1
|
Desheva Y, Sergeeva M, Kudar P, Rekstin A, Romanovskaya-Romanko E, Krivitskaya V, Kudria K, Bazhenova E, Stepanova E, Krylova E, Kurpiaeva M, Lioznov D, Stukova M, Kiseleva I. Neuraminidase Antibody Response to Homologous and Drifted Influenza A Viruses After Immunization with Seasonal Influenza Vaccines. Vaccines (Basel) 2024; 12:1334. [PMID: 39771996 PMCID: PMC11680112 DOI: 10.3390/vaccines12121334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Humoral immunity directed against neuraminidase (NA) of the influenza virus may soften the severity of infection caused by new antigenic variants of the influenza viruses. Evaluation of NA-inhibiting (NI) antibodies in combination with antibodies to hemagglutinin (HA) may enhance research on the antibody response to influenza vaccines. METHODS The study examined 64 pairs of serum samples from patients vaccinated with seasonal inactivated trivalent influenza vaccines (IIVs) in 2018 according to the formula recommended by the World Health Organization (WHO) for the 2018-2019 flu season. Antibodies against drift influenza viruses A/Guangdong-Maonan/SWL1536/2019(H1N1)pdm09 and A/Brisbane/34/2018(H3N2) were studied before vaccination and 21 days after vaccination. To assess NI antibodies, we used an enzyme-linked lectin assay (ELLA) with pairs of reassortant viruses A/H6N1 and A/H6N2. Anti-HA antibodies were detected using a hemagglutination inhibition (HI) test. The microneutralization (MN) test was performed in the MDCK cell line using viruses A/H6N1 and A/H6N2. RESULTS Seasonal IIVs induce a significant immune response of NI antibodies against influenza A/H1N1pdm09 and A/H3N2 viruses. A significantly reduced 'herd' immunity to drift influenza A/H1N1pdm09 and A/H3N2 viruses was shown, compared with previously circulating strains. This reduction was most pronounced in strains possessing neuraminidase N2. Seasonal IIVs caused an increase in antibodies against homologous and drifted viruses; however, an increase in antibodies to drifting viruses was observed more often among older patients. The level of NI antibodies for later A/H1N1pdm09 virus in response to IIVs was statistically significantly lower among younger people. After IIV vaccination, the percentage of individuals with HI antibody levels ≥ 1:40 and NI antibody levels ≥ 1:20 was 32.8% for drift A/H1N1pdm09 virus and 17.2% for drift A/H3N2 virus. Antisera containing HI and NI antibodies exhibited neutralizing properties in vitro against viruses with unrelated HA of the H6 subtype. CONCLUSIONS Drift A/H1N1pdm09 and A/H3N2 viruses demonstrated significantly lower reactivity to HI and NI antibodies against early influenza viruses. In response to seasonal IIVs, the level of seroprotection has increased, including against drift influenza A viruses, but protective antibody levels against A/H1N1pdm09 have risen to a greater extent. A reduced immune response to the N1 protein of the A/H1N1pdm09 drift virus was obtained in individuals under 60 years of age. Based on our findings, it is hypothesized that in the cases of a HA mismatch, vaccination against N1-containing influenza viruses may be necessary for individuals under 60, while broader population-level vaccination against N2-containing viruses may be required.
Collapse
Affiliation(s)
- Yulia Desheva
- FSBSI ‘Institute of Experimental Medicine’, 197022 Saint Petersburg, Russia; (P.K.); (A.R.); (E.B.); (E.S.); (E.K.); (M.K.); (I.K.)
| | - Maria Sergeeva
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197022 Saint Petersburg, Russia; (M.S.); (E.R.-R.); (V.K.); (K.K.); (D.L.); (M.S.)
| | - Polina Kudar
- FSBSI ‘Institute of Experimental Medicine’, 197022 Saint Petersburg, Russia; (P.K.); (A.R.); (E.B.); (E.S.); (E.K.); (M.K.); (I.K.)
| | - Andrey Rekstin
- FSBSI ‘Institute of Experimental Medicine’, 197022 Saint Petersburg, Russia; (P.K.); (A.R.); (E.B.); (E.S.); (E.K.); (M.K.); (I.K.)
| | - Ekaterina Romanovskaya-Romanko
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197022 Saint Petersburg, Russia; (M.S.); (E.R.-R.); (V.K.); (K.K.); (D.L.); (M.S.)
| | - Vera Krivitskaya
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197022 Saint Petersburg, Russia; (M.S.); (E.R.-R.); (V.K.); (K.K.); (D.L.); (M.S.)
| | - Kira Kudria
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197022 Saint Petersburg, Russia; (M.S.); (E.R.-R.); (V.K.); (K.K.); (D.L.); (M.S.)
| | - Ekaterina Bazhenova
- FSBSI ‘Institute of Experimental Medicine’, 197022 Saint Petersburg, Russia; (P.K.); (A.R.); (E.B.); (E.S.); (E.K.); (M.K.); (I.K.)
| | - Ekaterina Stepanova
- FSBSI ‘Institute of Experimental Medicine’, 197022 Saint Petersburg, Russia; (P.K.); (A.R.); (E.B.); (E.S.); (E.K.); (M.K.); (I.K.)
| | - Evelina Krylova
- FSBSI ‘Institute of Experimental Medicine’, 197022 Saint Petersburg, Russia; (P.K.); (A.R.); (E.B.); (E.S.); (E.K.); (M.K.); (I.K.)
| | - Maria Kurpiaeva
- FSBSI ‘Institute of Experimental Medicine’, 197022 Saint Petersburg, Russia; (P.K.); (A.R.); (E.B.); (E.S.); (E.K.); (M.K.); (I.K.)
| | - Dmitry Lioznov
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197022 Saint Petersburg, Russia; (M.S.); (E.R.-R.); (V.K.); (K.K.); (D.L.); (M.S.)
| | - Marina Stukova
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197022 Saint Petersburg, Russia; (M.S.); (E.R.-R.); (V.K.); (K.K.); (D.L.); (M.S.)
| | - Irina Kiseleva
- FSBSI ‘Institute of Experimental Medicine’, 197022 Saint Petersburg, Russia; (P.K.); (A.R.); (E.B.); (E.S.); (E.K.); (M.K.); (I.K.)
| |
Collapse
|
2
|
White CL, Glover MA, Gandhapudi SK, Richards KA, Sant AJ. Flublok Quadrivalent Vaccine Adjuvanted with R-DOTAP Elicits a Robust and Multifunctional CD4 T Cell Response That Is of Greater Magnitude and Functional Diversity Than Conventional Adjuvant Systems. Vaccines (Basel) 2024; 12:281. [PMID: 38543915 PMCID: PMC10975948 DOI: 10.3390/vaccines12030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
It is clear that new approaches are needed to promote broadly protective immunity to viral pathogens, particularly those that are prone to mutation and escape from antibody-mediated immunity. CD4+ T cells, known to target many viral proteins and highly conserved peptide epitopes, can contribute greatly to protective immunity through multiple mechanisms. Despite this potential, CD4+ T cells are often poorly recruited by current vaccine strategies. Here, we have analyzed a promising new adjuvant (R-DOTAP), as well as conventional adjuvant systems AddaVax with or without an added TLR9 agonist CpG, to promote CD4+ T cell responses to the licensed vaccine Flublok containing H1, H3, and HA-B proteins. Our studies, using a preclinical mouse model of vaccination, revealed that the addition of R-DOTAP to Flublok dramatically enhances the magnitude and functionality of CD4+ T cells specific for HA-derived CD4+ T cell epitopes, far outperforming conventional adjuvant systems based on cytokine EliSpot assays and multiparameter flow cytometry. The elicited CD4+ T cells specific for HA-derived epitopes produce IL-2, IFN-γ, IL-4/5, and granzyme B and have multifunctional potential. Hence, R-DOTAP, which has been verified safe by human studies, can offer exciting opportunities as an immune stimulant for next-generation prophylactic recombinant protein-based vaccines.
Collapse
Affiliation(s)
- Chantelle L. White
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (C.L.W.); (M.A.G.); (K.A.R.)
| | - Maryah A. Glover
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (C.L.W.); (M.A.G.); (K.A.R.)
| | - Siva K. Gandhapudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40508, USA;
| | - Katherine A. Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (C.L.W.); (M.A.G.); (K.A.R.)
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA; (C.L.W.); (M.A.G.); (K.A.R.)
| |
Collapse
|
3
|
Chang X, Krenger P, Krueger CC, Zha L, Han J, Yermanos A, Roongta S, Mohsen MO, Oxenius A, Vogel M, Bachmann MF. TLR7 Signaling Shapes and Maintains Antibody Diversity Upon Virus-Like Particle Immunization. Front Immunol 2022; 12:827256. [PMID: 35126381 PMCID: PMC8807482 DOI: 10.3389/fimmu.2021.827256] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Virus-like particles (VLPs) are used in different marketed vaccines and are able to induce potent antibody responses. The innate pattern recognition receptors TLR7/8 recognize single stranded (ss) RNA naturally packaged into some VLPs and have been shown to enhance the production of IgG antibodies upon immunization. Here we demonstrate that, upon immunization with RNA-loaded bacteriophage-derived VLP Qβ, TLR7 signaling accelerates germinal center formation, promotes affinity/avidity maturation of VLP-specific IgG and isotype switching to IgG2b/2c. These findings extrapolated to antigens displayed on Qβ; as Fel d 1, the major cat allergen, chemically attached to Qβ also induced higher affinity/avidity IgG2b/2c antibodies in a TLR7-dependent fashion. Chimeric mice lacking TLR7-expression exclusively in B cells demonstrated that the enhanced IgG responses were driven by a B cell intrinsic mechanism. Importantly, deep sequencing of the BCR repertoire of antigen-specific B cells demonstrated higher diversity in mice with TLR7 signaling in B cells, suggesting that TLR7-signaling drives BCR repertoire development and diversity. Furthermore, the current data demonstrate that high levels of clonal diversity are reached early in the response and maintained by TLR7 signaling. In conclusion, TLR7 signaling enhances levels and quality of IgG antibodies, and this finding has major implications for vaccine design.
Collapse
Affiliation(s)
- Xinyue Chang
- Department of Rheumatology & Immunology, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Pascal Krenger
- Department of Rheumatology & Immunology, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Caroline C. Krueger
- Department of Rheumatology & Immunology, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Lisha Zha
- International Immunology Centre, Anhui Agricultural University, Hefei, China
| | - Jiami Han
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH), Zürich, Basel, Switzerland
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH), Zürich, Basel, Switzerland
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Salony Roongta
- Department of Rheumatology & Immunology, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Mona O. Mohsen
- Department of Rheumatology & Immunology, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Monique Vogel
- Department of Rheumatology & Immunology, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of Rheumatology & Immunology, University Hospital Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- International Immunology Centre, Anhui Agricultural University, Hefei, China
- Jenner Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Martin F. Bachmann,
| |
Collapse
|
4
|
Heath MD, Mohsen MO, de Kam PJ, Carreno Velazquez TL, Hewings SJ, Kramer MF, Kündig TM, Bachmann MF, Skinner MA. Shaping Modern Vaccines: Adjuvant Systems Using MicroCrystalline Tyrosine (MCT ®). Front Immunol 2020; 11:594911. [PMID: 33324411 PMCID: PMC7721672 DOI: 10.3389/fimmu.2020.594911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
The concept of adjuvants or adjuvant systems, used in vaccines, exploit evolutionary relationships associated with how the immune system may initially respond to a foreign antigen or pathogen, thus mimicking natural exposure. This is particularly relevant during the non-specific innate stage of the immune response; as such, the quality of this response may dictate specific adaptive responses and conferred memory/protection to that specific antigen or pathogen. Therefore, adjuvants may optimise this response in the most appropriate way for a specific disease. The most commonly used traditional adjuvants are aluminium salts; however, a biodegradable adjuvant, MCT®, was developed for application in the niche area of allergy immunotherapy (AIT), also in combination with a TLR-4 adjuvant-Monophosphoryl Lipid A (MPL®)-producing the first adjuvant system approach for AIT in the clinic. In the last decade, the use and effectiveness of MCT® across a variety of disease models in the preclinical setting highlight it as a promising platform for adjuvant systems, to help overcome the challenges of modern vaccines. A consequence of bringing together, for the first time, a unified view of MCT® mode-of-action from multiple experiments and adjuvant systems will help facilitate future rational design of vaccines while shaping their success.
Collapse
Affiliation(s)
- Matthew D. Heath
- Allergy Therapeutics (UK) Ltd, Worthing, United Kingdom
- Bencard Adjuvant Systems [a Division of Allergy Therapeutics (UK) Ltd], Worthing, United Kingdom
| | - Mona O. Mohsen
- Interim Translational Research Institute “iTRI”, National Center for Cancer Care and Research (NCCCR), Doha, Qatar
- Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland
| | | | | | - Simon J. Hewings
- Allergy Therapeutics (UK) Ltd, Worthing, United Kingdom
- Bencard Adjuvant Systems [a Division of Allergy Therapeutics (UK) Ltd], Worthing, United Kingdom
| | - Matthias F. Kramer
- Bencard Adjuvant Systems [a Division of Allergy Therapeutics (UK) Ltd], Worthing, United Kingdom
- Bencard Allergie (GmbH), München, Germany
| | | | - Martin F. Bachmann
- Department of BioMedical Research, Immunology RIA, University of Bern, Bern, Switzerland
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Murray A. Skinner
- Allergy Therapeutics (UK) Ltd, Worthing, United Kingdom
- Bencard Adjuvant Systems [a Division of Allergy Therapeutics (UK) Ltd], Worthing, United Kingdom
| |
Collapse
|