1
|
Kose H, Sivrikaya A, Menevse E. Maternal Fed Zinc-Deficient Diet: Effects on Relaxin Family Peptides and Oxidant System in the Testis and Liver Tissue of Male Offspring. Biol Trace Elem Res 2024; 202:5612-5623. [PMID: 38407794 PMCID: PMC11502584 DOI: 10.1007/s12011-024-04113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Today, the studies are limited on roles of insulin-like peptide 3 (INSL3), insulin-like peptide 7 (INSL7), and relaxin family peptide receptor 1 (RXFP1) which are synthesized by the testis. It is aimed to investigate the levels of the sex hormone as testosterone and the family of insulin-like proteins (relaxin family peptides), which are important in the puberty transition, in the testicular and liver tissues of male offspring born to female rats fed a zinc-deficient diet during the pregnancy, and in the changes in lipid peroxidation markers. The study was performed on 40 male offspring. In Group I: Control group, both male offspring and mothers were fed with standard rat chow. In Group II: Zinc deficient diet, both male offspring and mothers were fed a zinc-deficient diet (2.8 mg/kg zinc). In Group III: Normal diet, male offspring fed standard rat chow for 45 days (66th day) after being separated from their mothers with a maternal zinc-deficient diet. In Group IV: Zinc-supplemented diet, offspring fed with zinc supplemented (5 mg/kg/day intraperitoneal zinc sulfate, i.p.) in addition to standard rat chow after being separated from their mothers with maternal zinc deficiency until the termination of the study (66th day). Our study suggests that zinc-supplemented diets play an important role in the changes in INSL3, INSL7, RXFP1, and testosterone levels during spermatogenesis. INSL7, INSL3, and RXFP1 levels were higher in zinc-supplemented group than the zinc-deficient diet group. Liver levels of INSL3, INSL7, and MDA were significantly different in zinc-deficiency diet group than zinc-supplemented group.
Collapse
Affiliation(s)
- Hamiyet Kose
- Department of Medical Biochemistry, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Abdullah Sivrikaya
- Department of Medical Biochemistry, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Esma Menevse
- Department of Medical Biochemistry, Faculty of Medicine, Selcuk University, Konya, Turkey.
| |
Collapse
|
2
|
Navarro-Sánchez M, Gil-Miravet I, Montero-Caballero D, Bathgate RAD, Hossain MA, Castillo-Gómez E, Gundlach AL, Olucha-Bordonau FE. Modulation of contextual fear acquisition and extinction by acute and chronic relaxin-3 receptor (RXFP3) activation in the rat retrosplenial cortex. Biochem Pharmacol 2024; 225:116264. [PMID: 38710334 DOI: 10.1016/j.bcp.2024.116264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The retrosplenial cortex (RSC) plays a central role in processing contextual fear conditioning. In addition to corticocortical and thalamocortical projections, the RSC receives subcortical inputs, including a substantial projection from the nucleus incertus in the pontine tegmentum. This GABAergic projection contains the neuropeptide, relaxin-3 (RLN3), which inhibits target neurons via its Gi/o-protein-coupled receptor, RXFP3. To assess this peptidergic system role in contextual fear conditioning, we bilaterally injected the RSC of adult rats with an adeno-associated-virus (AAV), expressing the chimeric RXFP3 agonist R3/I5 or a control AAV, and subjected them to contextual fear conditioning. The R3/I5 injected rats did not display any major differences to control-injected and naïve rats but displayed a significantly delayed extinction. Subsequently, we employed acute bilateral injections of the specific RXFP3 agonist peptide, RXFP3-Analogue 2 (A2), into RSC. While the administration of A2 before each extinction trial had no impact on the extinction process, treatment with A2 before each acquisition trial resulted in delayed extinction. In related anatomical studies, we detected an enrichment of RLN3-immunoreactive nerve fibers in deep layers of the RSC, and a higher level of co-localization of RXFP3 mRNA with vesicular GABA transporter (vGAT) mRNA than with vesicular glutamate transporter-1 (vGLUT1) mRNA across the RSC, consistent with an effect of RLN3/RXFP3 signalling on the intrinsic, inhibitory circuits within the RSC. These findings suggest that contextual conditioning processes in the RSC involve, in part, RLN3 afferent modulation of local inhibitory neurons that provides a stronger memory acquisition which, in turn, retards the extinction process.
Collapse
Affiliation(s)
- Mónica Navarro-Sánchez
- Departamento de Medicina, Facultad de Ciencias de La Salud, Universitat Jaume I, Castellón, Spain
| | - Isis Gil-Miravet
- Departamento de Medicina, Facultad de Ciencias de La Salud, Universitat Jaume I, Castellón, Spain
| | - Daniel Montero-Caballero
- Departamento de Medicina, Facultad de Ciencias de La Salud, Universitat Jaume I, Castellón, Spain
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Victoria, Australia
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Esther Castillo-Gómez
- Departamento de Medicina, Facultad de Ciencias de La Salud, Universitat Jaume I, Castellón, Spain; CIBERsam-isciii, Red Española de Estrés, Spain
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Francisco E Olucha-Bordonau
- Departamento de Medicina, Facultad de Ciencias de La Salud, Universitat Jaume I, Castellón, Spain; CIBERsam-isciii, Red Española de Estrés, Spain.
| |
Collapse
|
3
|
Hoang KX, Matsuzaki M, Kohsaka T, Sasanami T. Expression of Relaxin Family Peptide Receptors 1 and 3 in the Ovarian Follicle of Japanese Quail. J Poult Sci 2024; 61:2024005. [PMID: 38312373 PMCID: PMC10830672 DOI: 10.2141/jpsa.2024005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
In our previous studies, we demonstrated that the primary source of relaxin 3 (RLN3) in Japanese quail is ovarian granulosa cells. Although several relaxin family peptide (RXFP) receptors have been sequenced, the intricacies of these receptors in avian species remain insufficiently clarified. Therefore, we assessed the expression of RXFP receptors, RXFP1 and 3, in Japanese quail. Using RT-PCR, we found that both RXFP1 and 3 were ubiquitously expressed. The expression level of RXFP1 is significantly higher in the ovarian theca layer, indicating that it is the primary receptor for RLN3 in the ovary. During follicular development, there was an elevation in thecal RXFP1 expression, but it declined after the luteinizing hormone (LH) surge. We found that the protease activity of the 60 kDa band increased after the LH surge, suggesting the involvement of RLN3 signaling in ovulation. These results suggest a paracrine role of RLN3, involving its binding with RXFP1 in ovarian theca cells. This interaction may elicit biological actions, potentially initiating ovulation after the LH surge.
Collapse
Affiliation(s)
- Khoi X. Hoang
- United Graduate
School of Agricultural Science, Gifu University,
1-1 Yanagido, Gifu 501-1193, Japan
| | - Mei Matsuzaki
- Program of Food and
AgriLife Science, Graduate School of Integrated
Sciences for Life, Hiroshima University, 1-4-4
Kagamiyama, Higashi-Hiroshima City, Hiroshima
739-8528, Japan
| | - Tetsuya Kohsaka
- Faculty of Health
Science, Butsuryo College of Osaka, 3-33
Otorikita-machi, Sakai, Osaka 593-8328,
Japan
| | - Tomohiro Sasanami
- United Graduate
School of Agricultural Science, Gifu University,
1-1 Yanagido, Gifu 501-1193, Japan
- Department of
Applied Life Sciences, Faculty of Agriculture,
Shizuoka University, 836 Ohya, Shizuoka, Shizuoka
422-8529, Japan
| |
Collapse
|
4
|
Gil-Miravet I, Mañas-Ojeda A, Ros-Bernal F, Castillo-Gómez E, Albert-Gascó H, Gundlach AL, Olucha-Bordonau FE. Involvement of the Nucleus Incertus and Relaxin-3/RXFP3 Signaling System in Explicit and Implicit Memory. Front Neuroanat 2021; 15:637922. [PMID: 33867946 PMCID: PMC8044989 DOI: 10.3389/fnana.2021.637922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
Telencephalic cognitive and emotional circuits/functions are strongly modulated by subcortical inputs. The main focus of past research on the nature of this modulation has been on the widespread monoamine projections to the telencephalon. However, the nucleus incertus (NI) of the pontine tegmentum provides a strong GABAergic and peptidergic innervation of the hippocampus, basal forebrain, amygdala, prefrontal cortex, and related regions; and represents a parallel source of ascending modulation of cognitive and emotional domains. NI GABAergic neurons express multiple peptides, including neuromedin-B, cholecystokinin, and relaxin-3, and receptors for stress and arousal transmitters, including corticotrophin-releasing factor and orexins/hypocretins. A functional relationship exists between NI neurons and their associated peptides, relaxin-3 and neuromedin-B, and hippocampal theta rhythm, which in turn, has a key role in the acquisition and extinction of declarative and emotional memories. Furthermore, RXFP3, the cognate receptor for relaxin-3, is a Gi/o protein-coupled receptor, and its activation inhibits the cellular accumulation of cAMP and induces phosphorylation of ERK, processes associated with memory formation in the hippocampus and amygdala. Therefore, this review summarizes the role of NI transmitter systems in relaying stress- and arousal-related signals to the higher neural circuits and processes associated with memory formation and retrieval.
Collapse
Affiliation(s)
- Isis Gil-Miravet
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Aroa Mañas-Ojeda
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Francisco Ros-Bernal
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Esther Castillo-Gómez
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Hector Albert-Gascó
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Andrew L Gundlach
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Francisco E Olucha-Bordonau
- Unitat Predepartamental de Medicina, Facultat de Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| |
Collapse
|
5
|
Cabiati M, Botta L, Caselli C, Del Ry S. Transcriptional evaluation of relaxin and endothelin-1 axis in heart failure patients: First evidence of its involvement during left ventricular assist device support. Int J Cardiol 2020; 306:109-115. [PMID: 32143920 DOI: 10.1016/j.ijcard.2020.02.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Left ventricular assist devices (LVAD) are implanted in patients with end-stage heart failure (ESHF) as a mechanical support for the failing myocardium, which is characterized by an activation of the neuro-hormonal system, with release of vasoactive mediators, such as endothelin (ET)-1 and relaxin (RLX)-2. The aim of this study was to evaluate whether LVAD is able to modulate the RLX-2 and ET-1 system expression in ESHF patients. METHODS Cardiac tissue was collected from ESHF patients before LVAD implantation (pre-LVAD group, n = 22), at the time of cardiac transplantation with concomitant LVAD removal (post-LVAD group, n = 6), and from stable HF patients on medical therapy at the time of cardiac transplantation (HTx group, n = 7). The expression of RLX-2, ET-1 system and inflammatory markers (IL-8, IL-6, TNF-α) were evaluated by Real-Time PCR. RESULTS RLX-2 mRNA resulted similar in pre-LVAD and HTx, but it was significantly increased in post-LVAD (p = 0.02/p = 0.01 respectively). A similar trend was observed for ET-1 and ET-converting enzyme (ECE)-1 while no significant difference was observed for ET-receptors. A positive correlation was found between ET-1 and ET-A (p = 0.031) and ECE-1 (p < 0.0001). The inflammatory markers resulted activated in all the three groups. A significant correlation between RLX-2 and ET-1 in pre-LVAD, as well as between RLX-2 and IL-8/IL-6, was found. CONCLUSIONS Our research investigates for the first time the involvement of RLX-2 and ET-1 system in ESHF patients supported by LVAD, demonstrating their potential ability to partially recover the failing myocardium, indicating their possible clinical role as biomarkers or pharmacological agents in LVAD patients. TRANSLATIONAL ASPECT The study of novel biomarkers in patients supported by continuous axial flow devices may be a starting point analysis applicable to patients with centrifugal flow devices.
Collapse
Affiliation(s)
| | - Luca Botta
- Department of Cardiac Surgery, Niguarda Ca' Granda Hospital, Milan, Italy; Department of Cardiac Surgery, AOU Bologna, S. Orsola Hospital, Italy
| | | | | |
Collapse
|
6
|
Alnafea H, Vahkal B, Zelmer CK, Yegorov S, Bogerd J, Good SV. Japanese medaka as a model for studying the relaxin family genes involved in neuroendocrine regulation: Insights from the expression of fish-specific rln3 and insl5 and rxfp3/4-type receptor paralogues. Mol Cell Endocrinol 2019; 487:2-11. [PMID: 30703485 DOI: 10.1016/j.mce.2019.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
The goal of this paper is to establish Japanese medaka (Oryzias latipes) as a model for relaxin family peptide research, particularly for studying the functions of RLN3 and INSL5, hormones playing roles in neuroendocrine regulation. Medaka, like other teleosts, retained duplicate copies of rln3, insl5 and their rxfp3/4-type receptors following fish-specific whole genome duplication (WGD) and paralogous copies of these genes may have sub-functionalised providing an intuitive model for teasing apart the pleiotropic roles of the corresponding genes in mammals. To this end, we provide experimental evidence for the expression of the relaxin family genes in medaka that had previously only been identified in-silico, confirm the gene structure of five of the ligand genes, characterise gene expression across multiple tissues and during embryonic development, perform in situ hybridization with anti-sense insl5a on embryos and in adult brain and intestinal samples, and compare these results to the data available in zebrafish. We find broad similarities but also some differences in the expression of relaxin family genes in zebrafish versus medaka, and find support for the hypothesis that the rln3a/rln3b and insl5a/insl5b paralogues have been subfunctionalized. Given that medaka has a suite of relaxin family genes more similar to other teleosts, and has retained the gene for rxfp4 (which is lost in zebrafish), our results suggest that O. latipes may be a good model for delineating the ancestral function of the relaxin family genes involved in neuroendocrine regulation.
Collapse
Affiliation(s)
- Hend Alnafea
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - Brett Vahkal
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - C Kellie Zelmer
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - Sergey Yegorov
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| | - Jan Bogerd
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Sara V Good
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada; Department of Biology, The University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
7
|
Chieu HD, Turner L, Smith MK, Wang T, Nocillado J, Palma P, Suwansa-Ard S, Elizur A, Cummins SF. Aquaculture Breeding Enhancement: Maturation and Spawning in Sea Cucumbers Using a Recombinant Relaxin-Like Gonad-Stimulating Peptide. Front Genet 2019; 10:77. [PMID: 30838021 PMCID: PMC6389678 DOI: 10.3389/fgene.2019.00077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Wild sea cucumber resources have been rapidly exhausted and therefore there is an urgent need to develop approaches that will help restocking. Currently, there is a lack of information regarding the genes involved in sea cucumber reproductive processes. The neurohormone relaxin-like gonad-stimulating peptide (RGP) has been identified as the active gonad-stimulating peptide in sea stars (Asteroidea), which could also be present in other echinoderm groups. In this study, a sea cucumber RGP was identified and confirmed by phylogenetic analysis. A recombinant Holothuria scabra RGP was produced in the yeast Pichia pastoris and confirmed by mass spectrometry. To assess bioactivity, four levels of purification were tested in an in vitro germinal vesicle breakdown (GVBD) bioassay. The most pure form induced 98.56 ± 1.19% GVBD in H. scabra and 89.57 ± 1.19% GVBD in Holothuria leucospilota. Cruder levels of purification still resulted in some GVBD. Upon single injection into female H. scabra, the recombinant RGP induced head waving behavior followed by spawning within 90–170 min. Spawned oocytes were fertilized successfully, larvae settled and developed into juveniles. Our results provide a key finding for the development of a break-through new artificial breeding approach in sea cucumber aquaculture.
Collapse
Affiliation(s)
- Hoang Dinh Chieu
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Research Institute for Marine Fisheries, HaiPhong, Vietnam
| | - Luke Turner
- Tasmanian Seafoods Pty. Ltd., Smithton, TAS, Australia
| | - Meaghan K Smith
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Josephine Nocillado
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Peter Palma
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Aquaculture Department, Southeast Asian Fisheries Development Center, Iloilo, Philippines
| | - Saowaros Suwansa-Ard
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
8
|
Olucha-Bordonau FE, Albert-Gascó H, Ros-Bernal F, Rytova V, Ong-Pålsson EKE, Ma S, Sánchez-Pérez AM, Gundlach AL. Modulation of forebrain function by nucleus incertus and relaxin-3/RXFP3 signaling. CNS Neurosci Ther 2018; 24:694-702. [PMID: 29722152 DOI: 10.1111/cns.12862] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 01/05/2023] Open
Abstract
The nucleus incertus (NI) in the pontine tegmentum sends ascending projections to the midbrain, hypothalamus, amygdala, basal forebrain, hippocampus, and prefrontal cortex, and has a postulated role in modulating several forebrain functions. A substantial population of GABAergic NI neurons expresses the neuropeptide, relaxin-3, which acts via the Gi/o -protein-coupled receptor, RXFP3, present throughout the forebrain target regions. Broad and specific manipulations of these systems by activation or inhibition of the NI or modulating RXFP3 signaling have revealed key insights into the likely influence of the NI/relaxin-3/RXFP3 system on modalities including arousal, feeding, stress responses, anxiety and addiction, and attention and memory. This range of actions corresponds to a likely impact of NI/(relaxin-3) projections on multiple integrated circuits, but makes it difficult to draw conclusions about a generalized function for this network. This review will focus on the key physiological process of oscillatory theta rhythm and the neural circuits that promote it during behavioral activation, highlighting the ability of NI and relaxin-3/RXFP3 signaling systems to modulate these circuits. A better understanding of these mechanisms may provide a way to therapeutically adjust malfunction of forebrain activity present in several pathological conditions.
Collapse
Affiliation(s)
| | - Héctor Albert-Gascó
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Francisco Ros-Bernal
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Valeria Rytova
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Emma K E Ong-Pålsson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| | - Ana M Sánchez-Pérez
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic., Australia
| |
Collapse
|
9
|
The biology and evolution of the Dilp8-Lgr3 pathway: A relaxin-like pathway coupling tissue growth and developmental timing control. Mech Dev 2018; 154:44-50. [PMID: 29715504 DOI: 10.1016/j.mod.2018.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 11/21/2022]
Abstract
Many insects, like cockroaches, moths, and flies, can regenerate tissues by extending the growth-competent phases of their life cycle. The molecular and cellular players mediating this coordination between tissue growth and developmental timing have been recently discovered in Drosophila. The insulin/relaxin-like peptide, Dilp8, was identified as a factor communicating abnormal growth status of Drosophila larval imaginal discs to the neuroendocrine centers that control the timing of the onset of metamorphosis. Dilp8 requires a neuronal relaxin receptor for this function, the Leucine rich repeat containing G protein coupled receptor, Lgr3. A review of current data supports a model where imaginal disc-derived Dilp8 acts on four central nervous system Lgr3-positive neurons to activate cyclic-AMP signaling in an Lgr3-dependent manner. This causes a reduction in ecdysone hormone production by the larval endocrine prothoracic gland, which leads to a delay in the onset of metamorphosis and a simultaneous slowing down in the growth rates of healthy imaginal tissues, promoting the generation of proportionate individuals. We discuss reports indicating that the Dilp8-Lgr3 pathway might have other functions at different life history stages, which remain to be elucidated, and review molecular evolution data on invertebrate genes related to the relaxin-pathway. The strong conservation of the relaxin pathway throughout animal evolution contrasts with instances of its complete loss in some clades, such as lepidopterans, which must coordinate growth and developmental timing using another mechanism. Research into these areas should generate exciting new insights into the biology of growth coordination, the evolution of the relaxin signaling pathway, and likely reveal unforeseen functions in other developmental stages.
Collapse
|
10
|
Patil NA, Rosengren KJ, Separovic F, Wade JD, Bathgate RAD, Hossain MA. Relaxin family peptides: structure-activity relationship studies. Br J Pharmacol 2017; 174:950-961. [PMID: 27922185 DOI: 10.1111/bph.13684] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
The human relaxin peptide family consists of seven cystine-rich peptides, four of which are known to signal through relaxin family peptide receptors, RXFP1-4. As these peptides play a vital role physiologically and in various diseases, they are of considerable importance for drug discovery and development. Detailed structure-activity relationship (SAR) studies towards understanding the role of important residues in each of these peptides have been reported over the years and utilized for the design of antagonists and minimized agonist variants. This review summarizes the current knowledge of the SAR of human relaxin 2 (H2 relaxin), human relaxin 3 (H3 relaxin), human insulin-like peptide 3 (INSL3) and human insulin-like peptide 5 (INSL5). LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Nitin A Patil
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| | - K Johan Rosengren
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
| | - Frances Separovic
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| | - John D Wade
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Semmens DC, Mirabeau O, Moghul I, Pancholi MR, Wurm Y, Elphick MR. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol 2016; 6:150224. [PMID: 26865025 PMCID: PMC4772807 DOI: 10.1098/rsob.150224] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neuropeptides are evolutionarily ancient mediators of neuronal signalling in nervous systems. With recent advances in genomics/transcriptomics, an increasingly wide range of species has become accessible for molecular analysis. The deuterostomian invertebrates are of particular interest in this regard because they occupy an ‘intermediate' position in animal phylogeny, bridging the gap between the well-studied model protostomian invertebrates (e.g. Drosophila melanogaster, Caenorhabditis elegans) and the vertebrates. Here we have identified 40 neuropeptide precursors in the starfish Asterias rubens, a deuterostomian invertebrate from the phylum Echinodermata. Importantly, these include kisspeptin-type and melanin-concentrating hormone-type precursors, which are the first to be discovered in a non-chordate species. Starfish tachykinin-type, somatostatin-type, pigment-dispersing factor-type and corticotropin-releasing hormone-type precursors are the first to be discovered in the echinoderm/ambulacrarian clade of the animal kingdom. Other precursors identified include vasopressin/oxytocin-type, gonadotropin-releasing hormone-type, thyrotropin-releasing hormone-type, calcitonin-type, cholecystokinin/gastrin-type, orexin-type, luqin-type, pedal peptide/orcokinin-type, glycoprotein hormone-type, bursicon-type, relaxin-type and insulin-like growth factor-type precursors. This is the most comprehensive identification of neuropeptide precursor proteins in an echinoderm to date, yielding new insights into the evolution of neuropeptide signalling systems. Furthermore, these data provide a basis for experimental analysis of neuropeptide function in the unique context of the decentralized, pentaradial echinoderm bauplan.
Collapse
Affiliation(s)
- Dean C Semmens
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Olivier Mirabeau
- Institut Curie, Genetics and Biology of Cancers Unit, INSERM U830, PSL Research University, Paris 75005, France
| | - Ismail Moghul
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mahesh R Pancholi
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Yannick Wurm
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
12
|
Hu MJ, Shao XX, Wang JH, Wei D, Guo YQ, Liu YL, Xu ZG, Guo ZY. Mechanism for insulin-like peptide 5 distinguishing the homologous relaxin family peptide receptor 3 and 4. Sci Rep 2016; 6:29648. [PMID: 27404393 PMCID: PMC4939597 DOI: 10.1038/srep29648] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
The relaxin family peptides play a variety of biological functions by activating four G protein-coupled receptors, RXFP1-4. Among them, insulin-like peptide 5 (INSL5) and relaxin-3 share the highest sequence homology, but they have distinct receptor preference: INSL5 can activate RXFP4 only, while relaxin-3 can activate RXFP3, RXFP4, and RXFP1. Previous studies suggest that the A-chain is responsible for their different selectivity for RXFP1. However, the mechanism by which INSL5 distinguishes the homologous RXFP4 and RXFP3 remains unknown. In the present work, we chemically evolved INSL5 in vitro to a strong agonist of both RXFP4 and RXFP3 through replacement of its five B-chain residues with the corresponding residues of relaxin-3. We identified four determinants (B2Glu, B9Leu, B17Tyr, and a rigid B-chain C-terminus) on INSL5 that are responsible for its inactivity at RXFP3. In reverse experiments, we grafted these determinants onto a chimeric R3/I5 peptide, which contains the B-chain of relaxin-3 and the A-chain of INSL5, and retains full activation potency at RXFP3 and RXFP4. All resultant R3/I5 mutants retained high activation potency towards RXFP4, but most displayed significantly decreased or even abolished activation potency towards RXFP3, confirming the role of these four INSL5 determinants in distinguishing RXFP4 from RXFP3.
Collapse
Affiliation(s)
- Meng-Jun Hu
- Research Centre for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao-Xia Shao
- Research Centre for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jia-Hui Wang
- Research Centre for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Dian Wei
- Research Centre for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yu-Qi Guo
- Research Centre for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Centre for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Centre for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Centre for Translational Medicine at East Hospital, College of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Santos FN, Pereira CW, Sánchez-Pérez AM, Otero-García M, Ma S, Gundlach AL, Olucha-Bordonau FE. Comparative Distribution of Relaxin-3 Inputs and Calcium-Binding Protein-Positive Neurons in Rat Amygdala. Front Neuroanat 2016; 10:36. [PMID: 27092060 PMCID: PMC4823275 DOI: 10.3389/fnana.2016.00036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/17/2016] [Indexed: 01/16/2023] Open
Abstract
The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or "hubs") within these key circuits. One such input arises from the nucleus incertus (NI) in the tegmentum, which sends amino acid- and peptide-containing projections throughout the forebrain. Notably, a distinct population of GABAergic NI neurons expresses the highly-conserved neuropeptide, relaxin-3, and relaxin-3 signaling has been implicated in the modulation of reward/motivation and anxiety- and depressive-like behaviors in rodents via actions within the extended amygdala. Thus, a detailed description of the relaxin-3 innervation of the extended amygdala would provide an anatomical framework for an improved understanding of NI and relaxin-3 modulation of these and other specific amygdala-related functions. Therefore, in this study, we examined the distribution of NI projections and relaxin-3-positive elements (axons/fibers/terminals) within the amygdala, relative to the distribution of neurons expressing the calcium-binding proteins, parvalbumin (PV), calretinin (CR) and/or calbindin. Anterograde tracer injections into the NI revealed a topographic distribution of NI efferents within the amygdala that was near identical to the distribution of relaxin-3-immunoreactive fibers. Highest densities of anterogradely-labeled elements and relaxin-3-immunoreactive fibers were observed in the medial nucleus of the amygdala, medial divisions of the bed nucleus of the stria terminalis (BST) and in the endopiriform nucleus. In contrast, sparse anterogradely-labeled and relaxin-3-immunoreactive fibers were observed in other amygdala nuclei, including the lateral, central and basal nuclei, while the nucleus accumbens lacked any innervation. Using synaptophysin as a synaptic marker, we identified relaxin-3 positive synaptic terminals in the medial amygdala, BST and endopiriform nucleus of amygdala. Our findings demonstrate the existence of topographic NI and relaxin-3-containing projections to specific nuclei of the extended amygdala, consistent with a likely role for this putative integrative arousal system in the regulation of amygdala-dependent social and emotional behaviors.
Collapse
Affiliation(s)
- Fabio N Santos
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat ValenciaValencia, Spain; Centro de Ciências Biológicas e da Saúde, Universidade TiradentesAracaju, Brazil
| | - Celia W Pereira
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat ValenciaValencia, Spain; Centro de Ciências Biológicas e da Saúde, Universidade TiradentesAracaju, Brazil
| | | | - Marcos Otero-García
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat Valencia Valencia, Spain
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia; Florey Department of Neuroscience and Mental Health and Department of Anatomy and Neuroscience, The University of MelbourneMelbourne, VIC, Australia
| | - Francisco E Olucha-Bordonau
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat ValenciaValencia, Spain; Unitat Predepartamental de Medicina, Universitat Jaume ICastellón, Spain
| |
Collapse
|
14
|
Mita M, Katayama H. A relaxin-like gonad-stimulating peptide from the starfish Aphelasterias japonica. Gen Comp Endocrinol 2016; 229:56-61. [PMID: 26944483 DOI: 10.1016/j.ygcen.2016.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/19/2016] [Accepted: 02/29/2016] [Indexed: 11/21/2022]
Abstract
Relaxin-like gonad-stimulating peptide (RGP) in starfish is the first identified invertebrate gonadotropin responsible for final gamete maturation. In this study, a new ortholog RGP was identified from Aphelasterias japonica. The DNA sequence encoding A. japonica RGP (AjaRGP) consists of 342 base pairs with an open reading frame encoding a peptide of 113 amino acids (aa), including a signal peptide (26aa), B-chain (20aa), C-peptide (42aa), and A-chain (25aa). AjaRGP is a heterodimeric peptide with disulfide cross-linkages. Comparing with Asterias amurensis RGP (AamRGP) and Patiria (=Asterina) pectinifera RGP (PpeRGP), the amino acid identity levels of AjaRGP with respect to AamRGP and PpeRGP are 84% and 58% for the A-chain and 90% and 68% for the B-chain, respectively. This suggests that AjaRGP is closer to AmaRGP rather than PpeRGP. Although chemical synthetic AjaRGP can induce gamete spawning and oocyte maturation in ovarian fragments of A. japonica, the ovary of P. pectinifera fails to respond to AjaRGP. This suggests that AjaRGP acts species-specifically.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan.
| | - Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratuska, Kanagawa 259-1292, Japan
| |
Collapse
|
15
|
Garelli A, Heredia F, Casimiro AP, Macedo A, Nunes C, Garcez M, Dias ARM, Volonte YA, Uhlmann T, Caparros E, Koyama T, Gontijo AM. Dilp8 requires the neuronal relaxin receptor Lgr3 to couple growth to developmental timing. Nat Commun 2015; 6:8732. [PMID: 26510564 PMCID: PMC4640092 DOI: 10.1038/ncomms9732] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/25/2015] [Indexed: 11/18/2022] Open
Abstract
How different organs in the body sense growth perturbations in distant tissues to coordinate their size during development is poorly understood. Here we mutate an invertebrate orphan relaxin receptor gene, the Drosophila Leucine-rich repeat-containing G protein-coupled receptor 3 (Lgr3), and find body asymmetries similar to those found in insulin-like peptide 8 (dilp8) mutants, which fail to coordinate growth with developmental timing. Indeed, mutation or RNA intereference (RNAi) against Lgr3 suppresses the delay in pupariation induced by imaginal disc growth perturbation or ectopic Dilp8 expression. By tagging endogenous Lgr3 and performing cell type-specific RNAi, we map this Lgr3 activity to a new subset of CNS neurons, four of which are a pair of bilateral pars intercerebralis Lgr3-positive (PIL) neurons that respond specifically to ectopic Dilp8 by increasing cAMP-dependent signalling. Our work sheds new light on the function and evolution of relaxin receptors and reveals a novel neuroendocrine circuit responsive to growth aberrations. The orphan ligand Dilp8 has been shown to coordinate growth and developmental timing in Drosophila. Here, using Gal4 drivers and CRISPR/Cas9 approaches, Garelli et al. identify a role for relaxin-like receptor Lgr3 in regulating the Dilp8 developmental delay pathway.
Collapse
Affiliation(s)
- Andres Garelli
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal.,Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), CONICET and Universidad Nacional del Sur, Camino La Carrindanga km7, Bahía Blanca B8000 FWB, Argentina
| | - Fabiana Heredia
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| | - Andreia P Casimiro
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| | - Andre Macedo
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| | - Catarina Nunes
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| | - Marcia Garcez
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| | - Angela R Mantas Dias
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| | - Yanel A Volonte
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), CONICET and Universidad Nacional del Sur, Camino La Carrindanga km7, Bahía Blanca B8000 FWB, Argentina
| | - Thomas Uhlmann
- Dualsystems Biotech AG, Grabenstrasse 11a, Schlieren CH-8952, Switzerland
| | - Esther Caparros
- Departamento de Medicina Clínica, Facultad de Medicina, Universidad Miguel Hernández, Ctra. Alicante-Valencia, km 87, San Juan, Alicante 03550, Spain
| | - Takashi Koyama
- Development, Evolution and the Environment Laboratory, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| | - Alisson M Gontijo
- Integrative Biomedicine Laboratory, CEDOC-Chronic Diseases Research Center, NOVA Medical School
- Faculdade de Ciencias Medicas, NOVA University of Lisbon, Campus do IGC, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal
| |
Collapse
|
16
|
Lecroisey C, Le Pétillon Y, Escriva H, Lammert E, Laudet V. Identification, evolution and expression of an insulin-like peptide in the cephalochordate Branchiostoma lanceolatum. PLoS One 2015; 10:e0119461. [PMID: 25774519 PMCID: PMC4361685 DOI: 10.1371/journal.pone.0119461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/16/2015] [Indexed: 01/24/2023] Open
Abstract
Insulin is one of the most studied proteins since it is central to the regulation of carbohydrate and fat metabolism in vertebrates and its expression and release are disturbed in diabetes, the most frequent human metabolic disease worldwide. However, the evolution of the function of the insulin protein family is still unclear. In this study, we present a phylogenetic and developmental analysis of the Insulin Like Peptide (ILP) in the cephalochordate amphioxus. We identified an ILP in the European amphioxus Branchiostoma lanceolatum that displays structural characteristics of both vertebrate insulin and Insulin-like Growth Factors (IGFs). Our phylogenetic analysis revealed that amphioxus ILP represents the sister group of both vertebrate insulin and IGF proteins. We also characterized both temporal and spatial expression of ILP in amphioxus. We show that ilp is highly expressed in endoderm and paraxial mesoderm during development, and mainly expressed in the gut of both the developing embryo and adult. We hypothesize that ILP has critical implications in both developmental processes and metabolism and could display IGF- and insulin-like functions in amphioxus supporting the idea of a common ancestral protein.
Collapse
Affiliation(s)
- Claire Lecroisey
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS, Université Lyon, Lyon, France
| | - Yann Le Pétillon
- CNRS, UMR 7232, BIOM, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Hector Escriva
- CNRS, UMR 7232, BIOM, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS, Université Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
17
|
Petrie EJ, Lagaida S, Sethi A, Bathgate RAD, Gooley PR. In a Class of Their Own - RXFP1 and RXFP2 are Unique Members of the LGR Family. Front Endocrinol (Lausanne) 2015; 6:137. [PMID: 26441827 PMCID: PMC4561518 DOI: 10.3389/fendo.2015.00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/20/2015] [Indexed: 01/12/2023] Open
Abstract
The leucine-rich repeat-containing G protein-coupled receptors (LGRs) family consists of three groups: types A, B, and C and all contain a large extracellular domain (ECD) made up of the structural motif - the leucine-rich repeat (LRR). In the LGRs, the ECD binds the hormone or ligand, usually through the LRRs, that ultimately results in activation and signaling. Structures are available for the ECD of type A and B LGRs, but not the type C LGRs. This review discusses the structural features of LRR proteins, and describes the known structures of the type A and B LGRs and predictions that can be made for the type C LGRs. The mechanism of activation of the LGRs is discussed with a focus on the role of the low-density lipoprotein class A (LDLa) module, a unique feature of the type C LGRs. While the LDLa module is essential for activation of the type C LGRs, the molecular mechanism for this process is unknown. Experimental data for the potential interactions of the type C LGR ligands with the LRR domain, the transmembrane domain, and the LDLa module are summarized.
Collapse
Affiliation(s)
- Emma J. Petrie
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Samantha Lagaida
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Ashish Sethi
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Ross A. D. Bathgate
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Paul R. Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Paul R. Gooley, Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC 3010, Australia,
| |
Collapse
|
18
|
Yegorov S, Bogerd J, Good SV. The relaxin family peptide receptors and their ligands: new developments and paradigms in the evolution from jawless fish to mammals. Gen Comp Endocrinol 2014; 209:93-105. [PMID: 25079565 DOI: 10.1016/j.ygcen.2014.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
Relaxin family peptide receptors (Rxfps) and their ligands, relaxin (Rln) and insulin-like (Insl) peptides, are broadly implicated in the regulation of reproductive and neuroendocrine processes in mammals. Most placental mammals harbour genes for four receptors, namely rxfp1, rxfp2, rxfp3 and rxfp4. The number and identity of rxfps in other vertebrates are immensely variable, which is probably attributable to intraspecific variation in reproductive and neuroendocrine regulation. Here, we highlight several interesting, but greatly overlooked, aspects of the rln/insl-rxfp evolutionary history: the ancient origin, recruitment of novel receptors, diverse roles of selection, differential retention and lineage-specific loss of genes over evolutionary time. The tremendous diversity of rln/insl and rxfp genes appears to have arisen from two divergent receptors and one ligand that were duplicated by whole genome duplications (WGD) in early vertebrate evolution, although several genes, notably relaxin in mammals, were also duplicated via small scale duplications. Duplication and loss of genes have varied across lineages: teleosts retained more WGD-derived genes, dominated by those thought to be involved in neuroendocrine regulation (rln3, insl5 and rxfp 3/4 genes), while eutherian mammals witnessed the diversification and rapid evolution of genes involved in reproduction (rln/insl3). Several genes that arose early in evolutionary history were lost in most mammals, but retained in teleosts and, to a lesser extent, in early diverging tetrapods. To elaborate on their evolutionary history, we provide updated phylogenies of the Rxfp1/2 and Rxfp3/4 receptors and their ligands, including new sequences from early diverging vertebrate taxa such as coelacanth, skate, spotted gar, and lamprey. We also summarize the recent progress made towards understanding the functional biology of Rxfps in non-mammalian taxa, providing a new conceptual framework for research on Rxfp signaling across vertebrates.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada
| | - Jan Bogerd
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sara V Good
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada.
| |
Collapse
|
19
|
Lenglos C, Mitra A, Guèvremont G, Timofeeva E. Regulation of expression of relaxin-3 and its receptor RXFP3 in the brain of diet-induced obese rats. Neuropeptides 2014; 48:119-32. [PMID: 24629399 DOI: 10.1016/j.npep.2014.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/04/2014] [Accepted: 02/13/2014] [Indexed: 02/08/2023]
Abstract
An animal model closely related to human obesity is diet-induced obesity in Sprague-Dawley rats. These rats placed on a high-energy (HE) diet show wide distribution in body weight gain with a subset of animals developing diet-induced obesity (DIO) and the remaining animals showing a diet-resistant (DR) phenotype. Once obesity is established, DIO rats strongly defend their increased body weight against caloric restriction. There is evidence that neuropeptide relaxin-3 is involved in food intake regulation, but the levels of expression of relaxin-3 and its receptor have not been yet demonstrated in the DIO model. The present study investigated the brain expression of relaxin-3 and its cognate receptor RXFP3 in DIO and DR rats maintained on an HE diet since weaning. Expression of relaxin-3 and RXFP3 mRNAs was assessed by in situ hybridization in ad libitum, food-deprived (12 h) and refed (1 h) feeding states. The levels of expression of relaxin-3 in the medial portion of the nucleus incertus (NI) were higher in the DIO rats compared to the DR rats in the ad libitum-fed state. Food deprivation increased the levels of expression of relaxin-3 in the medial NI in DR but not DIO rats. The stronger expression of relaxin-3 in the ad libitum-fed state in the DIO rats was accompanied by low expression of the RXFP3 receptor in the paraventricular hypothalamic nucleus (PVN), supraoptic nucleus, central amygdala (CeA), NI, and nucleus of the solitary tract (NTS). Refeeding increased expression of RXFP3 in the paraventricular thalamic nucleus, parvocellular PVN, CeA, NI, and NTS in the DIO rats. These results provide evidence that DIO rats show a constitutive increase in relaxin-3 expression in the medial NI and that refeeding after food deprivation may enhance the orexigenic effects of relaxin-3 in DIO rats by rapid upregulation of the expression of RXFP3 in the specific brain regions involved in food intake regulation.
Collapse
Affiliation(s)
- Christophe Lenglos
- Faculté de Médecine, Département Psychiatrie et Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada
| | - Arojit Mitra
- Faculté de Médecine, Département Psychiatrie et Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada
| | - Geneviève Guèvremont
- Faculté de Médecine, Département Psychiatrie et Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada
| | - Elena Timofeeva
- Faculté de Médecine, Département Psychiatrie et Neurosciences, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada.
| |
Collapse
|
20
|
Lenglos C, Mitra A, Guèvremont G, Timofeeva E. Sex differences in the effects of chronic stress and food restriction on body weight gain and brain expression of CRF and relaxin-3 in rats. GENES BRAIN AND BEHAVIOR 2013; 12:370-87. [PMID: 23425370 DOI: 10.1111/gbb.12028] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 11/05/2012] [Accepted: 02/17/2013] [Indexed: 01/08/2023]
Abstract
This study investigated sex-specific effects of repeated stress and food restriction on food intake, body weight, corticosterone plasma levels and expression of corticotropin-releasing factor (CRF) in the hypothalamus and relaxin-3 in the nucleus incertus (NI). The CRF and relaxin-3 expression is affected by stress, and these neuropeptides produce opposite effects on feeding (anorexigenic and orexigenic, respectively), but sex-specific regulation of CRF and relaxin-3 by chronic stress is not fully understood. Male and female rats were fed ad libitum chow (AC) or ad libitum chow and intermittent palatable liquid Ensure without food restriction (ACE), or combined with repeated food restriction (60% chow, 2 days per week; RCE). Half of the rats were submitted to 1-h restraint stress once a week. In total, seven weekly cycles were applied. The body weight of the RCE stressed male rats significantly decreased, whereas the body weight of the RCE stressed female rats significantly increased compared with the respective control groups. The stressed female RCE rats considerably overate chow during recovery from stress and food restriction. The RCE female rats showed elevated plasma corticosterone levels and low expression of CRF mRNA in the paraventricular hypothalamic nucleus but not in the medial preoptic area. The NI expression of relaxin-3 mRNA was significantly higher in the stressed RCE female rats compared with other groups. An increase in the expression of orexigenic relaxin-3 and misbalanced hypothalamic-pituitary-adrenal axis activity may contribute to the overeating and increased body weight seen in chronically stressed and repeatedly food-restricted female rats.
Collapse
Affiliation(s)
- C Lenglos
- Département Psychiatrie et Neurosciences, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
21
|
Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013; 93:405-80. [PMID: 23303914 DOI: 10.1152/physrev.00001.2012] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- R A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Mita M. Relaxin-like gonad-stimulating substance in an echinoderm, the starfish: a novel relaxin system in reproduction of invertebrates. Gen Comp Endocrinol 2013; 181:241-5. [PMID: 22841765 DOI: 10.1016/j.ygcen.2012.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 11/15/2022]
Abstract
Gonad-stimulating substance (GSS) in starfish is the only known invertebrate peptide hormone responsible for final gamete maturation, rendering it functionally analogous to gonadotropins in vertebrates. Recently, GSS was purified from the radial nerves of the starfish Asterina pectinifera and its chemical structure determined. This review summarizes the chemical structure of relaxin-like peptide, GSS, from a starfish as the first identified gonadotropin in invertebrates and its hormonal action on reproduction. The starfish GSS is a relaxin-like heterodimeric peptide composed of two peptides (A- and B-chains) with disulfide cross-linkages. Chemically synthesized GSS induced oocyte maturation and ovulation in vitro and an unique spawning behavior followed by release of gametes in vivo. GSS is a first trigger for oocyte maturation in starfish, but its effect is indirect because GSS acts on the ovary to produce a second mediator, 1-methyladenine (1-MeAde), as a maturation-inducing hormone of starfish. The action of GSS on ovarian follicle cells to produce 1-MeAde is mediated through the activation of its receptor, G-protein, and adenylyl cyclase. In contrast to follicle cells in a fully grown state, GSS fails to induce 1-MeAde production in growing follicle cells because of a lack of Gs-proteins. Thus, relaxin-like GSS is a major factor in the neuroendocrine cascade controlling reproduction in starfish.
Collapse
Affiliation(s)
- Masatoshi Mita
- Department of Biology, Faculty of Education, Tokyo Gakugei University, Nukuikita-machi 4-1-1, Koganei-shi, Tokyo 184-8501, Japan.
| |
Collapse
|
23
|
Bathgate RAD, Oh MHY, Ling WJJ, Kaas Q, Hossain MA, Gooley PR, Rosengren KJ. Elucidation of relaxin-3 binding interactions in the extracellular loops of RXFP3. Front Endocrinol (Lausanne) 2013; 4:13. [PMID: 23440673 PMCID: PMC3579193 DOI: 10.3389/fendo.2013.00013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/31/2013] [Indexed: 12/28/2022] Open
Abstract
Relaxin-3 is a highly conserved neuropeptide in vertebrate species and binds to the Class A G protein-coupled receptor (GPCR) RXFP3. Relaxin-3 is involved in a wide range of behaviors, including feeding, stress responses, arousal, and cognitive processes and therefore targeting of RXFP3 may be relevant for a range of neurological diseases. Structural knowledge of RXFP3 and its interaction with relaxin-3 would both increase our understanding of ligand recognition in GPCRs that respond to protein ligands and enable acceleration of the design of drug leads. In this study we have used comparative sequence analysis, molecular modeling and receptor mutagenesis to investigate the binding site of the native ligand human relaxin-3 (H3 relaxin) on the human RXFP3 receptor. Previous structure function studies have demonstrated that arginine residues in the H3 relaxin B-chain are critical for binding interactions with the receptor extracellular loops and/or N-terminal domain. Hence we have concentrated on determining the ligand interacting sites in these domains and have focused on glutamic (E) and aspartic acid (D) residues in these regions that may form electrostatic interactions with these critical arginine residues. Conserved D/E residues identified from vertebrate species multiple sequence alignments were mutated to Ala in human RXFP3 to test the effect of loss of amino acid side chain on receptor binding using a Eu-labeled relaxin-3 agonist. Finally data from mutagenesis experiments have been used in ligand docking simulations to a homology model of human RXFP3 based on the peptide-bound chemokine receptor 4 (CXCR4) structure. These studies have resulted in a model of the relaxin-3 interaction with RXFP3 which will inform further interrogation of the agonist binding site.
Collapse
Affiliation(s)
- Ross A. D. Bathgate
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, University of MelbourneParkville, VIC, Australia
- *Correspondence: Ross A. D. Bathgate, Florey Institute of Neuroscience and Mental Health, University of Melbourne, 3010 Victoria, Australia. e-mail:
| | - Maria H. Y. Oh
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, University of MelbourneParkville, VIC, Australia
| | - W. J. Jason Ling
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, University of MelbourneParkville, VIC, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of QueenslandBrisbane, QLD, Australia
| | - M. Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, University of MelbourneParkville, VIC, Australia
- School of Chemistry, University of MelbourneParkville, VIC, Australia
| | - Paul R. Gooley
- Department of Biochemistry and Molecular Biology, University of MelbourneParkville, VIC, Australia
| | - K. Johan Rosengren
- School of Biomedical Sciences, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
24
|
Bruell S, Kong RCK, Petrie EJ, Hoare B, Wade JD, Scott DJ, Gooley PR, Bathgate RAD. Chimeric RXFP1 and RXFP2 Receptors Highlight the Similar Mechanism of Activation Utilizing Their N-Terminal Low-Density Lipoprotein Class A Modules. Front Endocrinol (Lausanne) 2013; 4:171. [PMID: 24273532 PMCID: PMC3822782 DOI: 10.3389/fendo.2013.00171] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/25/2013] [Indexed: 11/13/2022] Open
Abstract
Relaxin family peptide (RXFP) receptors 1 and 2 are unique G-protein coupled receptors in that they contain an N-terminal low-density lipoprotein type A (LDLa) module which is necessary for receptor activation. The current hypothesis suggests that upon ligand binding the LDLa module interacts with the transmembrane (TM) domain of a homodimer partner receptor to induce the active receptor conformations. We recently demonstrated that three residues in the N-terminus of the RXFP1 LDLa module are potentially involved in hydrophobic interactions with the receptor to drive activation. RXFP2 shares two out of three of the residues implicated, suggesting that the two LDLa modules could be interchanged without adversely affecting activity. However, in 2007 it was shown that a chimera consisting of the RXFP1 receptor with its LDLa swapped for that of RXFP2 did not signal. We noticed this construct also contained the RXFP2 region linking the LDLa to the leucine-rich repeats. We therefore constructed chimeric RXFP1 and RXFP2 receptors with their LDLa modules swapped immediately C-terminally to the final cysteine residue of the module, retaining the native linker. In addition, we exchanged the TM domains of the chimeras to explore if matching the LDLa module with the TM domain of its native receptor altered activity. All of the chimeras were expressed at the surface of HEK293T cells with ligand binding profiles similar to the wild-type receptors. Importantly, as predicted, ligand binding was able to induce cAMP-based signaling. Chimeras of RXFP1 with the LDLa of RXFP2 demonstrated reduced H2 relaxin potency with the pairing of the RXFP2 TM with the RXFP2 LDLa necessary for full ligand efficacy. In contrast the ligand-mediated potencies and efficacies on the RXFP2 chimeras were similar suggesting the RXFP1 LDLa module has similar efficacy on the RXFP2 TM domain. Our studies demonstrate the LDLa modules of RXFP1 and RXFP2 modulate receptor activation via a similar mechanism.
Collapse
Affiliation(s)
- Shoni Bruell
- Florey Department of Neuroscience and Mental Health, Florey Institute of Neuroscience and Mental Health , Melbourne, VIC , Australia ; Department of Biochemistry and Molecular Biology , Melbourne, VIC , Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ganella DE, Callander GE, Ma S, Bye CR, Gundlach AL, Bathgate RAD. Modulation of feeding by chronic rAAV expression of a relaxin-3 peptide agonist in rat hypothalamus. Gene Ther 2012; 20:703-16. [PMID: 23135160 DOI: 10.1038/gt.2012.83] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 08/30/2012] [Accepted: 09/20/2012] [Indexed: 11/09/2022]
Abstract
Relaxin-3 is a neuropeptide that is abundantly expressed by discrete brainstem neuron populations that broadly innervate forebrain areas rich in the relaxin-3 G-protein-coupled-receptor, RXFP3. Acute and subchronic central administration of synthetic relaxin-3 or an RXFP3-selective agonist peptide, R3/I5, increase feeding and body weight in rats. Intrahypothalamic injection of relaxin-3 also increases feeding. In this study, we developed a recombinant adeno-associated virus 1/2 (rAAV1/2) vector that drives expression and constitutive secretion of bioactive R3/I5 and assessed the effect of intrahypothalamic injections on daily food intake and body weight gain in adult male rats over 8 weeks. In vitro testing revealed that the vector rAAV1/2-fibronectin (FIB)-R3/I5 directs the constitutive secretion of bioactive R3/I5 peptide. Bilateral injection of rAAV1/2-FIB-R3/I5 vector into the paraventricular nucleus produced an increase in daily food intake and body weight gain (P<0.01, ~23%, respectively), relative to control treatment. In a separate cohort of rats, quantitative polymerase chain reaction analysis of hypothalamic mRNA revealed strong expression of R3/I5 transgene at 3 months post-rAAV1/2-FIB-R3/I5 infusion. Levels of mRNA transcripts for the relaxin-3 receptor RXFP3, the hypothalamic 'feeding' peptides neuropeptide Y, AgRP and POMC, and the reproductive hormone, GnRH, were all similar to control, whereas vasopressin and oxytocin (OT) mRNA levels were reduced by ~25% (P=0.051) and ~50% (P<0.005), respectively, in rAAV1/2-FIB-R3/I5-treated rats (at 12 weeks, n=9/8 rats per group). These data demonstrate for the first time that R3/I5 is effective in modulating feeding in the rat by chronic hypothalamic RXFP3 activation and suggest a potential underlying mechanism involving altered OT signalling. Importantly, there was no desensitization of the feeding response over the treatment period and no apparent deleterious health effects, indicating that targeting the relaxin-3-RXFP3 system may be an effective long-term therapy for eating disorders.
Collapse
Affiliation(s)
- D E Ganella
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Fiengo M, Donizetti A, del Gaudio R, Minucci S, Aniello F. Characterization, cDNA cloning and expression pattern of relaxin gene during embryogenesis of Danio rerio. Dev Growth Differ 2012; 54:579-87. [DOI: 10.1111/j.1440-169x.2012.01361.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 05/04/2012] [Accepted: 05/06/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Marcella Fiengo
- Department of Biological Sciences; University of Naples Federico II; Via Mezzocannone 8; 80134; Napoli; Italy
| | - Aldo Donizetti
- Department of Biological Sciences; University of Naples Federico II; Via Mezzocannone 8; 80134; Napoli; Italy
| | - Rosanna del Gaudio
- Department of Biological Sciences; University of Naples Federico II; Via Mezzocannone 8; 80134; Napoli; Italy
| | - Sergio Minucci
- Department of Experimental Medicine; Second University of Naples; Via Costantinopoli 16; 80138; Napoli; Italy
| | - Francesco Aniello
- Department of Biological Sciences; University of Naples Federico II; Via Mezzocannone 8; 80134; Napoli; Italy
| |
Collapse
|
27
|
Yegorov S, Good S. Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors. PLoS One 2012; 7:e32923. [PMID: 22470432 PMCID: PMC3310001 DOI: 10.1371/journal.pone.0032923] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/05/2012] [Indexed: 11/28/2022] Open
Abstract
Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL) and relaxin family peptide receptors (RXFP). Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's) and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R) followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of incorporating paleogenomics data into understanding the evolution of gene families.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Sara Good
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
28
|
Fernandez AM, Torres-Alemán I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 2012; 13:225-39. [PMID: 22430016 DOI: 10.1038/nrn3209] [Citation(s) in RCA: 657] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Central and peripheral insulin-like peptides (ILPs), which include insulin, insulin-like growth factor 1 (IGF1) and IGF2, exert many effects in the brain. Through their actions on brain growth and differentiation, ILPs contribute to building circuitries that subserve metabolic and behavioural adaptation to internal and external cues of energy availability. In the adult brain each ILP has distinct effects, but together their actions ultimately regulate energy homeostasis - they affect nutrient sensing and regulate neuronal plasticity to modulate adaptive behaviours involved in food seeking, including high-level cognitive operations such as spatial memory. In essence, the multifaceted activity of ILPs in the brain may be viewed as a system organization involved in the control of energy allocation.
Collapse
Affiliation(s)
- Ana M Fernandez
- Cajal Institute, CSIC and Ciberned, Avenida Doctor Arce, 37, Madrid 28002, Spain
| | | |
Collapse
|
29
|
de la Rosa EJ, de Pablo F. Proinsulin: from hormonal precursor to neuroprotective factor. Front Mol Neurosci 2011; 4:20. [PMID: 21949502 PMCID: PMC3171928 DOI: 10.3389/fnmol.2011.00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/22/2011] [Indexed: 11/13/2022] Open
Abstract
In the last decade, non-canonical functions have been described for several molecules with hormone-like activities in different stages of vertebrate development. Since its purification in the 1960s, proinsulin has been one of the best described hormonal precursors, though it has been overwhelmingly studied in the context of insulin, the mature protein secreted by the pancreas. Beginning with our discovery of the presence and precise regulation of proinsulin mRNA in early neurulation and neurogenesis, we uncovered a role for proinsulin in cell survival in the developing nervous system. We subsequently demonstrated the ability of proinsulin to prevent pathological cell death and delay photoreceptor degeneration in a mouse model of retinitis pigmentosa. In this review, we focus on the evolution of proinsulin/insulin, beginning with insulin-like peptides expressed in mainly the neurosecretory cells of some invertebrates. We summarize findings related to the regulation of proinsulin expression during development and discuss the possible effects of proinsulin in neural cells or tissue, and its potential as a neuroprotective molecule.
Collapse
Affiliation(s)
- Enrique J de la Rosa
- 3D Lab (Development, Differentiation and Degeneration), Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | |
Collapse
|
30
|
Caruso MA, Sheridan MA. New insights into the signaling system and function of insulin in fish. Gen Comp Endocrinol 2011; 173:227-47. [PMID: 21726560 DOI: 10.1016/j.ygcen.2011.06.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022]
Abstract
Fish have provided essential information about the structure, biosynthesis, evolution, and function of insulin (INS) as well as about the structure, evolution, and mechanism of action of insulin receptors (IR). INS, insulin-like growth factor (IGF)-1, and IGF-2 share a common ancestor; INS and a single IGF occur in Agnathans, whereas INS and distinct IGF-1 and IGF-2s appear in Chondrichthyes. Some but not all teleost fish possess multiple INS genes, but it is not clear if they arose from a common gene duplication event or from multiple separate gene duplications. INS is produced by the endocrine pancreas of fish as well as by several other tissues, including brain, pituitary, gastrointestinal tract, and adipose tissue. INS regulates various aspects of feeding, growth, development, and intermediary metabolism in fish. The actions of INS are mediated through the insulin receptor (IR), a member of the receptor tyrosine kinase family. IRs are widely distributed in peripheral tissues of fish, and multiple IR subtypes that derive from distinct mRNAs have been described. The IRs of fish link to several cellular effector systems, including the ERK and IRS-PI3k-Akt pathways. The diverse effects of INS can be modulated by altering the production and release of INS as well as by adjusting the production/surface expression of IR. The diverse actions of INS in fish as well as the diverse nature of the neural, hormonal, and environmental factors known to affect the INS signaling system reflects the various life history patterns that have evolved to enable fish to occupy a wide range of aquatic habitats.
Collapse
Affiliation(s)
- Michael A Caruso
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | |
Collapse
|
31
|
Hu GB, Kusakabe M, Takei Y. Localization of diversified relaxin gene transcripts in the brain of eels. Gen Comp Endocrinol 2011; 172:430-9. [PMID: 21530530 DOI: 10.1016/j.ygcen.2011.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
Relaxin 3 (RLN3) is a newly-discovered member of the insulin superfamily. We isolated three RLN3-like cDNAs from the brain of the Japanese eel (Anguilla japonica). The deduced amino acid sequences of the RLN3-like cDNAs contained the two-chain structure common to relaxin including a RXXXRXXI/V motif in the B-chain. Phylogenetic analysis assigned the two prepropeptides into teleost/mammalian RLN3 group, which are a pair of duplicates generated by the teleost-specific third-round whole genome duplication, and the other one into teleost RLN group. Therefore, they have been named eel rln3a, rln3b and rln. rln3a transcripts were abundant in the middle-posterior region of the brain and detected at lower levels in the gills, head kidney and kidney. rln3b transcripts were also detected in the middle-posterior region of the brain, but the expression levels were lower than those of rln3a. Low levels of rln transcripts were detected in all brain areas, pituitary, digestive tract and gonad. Quantitative PCR analysis did not detect differences in expression of any rln3 or rln gene between freshwater- and seawater-acclimated eels. In situ hybridization showed that rln3a was expressed in neurons of the lateral lemniscus of the midbrain and of the griseum centrale (GC) of the hindbrain, while low amounts of rln transcripts were found in neurons of the periventricular nucleus of the posterior tuberculum of the diencephalon and the GC. These results suggest that the multiple RLN3-like peptides may play regulatory roles in the brain of euryhaline fish.
Collapse
Affiliation(s)
- Guo-Bin Hu
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | | | | |
Collapse
|
32
|
Sajid W, Kulahin N, Schluckebier G, Ribel U, Henderson HR, Tatar M, Hansen BF, Svendsen AM, Kiselyov VV, Nørgaard P, Wahlund PO, Brandt J, Kohanski RA, Andersen AS, De Meyts P. Structural and biological properties of the Drosophila insulin-like peptide 5 show evolutionary conservation. J Biol Chem 2010; 286:661-73. [PMID: 20974844 DOI: 10.1074/jbc.m110.156018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the crystal structure of two variants of Drosophila melanogaster insulin-like peptide 5 (DILP5) at a resolution of 1.85 Å. DILP5 shares the basic fold of the insulin peptide family (T conformation) but with a disordered B-chain C terminus. DILP5 dimerizes in the crystal and in solution. The dimer interface is not similar to that observed in vertebrates, i.e. through an anti-parallel β-sheet involving the B-chain C termini but, in contrast, is formed through an anti-parallel β-sheet involving the B-chain N termini. DILP5 binds to and activates the human insulin receptor and lowers blood glucose in rats. It also lowers trehalose levels in Drosophila. Reciprocally, human insulin binds to the Drosophila insulin receptor and induces negative cooperativity as in the human receptor. DILP5 also binds to insect insulin-binding proteins. These results show high evolutionary conservation of the insulin receptor binding properties despite divergent insulin dimerization mechanisms.
Collapse
Affiliation(s)
- Waseem Sajid
- Receptor Systems Biology Laboratory, Insulin and Incretin Biology, Hagedorn Research Institute, 2820 Gentofte, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ivell R, Kotula-Balak M, Glynn D, Heng K, Anand-Ivell R. Relaxin family peptides in the male reproductive system--a critical appraisal. Mol Hum Reprod 2010; 17:71-84. [DOI: 10.1093/molehr/gaq086] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
34
|
Barlos KK, Gatos D, Vasileiou Z, Barlos K. An optimized chemical synthesis of human relaxin-2. J Pept Sci 2010; 16:200-11. [DOI: 10.1002/psc.1221] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Sajid W, Holst PA, Kiselyov VV, Andersen AS, Conlon JM, Kristensen C, Kjeldsen T, Whittaker J, Chan SJ, De Meyts P. Structural basis of the aberrant receptor binding properties of hagfish and lamprey insulins. Biochemistry 2009; 48:11283-95. [PMID: 19863112 PMCID: PMC2781304 DOI: 10.1021/bi901269j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The insulin from the Atlantic hagfish (Myxine glutinosa) has been one of the most studied insulins from both a structural and a biological viewpoint; however, some aspects of its biology remain controversial, and there has been no satisfying structural explanation for its low biological potency. We have re-examined the receptor binding kinetics, as well as the metabolic and mitogenic properties, of this phylogenetically ancient insulin, as well as that from another extant representative of the ancient chordates, the river lamprey (Lampetra fluviatilis). Both insulins share unusual binding kinetics and biological properties with insulin analogues that have single mutations at residues that contribute to the hexamerization surface. We propose and demonstrate by reciprocal amino acid substitutions between hagfish and human insulins that the reduced biological activity of hagfish insulin results from unfavorable substitutions, namely, A10 (Ile to Arg), B4 (Glu to Gly), B13 (Glu to Asn), and B21 (Glu to Val). We likewise suggest that the altered biological activity of lamprey insulin may reflect substitutions at A10 (Ile to Lys), B4 (Glu to Thr), and B17 (Leu to Val). The substitution of Asp at residue B10 in hagfish insulin and of His at residue A8 in both hagfish and lamprey insulins may help compensate for unfavorable changes in other regions of the molecules. The data support the concept that the set of unusual properties of insulins bearing certain mutations in the hexamerization surface may reflect those of the insulins evolutionarily closer to the ancestral insulin gene product.
Collapse
Affiliation(s)
- Waseem Sajid
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Gentofte, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Donizetti A, Fiengo M, Minucci S, Aniello F. Duplicated zebrafish relaxin-3 gene shows a different expression pattern from that of the co-orthologue gene. Dev Growth Differ 2009; 51:715-22. [PMID: 19780785 DOI: 10.1111/j.1440-169x.2009.01131.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Relaxin-3 (Rln3) is thought to function as a neurotransmitter mainly produced in the mammalian nucleus incertus and is involved in different neural processes; among them, the stress response and food intake. Here, we report the expression pattern of the duplicated zebrafish rln3b gene and compare it to the previously analyszd spatial expression pattern of the rln3a gene. Both genes, during the embryogenesis and in the adult fish, are active and show relevant differences in their expression patterns. rln3b is diffusely expressed in the brain until the pharyngula period, when, at 48 h postfertilization (hpf), the expression becomes restricted to the periaqueductal gray, where it persists also at later developmental stages. No expression was observed in the nucleus incertus cells that express the rln3a gene from 72 hpf. In the adult, both genes are expressed in brain, but only rln3b transcript is revealed in testis at the similar expression level, whereas in the other analyzed tissues the transcript levels are lower or absent. Both the putative mature protein sequences are highly conserved, this feature and their differential expression patterns might indicate a sub-functionalization during evolution with the consequent retention of the two paralogues genes.
Collapse
Affiliation(s)
- Aldo Donizetti
- Department of Structural and Functional Biology, University of Naples Federico II, 80126 Napoli, Italy
| | | | | | | |
Collapse
|
37
|
Ivell R, Grutzner F. Evolution and male fertility: lessons from the insulin-like factor 6 gene (Insl6). Endocrinology 2009; 150:3986-90. [PMID: 19700610 DOI: 10.1210/en.2009-0691] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Richard Ivell
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
38
|
De Meyts P, Gauguin L, Svendsen AM, Sarhan M, Knudsen L, Nøhr J, Kiselyov VV. Structural basis of allosteric ligand-receptor interactions in the insulin/relaxin peptide family: implications for other receptor tyrosine kinases and G-protein-coupled receptors. Ann N Y Acad Sci 2009; 1160:45-53. [PMID: 19416158 DOI: 10.1111/j.1749-6632.2009.03837.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The insulin/relaxin superfamily of peptide hormones comprises 10 members in humans. The three members of the insulin-related subgroup bind to receptor tyrosine kinases (RTKs), while four of the seven members of the relaxin-like subgroup are now known to bind to G-protein-coupled receptors (GPCRs), the so-called relaxin family peptide receptors (RXFPs). Both systems have a long evolutionary history and play a critical role in fundamental biological processes, such as metabolism, growth, survival and longevity, and reproduction. The structural biology and ligand-binding kinetics of the insulin and insulin-like growth factor I receptors have been studied in great detail, culminating in the recent crystal structure of the insulin receptor extracellular domain. Some of the fundamental properties of these receptors, including constitutive dimerization and negative cooperativity, have recently been shown to extend to other RTKs and GPCRs, including RXFPs, confirming kinetic observations made over 30 years ago.
Collapse
Affiliation(s)
- Pierre De Meyts
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Gentofte, Denmark
| | | | | | | | | | | | | |
Collapse
|
39
|
Southey BR, Rodriguez-Zas SL, Sweedler JV. Characterization of the prohormone complement in cattle using genomic libraries and cleavage prediction approaches. BMC Genomics 2009; 10:228. [PMID: 19445702 PMCID: PMC2698874 DOI: 10.1186/1471-2164-10-228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 05/16/2009] [Indexed: 12/30/2022] Open
Abstract
Background Neuropeptides are cell to cell signalling molecules that regulate many critical biological processes including development, growth and reproduction. These peptides result from the complex processing of prohormone proteins, making their characterization both challenging and resource demanding. In fact, only 42 neuropeptide genes have been empirically confirmed in cattle. Neuropeptide research using high-throughput technologies such as microarray and mass spectrometry require accurate annotation of prohormone genes and products. However, the annotation and associated prediction efforts, when based solely on sequence homology to species with known neuropeptides, can be problematic. Results Complementary bioinformatic resources were integrated in the first survey of the cattle neuropeptide complement. Functional neuropeptide characterization was based on gene expression profiles from microarray experiments. Once a gene is identified, knowledge of the enzymatic processing allows determination of the final products. Prohormone cleavage sites were predicted using several complementary cleavage prediction models and validated against known cleavage sites in cattle and other species. Our bioinformatics approach identified 92 cattle prohormone genes, with 84 of these supported by expressed sequence tags. Notable findings included an absence of evidence for a cattle relaxin 1 gene and evidence for a cattle galanin-like peptide pseudogene. The prohormone processing predictions are likely accurate as the mammalian proprotein convertase enzymes, except for proprotein convertase subtilisin/kexin type 9, were also identified. Microarray analysis revealed the differential expression of 21 prohormone genes in the liver associated with nutritional status and 8 prohormone genes in the placentome of embryos generated using different reproductive techniques. The neuropeptide cleavage prediction models had an exceptional performance, correctly predicting cleavage in more than 86% of the prohormone sequence positions. Conclusion A substantial increase in the number of cattle prohormone genes identified and insights into the expression profiles of neuropeptide genes were obtained from the integration of bioinformatics tools and database resources and gene expression information. Approximately 20 prohormones with no empirical evidence were detected and the prohormone cleavage sites were predicted with high accuracy. Most prohormones were supported by expressed sequence tag data and many were differentially expressed across nutritional and reproductive conditions. The complete set of cattle prohormone sequences identified and the cleavage prediction approaches are available at .
Collapse
Affiliation(s)
- Bruce R Southey
- Department of Chemistry, University of Illinois, Urbana, IL, USA.
| | | | | |
Collapse
|
40
|
Ivell R, Anand-Ivell R. Biology of insulin-like factor 3 in human reproduction. Hum Reprod Update 2009; 15:463-76. [DOI: 10.1093/humupd/dmp011] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Donizetti A, Grossi M, Pariante P, D'Aniello E, Izzo G, Minucci S, Aniello F. Two neuron clusters in the stem of postembryonic zebrafish brain specifically expressrelaxin-3 gene: First evidence of nucleus incertus in fish. Dev Dyn 2008; 237:3864-9. [DOI: 10.1002/dvdy.21786] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
42
|
All dosage compensation is local: Gene-by-gene regulation of sex-biased expression on the chicken Z chromosome. Heredity (Edinb) 2008; 102:312-20. [DOI: 10.1038/hdy.2008.116] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|