1
|
Du H, Gao L, Luan J, Zhang H, Xiao T. C-X-C Chemokine Receptor 4 in Diffuse Large B Cell Lymphoma: Achievements and Challenges. Acta Haematol 2019; 142:64-70. [PMID: 31096215 DOI: 10.1159/000497430] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/02/2019] [Indexed: 12/24/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL), an aggressive cancer of the B cells, is the most common subtype of non-Hodgkin lymphoma (NHL) worldwide. In China, the cases of DLBCL increase yearly. C-X-C chemokine receptor 4 (CXCR4) has been implicated in the migration and trafficking of malignant B cells in several hematological malignancies, and only a few reports have been published on the role of CXCR4 in the metastasis of DLBCL. This review summarizes the relevant perspectives on the functional mechanism, prognostic significance, and therapeutic applications of the CXCL12/CXCR4 axis in DLBCL, in particular DLBCL with bone marrow involvement.
Collapse
Affiliation(s)
- Hui Du
- Division of Hematology, Liaocheng People's Hospital, Liaocheng, China,
| | - Lei Gao
- Division of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Jing Luan
- Division of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Hangfan Zhang
- Division of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Taiwu Xiao
- Division of Hematology, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
2
|
Zhong W, Zhu Z, Xu X, Zhang H, Xiong H, Li Q, Wei Y. Human bone marrow-derived mesenchymal stem cells promote the growth and drug-resistance of diffuse large B-cell lymphoma by secreting IL-6 and elevating IL-17A levels. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:73. [PMID: 30755239 PMCID: PMC6373150 DOI: 10.1186/s13046-019-1081-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/06/2019] [Indexed: 02/08/2023]
Abstract
Background The drug-resistance and relapse of diffuse large B-cell lymphoma (DLBCL), which are related to mesenchymal stem cells (MSCs), have become increasingly common. However, the underlying mechanisms remain elusive. Methods CCK 8 assay, colony formation assay, and xenograft mouse model were used to investigate the effects of hBMSCs on DLBCL growth. Immunohistochemistry, qRT-PCR, and ELISA were used to study the expressions of IL-6 and IL-17A. Flow cytometry was used to analyze Th17 cells and Treg cells expressions. Western blot analysis, microarray analysis, and bioinformatics analysis were used to analyze the pathways of IL-6 or IL-17A mediated DLBCL growth. Results HBMSCs promoted DLBCL growth by secreting IL-6 in vitro and in vivo and simultaneously upregulating IL-17A in vitro. IL-6 and IL-17A synergistically promoted the growth and drug-resistance of DLBCL cells by protecting them from spontaneous or drug-induced apoptosis in vitro. IL-6 or IL-17A activated the JAK2/STAT3 pathway or upregulated cyclin D2 via activation of PI3K/Akt signaling in vitro, respectively. Conclusions The present results indicated that hBMSCs might have a “dual effect” on promoting DLBCL progression and drug-resistance by secreting IL-6 and upregulating IL-17A. IL-6, IL-17A, p-STAT3, p-Akt or cyclin D2 may be potential molecular targets for overcoming drug-resistance in patients with relapsed or refractory DLBCL.
Collapse
Affiliation(s)
- Weijie Zhong
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Zhigang Zhu
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Xin Xu
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jinan, 272067, Shandong, China
| | - Huabao Xiong
- Immunology Institute, Mount Sinai School of Medicine, NY10029, New York, 5674, USA
| | - Qingshan Li
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Rd No.1, Yuexiu District, Guangzhou, 510180, Guangdong, China.
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Rd No.1, Yuexiu District, Guangzhou, 510180, Guangdong, China.
| |
Collapse
|
3
|
Fouquet G, Guidez S, Richez V, Stoppa AM, Le Tourneau C, Macro M, Gruchet C, Bobin A, Moya N, Syshenko T, Sabirou F, Levy A, Franques P, Gardeney H, Karlin L, Benboubker L, Ouali M, Vedovato JC, Ferre P, Pavlyuk M, Attal M, Facon T, Leleu X. Phase I dose-escalation study of F50067, a humanized anti-CXCR4 monoclonal antibody alone and in combination with lenalidomide and low-dose dexamethasone, in relapsed or refractory multiple myeloma. Oncotarget 2018; 9:23890-23899. [PMID: 29844860 PMCID: PMC5963612 DOI: 10.18632/oncotarget.25156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/29/2018] [Indexed: 11/25/2022] Open
Abstract
Purpose Multiple myeloma (MM) remains an incurable disease as tumor cells ultimately resist to all available drugs. Homing of tumor cells to the bone marrow microenvironment, involving especially the CXCR4/SDF-1 axis, allows them to survive, proliferate and resist to therapy. F50067, a humanized anti-CXCR4 IgG1 antibody, has promising preclinical activity in MM. We present a phase I multicenter escalation study in relapsed/refractory MM (RRMM) to determine the maximum tolerated dose (MTD) for F50067 alone and in combination with lenalidomide and low dose dexamethasone (Len-Dex). Experimental design 14 end-stage RRMM patients received F50067 single agent (n = 10) or in combination with Len-Dex (n = 4). Results One dose-limiting toxicity was observed, a grade 4 neutropenia lasting more than 7 days in combination arm. MTD could not be established. Thrombocytopenia was observed in 100% and neutropenia in 92.9% of patients with no cases of febrile neutropenia and no severe bleeding or hematoma. Non-hematological adverse events were of mild to moderate severity. Nine patients (6 in single arm and 3 in combination arm) were evaluable for response, with 66.7% overall response rate (≥PR) in combination arm, and 33.3% of disease control (≥SD) in single agent arm. At the time of study termination, 55.6% had progressed. Conclusion This study suggests that egression of tumor cells to the blood stream can represent a novel therapeutic strategy for MM. However, because of significant hematological toxicity, this study had to be discontinued. Further studies are needed to validate the feasibility of this approach in clinical practice.
Collapse
Affiliation(s)
- Guillemette Fouquet
- Institut Imagine, Unité Inserm U1163, Centre National de la Recherche Scientifique CNRS ERL8254, Paris, France
| | - Stéphanie Guidez
- Hôpital La Milétrie, Centre Hospitalier Universitaire, Poitiers, France.,Inserm Centre d'Investigation Clinique U1402, Centre Hospitalier Universitaire, Poitiers, France
| | - Valentine Richez
- Hôpital La Milétrie, Centre Hospitalier Universitaire, Poitiers, France
| | | | | | | | - Cécile Gruchet
- Hôpital La Milétrie, Centre Hospitalier Universitaire, Poitiers, France
| | - Arthur Bobin
- Hôpital La Milétrie, Centre Hospitalier Universitaire, Poitiers, France
| | - Niels Moya
- Hôpital La Milétrie, Centre Hospitalier Universitaire, Poitiers, France
| | - Thomas Syshenko
- Hôpital La Milétrie, Centre Hospitalier Universitaire, Poitiers, France
| | - Florence Sabirou
- Hôpital La Milétrie, Centre Hospitalier Universitaire, Poitiers, France
| | - Anthony Levy
- Hôpital La Milétrie, Centre Hospitalier Universitaire, Poitiers, France
| | - Paul Franques
- Hôpital La Milétrie, Centre Hospitalier Universitaire, Poitiers, France
| | - Hélène Gardeney
- Hôpital La Milétrie, Centre Hospitalier Universitaire, Poitiers, France
| | | | | | - Monia Ouali
- Institut de Recherche Pierre Fabre, Toulouse, France
| | | | - Pierre Ferre
- Institut de Recherche Pierre Fabre, Toulouse, France
| | | | - Michel Attal
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Thierry Facon
- Service des Maladies du Sang, Centre Hospitalier Régional Universitaire, Lille, France
| | - Xavier Leleu
- Hôpital La Milétrie, Centre Hospitalier Universitaire, Poitiers, France.,Inserm Centre d'Investigation Clinique U1402, Centre Hospitalier Universitaire, Poitiers, France
| |
Collapse
|
4
|
Targeted Therapies in Adult B-Cell Malignancies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:217593. [PMID: 26425544 PMCID: PMC4575712 DOI: 10.1155/2015/217593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 12/17/2022]
Abstract
B-lymphocytes are programmed for the production of immunoglobulin (Ig) after antigen presentation, in the context of T-lymphocyte control within lymphoid organs. During this differentiation/activation process, B-lymphocytes exhibit different restricted or common surface markers, activation of cellular pathways that regulate cell cycle, metabolism, proteasome activity, and protein synthesis. All molecules involved in these different cellular mechanisms are potent therapeutic targets. Nowadays, due to the progress of the biology, more and more targeted drugs are identified, a situation that is correlated with an extended field of the targeted therapy. The full knowledge of the cellular machinery and cell-cell communication allows making the best choice to treat patients, in the context of personalized medicine. Also, focus should not be restricted to the immediate effects observed as clinical endpoints, that is, response rate, survival markers with conventional statistical methods, but it should consider the prediction of different clinical consequences due to other collateral drug targets, based on new methodologies. This means that new reflection and new bioclinical follow-up have to be monitored, particularly with the new drugs used with success in B-cell malignancies. This review discussed the principal aspects of such evident bioclinical progress.
Collapse
|
5
|
Chen J, Xu-Monette ZY, Deng L, Shen Q, Manyam GC, Martinez-Lopez A, Zhang L, Montes-Moreno S, Visco C, Tzankov A, Yin L, Dybkaer K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WW, van Krieken JH, Huh J, Ponzoni M, Ferreri AJ, Zhao X, Møller MB, Farnen JP, Winter JN, Piris MA, Pham L, Young KH. Dysregulated CXCR4 expression promotes lymphoma cell survival and independently predicts disease progression in germinal center B-cell-like diffuse large B-cell lymphoma. Oncotarget 2015; 6:5597-5614. [PMID: 25704881 PMCID: PMC4467389 DOI: 10.18632/oncotarget.3343] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/04/2015] [Indexed: 12/13/2022] Open
Abstract
Abnormal expression of the chemokine receptor CXCR4 plays an essential role in tumor cell dissemination and disease progression. However, the significance of CXCR4 overexpression in de novo diffuse large B cell lymphoma (DLBCL) is unknown. In 743 patients with de novo diffuse large B cell lymphoma (DLBCL) who received standard Rituximab-CHOP immunochemotherapy, we assessed the expression of CXCR4 and dissected its prognostic significance in various DLBCL subsets. Our results showed that CXCR4+ patients was associated with male, bulky tumor, high Ki-67 index, activated B-cell-like (ABC) subtype, and Myc, Bcl-2 or p53 overexpression. Moreover, CXCR4+ was an independent factor predicting poorer progression-free survival in germinal-center B-cell-like (GCB)-DLBCL, but not in ABC-DLBCL; and in patients with an IPI of ≤2, but not in those with an IPI>2. The lack of prognostic significance of CXCR4 in ABC-DLBCL was likely due to the activation of p53 tumor suppressor attenuating CXCR4 signaling. Furthermore, concurrent CXCR4+ and BCL2 translocation showed dismal outcomes resembling but independent of MYC/BCL2 double-hit DLBCL. Gene expression profiling suggested that alterations in the tumor microenvironment and immune responses, increased tumor proliferation and survival, and the dissemination of CXCR4+ tumor cells to distant organs or tissues were underlying molecular mechanisms responsible for the CXCR4+ associated poor prognosis.
Collapse
MESH Headings
- Antibodies, Monoclonal, Murine-Derived/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Line, Tumor
- Cell Proliferation/physiology
- Cell Survival/physiology
- Chemokine CXCL12/biosynthesis
- Chemokine CXCL12/genetics
- Cyclophosphamide/administration & dosage
- Disease Progression
- Doxorubicin/administration & dosage
- Female
- Gene Expression Regulation, Neoplastic
- Germinal Center/pathology
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Mutation
- Oligopeptides/pharmacology
- Prednisone/administration & dosage
- Prognosis
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/biosynthesis
- Receptors, CXCR4/genetics
- Rituximab/administration & dosage
- Transcriptome
- Tumor Suppressor Protein p53/genetics
- Vincristine/administration & dosage
Collapse
Affiliation(s)
- Jiayu Chen
- Medical School of Taizhou University, Taizhou, Zhejiang, China
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zijun Y. Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lijuan Deng
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Shen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganiraju C. Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | - Lihui Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - April Chiu
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Attilio Orazi
- Weill Medical College of Cornell University, New York, NY, USA
| | - Youli Zu
- The Methodist Hospital, Houston, TX, USA
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | | | | | - William W.L. Choi
- University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | | | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | - Xiaoying Zhao
- Zhejiang University School of Medicine, Second University Hospital, Hangzhou, China
| | | | | | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Miguel A. Piris
- Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Lan Pham
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H. Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
6
|
Lau G, Labrecque J, Metz M, Vaz R, Fricker SP. Specificity for a CCR5 Inhibitor Is Conferred by a Single Amino Acid Residue: ROLE OF ILE198. J Biol Chem 2015; 290:11041-51. [PMID: 25767113 DOI: 10.1074/jbc.m115.640169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 11/06/2022] Open
Abstract
The chemokine receptors CCR5 and CCR2b share 89% amino acid homology. CCR5 is a co-receptor for HIV and CCR5 antagonists have been investigated as inhibitors of HIV infection. We describe the use of two CCR5 antagonists, Schering-C (SCH-C), which is specific for CCR5, and TAK-779, a dual inhibitor of CCR5 and CCR2b, to probe the CCR5 inhibitor binding site using CCR5/CCR2b chimeric receptors. Compound inhibition in the different chimeras was assessed by inhibition of chemokine-induced calcium flux. SCH-C inhibited RANTES (regulated on activation, normal T cell expressed and secreted) (CCL5)-mediated calcium flux on CCR5 with an IC50 of 22.8 nM but was inactive against monocyte chemoattractant protein-1 (CCL2)-mediated calcium flux on CCR2b. However, SCH-C inhibited CCL2-induced calcium flux against a CCR5/CCR2b chimera consisting of transmembrane domains IV-VI of CCR5 with an IC50 of 55 nM. A sequence comparison of CCR5 and CCR2b identified a divergent amino acid sequence located at the junction of transmembrane domain V and second extracellular loop. Transfer of the CCR5 sequence KNFQTLKIV into CCR2b conferred SCH-C inhibition (IC50 of 122 nM) into the predominantly CCR2b chimera. Furthermore, a single substitution, R206I, conferred partial but significant inhibition (IC50 of 1023 nM) by SCH-C. These results show that a limited amino acid sequence is responsible for SCH-C specificity to CCR5, and we propose a model showing the interaction with CCR5 Ile(198).
Collapse
Affiliation(s)
- Gloria Lau
- From Anormed Inc., Langley, British Columbia V2Y 1N5, Canada
| | - Jean Labrecque
- From Anormed Inc., Langley, British Columbia V2Y 1N5, Canada
| | - Markus Metz
- Lead Generation to Candidate Realization, Sanofi, Waltham, Massachusetts 02451, and
| | - Roy Vaz
- Lead Generation to Candidate Realization, Sanofi, Waltham, Massachusetts 02451, and
| | - Simon P Fricker
- Sanofi-Genzyme Research and Development Center, Framingham, Massachusetts 01701
| |
Collapse
|
7
|
Labi V, Erlacher M. How cell death shapes cancer. Cell Death Dis 2015; 6:e1675. [PMID: 25741600 PMCID: PMC4385913 DOI: 10.1038/cddis.2015.20] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/28/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022]
Abstract
Apoptosis has been established as a mechanism of anti-cancer defense. Members of the BCL-2 family are critical mediators of apoptotic cell death in health and disease, often found to be deregulated in cancer and believed to lead to the survival of malignant clones. However, over the years, a number of studies pointed out that a model in which cell death resistance unambiguously acts as a barrier against malignant disease might be too simple. This is based on paradoxical observations made in tumor patients as well as mouse models indicating that apoptosis can indeed drive tumor formation, at least under certain circumstances. One possible explanation for this phenomenon is that apoptosis can promote proliferation critically needed to compensate for cell loss, for example, upon therapy, and to restore tissue homeostasis. However, this, at the same time, can promote tumor development by allowing expansion of selected clones. Usually, tissue resident stem/progenitor cells are a major source for repopulation, some of them potentially carrying (age-, injury- or therapy-induced) genetic aberrations deleterious for the host. Thereby, apoptosis might drive genomic instability by facilitating the emergence of pathologic clones during phases of proliferation and subsequent replication stress-associated DNA damage. Tumorigenesis initiated by repeated cell attrition and repopulation, as confirmed in different genetic models, has parallels in human cancers, exemplified in therapy-induced secondary malignancies and myelodysplastic syndromes in patients with congenital bone marrow failure syndromes. Here, we aim to review evidence in support of the oncogenic role of stress-induced apoptosis.
Collapse
Affiliation(s)
- V Labi
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin 13125, Germany
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine, Robert Rössle-Strasse 10, 13125 Berlin, Germany. Tel: +49 30 9406 3462; Fax: +49 30 9406 2390; E-mail:
| | - M Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center of Freiburg, Freiburg 79106, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
8
|
Shin HC, Seo J, Kang BW, Moon JH, Chae YS, Lee SJ, Lee YJ, Han S, Seo SK, Kim JG, Sohn SK, Park TI. Clinical significance of nuclear factor κB and chemokine receptor CXCR4 expression in patients with diffuse large B-cell lymphoma who received rituximab-based therapy. Korean J Intern Med 2014; 29:785-92. [PMID: 25378977 PMCID: PMC4219968 DOI: 10.3904/kjim.2014.29.6.785] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/20/2013] [Accepted: 01/06/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIMS This study investigated the expression of nuclear factor κB (NF-κB) and the chemokine receptor (CXCR4) in patients with diffuse large B-cell lymphoma (DLBCL) who received rituximab-based therapy. METHODS Seventy patients with DLBCL and treated with rituximab-CHOP (R-CHOP) were included, and immunohistochemistry was performed to determine the expression of NF-κB (IκB kinase α, p50, and p100/p52) and CXCR4. To classify DLBCL cases as germinal center B-cell-like (GCB) and non-GCB, additional immunohistochemical expression of CD10, bcl-6, or MUM1 was used in this study. The expression was divided into two groups according to the intensity score (negative, 0 or 1+; positive, 2+ or 3+). RESULTS The median age of the patients was 66 years (range, 17 to 87), and 58.6% were male. Twenty-seven patients (38.6%) had stage III or IV disease at diagnosis. Twenty-three patients (32.9%) were categorized as high or high-intermediate risk according to their International Prognostic Indexs (IPIs). The overall incidence of bone marrow involvement was 5.7%. Rates of positive NF-κB and CXCR4 expression were 84.2% and 88.6%, respectively. High NF-κB expression was associated with CXCR4 expression (p = 0.002), and 56 patients (80.0%) showed coexpression. However, the expression of NF-κB or CXCR4 was not associated with overall survival and EFS. On multivariate analysis that included age, gender, performance status, stage, and the IPI, no significant association between the grade of NF-κB or CXCR4 expression and survival was observed. CONCLUSIONS The current study suggests that the tissue expression of NF-κB and CXCR4 may not be an independent prognostic marker in DLBCL patients treated with R-CHOP.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Murine-Derived/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/analysis
- Chi-Square Distribution
- Cyclophosphamide/administration & dosage
- Disease Progression
- Disease-Free Survival
- Doxorubicin/administration & dosage
- Female
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Lymphoma, Large B-Cell, Diffuse/chemistry
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Multivariate Analysis
- NF-kappa B/analysis
- Neoplasm Staging
- Predictive Value of Tests
- Prednisone/administration & dosage
- Proportional Hazards Models
- Receptors, CXCR4/analysis
- Retrospective Studies
- Risk Factors
- Rituximab
- Time Factors
- Treatment Outcome
- Vincristine/administration & dosage
- Young Adult
Collapse
Affiliation(s)
- Ho Cheol Shin
- Department of Hematology and Oncology, Kyungpook National University Hospital, Daegu, Korea
| | - Jongwon Seo
- Department of Hematology and Oncology, Kyungpook National University Hospital, Daegu, Korea
| | - Byung Woog Kang
- Department of Hematology and Oncology, Kyungpook National University Hospital, Daegu, Korea
| | - Joon Ho Moon
- Department of Hematology and Oncology, Kyungpook National University Hospital, Daegu, Korea
| | - Yee Soo Chae
- Department of Hematology and Oncology, Kyungpook National University Hospital, Daegu, Korea
| | - Soo Jung Lee
- Department of Hematology and Oncology, Kyungpook National University Hospital, Daegu, Korea
| | - Yoo Jin Lee
- Department of Hematology and Oncology, Kyungpook National University Hospital, Daegu, Korea
| | - Seoae Han
- Department of Hematology and Oncology, Kyungpook National University Hospital, Daegu, Korea
| | - Sang Kyung Seo
- Department of Hematology and Oncology, Kyungpook National University Hospital, Daegu, Korea
| | - Jong Gwang Kim
- Department of Hematology and Oncology, Kyungpook National University Hospital, Daegu, Korea
| | - Sang Kyun Sohn
- Department of Hematology and Oncology, Kyungpook National University Hospital, Daegu, Korea
| | - Tae-In Park
- Department of Pathology, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
9
|
Aguirre Palma LM, Gehrke I, Kreuzer KA. Angiogenic factors in chronic lymphocytic leukaemia (CLL): Where do we stand? Crit Rev Oncol Hematol 2014; 93:225-36. [PMID: 25459668 DOI: 10.1016/j.critrevonc.2014.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/23/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
The role of angiogenesis in haematological malignancies such as chronic lymphocytic leukaemia (CLL) is difficult to envision, because leukaemia cells are not dependent on a network of blood vessels to support basic physiological requirements. Regardless, CLL cells secrete high levels of major angiogenic factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF). Nonetheless, it remains unclear how most angiogenic factors regulate accumulation and delayed apoptosis of CLL cells. Angiogenic factors such as leptin, granulocyte colony-stimulating factor (G-CSF), follistatin, angiopoietin-1 (Ang1), angiogenin (ANG), midkine (MK), pleiotrophin (PTN), progranulin (PGRN), proliferin (PLF), placental growth factor (PIGF), and endothelial locus-1 (Del-1), represent novel therapeutic targets of future CLL research but have remained widely overlooked. This review aims to outline our current understanding of angiogenic growth factors and their relationship with CLL, a still uncured haematopoietic malignancy.
Collapse
Affiliation(s)
| | - Iris Gehrke
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB, Canada.
| | - Karl-Anton Kreuzer
- Department I of Internal Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
10
|
Fricker SP. Physiology and pharmacology of plerixafor. ACTA ACUST UNITED AC 2013; 40:237-45. [PMID: 24179472 DOI: 10.1159/000354132] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/03/2013] [Indexed: 12/18/2022]
Abstract
Autologous hematopoietic stem cell (HSC) transplantation is an important therapeutic option for patients with non-Hodgkin's lymphoma and multiple myeloma. The primary source of HSC is from the peripheral blood which requires mobilization from the bone marrow. Current mobilization regimens include cytokines such as G-CSF and/or chemotherapy. However not all patients mobilize enough HSC to proceed to transplant. The chemokine receptor CXCR4 and its ligand CXCL12 are an integral part of the mechanism of HSC retention in the bone marrow niche. The discovery of plerixafor, a selective inhibitor of CXCR4, has provided a new additional means of mobilizing HSC for autologous transplantation. Plerixafor consists of two cyclam rings with a phenylenebis(methylene) linker. It inhibits CXCL12 binding to CXCR4 and subsequent downstream events including chemotaxis. The molecular interactions of plerixafor have been defined indicating a unique binding mode to CXCR4. Plerixafor rapidly mobilizes HSC within hours compared with the multi-day treatment required by G-CSF in mouse, dog and non-human primate. The mobilized cells once transplanted are capable of timely and endurable engraftment. Additionally CXCR4 has been implicated in the pathology of HIV, inflammatory disease and cancer and the pharmacology of plerixafor in various disease models is described.
Collapse
|
11
|
Brault L, Rovó A, Decker S, Dierks C, Tzankov A, Schwaller J. CXCR4-SERINE339 regulates cellular adhesion, retention and mobilization, and is a marker for poor prognosis in acute myeloid leukemia. Leukemia 2013; 28:566-76. [PMID: 23817178 DOI: 10.1038/leu.2013.201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 01/20/2023]
Abstract
The CXCR4 receptor is a major regulator of hematopoietic cell migration. Overexpression of CXCR4 has been associated with poor prognosis in acute myelogenous leukemia (AML). We have previously shown that ligand-mediated phosphorylation of the Serine339 (CXCR4-S339) residue of the intracellular domain by PIM1 is implicated in surface re-expression of this receptor. Here, we report that phosphorylation of CXCR4-S339 in bone marrow (BM) biopsies correlated with poor prognosis in a cohort of AML patients. To functionally address the impact of CXCR4-S339 phosphorylation, we generated cell lines-expressing CXCR4 mutants that mimic constitutive phosphorylation (S339E) or abrogate phosphorylation (S339A). Whereas the expression of CXCR4 significantly increased, both CXCR4-S339E and the CXCR4-S339A mutants significantly reduced the BM homing and engraftment of Kasumi-1 AML cells in immunodeficient mice. In contrast, only expression of the CXCR4-S339E mutant increased the BM retention of the cells and resistance to cytarabine treatment, and impaired detachment capacity and AMD3100-induced mobilization of engrafted leukemic cells. These observations suggest that the poor prognosis in AML patients displaying CXCR4-S339 phosphorylation can be the consequence of an increased retention to the BM associated with an enhanced chemoresistance of leukemic cells. Therefore, CXCR4-S339 phosphorylation could serve as a novel prognostic marker in human AML.
Collapse
Affiliation(s)
- L Brault
- Department of Biomedicine, University Children's Hospital (UKBB), University of Basel, Basel, Switzerland
| | - A Rovó
- Department of Hematology, University Hospital Basel, Basel, Switzerland
| | - S Decker
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - C Dierks
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - A Tzankov
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | - J Schwaller
- Department of Biomedicine, University Children's Hospital (UKBB), University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Ramsay AD, Rodriguez-Justo M. Chronic lymphocytic leukaemia--the role of the microenvironment pathogenesis and therapy. Br J Haematol 2013; 162:15-24. [PMID: 23617880 DOI: 10.1111/bjh.12344] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic lymphocytic leukaemia/small lymphocytic lymphoma (CLL) is one of the more common forms of B cell malignancy. Although the condition has a variable clinical course, the trend is towards eventual relapse and the disease is considered incurable. Whilst the majority of the circulating CD5-positive neoplastic B cells are arrested in the G0 phase of the cell cycle, those in the bone marrow and lymphoid tissues proliferate at a rate of 0·1-1% of the entire clone per day. This proliferation is supported by the tissue microenvironment, which has been shown to induce upregulation of anti-apoptotic proteins and enhance the survival of the neoplastic cells. Microenvironmental factors are also thought to be important in tumour relapse and resistance to therapy. This review outlines the main signalling pathways involved in these tumour cell-stromal interactions, and includes potential therapeutic strategies based on the manipulation of key components within the CLL microenvironment.
Collapse
Affiliation(s)
- Alan D Ramsay
- Department of Cellular Pathology, University College Hospital London, London, UK.
| | | |
Collapse
|
13
|
Abstract
BACKGROUND Despite intensive research and novel adjuvant therapies, there is currently no cure for metastatic melanoma. The chemokine receptor CXCR4 controls metastasis to sites such as the liver; however, the therapeutic blockade with the existing agents has proven difficult. METHODS AMD11070, a novel orally bioavailable inhibitor of CXCR4, was tested for its ability to inhibit the migration of melanoma cells compared with the commonly described antagonist AMD3100. RESULTS AMD11070 abrogated melanoma cell migration and was significantly more effective than AMD3100. Importantly for the clinical context, the expression of B-RAF-V600E did not the affect the sensitivity of AMD11070. CONCLUSION Liver-resident myofibroblasts excrete CXCL12, which is able to promote the migration of CXCR4-expressing tumour cells from the blood into the liver. Blockade of this axis by AMD11070 thus represents a novel therapeutic strategy for both B-RAF wild-type and mutated melanomas.
Collapse
|
14
|
Beaussant Cohen S, Fenneteau O, Plouvier E, Rohrlich PS, Daltroff G, Plantier I, Dupuy A, Kerob D, Beaupain B, Bordigoni P, Fouyssac F, Delezoide AL, Devouassoux G, Nicolas JF, Bensaid P, Bertrand Y, Balabanian K, Chantelot CB, Bachelerie F, Donadieu J. Description and outcome of a cohort of 8 patients with WHIM syndrome from the French Severe Chronic Neutropenia Registry. Orphanet J Rare Dis 2012; 7:71. [PMID: 23009155 PMCID: PMC3585856 DOI: 10.1186/1750-1172-7-71] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/14/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND WHIM syndrome (WS), a rare congenital neutropenia due to mutations of the CXCR4 chemokine receptor, is associated with Human Papillomavirus (HPV)-induced Warts, Hypogammaglobulinemia, bacterial Infections and Myelokathexis. The long term follow up of eight patients highlights the clinical heterogeneity of this disease as well as the main therapeutic approaches and remaining challenges in the light of the recent development of new CXCR4 inhibitors. OBJECTIVE This study aims to describe the natural history of WS based on a French cohort of 8 patients. METHODS We have reviewed the clinical, biological and immunological features of patients with WS enrolled into the French Severe Chronic Neutropenia Registry. RESULTS We identified four pedigrees with WS comprised of eight patients and one foetus. Estimated incidence for WS was of 0.23 per million births. Median age at the last visit was 29 years. Three pedigrees encompassing seven patients and the fetus displayed autosomal dominant heterozygous mutations of the CXCR4 gene, while one patient presented a wild-type CXCR4 gene. Two subjects exhibited congenital conotruncal heart malformations. In addition to neutropenia and myelokathexis, all patients presented deep monocytopenia and lymphopenia. Seven patients presented repeated bacterial Ears Nose Throat as well as severe bacterial infections that were curable with antibiotics. Four patients with late onset prophylaxis developed chronic obstructive pulmonary disease (COPD). Two patients reported atypical mycobacteria infections which in one case may have been responsible for one patient's death due to liver failure at the age of 40.6 years. HPV-related disease manifested in five subjects and progressed as invasive vulvar carcinoma with a fatal course in one patient at the age of 39.5 years. In addition, two patients developed T cell lymphoma skin cancer and basal cell carcinoma at the age of 38 and 65 years. CONCLUSIONS Continuous prophylactic anti-infective measures, when started in early childhood, seem to effectively prevent further bacterial infections and the consequent development of COPD. Long-term follow up is needed to evaluate the effect of early anti-HPV targeted prophylaxis on the development of skin and genital warts.
Collapse
Affiliation(s)
- Sarah Beaussant Cohen
- AP-HP, Registre Français des Neutropénies Chroniques Sévères, Centre de Référence des Déficits Immunitaires Héréditaires, Service d'Hémato-Oncologie Pédiatrique Hôpital Trousseau, 26 avenue du Dr Netter, 75012 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Audrito V, Vaisitti T, Serra S, Bologna C, Brusa D, Malavasi F, Deaglio S. Targeting the microenvironment in chronic lymphocytic leukemia offers novel therapeutic options. Cancer Lett 2012; 328:27-35. [PMID: 22910767 DOI: 10.1016/j.canlet.2012.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/10/2012] [Accepted: 08/13/2012] [Indexed: 01/13/2023]
Abstract
Chronic lymphocytic leukemia (CLL) cells display features consistent with a defect in apoptosis and exhibit prolonged survival in vivo. Survival of these malignant cells is influenced by interactions with non-leukemic cells located in permissive niches in lymphoid organs. Leukemic cells subvert the normal architecture of the lymphoid organs, recruiting stromal cells, dendritic cells and T lymphocytes, all reported as playing active roles in the survival and proliferation of CLL. The same survival-promoting environment also rescues/protects leukemic cells from cytotoxic therapies, giving way to disease relapse. This review summarizes and discusses current knowledge about the intricate network of soluble and cell-bound signals regulating the life and death of CLL cells in different districts. At the same time, it seeks to hone in on which discrete molecular elements are best suited as targets for treating this still incurable disease.
Collapse
Affiliation(s)
- Valentina Audrito
- Department of Medical Sciences, University of Turin, School of Medicine, Turin, Italy; Human Genetics Foundation (HuGeF), Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Liang Z, Zhan W, Zhu A, Yoon Y, Lin S, Sasaki M, Klapproth JMA, Yang H, Grossniklaus HE, Xu J, Rojas M, Voll RJ, Goodman MM, Arrendale RF, Liu J, Yun CC, Snyder JP, Liotta DC, Shim H. Development of a unique small molecule modulator of CXCR4. PLoS One 2012; 7:e34038. [PMID: 22485156 PMCID: PMC3317778 DOI: 10.1371/journal.pone.0034038] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/21/2012] [Indexed: 01/07/2023] Open
Abstract
Background Metastasis, the spread and growth of tumor cells to distant organ sites, represents the most devastating attribute and plays a major role in the morbidity and mortality of cancer. Inflammation is crucial for malignant tumor transformation and survival. Thus, blocking inflammation is expected to serve as an effective cancer treatment. Among anti-inflammation therapies, chemokine modulation is now beginning to emerge from the pipeline. CXC chemokine receptor-4 (CXCR4) and its ligand stromal cell-derived factor-1 (CXCL12) interaction and the resulting cell signaling cascade have emerged as highly relevant targets since they play pleiotropic roles in metastatic progression. The unique function of CXCR4 is to promote the homing of tumor cells to their microenvironment at the distant organ sites. Methodology/Principal Findings We describe the actions of N,N′-(1,4-phenylenebis(methylene))dipyrimidin-2-amine (designated MSX-122), a novel small molecule and partial CXCR4 antagonist with properties quite unlike that of any other reported CXCR4 antagonists, which was prepared in a single chemical step using a reductive amination reaction. Its specificity toward CXCR4 was tested in a binding affinity assay and a ligand competition assay using 18F-labeled MSX-122. The potency of the compound was determined in two functional assays, Matrigel invasion assay and cAMP modulation. The therapeutic potential of MSX-122 was evaluated in three different murine models for inflammation including an experimental colitis, carrageenan induced paw edema, and bleomycin induced lung fibrosis and three different animal models for metastasis including breast cancer micrometastasis in lung, head and neck cancer metastasis in lung, and uveal melanoma micrometastasis in liver in which CXCR4 was reported to play crucial roles. Conclusions/Significance We developed a novel small molecule, MSX-122, that is a partial CXCR4 antagonist without mobilizing stem cells, which can be safer for long-term blockade of metastasis than other reported CXCR4 antagonists.
Collapse
Affiliation(s)
- Zhongxing Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Weiqiang Zhan
- Department of Chemistry, Emory University, Atlanta, Georgia, United States of America
| | - Aizhi Zhu
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Younghyoun Yoon
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Songbai Lin
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Maiko Sasaki
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | | | - Hua Yang
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States of America
| | - Hans E. Grossniklaus
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States of America
| | - Jianguo Xu
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Mauricio Rojas
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Ronald J. Voll
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Mark M. Goodman
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Richard F. Arrendale
- The Emory Institute for Drug Discovery, Emory University, Atlanta, Georgia, United States of America
| | - Jin Liu
- Department of Chemistry, Emory University, Atlanta, Georgia, United States of America
| | - C. Chris Yun
- Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - James P. Snyder
- Department of Chemistry, Emory University, Atlanta, Georgia, United States of America
- The Emory Institute for Drug Discovery, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (HS); (DCL); (JPS)
| | - Dennis C. Liotta
- Department of Chemistry, Emory University, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- The Emory Institute for Drug Discovery, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (HS); (DCL); (JPS)
| | - Hyunsuk Shim
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- * E-mail: (HS); (DCL); (JPS)
| |
Collapse
|
17
|
Choi WT, Duggineni S, Xu Y, Huang Z, An J. Drug discovery research targeting the CXC chemokine receptor 4 (CXCR4). J Med Chem 2011; 55:977-94. [PMID: 22085380 DOI: 10.1021/jm200568c] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Won-Tak Choi
- Department of Pathology, The University of Washington School of Medicine, Seattle, Washington 98195, United States
| | | | | | | | | |
Collapse
|
18
|
Calissano C, Damle RN, Marsilio S, Yan XJ, Yancopoulos S, Hayes G, Emson C, Murphy EJ, Hellerstein MK, Sison C, Kaufman MS, Kolitz JE, Allen SL, Rai KR, Ivanovic I, Dozmorov IM, Roa S, Scharff MD, Li W, Chiorazzi N. Intraclonal complexity in chronic lymphocytic leukemia: fractions enriched in recently born/divided and older/quiescent cells. Mol Med 2011; 17:1374-82. [PMID: 21968788 DOI: 10.2119/molmed.2011.00360] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 01/05/2023] Open
Abstract
The failure of chemotherapeutic regimens to eradicate cancers often results from the outgrowth of minor subclones with more dangerous genomic abnormalities or with self-renewing capacity. To explore such intratumor complexities in B-cell chronic lymphocytic leukemia (CLL), we measured B-cell kinetics in vivo by quantifying deuterium ((2)H)-labeled cells as an indicator of a cell that had divided. Separating CLL clones on the basis of reciprocal densities of chemokine (C-X-C motif) receptor 4 (CXCR4) and cluster designation 5 (CD5) revealed that the CXCR4(dim)CD5(bright) (proliferative) fraction contained more (2)H-labeled DNA and hence divided cells than the CXCR4(bright)CD5(dim) (resting) fraction. This enrichment was confirmed by the relative expression of two cell cycle-associated molecules in the same fractions, Ki-67 and minichromosome maintenance protein 6 (MCM6). Comparisons of global gene expression between the CXCR4(dim)CD5(bright) and CXCR4(bright)CD5(dim) fractions indicated higher levels of pro-proliferation and antiapoptotic genes and genes involved in oxidative injury in the proliferative fraction. An extended immunophenotype was also defined, providing a wider range of surface molecules characteristic of each fraction. These intraclonal analyses suggest a model of CLL cell biology in which the leukemic clone contains a spectrum of cells from the proliferative fraction, enriched in recently divided robust cells that are lymphoid tissue emigrants, to the resting fraction enriched in older, less vital cells that need to immigrate to lymphoid tissue or die. The model also suggests several targets preferentially expressed in the two populations amenable for therapeutic attack. Finally, the study lays the groundwork for future analyses that might provide a more robust understanding of the development and clonal evolution of this currently incurable disease.
Collapse
Affiliation(s)
- Carlo Calissano
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, New York, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Future perspectives: therapeutic targeting of notch signalling may become a strategy in patients receiving stem cell transplantation for hematologic malignancies. BONE MARROW RESEARCH 2010; 2011:570796. [PMID: 22046566 PMCID: PMC3200006 DOI: 10.1155/2011/570796] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 08/30/2010] [Indexed: 12/26/2022]
Abstract
The human Notch system consists of 5 ligands and 4 membrane receptors with promiscuous ligand binding, and Notch-initiated signalling interacts with a wide range of other intracellular pathways. The receptor signalling seems important for regulation of normal and malignant hematopoiesis, development of the cellular immune system, and regulation of immune responses. Several Notch-targeting agents are now being developed, including natural receptor ligands, agonistic and antagonistic antibodies, and inhibitors of intracellular Notch-initiated signalling. Some of these agents are in clinical trials, and several therapeutic strategies seem possible in stem cell recipients: (i) agonists may be used for stem cell expansion and possibly to enhance posttransplant lymphoid reconstitution; (ii) receptor-specific agonists or antagonists can be used for immunomodulation; (iii) Notch targeting may have direct anticancer effects. Although the effects of therapeutic targeting are difficult to predict due to promiscuous ligand binding, targeting of this system may represent an opportunity to achieve combined effects with earlier posttransplant reconstitution, immunomodulation, or direct anticancer effects.
Collapse
|
20
|
Combination of intensive chemotherapy and anticancer vaccines in the treatment of human malignancies: the hematological experience. J Biomed Biotechnol 2010; 2010:692097. [PMID: 20625438 PMCID: PMC2896720 DOI: 10.1155/2010/692097] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/20/2010] [Indexed: 12/21/2022] Open
Abstract
In vitro studies have demonstrated that cancer-specific T cell cytotoxicity can be induced both ex vivo and in vivo, but this therapeutic strategy should probably be used as an integrated part of a cancer treatment regimen. Initial chemotherapy should be administered to reduce the cancer cell burden and disease-induced immune defects. This could be followed by autologous stem cell transplantation that is a safe procedure including both high-dose disease-directed chemotherapy and the possibility for ex vivo enrichment of the immunocompetent graft cells. The most intensive conventional chemotherapy and stem cell transplantation are used especially in the treatment of aggressive hematologic malignancies; both strategies induce T cell defects that may last for several months but cancer-specific T cell reactivity is maintained after both procedures. Enhancement of anticancer T cell cytotoxicity is possible but posttransplant vaccination therapy should probably be combined with optimalisation of immunoregulatory networks. Such combinatory regimens should be suitable for patients with aggressive hematological malignancies and probably also for other cancer patients.
Collapse
|
21
|
The protein kinase C agonist PEP005 (ingenol 3-angelate) in the treatment of human cancer: a balance between efficacy and toxicity. Toxins (Basel) 2010; 2:174-94. [PMID: 22069553 PMCID: PMC3206618 DOI: 10.3390/toxins2010174] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/07/2010] [Accepted: 01/18/2010] [Indexed: 12/31/2022] Open
Abstract
The diterpene ester ingenol-3-angelate (referred to as PEP005) is derived from the plant Euphorbia peplus. Crude euphorbia extract causes local toxicity and transient inflammation when applied topically and has been used in the treatment of warts, skin keratoses and skin cancer. PEP005 is a broad range activator of the classical (α, β, γ) and novel (δ, ε, η, θ) protein kinase C isoenzymes. Direct pro-apoptotic effects of this drug have been demonstrated in several malignant cells, including melanoma cell lines and primary human acute myelogenous leukemia cells. At micromolar concentrations required to kill melanoma cells this agent causes PKC-independent secondary necrosis. In contrast, the killing of leukemic cells occurs in the nanomolar range, requires activation of protein kinase C δ (PKCδ) and is specifically associated with translocation of PKCδ from the cytoplasm to the nuclear membrane. However, in addition to this pro-apoptotic effect the agent seems to have immunostimulatory effects, including: (i) increased chemokine release by malignant cells; (ii) a general increase in proliferation and cytokine release by activated T cells, including T cells derived from patients with chemotherapy-induced lymphopenia; (iii) local infiltration of neutrophils after topical application with increased antibody-dependent cytotoxicity; and (iv) development of specific anti-cancer immune responses by CD8(+) T cells in animal models. Published studies mainly describe effects from in vitro investigations or after topical application of the agent, and careful evaluation of the toxicity after systemic administration is required before the possible use of this agent in the treatment of malignancies other than skin cancers.
Collapse
|
22
|
The chemokine network in acute myelogenous leukemia: molecular mechanisms involved in leukemogenesis and therapeutic implications. Curr Top Microbiol Immunol 2010; 341:149-72. [PMID: 20376612 DOI: 10.1007/82_2010_25] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute myelogenous leukemia (AML) is a bone marrow disease in which the leukemic cells show constitutive release of a wide range of CCL and CXCL chemokines and express several chemokine receptors. The AML cell release of various chemokines is often correlated and three release clusters have been identified: CCL2-4/CXCL1/8, CCL5/CXCL9-11, and CCL13/17/22/24/CXCL5. CXCL8 is the chemokine usually released at highest levels. Based on their overall constitutive release profile, patients can be classified into distinct subsets that differ in their T cell chemotaxis towards the leukemic cells. The release profile is modified by hypoxia, differentiation status, pharmacological interventions, and T cell cytokine responses. The best investigated single chemokine in AML is CXCL12 that binds to CXCR4. CXCL12/CXCR4 is important in leukemogenesis through regulation of AML cell migration, and CXCR4 expression is an adverse prognostic factor for patient survival after chemotherapy. Even though AML cells usually release high levels of several chemokines, there is no general increase of serum chemokine levels in these patients and the levels are also influenced by patient age, disease status, chemotherapy regimen, and complicating infections. However, serum CXCL8 levels seem to partly reflect the leukemic cell burden in AML. Specific chemokine inhibitors are currently being developed, although redundancy and pleiotropy of the chemokine system are obstacles in drug development.
Collapse
|
23
|
|