1
|
Vavitsas K, Kugler A, Satta A, Hatzinikolaou DG, Lindblad P, Fewer DP, Lindberg P, Toivari M, Stensjö K. Doing synthetic biology with photosynthetic microorganisms. PHYSIOLOGIA PLANTARUM 2021; 173:624-638. [PMID: 33963557 DOI: 10.1111/ppl.13455] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The use of photosynthetic microbes as synthetic biology hosts for the sustainable production of commodity chemicals and even fuels has received increasing attention over the last decade. The number of studies published, tools implemented, and resources made available for microalgae have increased beyond expectations during the last few years. However, the tools available for genetic engineering in these organisms still lag those available for the more commonly used heterotrophic host organisms. In this mini-review, we provide an overview of the photosynthetic microbes most commonly used in synthetic biology studies, namely cyanobacteria, chlorophytes, eustigmatophytes and diatoms. We provide basic information on the techniques and tools available for each model group of organisms, we outline the state-of-the-art, and we list the synthetic biology tools that have been successfully used. We specifically focus on the latest CRISPR developments, as we believe that precision editing and advanced genetic engineering tools will be pivotal to the advancement of the field. Finally, we discuss the relative strengths and weaknesses of each group of organisms and examine the challenges that need to be overcome to achieve their synthetic biology potential.
Collapse
Affiliation(s)
- Konstantinos Vavitsas
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, Australia
| | - Dimitris G Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens, Greece
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - David P Fewer
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Mervi Toivari
- VTT, Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Sharma AK, Nymark M, Flo S, Sparstad T, Bones AM, Winge P. Simultaneous knockout of multiple LHCF genes using single sgRNAs and engineering of a high-fidelity Cas9 for precise genome editing in marine algae. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1658-1669. [PMID: 33759354 PMCID: PMC8384595 DOI: 10.1111/pbi.13582] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 05/25/2023]
Abstract
The CRISPR/Cas9 system is an RNA-guided sequence-specific genome editing tool, which has been adopted for single or multiple gene editing in a wide range of organisms. When working with gene families with functional redundancy, knocking out multiple genes within the same family may be required to generate a phenotype. In this study, we tested the possibility of exploiting the known tolerance of Cas9 for mismatches between the single-guide RNA (sgRNA) and target site to simultaneously introduce indels in multiple homologous genes in the marine diatom Phaeodactylum tricornutum. As a proof of concept, we designed two sgRNAs that could potentially target the same six light-harvesting complex (LHC) genes belonging to the LHCF subgroup. Mutations in up to five genes were achieved simultaneously using a previously established CRISPR/Cas9 system for P. tricornutum. A visible colour change was observed in knockout mutants with multiple LHCF lesions. A combination of pigment, LHCF protein and growth analyses was used to further investigate the phenotypic differences between the multiple LHCF mutants and WT. Furthermore, we used the two same sgRNAs in combination with a variant of the existing Cas9 where four amino acids substitutions had been introduced that previously have been shown to increase Cas9 specificity. A significant reduction of off-target editing events was observed, indicating that the altered Cas9 functioned as a high-fidelity (HiFi) Cas9 nuclease.
Collapse
Affiliation(s)
- Amit K. Sharma
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
- Present address:
The University Centre in SvalbardUNISLongyearbyenNorway
| | - Marianne Nymark
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
| | - Snorre Flo
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
| | - Torfinn Sparstad
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
| | - Atle M. Bones
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
| | - Per Winge
- Cell, Molecular Biology and Genomics GroupDepartment of BiologyNorwegian University of Science and TechnologyNTNUTrondheimNorway
| |
Collapse
|
3
|
Annunziata R, Balestra C, Marotta P, Ruggiero A, Manfellotto F, Benvenuto G, Biffali E, Ferrante MI. An optimised method for intact nuclei isolation from diatoms. Sci Rep 2021; 11:1681. [PMID: 33462289 PMCID: PMC7813820 DOI: 10.1038/s41598-021-81238-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/22/2020] [Indexed: 01/21/2023] Open
Abstract
Due to their abundance in the oceans, their extraordinary biodiversity and the increasing use for biotech applications, the study of diatom biology is receiving more and more attention in the recent years. One of the limitations in developing molecular tools for diatoms lies in the peculiar nature of their cell wall, that is made of silica and organic molecules and that hinders the application of standard methods for cell lysis required, for example, to extract organelles. In this study we present a protocol for intact nuclei isolation from diatoms that was successfully applied to three different species: two pennates, Pseudo-nitzschia multistriata and Phaeodactylum tricornutum, and one centric diatom species, Chaetoceros diadema. Intact nuclei were extracted by treatment with acidified NH4F solution combined to low intensity sonication pulses and separated from cell debris via FAC-sorting upon incubation with SYBR Green. Microscopy observations confirmed the integrity of isolated nuclei and high sensitivity DNA electrophoresis showed that genomic DNA extracted from isolated nuclei has low degree of fragmentation. This protocol has proved to be a flexible and versatile method to obtain intact nuclei preparations from different diatom species and it has the potential to speed up applications such as epigenetic explorations as well as single cell ("single nuclei") genomics, transcriptomics and proteomics in different diatom species.
Collapse
Affiliation(s)
| | | | - Pina Marotta
- Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy
| | | | | | | | - Elio Biffali
- Stazione Zoologica Anton Dohrn, 80121, Napoli, Italy
| | | |
Collapse
|
4
|
Brzozowska W, Sprynskyy M, Wojtczak I, Dąbek P, Witkowski A, Buszewski B. "Outsourcing" Diatoms in Fabrication of Metal-Doped 3D Biosilica. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2576. [PMID: 32516920 PMCID: PMC7321626 DOI: 10.3390/ma13112576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/23/2022]
Abstract
Diatoms have an ability that is unique among the unicellular photoautotrophic organisms to synthesize an intricately ornamented siliceous (biosilica) exoskeleton with an ordered, hierarchical, three-dimensional structure on a micro- to nanoscale. The unique morphological, structural, mechanical, transport, photonic, and optoelectronic properties of diatomaceous biosilica make it a desirable material for modern technologies. This review presents a summary and discussion of published research on the metabolic insertion of chemical elements with specific functional activity into diatomaceous biosilica. Included in the review is research on innovation in methods of synthesis of a new generation of functional siliceous materials, where the synthesis process is "outsourced" to intelligent microorganisms, referred to here as microtechnologists, by providing them with appropriate conditions and reagents.
Collapse
Affiliation(s)
- Weronika Brzozowska
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland; (W.B.); (P.D.); (A.W.)
| | - Myroslav Sprynskyy
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Str., 87-100 Toruń, Poland; (I.W.); (B.B.)
| | - Izabela Wojtczak
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Str., 87-100 Toruń, Poland; (I.W.); (B.B.)
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland; (W.B.); (P.D.); (A.W.)
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland; (W.B.); (P.D.); (A.W.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Str., 87-100 Toruń, Poland; (I.W.); (B.B.)
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| |
Collapse
|
5
|
Wu S, Gu W, Huang A, Li Y, Kumar M, Lim PE, Huan L, Gao S, Wang G. Elevated CO 2 improves both lipid accumulation and growth rate in the glucose-6-phosphate dehydrogenase engineered Phaeodactylum tricornutum. Microb Cell Fact 2019; 18:161. [PMID: 31547820 PMCID: PMC6757359 DOI: 10.1186/s12934-019-1214-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/17/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Numerous studies have shown that stress induction and genetic engineering can effectively increase lipid accumulation, but lead to a decrease of growth in the majority of microalgae. We previously found that elevated CO2 concentration increased lipid productivity as well as growth in Phaeodactylum tricornutum, along with an enhancement of the oxidative pentose phosphate pathway (OPPP) activity. The purpose of this work directed toward the verification of the critical role of glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme in the OPPP, in lipid accumulation in P. tricornutum and its simultaneous rapid growth rate under high-CO2 (0.15%) cultivation. RESULTS In this study, G6PDH was identified as a target for algal strain improvement, wherein G6PDH gene was successfully overexpressed and antisense knockdown in P. tricornutum, and systematic comparisons of the photosynthesis performance, algal growth, lipid content, fatty acid profiles, NADPH production, G6PDH activity and transcriptional abundance were performed. The results showed that, due to the enhanced G6PDH activity, transcriptional abundance and NAPDH production, overexpression of G6PDH accompanied by high-CO2 cultivation resulted in a much higher of both lipid content and growth in P. tricornutum, while knockdown of G6PDH greatly decreased algal growth as well as lipid accumulation. In addition, the total proportions of saturated and unsaturated fatty acid, especially the polyunsaturated fatty acid eicosapentaenoic acid (EPA; C20:5, n-3), were highly increased in high-CO2 cultivated G6PDH overexpressed strains. CONCLUSIONS The successful of overexpression and antisense knockdown of G6PDH well demonstrated the positive influence of G6PDH on algal growth and lipid accumulation in P. tricornutum. The improvement of algal growth, lipid content as well as polyunsaturated fatty acids in high-CO2 cultivated G6PDH overexpressed P. tricornutum suggested this G6PDH overexpression-high CO2 cultivation pattern provides an efficient and economical route for algal strain improvement to develop algal-based biodiesel production.
Collapse
Affiliation(s)
- Songcui Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
| | - Wenhui Gu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
| | - Aiyou Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
| | - Yuanxiang Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
| | - Manoj Kumar
- Climate Change Cluster, Faculty of Science, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Phaik Eem Lim
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Li Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
| | - Shan Gao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
6
|
Baldisserotto C, Sabia A, Ferroni L, Pancaldi S. Biological aspects and biotechnological potential of marine diatoms in relation to different light regimens. World J Microbiol Biotechnol 2019; 35:35. [PMID: 30712106 DOI: 10.1007/s11274-019-2607-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/27/2019] [Indexed: 11/25/2022]
Abstract
As major primary producers in marine environments, diatoms are considered a valuable feedstock of biologically active compounds for application in several biotechnological fields. Due to their metabolic plasticity, especially for light perception and use and in order to make microalgal production more environmentally sustainable, marine diatoms are considered good candidates for the large-scale cultivation. Among physical parameters, light plays a primary role. Even if sunlight is cost-effective, the employment of artificial light becomes a winning strategy if a high-value microalgal biomass is produced. Several researches on marine diatoms are designed to study the influence of different light regimens to increase biomass production enriched in biotechnologically high-value compounds (lipids, carotenoids, proteins, polysaccharides), or with emphasised photonic properties of the frustule.
Collapse
Affiliation(s)
- Costanza Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - Alessandra Sabia
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - Lorenzo Ferroni
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este, 32, 44121, Ferrara, Italy.
| |
Collapse
|
7
|
Angstenberger M, Krischer J, Aktaş O, Büchel C. Knock-Down of a ligIV Homologue Enables DNA Integration via Homologous Recombination in the Marine Diatom Phaeodactylum tricornutum. ACS Synth Biol 2019; 8:57-69. [PMID: 30525458 DOI: 10.1021/acssynbio.8b00234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genetic engineering of Phaeodactylum tricornutum as a model organism for diatoms is the basis of molecular and biochemical research, and can also be used in biotechnological approaches. So far, integration of foreign DNA into the genome happens randomly by nonhomologous end joining (NHEJ), if the classical method of particle bombardment is used, with the danger of negative physiological side effects. Here we show that a putative gene for a DNA ligase IV homologue ( ligIV) in P. tricornutum codes for a functional LigIV. The knock-down of ligIV in P. tricornutum via antisense RNA drastically enhances homologous recombination (HR) by interfering with the NHEJ pathway at its central DNA ligation step done by LigIV. This enables a specific integration of DNA at desired locations, greatly enhanced transformation rates and provides a new way of specifically altering the genome of P. tricornutum.
Collapse
Affiliation(s)
- Max Angstenberger
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany
| | - Julia Krischer
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany
| | - Ozan Aktaş
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, Biozentrum, 60438 Frankfurt am Main, Germany
| |
Collapse
|
8
|
D'Adamo S, Schiano di Visconte G, Lowe G, Szaub‐Newton J, Beacham T, Landels A, Allen MJ, Spicer A, Matthijs M. Engineering the unicellular alga Phaeodactylum tricornutum for high-value plant triterpenoid production. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:75-87. [PMID: 29754445 PMCID: PMC6330534 DOI: 10.1111/pbi.12948] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/23/2018] [Accepted: 05/02/2018] [Indexed: 05/23/2023]
Abstract
Plant triterpenoids constitute a diverse class of organic compounds that play a major role in development, plant defence and environmental interaction. Several triterpenes have demonstrated potential as pharmaceuticals. One example is betulin, which has shown promise as a pharmaceutical precursor for the treatment of certain cancers and HIV. Major challenges for triterpenoid commercialization include their low production levels and their cost-effective purification from the complex mixtures present in their natural hosts. Therefore, attempts to produce these compounds in industrially relevant microbial systems such as bacteria and yeasts have attracted great interest. Here, we report the production of the triterpenes betulin and its precursor lupeol in the photosynthetic diatom Phaeodactylum tricornutum, a unicellular eukaryotic alga. This was achieved by introducing three plant enzymes in the microalga: a Lotus japonicus oxidosqualene cyclase and a Medicago truncatula cytochrome P450 along with its native reductase. The introduction of the L. japonicus oxidosqualene cyclase perturbed the mRNA expression levels of the native mevalonate and sterol biosynthesis pathway. The best performing strains were selected and grown in a 550-L pilot-scale photobioreactor facility. To our knowledge, this is the most extensive pathway engineering undertaken in a diatom and the first time that a sapogenin has been artificially produced in a microalga, demonstrating the feasibility of the photo-bio-production of more complex high-value, metabolites in microalgae.
Collapse
Affiliation(s)
- Sarah D'Adamo
- Eden LaboratoryAlgenuityStewartbyUK
- Wageningen Universiteit en ResearchcentrumBioprocess EngineeringWageningenThe Netherlands
| | | | | | | | | | - Andrew Landels
- PML: Plymouth Marine LaboratoryPlymouthUK
- Rothamsted ResearchHarpendenUK
| | - Michael J. Allen
- PML: Plymouth Marine LaboratoryPlymouthUK
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterExeterUK
| | | | | |
Collapse
|
9
|
Russo MT, Aiese Cigliano R, Sanseverino W, Ferrante MI. Assessment of genomic changes in a CRISPR/Cas9 Phaeodactylum tricornutum mutant through whole genome resequencing. PeerJ 2018; 6:e5507. [PMID: 30310734 PMCID: PMC6174884 DOI: 10.7717/peerj.5507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, co-opted from a bacterial defense natural mechanism, is the cutting edge technology to carry out genome editing in a revolutionary fashion. It has been shown to work in many different model organisms, from human to microbes, including two diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana. Transforming P. tricornutum by bacterial conjugation, we have performed CRISPR/Cas9-based mutagenesis delivering the nuclease as an episome; this allowed for avoiding unwanted perturbations due to random integration in the genome and for excluding the Cas9 activity when it was no longer required, reducing the probability of obtaining off-target mutations, a major drawback of the technology. Since there are no reports on off-target occurrence at the genome level in microalgae, we performed whole-genome Illumina sequencing and found a number of different unspecific changes in both the wild type and mutant strains, while we did not observe any preferential mutation in the genomic regions in which off-targets were predicted. Our results confirm that the CRISPR/Cas9 technology can be efficiently applied to diatoms, showing that the choice of the conjugation method is advantageous for minimizing unwanted changes in the genome of P. tricornutum.
Collapse
Affiliation(s)
- Monia Teresa Russo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | | | | |
Collapse
|
10
|
Watanabe Y, Kadono T, Kira N, Suzuki K, Iwata O, Ohnishi K, Yamaguchi H, Adachi M. Development of endogenous promoters that drive high-level expression of introduced genes in the model diatom Phaeodactylum tricornutum. Mar Genomics 2018; 42:41-48. [PMID: 30509379 DOI: 10.1016/j.margen.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
The marine diatom Phaeodactylum tricornutum is attractive for basic and applied diatom research. We isolated putative endogenous gene promoters derived from genes that are highly expressed in P. tricornutum: the fucoxanthin chlorophyll a/c-binding protein (FCP) C gene, the vacuolar ATP synthase 16-kDa proteolipid subunit (V-ATPase C) gene, the clumping factor A gene and the solute carrier family 34 member 2 gene. Five putative promoter regions were isolated, linked to an antibiotic resistance gene (Sh ble) and transformed into P. tricornutum. Using quantitative RT-PCR, the promoter activities in the transformants were analyzed and compared to that of the diatom endogenous gene promoter, the FCP A gene promoter which has been used for the transformation of P. tricornutum. Among the five isolated potential promoters, the activity of the V-ATPase C gene promoter was approximately 2.73 times higher than that of the FCP A gene promoter. The V-ATPase C gene promoter drove the expression of Sh ble mRNA transcripts under both light and dark conditions at the stationary phase. These results suggest that the V-ATPase C gene promoter is a novel tool for the genetic engineering of P. tricornutum.
Collapse
Affiliation(s)
- Yumi Watanabe
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Nozomu Kira
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Kengo Suzuki
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Osamu Iwata
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Otsu-200, Nankoku, Kochi 783-8502, Japan
| | - Haruo Yamaguchi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
11
|
Huang W, Daboussi F. Genetic and metabolic engineering in diatoms. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0411. [PMID: 28717021 DOI: 10.1098/rstb.2016.0411] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 12/23/2022] Open
Abstract
Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Weichao Huang
- LISBP, Université de Toulouse, CNRS, INRA, INSA (LISBP-INSA Toulouse), 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Fayza Daboussi
- LISBP, Université de Toulouse, CNRS, INRA, INSA (LISBP-INSA Toulouse), 135 Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
12
|
Enhanced biomass production by Phaeodactylum tricornutum overexpressing phosphoenolpyruvate carboxylase. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Hess SK, Lepetit B, Kroth PG, Mecking S. Production of chemicals from microalgae lipids - status and perspectives. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700152] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sandra K. Hess
- Department of Chemistry; Chair of Chemical Materials Science; University of Konstanz; Konstanz Germany
| | - Bernard Lepetit
- Department of Biology; Plant Ecology; University of Konstanz; Konstanz Germany
| | - Peter G. Kroth
- Department of Biology; Plant Ecology; University of Konstanz; Konstanz Germany
| | - Stefan Mecking
- Department of Chemistry; Chair of Chemical Materials Science; University of Konstanz; Konstanz Germany
| |
Collapse
|
14
|
Moore ER, Bullington BS, Weisberg AJ, Jiang Y, Chang J, Halsey KH. Morphological and transcriptomic evidence for ammonium induction of sexual reproduction in Thalassiosira pseudonana and other centric diatoms. PLoS One 2017; 12:e0181098. [PMID: 28686696 PMCID: PMC5501676 DOI: 10.1371/journal.pone.0181098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/26/2017] [Indexed: 11/19/2022] Open
Abstract
The reproductive strategy of diatoms includes asexual and sexual phases, but in many species, including the model centric diatom Thalassiosira pseudonana, sexual reproduction has never been observed. Furthermore, the environmental factors that trigger sexual reproduction in diatoms are not understood. Although genome sequences of a few diatoms are available, little is known about the molecular basis for sexual reproduction. Here we show that ammonium reliably induces the key sexual morphologies, including oogonia, auxospores, and spermatogonia, in two strains of T. pseudonana, T. weissflogii, and Cyclotella cryptica. RNA sequencing revealed 1,274 genes whose expression patterns changed when T. pseudonana was induced into sexual reproduction by ammonium. Some of the induced genes are linked to meiosis or encode flagellar structures of heterokont and cryptophyte algae. The identification of ammonium as an environmental trigger suggests an unexpected link between diatom bloom dynamics and strategies for enhancing population genetic diversity.
Collapse
Affiliation(s)
- Eric R. Moore
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Briana S. Bullington
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America
| | - Jeff Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Kimberly H. Halsey
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
15
|
Chu L, Ewe D, Río Bártulos C, Kroth PG, Gruber A. Rapid induction of GFP expression by the nitrate reductase promoter in the diatom Phaeodactylum tricornutum. PeerJ 2016; 4:e2344. [PMID: 27635322 PMCID: PMC5012323 DOI: 10.7717/peerj.2344] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023] Open
Abstract
An essential prerequisite for a controlled transgene expression is the choice of a suitable promoter. In the model diatom Phaeodactylum tricornutum, the most commonly used promoters for trans-gene expression are the light dependent lhcf1 promoters (derived from two endogenous genes encoding fucoxanthin chlorophyll a/c binding proteins) and the nitrate dependent nr promoter (derived from the endogenous nitrate reductase gene). In this study, we investigated the time dependent expression of the green fluorescent protein (GFP) reporter under control of the nitrate reductase promoter in independently genetically transformed P. tricornutum cell lines following induction of expression by change of the nitrogen source in the medium via flow cytometry, microscopy and western blotting. In all investigated cell lines, GFP fluorescence started to increase 1 h after change of the medium, the fastest increase rates were observed between 2 and 3 h. Fluorescence continued to increase slightly for up to 7 h even after transfer of the cells to ammonium medium. The subsequent decrease of GFP fluorescence was much slower than the increase, probably due to the stability of GFP. The investigation of several cell lines transformed with nr based constructs revealed that, also in the absence of nitrate, the promoter may show residual activity. Furthermore, we observed a strong variation of gene expression between independent cell lines, emphasising the importance of a thorough characterisation of genetically modified cell lines and their individual expression patterns.
Collapse
Affiliation(s)
- Lili Chu
- Fachbereich Biologie, Universität Konstanz , Konstanz , Germany
| | - Daniela Ewe
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany; Current affiliation: Centre Algatech, Institute of Microbiology, The Czech Academy of Science, Třeboň, Czech Republic
| | | | - Peter G Kroth
- Fachbereich Biologie, Universität Konstanz , Konstanz , Germany
| | - Ansgar Gruber
- Fachbereich Biologie, Universität Konstanz , Konstanz , Germany
| |
Collapse
|
16
|
Kira N, Ohnishi K, Miyagawa-Yamaguchi A, Kadono T, Adachi M. Nuclear transformation of the diatom Phaeodactylum tricornutum using PCR-amplified DNA fragments by microparticle bombardment. Mar Genomics 2016; 25:49-56. [DOI: 10.1016/j.margen.2015.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/30/2015] [Accepted: 12/13/2015] [Indexed: 11/29/2022]
|
17
|
Abstract
Microalgae present a huge and still insufficiently tapped resource of very long-chain omega-3 and omega-6 polyunsaturated fatty acids (VLC-PUFA) for human nutrition and medicinal applications. This chapter describes the diversity of unicellular eukaryotic microalgae in respect to VLC-PUFA biosynthesis. Then, we outline the major biosynthetic pathways mediating the formation of VLC-PUFA by sequential desaturation and elongation of C18-PUFA acyl groups. We address the aspects of spatial localization of those pathways and elaborate on the role for VLC-PUFA in microalgal cells. Recent progress in microalgal genetic transformation and molecular engineering has opened the way to increased production efficiencies for VLC-PUFA. The perspectives of photobiotechnology and metabolic engineering of microalgae for altered or enhanced VLC-PUFA production are also discussed.
Collapse
Affiliation(s)
- Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel.
| | - Stefan Leu
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Israel
| |
Collapse
|
18
|
Kröger N, Brunner E. Complex-shaped microbial biominerals for nanotechnology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:615-27. [DOI: 10.1002/wnan.1284] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/02/2014] [Accepted: 07/06/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Nils Kröger
- B CUBE Center for Molecular Bioengineering, Department of Chemistry and Food Chemistry; TU Dresden; Dresden Germany
| | - Eike Brunner
- Department of Chemistry and Food Chemistry; TU Dresden; Dresden Germany
| |
Collapse
|
19
|
Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 2014; 5:3831. [PMID: 24871200 DOI: 10.1038/ncomms4831] [Citation(s) in RCA: 246] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/08/2014] [Indexed: 02/07/2023] Open
Abstract
Diatoms, a major group of photosynthetic microalgae, have a high biotechnological potential that has not been fully exploited because of the paucity of available genetic tools. Here we demonstrate targeted and stable modifications of the genome of the marine diatom Phaeodactylum tricornutum, using both meganucleases and TALE nucleases. When nuclease-encoding constructs are co-transformed with a selectable marker, high frequencies of genome modifications are readily attained with 56 and 27% of the colonies exhibiting targeted mutagenesis or targeted gene insertion, respectively. The generation of an enhanced lipid-producing strain (45-fold increase in triacylglycerol accumulation) through the disruption of the UDP-glucose pyrophosphorylase gene exemplifies the power of genome engineering to harness diatoms for biofuel production.
Collapse
|
20
|
Silicon enhances the growth of Phaeodactylum tricornutum Bohlin under green light and low temperature. Sci Rep 2014; 4:3958. [PMID: 24492482 PMCID: PMC5379240 DOI: 10.1038/srep03958] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/07/2014] [Indexed: 01/12/2023] Open
Abstract
Phaeodactylum tricornutum Bohlin is an ideal model diatom; its complete genome is known, and it is an important economic microalgae. Although silicon is not required in laboratory and factory culture of this species, previous studies have shown that silicon starvation can lead to differential expression of miRNAs. The role that silicon plays in P. tricornutum growth in nature is poorly understood. In this study, we compared the growth rate of silicon starved P. tricornutum with that of normal cultured cells under different culture conditions. Pigment analysis, photosynthesis measurement, lipid analysis, and proteomic analysis showed that silicon plays an important role in P. tricornutum growth and that its presence allows the organism to grow well under green light and low temperature.
Collapse
|
21
|
Georgianna DR, Hannon MJ, Marcuschi M, Wu S, Botsch K, Lewis AJ, Hyun J, Mendez M, Mayfield SP. Production of recombinant enzymes in the marine alga Dunaliella tertiolecta. ALGAL RES 2013. [DOI: 10.1016/j.algal.2012.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J. TAG, you're it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 2011; 23:352-63. [PMID: 22209109 DOI: 10.1016/j.copbio.2011.12.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 12/04/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
Abstract
Photosynthetic organisms are responsible for converting sunlight into organic matter, and they are therefore seen as a resource for the renewable fuel industry. Ethanol and esterified fatty acids (biodiesel) are the most common fuel products derived from these photosynthetic organisms. The potential of algae as producers of biodiesel precursor (or triacylglycerols (TAGs)) has yet to be realized because of the limited knowledge of the underlying biochemistry, cell biology and genetics. Well-characterized pathways from fungi and land plants have been used to identify algal homologs of key enzymes in TAG synthesis, including diacylglcyerol acyltransferases, phospholipid diacylglycerol acyltransferase and phosphatidate phosphatases. Many laboratories have adopted Chlamydomonas reinhardtii as a reference organism for discovery of algal-specific adaptations of TAG metabolism. Stressed Chlamydomonas cells, grown either photoautotrophically or photoheterotrophically, accumulate TAG in plastid and cytoplasmic lipid bodies, reaching 46-65% of dry weight in starch accumulation (sta) mutants. State of the art genomic technologies including expression profiling and proteomics have identified new proteins, including key components of lipid droplets, candidate regulators and lipid/TAG degrading activities. By analogy with crop plants, it is expected that advances in algal breeding and genome engineering may facilitate realizing the potential in algae.
Collapse
Affiliation(s)
- Sabeeha S Merchant
- Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, United States.
| | | | | | | | | |
Collapse
|
23
|
Guihéneuf F, Leu S, Zarka A, Khozin-Goldberg I, Khalilov I, Boussiba S. Cloning and molecular characterization of a novel acyl-CoA:diacylglycerol acyltransferase 1-like gene (PtDGAT1) from the diatom Phaeodactylum tricornutum. FEBS J 2011; 278:3651-66. [PMID: 21812932 DOI: 10.1111/j.1742-4658.2011.08284.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have identified and isolated a cDNA encoding a novel acyl-CoA:diacylglycerol acyltransferase (DGAT)1-like protein, from the diatom microalga Phaeodactylum tricornutum (PtDGAT1). The full-length cDNA sequences of PtDGAT1 transcripts revealed that two types of mRNA, PtDGAT1short and PtDGAT1long, were transcribed from the single PtDGAT1 gene. PtDGAT1short encodes a 565 amino acid sequence that is homologous to several functionally characterized higher plant DGAT1 proteins, and 55% identical to the putative DGAT1 of the diatom Thalassiosira pseudonana, but shows little homology with other available putative and cloned algal DGAT sequences. PtDGAT1long lacks several catalytic domains, owing to a 63-bp nucleotide insertion in the mRNA containing a stop codon. Alternative splicing consisting of intron retention appears to regulate the amount of active DGAT1 produced, providing a possible molecular mechanism for increased triacylglycerol (TAG) biosynthesis in P. tricornutum under nitrogen starvation. DGAT mediates the last committed step in TAG biosynthesis, so we investigated the changes in expression levels of the two types of mRNA following nitrogen starvation inducing TAG accumulation. The abundance of both transcripts was markedly increased under nitrogen starvation, but much less so for PtDGAT1short. PtDGAT1 activity of PtDGAT1short was confirmed in a heterologous yeast transformation system by restoring DGAT activity in a Saccharomyces cerevisiae neutral lipid-deficient quadruple mutant strain (H1246), resulting in lipid body formation. Lipid body formation was only restored upon the expression of PtDGAT1short, and not of PtDGAT1long. The recombinant yeast appeared to display a preference for incorporating saturated C(16) and C(18) fatty acids into TAG.
Collapse
Affiliation(s)
- Freddy Guihéneuf
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Israel
| | | | | | | | | | | |
Collapse
|
24
|
Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng 2011; 13:89-95. [DOI: 10.1016/j.ymben.2010.10.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/14/2010] [Indexed: 11/23/2022]
|
25
|
Chepurnov VA, Chaerle P, Roef L, Van Meirhaeghe A, Vanhoutte K. Classical Breeding in Diatoms: Scientific Background and Practical Perspectives. THE DIATOM WORLD 2011. [DOI: 10.1007/978-94-007-1327-7_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
Bruckner CG, Kroth PG. PROTOCOLS FOR THE REMOVAL OF BACTERIA FROM FRESHWATER BENTHIC DIATOM CULTURES(1). JOURNAL OF PHYCOLOGY 2009; 45:981-986. [PMID: 27034229 DOI: 10.1111/j.1529-8817.2009.00708.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, we describe different combinations of physical separation and antibiotic treatment to remove associated bacteria from freshwater diatoms. Diatoms were purified either from natural epilithic biofilms or from unialgal cultures. We determined that for most strains, different purification procedures have to be combined individually. In a new approach, we show that for some diatom strains, the substitution of associated aquatic bacteria by an antibiotic-sensitive Escherichia coli strain and subsequent treatment with antibiotics may be a successful strategy to obtain axenic diatom cultures. Axenic diatom cultures are essential to study the physiology and biochemistry of individual strains as well as their responses to environmental changes without interference of accompanying bacteria.
Collapse
Affiliation(s)
| | - Peter G Kroth
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
27
|
Ramachandra TV, Mahapatra DM, B K, Gordon R. Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels. Ind Eng Chem Res 2009. [DOI: 10.1021/ie900044j] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T. V. Ramachandra
- Energy & Wetlands Research Group, Centre for Ecological Sciences/Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560 012, India
| | - Durga Madhab Mahapatra
- Energy & Wetlands Research Group, Centre for Ecological Sciences/Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560 012, India
| | - Karthick B
- Energy & Wetlands Research Group, Centre for Ecological Sciences/Centre for Sustainable Technologies, Indian Institute of Science, Bangalore 560 012, India
| | - Richard Gordon
- Department of Radiology, University of Manitoba, Room GA216, HSC, 820 Sherbrook Street, Winnipeg MB R3A 1R9, Canada
| |
Collapse
|
28
|
Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS. The Glass Menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 2009; 27:116-27. [PMID: 19167770 DOI: 10.1016/j.tibtech.2008.11.003] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 11/11/2008] [Accepted: 11/14/2008] [Indexed: 11/24/2022]
Abstract
Diatoms are unicellular, eukaryotic, photosynthetic algae that are found in aquatic environments. Diatoms have enormous ecological importance on this planet and display a diversity of patterns and structures at the nano- to millimetre scale. Diatom nanotechnology, a new interdisciplinary area, has spawned collaborations in biology, biochemistry, biotechnology, physics, chemistry, material science and engineering. We survey diatom nanotechnology since 2005, emphasizing recent advances in diatom biomineralization, biophotonics, photoluminescence, microfluidics, compustat domestication, multiscale porosity, silica sequestering of proteins, detection of trace gases, controlled drug delivery and computer design. Diatoms might become the first organisms for which the gap in our knowledge of the relationship between genotype and phenotype is closed.
Collapse
Affiliation(s)
- Richard Gordon
- Department of Radiology, University of Manitoba, Winnipeg MB R3A 1R9, Canada
| | | | | | | | | |
Collapse
|