxiety, or affective lability. Considering the many symptomatic similarities between BD, ADHD, and BPD, a transdiagnostic approach is a promising lens of investigation. Mounting evidence supports the role of peripheral inflammatory markers and stress in the multifactorial aetiology and physiopathology of BD, ADHD, and BPD. Of note, neural circuits that regulate emotions appear particularly vulnerable to inflammatory insults and peripheral inflammation, which can impact the neuroimmune milieu of the central nervous system. Thus far, few studies have examined the link between ED and inflammation in BD, ADHD, and BPD. To our knowledge, no specific work has provided a critical comparison of the results from these disorders. To fill this gap in the literature, we review the known associations and mechanisms linking ED and inflammation in general, and clinically, in BD, ADHD, and BD. Our narrative review begins with an examination of the routes linking ED and inflammation, followed by a discussion of disorder-specific results accounting for methodological limitations and relevant confounding factors. Finally, we critically discuss both correspondences and discrepancies in the results and comment on potential vulnerability markers and promising therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexis E. Giff
- Department of Neuroscience, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Beatrice A. Milano
- Sant’Anna School of Advanced Studies, Pisa, Italy
- University of Pisa, Pisa, Italy
| | | | - Luigi Francesco Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Switzerland
| |
Collapse
|
5
|
Dong TS, Gee GC, Beltran-Sanchez H, Wang M, Osadchiy V, Kilpatrick LA, Chen Z, Subramanyam V, Zhang Y, Guo Y, Labus JS, Naliboff B, Cole S, Zhang X, Mayer EA, Gupta A. How Discrimination Gets Under the Skin: Biological Determinants of Discrimination Associated With Dysregulation of the Brain-Gut Microbiome System and Psychological Symptoms. Biol Psychiatry 2023; 94:203-214. [PMID: 36754687 PMCID: PMC10684253 DOI: 10.1016/j.biopsych.2022.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Discrimination is associated with negative health outcomes as mediated in part by chronic stress, but a full understanding of the biological pathways is lacking. Here we investigate the effects of discrimination involved in dysregulating the brain-gut microbiome (BGM) system. METHODS A total of 154 participants underwent brain magnetic resonance imaging to measure functional connectivity. Fecal samples were obtained for 16S ribosomal RNA profiling and fecal metabolites and serum for inflammatory markers, along with questionnaires. The Everyday Discrimination Scale was administered to measure chronic and routine experiences of unfair treatment. A sparse partial least squares-discriminant analysis was conducted to predict BGM alterations as a function of discrimination, controlling for sex, age, body mass index, and diet. Associations between discrimination-related BGM alterations and psychological variables were assessed using a tripartite analysis. RESULTS Discrimination was associated with anxiety, depression, and visceral sensitivity. Discrimination was associated with alterations of brain networks related to emotion, cognition and self-perception, and structural and functional changes in the gut microbiome. BGM discrimination-related associations varied by race/ethnicity. Among Black and Hispanic individuals, discrimination led to brain network changes consistent with psychological coping and increased systemic inflammation. For White individuals, discrimination was related to anxiety but not inflammation, while for Asian individuals, the patterns suggest possible somatization and behavioral (e.g., dietary) responses to discrimination. CONCLUSIONS Discrimination is attributed to changes in the BGM system more skewed toward inflammation, threat response, emotional arousal, and psychological symptoms. By integrating diverse lines of research, our results demonstrate evidence that may explain how discrimination contributes to health inequalities.
Collapse
Affiliation(s)
- Tien S Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California; Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, California.
| | - Gilbert C Gee
- Department of Community Health Sciences Fielding School of Public Health, Los Angeles, California; California Center for Population Research, University of California, Los Angeles, Los Angeles, California
| | - Hiram Beltran-Sanchez
- Department of Community Health Sciences Fielding School of Public Health, Los Angeles, California; California Center for Population Research, University of California, Los Angeles, Los Angeles, California
| | - May Wang
- Department of Community Health Sciences Fielding School of Public Health, Los Angeles, California
| | - Vadim Osadchiy
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lisa A Kilpatrick
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Zixi Chen
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Vishvak Subramanyam
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Yurui Zhang
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Yinming Guo
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Jennifer S Labus
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Bruce Naliboff
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Steve Cole
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry & Biobehavioral Sciences and Medicine, University of California, Los Angeles, Los Angeles, California
| | - Xiaobei Zhang
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Emeran A Mayer
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
6
|
Mposhi A, Turner JD. How can early life adversity still exert an effect decades later? A question of timing, tissues and mechanisms. Front Immunol 2023; 14:1215544. [PMID: 37457711 PMCID: PMC10348484 DOI: 10.3389/fimmu.2023.1215544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Exposure to any number of stressors during the first 1000 days from conception to age 2 years is important in shaping an individual's life trajectory of health and disease. Despite the expanding range of stressors as well as later-life phenotypes and outcomes, the underlying molecular mechanisms remain unclear. Our previous data strongly suggests that early-life exposure to a stressor reduces the capacity of the immune system to generate subsequent generations of naïve cells, while others have shown that, early life stress impairs the capacity of neuronal stem cells to proliferate as they age. This leads us to the "stem cell hypothesis" whereby exposure to adversity during a sensitive period acts through a common mechanism in all the cell types by programming the tissue resident progenitor cells. Furthermore, we review the mechanistic differences observed in fully differentiated cells and suggest that early life adversity (ELA) may alter mitochondria in stem cells. This may consequently alter the destiny of these cells, producing the lifelong "supply" of functionally altered fully differentiated cells.
Collapse
|
7
|
McMurray KMJ, Sah R. Neuroimmune mechanisms in fear and panic pathophysiology. Front Psychiatry 2022; 13:1015349. [PMID: 36523875 PMCID: PMC9745203 DOI: 10.3389/fpsyt.2022.1015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
Panic disorder (PD) is unique among anxiety disorders in that the emotional symptoms (e.g., fear and anxiety) associated with panic are strongly linked to body sensations indicative of threats to physiological homeostasis. For example, panic attacks often present with feelings of suffocation that evoke hyperventilation, breathlessness, or air hunger. Due to the somatic underpinnings of PD, a major focus has been placed on interoceptive signaling and it is recognized that dysfunctional body-to-brain communication pathways promote the initiation and maintenance of PD symptomatology. While body-to-brain signaling can occur via several pathways, immune and humoral pathways play an important role in communicating bodily physiological state to the brain. Accumulating evidence suggests that neuroimmune mediators play a role in fear and panic-associated disorders, although this has not been systematically investigated. Currently, our understanding of the role of immune mechanisms in the etiology and maintenance of PD remains limited. In the current review, we attempt to summarize findings that support a role of immune dysregulation in PD symptomology. We compile evidence from human studies and panic-relevant rodent paradigms that indicate a role of systemic and brain immune signaling in the regulation of fear and panic-relevant behavior and physiology. Specifically, we discuss how immune signaling can contribute to maladaptive body-to-brain communication and conditioned fear that are relevant to spontaneous and conditioned symptoms of PD and identify putative avenues warranting future investigation.
Collapse
Affiliation(s)
- Katherine M. J. McMurray
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
8
|
Hatzimanolis A, Foteli S, Stefanatou P, Ntigrintaki AA, Ralli I, Kollias K, Nikolaou C, Gazouli M, Stefanis NC. Deregulation of complement components C4A and CSMD1 peripheral expression in first-episode psychosis and links to cognitive ability. Eur Arch Psychiatry Clin Neurosci 2022; 272:1219-1228. [PMID: 35532796 PMCID: PMC9508018 DOI: 10.1007/s00406-022-01409-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/05/2022] [Indexed: 12/21/2022]
Abstract
Up-regulation of the complement component 4A (C4A) in the brain has been associated with excessive synaptic pruning and increased schizophrenia (SZ) susceptibility. Over-expression of C4A has been observed in SZ postmortem brain tissue, and the gene encoding for a protein inhibitor of C4A activity, CUB and Sushi multiple domains 1 (CSMD1) gene, has been implicated in SZ risk and cognitive ability. Herein, we examined C4A and CSMD1 mRNA expression in peripheral blood from antipsychotic-naive individuals with first-episode psychosis (FEP; n = 73) and mentally healthy volunteers (n = 48). Imputed C4 locus structural alleles and C4A serum protein levels were investigated. Associations with symptom severity and cognitive domains performance were explored. A significant decrease in CSMD1 expression levels was noted among FEP patients compared to healthy volunteers, further indicating a positive correlation between C4A and CSMD1 mRNA levels in healthy volunteers but not in FEP cases. In addition, C4 copy number variants previously associated with SZ risk correlated with higher C4A mRNA levels in FEP cases, which confirms the regulatory effect of C4 structural variants on gene expression. Evidence also emerged for markedly elevated C4A serum concentrations in FEP cases. Within the FEP patient group, higher C4A mRNA levels correlated with more severe general psychopathology symptoms and lower CSMD1 mRNA levels predicted worse working memory performance. Overall, these findings suggest C4A complement pathway perturbations in individuals with FEP and corroborate the involvement of CSMD1 in prefrontal-mediated cognitive functioning.
Collapse
Affiliation(s)
- Alex Hatzimanolis
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece.
- Neurobiological Research Institute, Theodor-Theohari Cozzika Foundation, 69-71 Souidias St., 115 21, Athens, Greece.
| | - Stefania Foteli
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece
| | - Pentagiotissa Stefanatou
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece
| | - Angeliki-Aikaterini Ntigrintaki
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece
| | - Irene Ralli
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece
| | - Konstantinos Kollias
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece
| | - Chrysoula Nikolaou
- Department of Biopathology and Immunology, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, School of Medicine, National and Kapodistrian University of Athens, 176 Michalakopoulou Ave., 115 27, Athens, Greece
- School of Science and Technology, Hellenic Open University, 18 Aristotelous St., 263 35, Patras, Greece
| | - Nikos C Stefanis
- Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens, Eginition Hospital, 72 Vas. Sophias Ave., 115 28, Athens, Greece
- Neurobiological Research Institute, Theodor-Theohari Cozzika Foundation, 69-71 Souidias St., 115 21, Athens, Greece
| |
Collapse
|
9
|
Pallier PN, Ferrara M, Romagnolo F, Ferretti MT, Soreq H, Cerase A. Chromosomal and environmental contributions to sex differences in the vulnerability to neurological and neuropsychiatric disorders: Implications for therapeutic interventions. Prog Neurobiol 2022; 219:102353. [PMID: 36100191 DOI: 10.1016/j.pneurobio.2022.102353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.
Collapse
Affiliation(s)
- Patrick N Pallier
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Maria Ferrara
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Women's Brain Project (WBP), Switzerland
| | - Francesca Romagnolo
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 9190401, Israel
| | - Andrea Cerase
- EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, RM, Italy; Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
10
|
Rosenfield PJ, Jiang D, Pauselli L. Childhood adversity and psychotic disorders: Epidemiological evidence, theoretical models and clinical considerations. Schizophr Res 2022; 247:55-66. [PMID: 34210561 DOI: 10.1016/j.schres.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 02/08/2023]
Abstract
While genetic factors play a critical role in the risk for schizophrenia and other psychotic disorders, increasing evidence points to the role of childhood adversity as one of several environmental factors that can significantly impact the development, manifestations and outcome of these disorders. This paper reviews the epidemiological evidence linking childhood adversity and psychotic disorders and explores various theoretical models that seek to explain the connection. We discuss neurobiological parallels between the impact of childhood trauma and psychosis on the brain and then explore the impact of childhood adversity on different domains of clinical presentation. Finally, implications for prevention and treatment are considered, both on individual and structural levels.
Collapse
Affiliation(s)
- Paul J Rosenfield
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, United States of America.
| | - David Jiang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, United States of America.
| | - Luca Pauselli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, United States of America.
| |
Collapse
|
11
|
25-Hydroxyvitamin D and metabolic-related laboratory values in women with schizophrenia and hyperprolactinemia. J Psychiatr Res 2022; 151:25-29. [PMID: 35429802 DOI: 10.1016/j.jpsychires.2022.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022]
Abstract
Schizophrenia is a severe mental disorder with various medical comorbidities and early mortality. Hyperprolactinemia is common in women and its impact on sexual function, galactorrhea and amenorrhea is well known. This paper evaluates the risk of 25-hydroxy vitamin D deficiency and other metabolic related laboratory abnormalities in women with schizophrenia having hyperprolactinemia (N = 43). The mean prolactin level in these women was 88.5 ± 56.0 ng/mL. We found that 100% of women were overweight of which 74% (32/43) of the women were obese, 56% (23/41) had abnormal total cholesterol levels and 30% (13/43) had high fasting blood glucose. Vitamin D levels were considered deficient or inadequate in 37% of women. We did not see significant correlations of prolactin with laboratory measures, however all female patients had elevated and high prolactin levels, leading to low variability in a small sample, which may have precluded seeing any direct relationships. Recognizing prolactin related side effects and understanding the role of other health measures seen in women with antipsychotic induced hyperprolactinemia in our female patients are critical steps toward better personalization of their care and recovery.
Collapse
|
12
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
13
|
Hakamata Y, Suzuki Y, Kobashikawa H, Hori H. Neurobiology of early life adversity: A systematic review of meta-analyses towards an integrative account of its neurobiological trajectories to mental disorders. Front Neuroendocrinol 2022; 65:100994. [PMID: 35331780 DOI: 10.1016/j.yfrne.2022.100994] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
Abstract
Adverse childhood experiences (ACEs) may leave long-lasting neurobiological scars, increasing the risk of developing mental disorders in later life. However, no review has comprehensively integrated existing evidence across the fields: hypothalamic-pituitary-adrenal axis, immune/inflammatory system, neuroimaging, and genetics/epigenetics. We thus systematically reviewed previous meta-analyses towards an integrative account of ACE-related neurobiological alterations. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, a total of 27 meta-analyses until October 2021 were identified. This review found that individuals with ACEs possess blunted cortisol response to psychosocial stressors, low-grade inflammation evinced by increased C-reactive protein levels, exaggerated amygdalar response to emotionally negative information, and diminished hippocampal gray matter volume. Importantly, these alterations were consistently observed in those with and without psychiatric diagnosis. These findings were integrated and discussed in a schematic model of ACE-related neurobiological alterations. Future longitudinal research based on multidisciplinary approach is imperative for ACE-related mental disorders' prevention and treatment.
Collapse
Affiliation(s)
- Yuko Hakamata
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Clinical and Cognitive Neuroscience, School of Medicine, Toyama University, Toyama, Japan.
| | - Yuhki Suzuki
- Department of Clinical and Cognitive Neuroscience, School of Medicine, Toyama University, Toyama, Japan
| | - Hajime Kobashikawa
- Department of Clinical and Cognitive Neuroscience, School of Medicine, Toyama University, Toyama, Japan
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
14
|
Chaudhari PR, Singla A, Vaidya VA. Early Adversity and Accelerated Brain Aging: A Mini-Review. Front Mol Neurosci 2022; 15:822917. [PMID: 35392273 PMCID: PMC8980717 DOI: 10.3389/fnmol.2022.822917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Early adversity is an important risk factor that influences brain aging. Diverse animal models of early adversity, including gestational stress and postnatal paradigms disrupting dam-pup interactions evoke not only persistent neuroendocrine dysfunction and anxio-depressive behaviors, but also perturb the trajectory of healthy brain aging. The process of brain aging is thought to involve hallmark features such as mitochondrial dysfunction and oxidative stress, evoking impairments in neuronal bioenergetics. Furthermore, brain aging is associated with disrupted proteostasis, progressively defective epigenetic and DNA repair mechanisms, the build-up of neuroinflammatory states, thus cumulatively driving cellular senescence, neuronal and cognitive decline. Early adversity is hypothesized to evoke an “allostatic load” via an influence on several of the key physiological processes that define the trajectory of healthy brain aging. In this review we discuss the evidence that animal models of early adversity impinge on fundamental mechanisms of brain aging, setting up a substratum that can accelerate and compromise the time-line and nature of brain aging, and increase risk for aging-associated neuropathologies.
Collapse
|
15
|
Oliveira J, Paixão V, Cardoso G, Xavier M, Caldas de Almeida JM, Oliveira-Maia AJ. Childhood adversities and the comorbidity between mood and general medical disorders in adults: Results from the WHO World Mental Health Survey Portugal. Brain Behav Immun Health 2021; 17:100329. [PMID: 34589816 PMCID: PMC8474529 DOI: 10.1016/j.bbih.2021.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
Objective Childhood adversities have been linked to poor health outcomes in adults, including both mood and general medical disorders. Here we tested the hypothesis that childhood adversities specifically increase the risk of comorbidity between mood and general medical disorders, rather than increasing the risk of either one independently. Methods Mood disorders (DSM-IV major depressive, dysthymic and bipolar disorders), childhood adversities and general medical disorders were assessed in 2060 adults in the WHO World Mental Health Survey Portugal. Discrete-time survival analyses were used to investigate the association between mood disorders and subsequent first-onset general medical disorders and between general medical disorders and subsequent first-onset mood disorders, in adults. Discrete-time survival and multinomial regression analyses were used to test the influence of childhood adversities on the comorbidity between mood disorders and general medical disorders. Anxiety disorders were used as a psychiatric control. Results Adult-onset mood disorders were found to precede the onset of diabetes (OR:1.8; 95% CI:1.2-2.9), arthritis (OR:1.6; 95% CI:1.1-2.3) and seasonal allergies (OR:1.6; 95% CI:1.1-2.5) while adult-onset hypertension was found to precede the onset of mood disorders (OR:1.7; 95% CI:1.2-2.6). Maladaptive family functioning (abuse, neglect and parental maladjustment), was associated with mood disorders (OR:1.5; 95% CI:1.2-1.9), hypertension (OR:1.4; 95% CI:1.1-1.7), arthritis (OR:1.3; 95% CI:1.0-1.6) and seasonal allergies (OR:1.5; 95% CI:1.1-2.0) in adulthood. Finally, the effect of maladaptive family functioning in predicting comorbid mood disorders and arthritis significantly differed from its effect in predicting only arthritis (p = 0.01), which was not observed for other comorbidities. Maladaptive family functioning further predicted comorbid anxiety disorders and hypertension. Conclusion Childhood adversities may be a specific risk factor for comorbid mood disorders and arthritis in adults.
Collapse
Affiliation(s)
- José Oliveira
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisboa, Portugal.,Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Lisboa, Portugal.,Champalimaud Research, Champalimaud Centre for the Unknown, Lisboa, Portugal.,Centro Hospitalar Psiquiátrico de Lisboa, Lisboa, Portugal
| | - Vítor Paixão
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Graça Cardoso
- CHRC, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Lisbon Institute of Global Mental Health, Lisboa, Portugal
| | - Miguel Xavier
- CHRC, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Department of Mental Health, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal
| | - José Miguel Caldas de Almeida
- CHRC, NOVA Medical School, Universidade Nova de Lisboa, Lisboa, Portugal.,Lisbon Institute of Global Mental Health, Lisboa, Portugal
| | - Albino J Oliveira-Maia
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisboa, Portugal.,Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Lisboa, Portugal.,Champalimaud Research, Champalimaud Centre for the Unknown, Lisboa, Portugal.,Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| |
Collapse
|
16
|
Hantsoo L, Zemel BS. Stress gets into the belly: Early life stress and the gut microbiome. Behav Brain Res 2021. [DOI: 10.1016/j.bbr.2021.113474
expr 831417737 + 864631554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
17
|
Bonaz B, Lane RD, Oshinsky ML, Kenny PJ, Sinha R, Mayer EA, Critchley HD. Diseases, Disorders, and Comorbidities of Interoception. Trends Neurosci 2021; 44:39-51. [PMID: 33378656 DOI: 10.1016/j.tins.2020.09.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Interoception, the sense of the body's internal physiological state, underpins homeostatic reflexes, motivational states, and sensations contributing to emotional experiences. The continuous nature of interoceptive processing, coupled to behavior, is implicated in the neurobiological construction of the sense of self. Aberrant integration and control of interoceptive signals, originating in the brain and/or the periphery, can perturb the whole system. Interoceptive abnormalities are implicated in the pathophysiology of psychiatric disorders and in the symptomatic expression of developmental, neurodegenerative, and neurological disorders. Moreover, interoceptive mechanisms appear central to somatic disorders of brain-body interactions, including functional digestive disorders, chronic pain, and comorbid conditions. The present article provides an overview of disorders of interoception and suggests future directions for better understanding, diagnosis, and management of these disorders.
Collapse
Affiliation(s)
- Bruno Bonaz
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences and Division of Hepato-Gastroenterology, CHU Grenoble Alpes, 38000 Grenoble, France.
| | - Richard D Lane
- Department of Psychiatry, University of Arizona, Tucson, AZ 85724-5002, USA; Department of Psychology, University of Arizona, Tucson, AZ 85724-5002, USA; Department of Neuroscience, University of Arizona, Tucson, AZ 85724-5002, USA
| | - Michael L Oshinsky
- National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, MD 20894, USA
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajita Sinha
- Yale Stress Center, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Emeran A Mayer
- G. Oppenheimer Family Center for Neurobiology of Stress and Resilience, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hugo D Critchley
- Department of Neuroscience, Brighton and Sussex Medical School, Brighton, UK
| |
Collapse
|
18
|
Hantsoo L, Zemel BS. Stress gets into the belly: Early life stress and the gut microbiome. Behav Brain Res 2021; 414:113474. [PMID: 34280457 DOI: 10.1016/j.bbr.2021.113474] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
Research has established that stress "gets under the skin," impacting neuroendocrine and neuroimmune pathways to influence risk for physical and mental health outcomes. These effects can be particularly significant for early life stress (ELS), or adverse childhood experiences (ACEs). In this review, we explore whether stress gets "into the belly," that is, whether psychosocial stress affects the gut microbiome. We review animal and human research utilizing a variety of stress paradigms (acute laboratory stressors, chronic stress, stressful life events, perceived stress, ELS, in utero stress) and their impacts on the gut microbiota, with a particular focus on ELS. We also review data on dietary interventions to moderate impact of stress on the gut microbiome. Our review suggests strong evidence that acute laboratory stress, chronic stress, and ELS affect the gut microbiota in rodents, and growing evidence that perceived stress and ELS may impact the gut microbiota in humans. Emerging data also suggests, particularly in rodents, that dietary interventions such as omega-3 fatty acids and pre- and pro-biotics may buffer against the effects of stress on the gut microbiome, but more research is needed. In sum, growing evidence suggests that stress impacts not only the neuroendocrine and neuroimmune axes, but also the microbiota-gut-brain-axis, providing a pathway by which stress may get "into the belly" to influence health risk.
Collapse
Affiliation(s)
- Liisa Hantsoo
- Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, 550 N. Broadway Street, Baltimore, MD 21205, USA.
| | - Babette S Zemel
- Roberts Center for Pediatric Research, 2716 South Street, Philadelphia, PA 19146, USA
| |
Collapse
|
19
|
Richter-Levin G, Sandi C. Title: "Labels Matter: Is it stress or is it Trauma?". Transl Psychiatry 2021; 11:385. [PMID: 34247187 PMCID: PMC8272714 DOI: 10.1038/s41398-021-01514-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
In neuroscience, the term 'Stress' has a negative connotation because of its potential to trigger or exacerbate psychopathologies. Yet in the face of exposure to stress, the more common reaction to stress is resilience, indicating that resilience is the rule and stress-related pathology the exception. This is critical because neural mechanisms associated with stress-related psychopathology are expected to differ significantly from those associated with resilience.Research labels and terminology affect research directions, conclusions drawn from the results, and the way we think about a topic, while choice of labels is often influenced by biases and hidden assumptions. It is therefore important to adopt a terminology that differentiates between stress conditions, leading to different outcomes.Here, we propose to conceptually associate the term 'stress'/'stressful experience' with 'stress resilience', while restricting the use of the term 'trauma' only in reference to exposures that lead to pathology. We acknowledge that there are as yet no ideal ways for addressing the murkiness of the border between stressful and traumatic experiences. Yet ignoring these differences hampers our ability to elucidate the mechanisms of trauma-related pathologies on the one hand, and of stress resilience on the other. Accordingly, we discuss how to translate such conceptual terminology into research practice.
Collapse
Affiliation(s)
- Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.
- Psychology Department, University of Haifa, Haifa, Israel.
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel.
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
20
|
Lombardo G, Mondelli V, Dazzan P, Pariante CM. Sex hormones and immune system: A possible interplay in affective disorders? A systematic review. J Affect Disord 2021; 290:1-14. [PMID: 33989924 DOI: 10.1016/j.jad.2021.04.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 03/15/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Sex hormones and the immune system may play a key role in sex differences in affective disorders. The understanding of their interplay may lead to the detection of new sex-specific tailored therapeutic approaches. The aim of this systematic review is to summarise the evidence supporting a possible association between sex hormones and inflammatory biomarkers in people with affective disorders. METHODS A systematic search of the literature published until January 2021 was conducted on PubMed database. The initial search identified a total of 1259 studies; 20 studies investigating inflammatory biomarkers and sex hormones in patients exhibiting depressive symptoms were included: 10 studies focused on patients with affective disorders, and 10 studies focused on women in menopause or in the post-partum period exhibiting depressive symptoms. RESULTS Testosterone and exogenous female sex hormones may play protective roles through their modulation of the immune system, respectively, in male patients with bipolar disorder and in peri-/post-menopausal women with depression. LIMITATIONS The main limitations are the paucity of studies investigating both sex hormones and immune biomarkers, the lack of statistical analyses exploring specifically the association between these two classes of biomarkers, and the great heterogeneity between the participants' samples in the studies. CONCLUSION This review highlights the need to investigate the interplay between sex hormones and immune system in affective disorders. The inconsistent or incomplete evidence may be improved by studies in patients with moderate-high inflammatory levels that specifically evaluate the relationship between sex hormones and the immune system.
Collapse
Affiliation(s)
- Giulia Lombardo
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK.
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK; National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Paola Dazzan
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK
| | - Carmine Maria Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK; National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
21
|
Adjimann TS, Argañaraz CV, Soiza-Reilly M. Serotonin-related rodent models of early-life exposure relevant for neurodevelopmental vulnerability to psychiatric disorders. Transl Psychiatry 2021; 11:280. [PMID: 33976122 PMCID: PMC8113523 DOI: 10.1038/s41398-021-01388-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 01/22/2023] Open
Abstract
Mental disorders including depression and anxiety are continuously rising their prevalence across the globe. Early-life experience of individuals emerges as a main risk factor contributing to the developmental vulnerability to psychiatric disorders. That is, perturbing environmental conditions during neurodevelopmental stages can have detrimental effects on adult mood and emotional responses. However, the possible maladaptive neural mechanisms contributing to such psychopathological phenomenon still remain poorly understood. In this review, we explore preclinical rodent models of developmental vulnerability to psychiatric disorders, focusing on the impact of early-life environmental perturbations on behavioral aspects relevant to stress-related and psychiatric disorders. We limit our analysis to well-established models in which alterations in the serotonin (5-HT) system appear to have a crucial role in the pathophysiological mechanisms. We analyze long-term behavioral outcomes produced by early-life exposures to stress and psychotropic drugs such as the selective 5-HT reuptake inhibitor (SSRI) antidepressants or the anticonvulsant valproic acid (VPA). We perform a comparative analysis, identifying differences and commonalities in the behavioral effects produced in these models. Furthermore, this review discusses recent advances on neurodevelopmental substrates engaged in these behavioral effects, emphasizing the possible existence of maladaptive mechanisms that could be shared by the different models.
Collapse
Affiliation(s)
- Tamara S. Adjimann
- grid.7345.50000 0001 0056 1981Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla V. Argañaraz
- grid.7345.50000 0001 0056 1981Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariano Soiza-Reilly
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Merz MP, Turner JD. Is early life adversity a trigger towards inflammageing? Exp Gerontol 2021; 150:111377. [PMID: 33905877 DOI: 10.1016/j.exger.2021.111377] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
There are many 'faces' of early life adversity (ELA), such as childhood trauma, institutionalisation, abuse or exposure to environmental toxins. These have been implicated in the onset and severity of a wide range of chronic non-communicable diseases later in life. The later-life disease risk has a well-established immunological component. This raises the question as to whether accelerated immune-ageing mechanistically links early-life adversity to the lifelong health trajectory resulting in either 'poor' or 'healthy' ageing. Here we examine observational and mechanistic studies of ELA and inflammageing, highlighting common and distinct features in these two life stages. Many biological processes appear in common including reduction in telomere length, increased immunosenescence, metabolic distortions and chronic (viral) infections. We propose that ELA shapes the developing immune, endocrine and nervous system in a non-reversible way, creating a distinct phenotype with accelerated immunosenescence and systemic inflammation. We conclude that ELA might act as an accelerator for inflammageing and age-related diseases. Furthermore, we now have the tools and cohorts to be able to dissect the interaction between ELA and later life phenotype. This should, in the near future, allow us to identify the ecological and mechanistic processes that are involved in 'healthy' or accelerated immune-ageing.
Collapse
Affiliation(s)
- Myriam P Merz
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, 2 avenue de Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Jonathan D Turner
- Immune Endocrine and Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29 rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
23
|
Römer C. Viruses and Endogenous Retroviruses as Roots for Neuroinflammation and Neurodegenerative Diseases. Front Neurosci 2021; 15:648629. [PMID: 33776642 PMCID: PMC7994506 DOI: 10.3389/fnins.2021.648629] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Many neurodegenerative diseases are associated with chronic inflammation in the brain and periphery giving rise to a continuous imbalance of immune processes. Next to inflammation markers, activation of transposable elements, including long intrespersed nuclear elements (LINE) elements and endogenous retroviruses (ERVs), has been identified during neurodegenerative disease progression and even correlated with the clinical severity of the disease. ERVs are remnants of viral infections in the human genome acquired during evolution. Upon activation, they produce transcripts and the phylogenetically youngest ones are still able to produce viral-like particles. In addition, ERVs can bind transcription factors and modulate immune response. Being between own and foreign, ERVs are reviewed in the context of viral infections of the central nervous system, in aging and neurodegenerative diseases. Moreover, this review tests the hypothesis that viral infection may be a trigger at the onset of neuroinflammation and that ERVs sustain the inflammatory imbalance by summarizing existing data of neurodegenerative diseases associated with viruses and/or ERVs.
Collapse
Affiliation(s)
- Christine Römer
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, The Berlin Institute for Medical Systems Biology, Berlin, Germany
| |
Collapse
|
24
|
De Berardis D, De Filippis S, Masi G, Vicari S, Zuddas A. A Neurodevelopment Approach for a Transitional Model of Early Onset Schizophrenia. Brain Sci 2021; 11:brainsci11020275. [PMID: 33672396 PMCID: PMC7926620 DOI: 10.3390/brainsci11020275] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
In the last decades, the conceptualization of schizophrenia has dramatically changed, moving from a neurodegenerative process occurring in early adult life to a neurodevelopmental disorder starting be-fore birth, showing a variety of premorbid and prodromal symptoms and, in relatively few cases, evolving in the full-blown psychotic syndrome. High rates of co-occurring different neurodevelopmental disorders such as Autism spectrum disorder and ADHD, predating the onset of SCZ, and neurobio-logical underpinning with significant similarities, support the notion of a pan-developmental disturbance consisting of impairments in neuromotor, receptive language, social and cognitive development. Con-sidering that many SCZ risk factors may be similar to symptoms of other neurodevelopmental psychi-atric disorders, transition processes from child & adolescent to adult systems of care should include both high risk people as well as subject with other neurodevelopmental psychiatric disorders with different levels of severity. This descriptive mini-review discuss the need of innovative clinical approaches, re-considering specific diagnostic categories, stimulating a careful analysis of risk factors and promoting the appropriate use of new and safer medications.
Collapse
Affiliation(s)
- Domenico De Berardis
- Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital “G. Mazzini,” National Health Service (NHS), 64100 ASL 4 Teramo, Italy
- Department of Neurosciences and Imaging, University “G. D’Annunzio”, 66100 Chieti, Italy
- Correspondence:
| | - Sergio De Filippis
- Department of Neuropsychiatry, Villa von Siebenthal Neuropsychiatric Hospital and Clinic, Genzano di Roma, 100045 Rome, Italy;
| | - Gabriele Masi
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, 56128 Pisa, Italy;
| | - Stefano Vicari
- Department of Life Sciences and Publich Health, Catholic University, 00135 Rome, Italy;
- Child & Adolescent Psychiatry, Bambino Gesù Children’s Hospital, 00168 Rome, Italy
| | - Alessandro Zuddas
- Child and Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, University of Cagliari and “A Cao” Paediatric Hospital, “G Brotzu” Hospital Trust, 109134 Cagliari, Italy;
| |
Collapse
|
25
|
Paquin V, Lapierre M, Veru F, King S. Early Environmental Upheaval and the Risk for Schizophrenia. Annu Rev Clin Psychol 2021; 17:285-311. [PMID: 33544627 DOI: 10.1146/annurev-clinpsy-081219-103805] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Why does prenatal exposure to wars, natural disasters, urbanicity, or winter increase the risk for schizophrenia? Research from the last two decades has provided rich insight about the underlying chains of causation at play during environmental upheaval, from conception to early infancy. In this review, we appraise the evidence linking schizophrenia spectrum disorder to prenatal maternal stress, obstetric complications, early infections, and maternal nutrition and other lifestyle factors. We discuss putative mechanisms, including the maternal stress system, perinatal hypoxia, and maternal-offspring immune activation. We propose that gene-environment interactions, timing during development, and sex differentiate the neuropsychiatric outcomes. Future research should pursue the translation of animal studies to humans and the longitudinal associations between early exposures, intermediate phenotypes, and psychiatric disorders. Finally, to paint a comprehensive model of risk and to harness targets for prevention, we argue that risk factors should be situated within the individual's personal ecosystem.
Collapse
Affiliation(s)
- Vincent Paquin
- Department of Psychiatry, McGill University, Montréal, Québec H3A 1A1, Canada; .,Douglas Research Centre, Montréal, Québec H4H 1R3, Canada
| | - Mylène Lapierre
- Douglas Research Centre, Montréal, Québec H4H 1R3, Canada.,Department of Psychology, Université de Montréal, Montréal, Québec H2V 2S9, Canada
| | - Franz Veru
- Department of Psychiatry, McGill University, Montréal, Québec H3A 1A1, Canada; .,Douglas Research Centre, Montréal, Québec H4H 1R3, Canada
| | - Suzanne King
- Department of Psychiatry, McGill University, Montréal, Québec H3A 1A1, Canada; .,Douglas Research Centre, Montréal, Québec H4H 1R3, Canada.,Department of Psychology, Université de Montréal, Montréal, Québec H2V 2S9, Canada
| |
Collapse
|
26
|
Bryant BM, Eaton E, Li L. A Systematic Review of Opioid Use Disorder and Related Biomarkers. Front Psychiatry 2021; 12:708283. [PMID: 34456765 PMCID: PMC8385272 DOI: 10.3389/fpsyt.2021.708283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/20/2021] [Indexed: 02/05/2023] Open
Abstract
The objective of this systematic review is to examine the relationship between opioid use disorder (OUD) and its related biomarkers, as well as the effects of pharmacotherapy for OUD on biomarkers. The eligibility criteria are the inclusion of human population studies focusing on biomarkers, including the immune system, related to OUD or opioid-related disorders. English, peer reviewed, original research, case studies or case series, and clinical trials were included in this review. Papers were excluded if they met one or more of the following criteria: animal studies, review articles, studies focusing only on OUD or opioid-related disorders without mention of potential biomarkers, studies focusing only on biomarkers and/or the immune system without relating to OUD or opioid-related disorders, and studies that focused on other substance use disorders other than OUD specifically. A PubMed, PsycINFO, and Cochrane databases search on August 25, 2020, yielded 101 results; only 14 articles met inclusion criteria that were included in this review. However, heterogeneity of study definitions and measurements should be noted. Various potential biomarkers indicated systemic, peripheral, and chronic inflammation in patients with OUD or opioid-related disorders. Medications, including buprenorphine and methadone, significantly decreased chronic inflammation in this population. Our results suggest that patients with OUD or opioid-related disorders have potential biomarkers that can be targeted to provide optimal treatment options for this population. A better understanding of potential biomarkers may assist to identify at-risk populations, monitor disease progression and treatment response, and develop therapeutic strategies for OUD. Systematic Review Registration: This review has been registered in PROSPERO (CRD42020202014).
Collapse
Affiliation(s)
- Bianca M Bryant
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ellen Eaton
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Li Li
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
27
|
Steardo L, Steardo L, Verkhratsky A. Psychiatric face of COVID-19. Transl Psychiatry 2020; 10:261. [PMID: 32732883 PMCID: PMC7391235 DOI: 10.1038/s41398-020-00949-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) represents a severe multiorgan pathology which, besides cardio-respiratory manifestations, affects the function of the central nervous system (CNS). The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), similarly to other coronaviruses demonstrate neurotropism; the viral infection of the brain stem may complicate the course of the disease through damaging central cardio-respiratory control. The systemic inflammation as well as neuroinflammatory changes are associated with massive increase of the brain pro-inflammatory molecules, neuroglial reactivity, altered neurochemical landscape and pathological remodelling of neuronal networks. These organic changes, emerging in concert with environmental stress caused by experiences of intensive therapy wards, pandemic fears and social restrictions, promote neuropsychiatric pathologies including major depressive disorder, bipolar disorder (BD), various psychoses, obsessive-compulsive disorder and post-traumatic stress disorder. The neuropsychiatric sequelae of COVID-19 represent serious clinical challenge that has to be considered for future complex therapies.
Collapse
Affiliation(s)
| | - Luca Steardo
- Sapienza University Rome, Rome, Italy.
- Fortunato University, Benevento, Italy.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.
- Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
28
|
Huang HT, Chen PS, Kuo YM, Tzeng SF. Intermittent peripheral exposure to lipopolysaccharide induces exploratory behavior in mice and regulates brain glial activity in obese mice. J Neuroinflammation 2020; 17:163. [PMID: 32450884 PMCID: PMC7249324 DOI: 10.1186/s12974-020-01837-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/03/2020] [Indexed: 12/23/2022] Open
Abstract
Background Consecutive peripheral immune challenges can modulate the responses of brain resident microglia to stimuli. High-fat diet (HFD) intake has been reported to stimulate the activation of astrocytes and microglia in the arcuate nucleus (ARC) of the hypothalamus in obese rodents and humans. However, it is unknown whether intermittent exposure to additional peripheral immune challenge can modify HFD-induced hypothalamic glial activation in obese individuals. Methods In this study, we administered 1 mg/kg LPS (or saline) by intraperitoneal (i.p.) injection to 8-week-old male mice after 1, 2, or 8 weeks of a regular diet (show) or HFD. The level of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) expression in the plasma and hypothalamic tissue was analyzed 24 h after each LPS injection. The behaviors of the animals in the four groups (the chow-saline, chow-LPS, HFD-saline, and HFD-LPS groups) were examined 5 months after exposure to chow or a HFD. Morphological examination of microglia in related brain regions was also conducted. Results The plasma levels and hypothalamic mRNA levels of IL-1β and TNF-α were significantly upregulated 24 h after the first injection of LPS but not after the second or third injection of LPS. Chow-LPS mice displayed increased exploratory behavior 5 months after feeding. However, this LPS-induced abnormal exploratory behavior was inhibited in HFD-fed mice. Chronic HFD feeding for 5 months induced apparent increases in the number and cell body size of microglia, mainly in the ARC, and also increased the size of microglia in the nucleus accumbens (NAc) and insula. Moreover, microglial activation in the ARC, anterior cingulate cortex (ACC), insula, and basolateral amygdala (BLA) was observed in chow-LPS mice. However, microglial activation in the analyzed brain regions was suppressed in HFD-LPS mice. Conclusions Altogether, the results indicate that intermittent peripheral challenge with LPS might prime microglia in the ARC and NAc to modify their response to chronic HFD feeding. Alternatively, chronic HFD feeding might mediate microglia in LPS-affected brain regions and subsequently suppress LPS-induced atypical exploratory behavior. Our findings suggest that the interaction of intermittent acute peripheral immune challenges with chronic HFD intake can drive microglia to amend the microenvironment and further modify animal behaviors in the later life.
Collapse
Affiliation(s)
- Hui-Ting Huang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Po-See Chen
- Department of Psychiatry, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan. .,Department of Life Sciences, National Cheng Kung University, #1 University Road, Tainan, Taiwan.
| |
Collapse
|