1
|
Perin P, Pizzala R. Astrocytes and Tinnitus. Brain Sci 2024; 14:1213. [PMID: 39766412 PMCID: PMC11674283 DOI: 10.3390/brainsci14121213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Tinnitus is correlated with anomalies of neural plasticity and has been found to be affected by inflammatory status. The current theories on tinnitus, although still somewhat incomplete, are based on maladaptive plasticity mechanisms. Astrocytes play a major role in both neural responses to inflammation and plasticity regulation; moreover, they have recently been discovered to encode "context" for neuronal circuits, which is similar to the "expectation" of Bayesian brain models. Therefore, this narrative review explores the possible and likely roles of astrocytes in the neural mechanisms leading to acute and chronic tinnitus.
Collapse
Affiliation(s)
- Paola Perin
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Roberto Pizzala
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
2
|
Chen J, Wang X, Li Z, Yuan H, Wang X, Yun Y, Wu X, Yang P, Qin L. Thalamo-cortical neural mechanism of sodium salicylate-induced hyperacusis and anxiety-like behaviors. Commun Biol 2024; 7:1346. [PMID: 39420035 PMCID: PMC11487285 DOI: 10.1038/s42003-024-07040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Tinnitus has been identified as a potential contributor to anxiety. Thalamo-cortical pathway plays a crucial role in the transmission of auditory and emotional information, but its casual link to tinnitus-associated anxiety remains unclear. In this study, we explore the neural activities in the thalamus and cortex of the sodium salicylate (NaSal)-treated mice, which exhibit both hyperacusis and anxiety-like behaviors. We find an increase in gamma band oscillations (GBO) in both auditory cortex (AC) and prefrontal cortex (PFC), as well as phase-locking between cortical GBO and thalamic neural activity. These changes are attributable to a suppression of GABAergic neuron activity in thalamic reticular nucleus (TRN), and optogenetic activation of TRN reduces NaSal-induced hyperacusis and anxiety-like behaviors. The elevation of endocannabinoid (eCB)/ cannabinoid receptor 1 (CB1R) transmission in TRN contributes to the NaSal-induced abnormalities. Our results highlight the regulative role of TRN in the auditory and limbic thalamic-cortical pathways.
Collapse
Affiliation(s)
- Jingyu Chen
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Xueru Wang
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China
| | - Zijie Li
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Hui Yuan
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China
| | - Xuejiao Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Yang Yun
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Wu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, China
| | - Ling Qin
- Laboratory of Hearing Research, School of Life Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Henry JA. Tinnitus Stepped-Care: A Model for Standardizing Clinical Services for Tinnitus. Semin Hear 2024; 45:255-275. [PMID: 40256366 PMCID: PMC12007088 DOI: 10.1055/s-0045-1804509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
Clinical services for tinnitus have expanded greatly since the "masking" method was introduced by Jack Vernon in the 1970s. According to PubMed, the number of peer-reviewed publications has increased dramatically since that time (seven with "tinnitus" in the title in 1975; 477 in 2023). With so much research and overall interest, it might be expected that tinnitus services have improved accordingly. In reality, there are many variations of treatment, but no one method has been shown to be more effective than any other. This diversity of methods is evident when researching "tinnitus" on the internet and considering the many different ways clinicians offer tinnitus services. Some offer an evidence-based method but may not have the competency to ensure fidelity. Further is the proliferation of commercial methods that can cost thousands of dollars. In this article, I propose a framework for providing tinnitus clinical services called Tinnitus Stepped-Care. This framework does not promote specific procedures for tinnitus assessment and treatment, but rather suggests guiding principles that are essential in each of six progressive steps of tinnitus clinical care. It is further proposed to test the stepped-care model in the (currently under development) Tinnitus Learning Health Network (TLHN). The TLHN would consist of a network of clinicians, patients, and researchers from around the world who collaborate in establishing "best tinnitus practices." Collaboration would involve using and sharing data for the ongoing monitoring of a large, diverse, well-described patient population, and using quality improvement science to test and monitor outcomes over time, to determine the most effective treatments for different subgroups of tinnitus patients.
Collapse
Affiliation(s)
- James A. Henry
- VA RR&D National Center for Rehabilitative Auditory Research (NCRAR), Veterans Affairs Portland Health Care System, Portland, Oregon
- Ears Gone Wrong®, LLC, Oregon City, Oregon
| |
Collapse
|
4
|
van den Berg MM, Wong AB, Houtak G, Williamson RS, Borst JGG. Sodium salicylate improves detection of amplitude-modulated sound in mice. iScience 2024; 27:109691. [PMID: 38736549 PMCID: PMC11088340 DOI: 10.1016/j.isci.2024.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/14/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024] Open
Abstract
Salicylate is commonly used to induce tinnitus in animals, but its underlying mechanism of action is still debated. We therefore tested its effects on the firing properties of neurons in the mouse inferior colliculus (IC). Salicylate induced a large decrease in the spontaneous activity and an increase of ∼20 dB SPL in the minimum threshold of single units. In response to sinusoidally modulated noise (SAM noise) single units showed both an increase in phase locking and improved rate coding. Mice also became better at detecting amplitude modulations, and a simple threshold model based on the IC population response could reproduce this improvement. The responses to dynamic random chords (DRCs) suggested that the improved AM encoding was due to a linearization of the cochlear output, resulting in larger contrasts during SAM noise. These effects of salicylate are not consistent with the presence of tinnitus, but should be taken into account when studying hyperacusis.
Collapse
Affiliation(s)
- Maurits M. van den Berg
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, the Netherlands
| | - Aaron B. Wong
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, the Netherlands
| | - Ghais Houtak
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, the Netherlands
| | - Ross S. Williamson
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - J. Gerard G. Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, the Netherlands
| |
Collapse
|
5
|
Aazh H, Moore BCJ, Erfanian M. Confirmatory factor analysis of the Tinnitus Impact Questionnaire using data from patients seeking help for tinnitus alone or tinnitus combined with hyperacusis. PLoS One 2024; 19:e0302837. [PMID: 38718050 PMCID: PMC11078403 DOI: 10.1371/journal.pone.0302837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
A confirmatory factor analysis (CFA) of the Tinnitus Impact Questionnaire (TIQ) was performed. In contrast to commonly used tinnitus questionnaires, the TIQ is intended solely to assess the impact of tinnitus by not including items related to hearing loss or tinnitus loudness. This was a psychometric study based on a retrospective cross-sectional analysis of clinical data. Data were available for 155 new patients who had attended a tinnitus and hyperacusis clinic in the UK within a five-month period and had completed the TIQ. The mean age was 54 years (standard deviation = 14 years). The TIQ demonstrated good internal consistency, with Cronbach's α = 0.84 and McDonald's ω = 0.89. CFA showed that two items of the TIQ had low factor loadings for both one-factor and two-factor models and their scores showed low correlations with scores for other items. Bi-factor analysis gave a better fit, indicated by a relative chi-square (χ2) of 18.5, a Root-Mean Square Error of Approximation (RMSEA) of 0.103, a Comparative Fit Index (CFI) of 0.97, a Tucker Lewis Index (TLI) of 0.92, and a Standardized Root-Mean Residual (SPMR) of 0.038. Total TIQ scores were moderately correlated with scores for the Visual Analogue Scale of effect of tinnitus on life and the Screening for Anxiety and Depression-Tinnitus questionnaire, supporting the convergent validity of the TIQ. The TIQ score was not correlated with the pure-tone average hearing threshold, indicating discriminant validity. A multiple-causes multiple-indicator (MIMIC) model showed no influences of age, gender or hearing status on TIQ item scores. The TIQ is an internally consistent tool. CFA suggests a bi-factor model with sufficient unidimensionality to support the use of the overall TIQ score for assessing the impact of tinnitus. TIQ scores are distinct from the impact of hearing impairment among patients who have tinnitus combined with hearing loss.
Collapse
Affiliation(s)
- Hashir Aazh
- Hashir International Specialist Clinics & Research Institute for Misophonia, Tinnitus and Hyperacusis Ltd, London, United Kingdom
- Audiology Department, Royal Surrey NHS Foundation Trust, Guildford, United Kingdom
| | - Brian C. J. Moore
- Hashir International Specialist Clinics & Research Institute for Misophonia, Tinnitus and Hyperacusis Ltd, London, United Kingdom
- Cambridge Hearing Group, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Mercede Erfanian
- Hashir International Specialist Clinics & Research Institute for Misophonia, Tinnitus and Hyperacusis Ltd, London, United Kingdom
- Institute for Environmental Design and Engineering, The Bartlett, University College London, London, United Kingdom
| |
Collapse
|
6
|
Fan T, Guan P, Zhong X, Xiang M, Peng Y, Zhou R, Gong J, Zheng Y, Dai A, Feng J, Yu H, Li J, Li H, Wang Y. Functional Connectivity Alterations and Molecular Characterization of the Anterior Cingulate Cortex in Tinnitus Pathology without Hearing Loss. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304709. [PMID: 38009798 PMCID: PMC10797451 DOI: 10.1002/advs.202304709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Compared with individuals with hearing loss, tinnitus patients without hearing loss have more psychological or emotional problems. Tinnitus is closely associated to abnormal metabolism and function of the limbic system, a key brain region for emotion experience, but the underlying molecular mechanism remains unknown. Using whole-brain microvasculature dynamics imaging, the anterior cingulate cortex (ACC) is identified as a key brain region of limbic system involve in the onset of salicylate-induced tinnitus in mice. In the tinnitus group, there is enhanced purine metabolism, oxidative phosphorylation, and a distinct pattern of phosphorylation in glutamatergic synaptic pathway according to the metabolome profiles, quantitative proteomic, and phosphoproteomic data of mice ACC tissue. Electroencephalogram in tinnitus patients with normal hearing thresholds show that the functional connectivity between pregenual anterior cingulate cortex and the primary auditory cortex is significantly increased for high-gamma frequency band, which is positively correlated with the serum glutamate level. These findings indicate that ACC plays an important role in the pathophysiology of tinnitus by interacting with the primary auditory cortex and provide potential molecular targets in the ACC for tinnitus treatment.
Collapse
Affiliation(s)
- Ting Fan
- ENT Institute and Department of OtorhinolaryngologyEYE & ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
| | - Peng‐Fei Guan
- ENT Institute and Department of OtorhinolaryngologyEYE & ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
| | - Xiao‐Fang Zhong
- Clinical Laboratory CenterChildren's Hospital of Fudan UniversityShanghai201102China
| | - Meng‐Ya Xiang
- ENT Institute and Department of OtorhinolaryngologyEYE & ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
| | - Ying‐Qiu Peng
- ENT Institute and Department of OtorhinolaryngologyEYE & ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
| | - Ruo‐Qiao Zhou
- ENT Institute and Department of OtorhinolaryngologyEYE & ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
| | - Jia‐Min Gong
- ENT Institute and Department of OtorhinolaryngologyEYE & ENT HospitalFudan UniversityShanghai200031China
| | - Yu‐Qing Zheng
- Zhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - A‐Qiang Dai
- ENT Institute and Department of OtorhinolaryngologyEYE & ENT HospitalFudan UniversityShanghai200031China
| | - Jia‐Ling Feng
- ENT Institute and Department of OtorhinolaryngologyEYE & ENT HospitalFudan UniversityShanghai200031China
| | - Hong‐Zhe Yu
- ENT Institute and Department of OtorhinolaryngologyEYE & ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
| | - Jian Li
- Clinical Laboratory CenterChildren's Hospital of Fudan UniversityShanghai201102China
| | - Hua‐Wei Li
- ENT Institute and Department of OtorhinolaryngologyEYE & ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
| | - Yun‐Feng Wang
- ENT Institute and Department of OtorhinolaryngologyEYE & ENT HospitalFudan UniversityShanghai200031China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200031China
| |
Collapse
|
7
|
Musumano LB, Hatzopoulos S, Fancello V, Bianchini C, Bellini T, Pelucchi S, Skarżyński PH, Skarżyńska MB, Ciorba A. Hyperacusis: Focus on Gender Differences: A Systematic Review. Life (Basel) 2023; 13:2092. [PMID: 37895473 PMCID: PMC10608418 DOI: 10.3390/life13102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND While gender differences of several diseases have been already described in the literature, studies in the area of hyperacusis are still scant. Despite the fact that hyperacusis is a condition that severely affects the patient's quality of life, it is not well investigated; a comprehensive understanding of its features, eventually including gender differences, could be a valuable asset in developing clinical intervention strategies. AIM To evaluate gender differences among subjects affected by hyperacusis. METHODS A literature search was conducted focused on adult patients presenting hyperacusis, using the MedLine bibliographic database. Relevant peer-reviewed studies, published in the last 20 years, were sought. A total of 259 papers have been identified, but only 4 met the inclusion criteria. The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. RESULTS The four selected papers included data from 604 patients; of these, 282 subjects resulted as affected by hyperacusis (125 females and 157 males). Questionnaires for analyzing factors affecting the attentional, social and emotional variance of hyperacusis (such as VAS, THI, TSCH, MASH) were administered to all included subjects. The data suggest that there are no hyperacusis gender-specific differences in the assessed population samples. CONCLUSIONS The literature data suggest that males and females exhibit a similar level of hyperacusis. However, in light of the subjective nature of this condition, the eventual set up of further tests to assess hyperacusis features could be very helpful in the near future.
Collapse
Affiliation(s)
- Lucia Belen Musumano
- ENT and Audiology Unit, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (L.B.M.); (S.H.); (C.B.); (S.P.); (A.C.)
| | - Stavros Hatzopoulos
- ENT and Audiology Unit, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (L.B.M.); (S.H.); (C.B.); (S.P.); (A.C.)
| | - Virginia Fancello
- ENT and Audiology Unit, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (L.B.M.); (S.H.); (C.B.); (S.P.); (A.C.)
| | - Chiara Bianchini
- ENT and Audiology Unit, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (L.B.M.); (S.H.); (C.B.); (S.P.); (A.C.)
| | - Tiziana Bellini
- Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Pelucchi
- ENT and Audiology Unit, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (L.B.M.); (S.H.); (C.B.); (S.P.); (A.C.)
| | - Piotr Henryk Skarżyński
- Institute of Sensory Organs, 1 Mokra Street, 05-830 Kajetany, Poland; (P.H.S.); (M.B.S.)
- Department of Teleaudiology and Screening, World Hearing Center, Institute of Physiology and Pathology of Hearing, 10 Mochnackiego Street, 02-042 Warsaw, Poland
- Heart Failure and Cardiac Rehabilitation Department, Faculty of Dental Medicine, Medical University of Warsaw, 8 Kondratowicza Street, 03-242 Warsaw, Poland
| | - Magdalena B. Skarżyńska
- Institute of Sensory Organs, 1 Mokra Street, 05-830 Kajetany, Poland; (P.H.S.); (M.B.S.)
- Center of Hearing and Speech Medincus, 05-830 Warsaw, Poland
- Pharmacy Department, Department of Pharmacotherapy and Pharmaceutical Care, Medical University of Warsaw, 02-042 Warsaw, Poland
| | - Andrea Ciorba
- ENT and Audiology Unit, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (L.B.M.); (S.H.); (C.B.); (S.P.); (A.C.)
| |
Collapse
|
8
|
Aazh H, Hayes C, Moore BCJ, Vitoratou S. Psychometric evaluation of the tinnitus impact questionnaire using patients seeking help for tinnitus or tinnitus with hyperacusis. Int J Audiol 2023; 62:835-844. [PMID: 35916560 DOI: 10.1080/14992027.2022.2101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To evaluate the psychometric properties of the Tinnitus Impact Questionnaire (TIQ), whose questions focus on assessing the impact of tinnitus on the patient's day to day activities, mood, and sleep, and not on hearing difficulties. DESIGN This was a retrospective cross-sectional study. STUDY SAMPLE Data were included for 172 adult patients who attended a tinnitus and hyperacusis clinic in the UK within a six-month period and who had completed the TIQ. RESULTS Two items whose scores were very highly correlated with those for other items were removed, leaving seven items. Exploratory factor analysis suggested a single factor for the TIQ. A multiple causes multiple indicator model showed significant but very small direct effects of age on TIQ scores for two items, after adjustment for gender. The TIQ had excellent internal consistency, with Cronbach's alpha = 0.89. The total TIQ score was moderately to strongly correlated with scores for the Tinnitus Handicap Inventory, Screening for Anxiety and Depression-Tinnitus questionnaire, Hyperacusis Questionnaire, and Hyperacusis Impact Questionnaire, indicating convergent validity. The TIQ score was weakly correlated with the pure-tone average hearing threshold, indicating discriminant validity. CONCLUSIONS The TIQ is a brief, valid and internally consistent questionnaire for assessing the impact of tinnitus.
Collapse
Affiliation(s)
- Hashir Aazh
- Audiology Department, Royal Surrey NHS Foundation Trust, Guildford, UK
| | - Chloe Hayes
- Psychometric and Measurement Lab, Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK
| | - Brian C J Moore
- Cambridge Hearing Group, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Silia Vitoratou
- Psychometric and Measurement Lab, Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK
| |
Collapse
|
9
|
Manohar S, Chen GD, Li L, Liu X, Salvi R. Chronic stress induced loudness hyperacusis, sound avoidance and auditory cortex hyperactivity. Hear Res 2023; 431:108726. [PMID: 36905854 DOI: 10.1016/j.heares.2023.108726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Hyperacusis, a debilitating loudness intolerance disorder, has been linked to chronic stress and adrenal insufficiency. To investigate the role of chronic stress, rats were chronically treated with corticosterone (CORT) stress hormone. Chronic CORT produced behavioral evidence of loudness hyperacusis, sound avoidance hyperacusis, and abnormal temporal integration of loudness. CORT treatment did not disrupt cochlear or brainstem function as reflected by normal distortion product otoacoustic emissions, compound action potentials, acoustic startle reflexex, and auditory brainstem responses. In contrast, the evoked response from the auditory cortex was enhanced up to three fold after CORT treatment. This hyperactivity was associated with a significant increase in glucocorticoid receptors in auditory cortex layers II/III and VI. Basal serum CORT levels remained normal after chronic CORT stress whereas reactive serum CORT levels evoked by acute restraint stress were blunted (reduced) after chronic CORT stress; similar changes were observed after chronic, intense noise stress. Taken together, our results show for the first time that chronic stress can induce hyperacusis and sound avoidance. A model is proposed in which chronic stress creates a subclinical state of adrenal insufficiency that establishes the necessary conditions for inducing hyperacusis.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Li Li
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Xiaopeng Liu
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
10
|
Hyperacusis: Loudness Intolerance, Fear, Annoyance and Pain. Hear Res 2022; 426:108648. [DOI: 10.1016/j.heares.2022.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
|
11
|
Curhan SG, Glicksman J, Wang M, Eavey RD, Curhan GC. Longitudinal Study of Analgesic Use and Risk of Incident Persistent Tinnitus. J Gen Intern Med 2022; 37:3653-3662. [PMID: 35132561 PMCID: PMC9585140 DOI: 10.1007/s11606-021-07349-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Persistent tinnitus is common, disabling, and difficult to treat. High-dose aspirin may precipitate tinnitus, but longitudinal data on typical dose aspirin and other analgesics are scarce. OBJECTIVE To investigate independent associations of aspirin, NSAIDs, and acetaminophen and risk of incident persistent tinnitus. DESIGN Longitudinal cohort study. SETTING Nurses' Health Study II (1995-2017). PARTICIPANTS A total of 69,455 women, age 31-48 years, without tinnitus at baseline. MAIN MEASURES Information on analgesic use and tinnitus obtained by biennial questionnaires. KEY RESULTS After 1,120,936 person-years of follow-up, 10,452 cases of incident persistent tinnitus were reported. For low-dose aspirin, the risk of developing persistent tinnitus was not elevated among frequent low-dose aspirin users. For moderate dose aspirin, frequent use was associated with higher risk of tinnitus among women aged < 60 years, but not among older women (p-interactionage = 0.003). Compared with women aged < 60 using moderate-dose aspirin < 1 day/week, the multivariable-adjusted hazard ratio (MVHR, 95% CI) among women using moderate-dose aspirin 6-7 days per week was 1.16 (1.03, 1.32). Among all women, frequent non-aspirin non-steroidal anti-inflammatory drug (NSAID) or acetaminophen use was associated with higher risk. Compared with women using NSAIDs <1 day/week, the MVHR for use 4-5days/week was 1.17 (1.08, 1.28) and for 6-7days/week was 1.07 (1.00, 1.16) (p-trend=0.001). For acetaminophen, compared with use <1 day/week, the MVHR for use 6-7days/week was 1.18 (1.07, 1.29) (p-trend=0.002). LIMITATIONS Information on tinnitus and analgesic use was self-reported. Information on indications for analgesic use was not available. Studies in non-White women and men are needed. CONCLUSION The risk of developing persistent tinnitus was not elevated among frequent low-dose aspirin users. Among younger women, frequent moderate-dose aspirin use was associated with higher risk. Frequent NSAID use and frequent acetaminophen use were associated with higher risk of incident persistent tinnitus among all women, and the magnitude of the risks tended to be greater with increasing frequency of use. Our results suggest analgesic users are at higher risk for developing tinnitus and may provide insight into the precipitants of this challenging disorder, but additional investigation to determine whether there is a causal association is needed.
Collapse
Affiliation(s)
- Sharon G Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | | | - Molin Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Roland D Eavey
- Vanderbilt Bill Wilkerson Center for Otolaryngology and Communication Sciences and the Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gary C Curhan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Xu XM, Wang J, Salvi R, Liu LJ, Chen YC, Teng GJ. Altered resting-state functional connectivity of the anterior cingulate cortex in rats post noise exposure. CNS Neurosci Ther 2022; 28:1547-1556. [PMID: 35726754 PMCID: PMC9437238 DOI: 10.1111/cns.13896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 04/29/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022] Open
Abstract
Aims We aimed to find where and how noise‐induced cochlear hearing loss affects the central nervous system during the early state and identify the neural substrate for aberrant patterns that mediating noise‐related anxiety−/depression‐ like behaviors. Methods Broad band noise with 122 dB for 2 hours was conducted to induce hearing loss. We defined 0 day (N0D) and 10 days (N10D) post noise as the acute and sub‐acute period. Behavioral tests (Open field test and light/dark test) and resting‐state fMRI were computed to evaluate emotional conditions and aberrant neural activity. Functional connectivity analysis using the anterior cingulate cortex as a seed was computed to reveal the spatial distribution beyond auditory network during both periods. Results Anxiety−/depression‐like behaviors were found in rats with noise exposure. Between‐group analysis revealed that N0D rats displayed widespread reductions in functional connectivity, spanning primary somatosensory cortex, medial geniculate body, inferior colliculus, cingulate cortex, cerebellar lobule comparing with N10D rats and a similar pattern was also occurred in comparison with the control group. Conclusion Taken together, an “acoustic‐causing” network accounting for distress and gating of noise exposure related anxiety/depression was proposed.
Collapse
Affiliation(s)
- Xiao-Min Xu
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.,Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jian Wang
- School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, New York, USA
| | - Li-Jie Liu
- Department of Physiology, Southeast University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
13
|
Lin L, Campbell J, Oertel D, Smith PH. Local targets of T-stellate cells in the ventral cochlear nucleus. J Comp Neurol 2022; 530:2820-2834. [PMID: 35716380 PMCID: PMC9474575 DOI: 10.1002/cne.25378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/06/2022]
Abstract
T-stellate cells in the ventral cochlear nucleus (VCN) are known to have local axon collaterals that terminate in the vicinity of their dendrites and cell bodies within the same isofrequency lamina in parallel with the auditory nerve fibers that innervate them. Excitatory synaptic connections between stellate cells within an isofrequency lamina are hypothesized to be involved in the nitric oxide-mediated upregulation of T-stellate responses to their auditory input. This could serve as a mechanism of variable gain control in the enhancement of responses to vowel spectral peaks. Previous studies have provided indirect evidence for these possible synaptic interconnections between T-stellate cells, but unequivocal identification has yet to be established. Here, we used retrograde neuronal tracing with adeno-associated viral vector or biotinylated dextran amine injected into the inferior colliculus (IC) to detect the postsynaptic target of T-stellate cells within the VCN. We show that backfilled T-stellate cell axons make monosynapatic connections on the labeled cell bodies and dendrites of other labeled T-stellate cells within an isofrequency lamina. Electron microscopy revealed that T-stellate terminals can also make synapses on structures not retrogradely labeled from the IC. Glycine antibodies combined with the viral labeling indicated that these nonbackfilled structures that the labeled T-stellate terminals were synapsing on are most likely the cell bodies and dendrites of two size categories of glycinergic VCN cells, whose sizes and relative numbers indicated they are the D- and L-stellate cells. These cells are known to provide inhibitory inputs back onto T-stellate cells. Our data indicate that, in addition to their auditory nerve input, T-stellate cells provide a second modulatable excitatory input to both inhibitory and excitatory cells in a VCN isofrequency lamina and may play a significant role in acoustic information processing.
Collapse
Affiliation(s)
- Lin Lin
- Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jay Campbell
- Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Donata Oertel
- Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Philip H Smith
- Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Kuduban O, Suleyman Z, Gulaboglu M, Naz Yazici G, Suleyman H. Otoprotective Effect of Nimesulide: Biochemical and Histopathologic Evaluation. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.44.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Wei X, Lv H, Chen Q, Wang Z, Zhao P, Liu C, Gong S, Yang Z, Wang Z. Surface-Based Amplitude of Low-Frequency Fluctuation Alterations in Patients With Tinnitus Before and After Sound Therapy: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2021; 15:709482. [PMID: 34867147 PMCID: PMC8635858 DOI: 10.3389/fnins.2021.709482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate abnormal tinnitus activity by evaluating brain surface-based amplitude of low-frequency fluctuation (ALFF) changes detected by resting-state functional magnetic resonance imaging (RS-fMRI) in patients with idiopathic tinnitus before and after 24 weeks of sound therapy. We hypothesized that sound therapy could gradually return cortical local brain function to a relatively normal range. In this prospective observational study, we recruited thirty-three tinnitus patients who had undergone 24 weeks of sound therapy and 26 matched healthy controls (HCs). For the two groups of subjects, we analyzed the spontaneous neural activity of tinnitus patients by cortical ALFF and detected its correlation with clinical indicators of tinnitus. Patients’ Tinnitus Handicap Inventory (THI) scores were assessed to determine the severity of their tinnitus before and after treatment. Two-way mixed model analysis of variance and Pearson’s correlation analysis were used in the statistical analysis. Student–Newman–Keuls tests were used in the post hoc analysis. Interaction effects between the two groups and between the two scans revealing local neural activity as assessed by ALFF were observed in the bilateral dorsal stream visual cortex (DSVC), bilateral posterior cingulate cortex (PCC), bilateral anterior cingulate and medial prefrontal cortex (ACC and MPC), left temporo-parieto-occipital junction (TPOJ), left orbital and polar frontal cortex (OPFC), left paracentral lobular and mid cingulate cortex (PCL and MCC), right insular and frontal opercular cortex (IFOC), and left early visual cortex (EVC). Importantly, local functional activity in the left TPOJ and right PCC in the patient group was significantly lower than that in the HCs at baseline and was increased to relatively normal levels after treatment. The 24-week sound therapy tinnitus group demonstrated significantly higher ALFF in the left TPOJ and right PCC than in the tinnitus baseline group. Also, compared with the HC baseline group and the 24-week HC group, the 24-week sound therapy tinnitus group demonstrated slightly lower or higher ALFF in the left TPOJ and right PCC, and there were no differences between the 24-week sound therapy tinnitus and HC groups. Decreased THI scores and ALFF changes in the abovementioned brain regions were not correlated. Taken together, surface-based RS-fMRI can provide more subtle local functional activity to explain the mechanism of tinnitus treatment, and long-term sound therapy had a normalizing effect on tinnitus patients.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhaodi Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunli Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Lefler SM, Duncan RK, Goodman SS, Guinan JJ, Lichtenhan JT. Measurements From Ears With Endolymphatic Hydrops and 2-Hydroxypropyl-Beta-Cyclodextrin Provide Evidence That Loudness Recruitment Can Have a Cochlear Origin. Front Surg 2021; 8:687490. [PMID: 34676239 PMCID: PMC8523923 DOI: 10.3389/fsurg.2021.687490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Loudness recruitment is commonly experienced by patients with putative endolymphatic hydrops. Loudness recruitment is abnormal loudness growth with high-level sounds being perceived as having normal loudness even though hearing thresholds are elevated. The traditional interpretation of recruitment is that cochlear amplification has been reduced. Since the cochlear amplifier acts primarily at low sound levels, an ear with elevated thresholds from reduced cochlear amplification can have normal processing at high sound levels. In humans, recruitment can be studied using perceptual loudness but in animals physiological measurements are used. Recruitment in animal auditory-nerve responses has never been unequivocally demonstrated because the animals used had damage to sensory and neural cells, not solely a reduction of cochlear amplification. Investigators have thus looked for, and found, evidence of recruitment in the auditory central nervous system (CNS). While studies on CNS recruitment are informative, they cannot rule out the traditional interpretation of recruitment originating in the cochlea. Design: We used techniques that could assess hearing function throughout entire frequency- and dynamic-range of hearing. Measurements were made from two animal models: guinea-pig ears with endolymphatic-sac-ablation surgery to produce endolymphatic hydrops, and naïve guinea-pig ears with cochlear perfusions of 13 mM 2-Hydroxypropyl-Beta-Cyclodextrin (HPBCD) in artificial perilymph. Endolymphatic sac ablation caused low-frequency loss. Animals treated with HPBCD had hearing loss at all frequencies. None of these animals had loss of hair cells or synapses on auditory nerve fibers. Results: In ears with endolymphatic hydrops and those perfused with HPBCD, auditory-nerve based measurements at low frequencies showed recruitment compared to controls. Recruitment was not found at high frequencies (> 4 kHz) where hearing thresholds were normal in ears with endolymphatic hydrops and elevated in ears treated with HPBCD. Conclusions: We found compelling evidence of recruitment in auditory-nerve data. Such clear evidence has never been shown before. Our findings suggest that, in patients suspected of having endolymphatic hydrops, loudness recruitment may be a good indication that the associated low-frequency hearing loss originates from a reduction of cochlear amplification, and that measurements of recruitment could be used in differential diagnosis and treatment monitoring of Ménière's disease.
Collapse
Affiliation(s)
- Shannon M Lefler
- Department of Otolaryngology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| | - Robert K Duncan
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States
| | - Shawn S Goodman
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, United States
| | - John J Guinan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
| | - Jeffery T Lichtenhan
- Department of Otolaryngology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
17
|
Manno FAM, An Z, Kumar R, Wu EX, He J, Feng Y, Lau C. Structural Alterations in a Rat Model of Short-Term Conductive Hearing Loss Are Associated With Reduced Resting State Functional Connectivity. Front Syst Neurosci 2021; 15:655172. [PMID: 34456689 PMCID: PMC8397539 DOI: 10.3389/fnsys.2021.655172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Conductive hearing loss (CHL) results in attenuation of air conducted sound reaching the inner ear. How a change in air conducted sound alters the auditory system resulting in cortical alterations is not well understood. Here, we have assessed structural and functional magnetic resonance imaging (MRI) in an adult (P60) rat model of short-term conductive hearing loss (1 week). Diffusion tensor imaging (DTI) revealed fractional anisotropy (FA) and axial diffusivity alterations after hearing loss that circumscribed the auditory cortex (AC). Tractography found the lateral lemniscus tract leading to the bilateral inferior colliculus (IC) was reduced. For baseline comparison, DTI and tractography alterations were not found for the somatosensory cortex. To determine functional connectivity changes due to hearing loss, seed-based analysis (SBA) and independent component analysis (ICA) were performed. Short term conductive hearing loss altered functional connectivity in the AC and IC, but not the somatosensory cortex. The results present an exploratory neuroimaging assessment of structural alterations coupled to a change in functional connectivity after conductive hearing loss. The results and implications for humans consist of structural-functional brain alterations following short term hearing loss in adults.
Collapse
Affiliation(s)
| | - Ziqi An
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Rachit Kumar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA, United States
| | - Ed X. Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR China
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, SAR China
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR China
| | - Yanqiu Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
18
|
Williams ZJ, He JL, Cascio CJ, Woynaroski TG. A review of decreased sound tolerance in autism: Definitions, phenomenology, and potential mechanisms. Neurosci Biobehav Rev 2021; 121:1-17. [PMID: 33285160 PMCID: PMC7855558 DOI: 10.1016/j.neubiorev.2020.11.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022]
Abstract
Atypical behavioral responses to environmental sounds are common in autistic children and adults, with 50-70 % of this population exhibiting decreased sound tolerance (DST) at some point in their lives. This symptom is a source of significant distress and impairment across the lifespan, contributing to anxiety, challenging behaviors, reduced community participation, and school/workplace difficulties. However, relatively little is known about its phenomenology or neurocognitive underpinnings. The present article synthesizes a large body of literature on the phenomenology and pathophysiology of DST-related conditions to generate a comprehensive theoretical account of DST in autism. Notably, we argue against conceptualizing DST as a unified construct, suggesting that it be separated into three phenomenologically distinct conditions: hyperacusis (the perception of everyday sounds as excessively loud or painful), misophonia (an acquired aversive reaction to specific sounds), and phonophobia (a specific phobia of sound), each responsible for a portion of observed DST behaviors. We further elaborate our framework by proposing preliminary neurocognitive models of hyperacusis, misophonia, and phonophobia that incorporate neurophysiologic findings from studies of autism.
Collapse
Affiliation(s)
- Zachary J Williams
- Medical Scientist Training Program, Vanderbilt University School of Medicine, 221 Eskind Biomedical Library and Learning Center, 2209 Garland Ave., Nashville, TN, 37240, United States; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, Room 8310, Nashville, TN, 37232, United States; Vanderbilt Brain Institute, Vanderbilt University, 7203 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, United States; Frist Center for Autism and Innovation, Vanderbilt University, 2414 Highland Avenue, Suite 115, Nashville, TN, 37212, United States.
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Strand Building, Strand Campus, Strand, London, WC2R 2LS, London, United Kingdom.
| | - Carissa J Cascio
- Vanderbilt Brain Institute, Vanderbilt University, 7203 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, United States; Frist Center for Autism and Innovation, Vanderbilt University, 2414 Highland Avenue, Suite 115, Nashville, TN, 37212, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 2254 Village at Vanderbilt, 1500 21st Ave South, Nashville, TN, 37212, United States; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, 110 Magnolia Cir, Nashville, TN, 37203, United States.
| | - Tiffany G Woynaroski
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, Room 8310, Nashville, TN, 37232, United States; Vanderbilt Brain Institute, Vanderbilt University, 7203 Medical Research Building III, 465 21st Avenue South, Nashville, TN, 37232, United States; Frist Center for Autism and Innovation, Vanderbilt University, 2414 Highland Avenue, Suite 115, Nashville, TN, 37212, United States; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, 110 Magnolia Cir, Nashville, TN, 37203, United States.
| |
Collapse
|