1
|
Deng Y, Yu YD, Song C, Xu GY, Xu Y, Ye CJ. Design, Synthesis, and Structure-Activity Relationship of 2-(Piperazin-1-yl)quinazolin-4(3 H)-one Derivatives as Active Agents against Toxoplasma gondii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6215-6230. [PMID: 40008850 DOI: 10.1021/acs.jafc.4c06788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
A novel series of quinazolin-4(3H)-one derivatives were synthesized using a hybridization strategy that combined the quinazolin-4(3H)-one scaffold, the diarylether fragment, and the piperazine ring. The in vitro activity evaluation of these compounds against Toxoplasma gondii demonstrated that most of this series of compounds showed moderate to good effectiveness, with IC50 values ranging from 5.94 to 102.2 μM. Among the synthesized derivatives, compounds 11 and 18 emerged as the most potent inhibitors, significantly reducing the replication rate of T. gondii with IC50 values of 6.33 and 5.94 μM, as well as demonstrated low cytotoxicity with CC50 values of 285 and 59.2 μM, respectively. The structure-activity relationship investigation indicates that the substituent at the N-3 position of the quinazolin-4(3H)-one is important for anti-T. gondii activity while the replacements at the phenyl moiety of the quinazolin-4(3H)-one and at the diarylether fragment cannot improve activity. The invasion and proliferation assay demonstrated that compound 11 could inhibit both parasite invasion and replication ability. Further investigation of the in vitro efficacy revealed irreversible action of compound 11 against T. gondii. In vivo investigations conducted within a murine model of acute infection revealed that compounds 11 and 18 exhibited a remarkable capacity to significantly diminish the parasitic load in comparison to the control group while also extending the survival duration of the subjects. These results underscore the potential of compound 11 as a candidate for further exploration in the development of antitoxoplasmosis therapies.
Collapse
Affiliation(s)
- Yu Deng
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang 402460, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Yuan-Di Yu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang 402460, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Chao Song
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Guo-Yang Xu
- Institute of Veterinary Sciences & Pharmaceuticals, Chongqing Academy of Animal Sciences, Rongchang 402460, China
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Yue Xu
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| | - Chang-Ju Ye
- Institute of Epidemic Prevention & Control, National Center of Technologies Innovation for Pigs, Rongchang 402460, China
| |
Collapse
|
2
|
Liu Z, Mo J, Li Y, Liu S, Zeng Q, Zhang J. Effect of the mitochondrial uncoupling agent BAM15 against the Toxoplasma gondii RH strain and Prugniaud strain. Parasit Vectors 2024; 17:96. [PMID: 38424591 PMCID: PMC10905885 DOI: 10.1186/s13071-024-06187-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Toxoplasmosis is a zoonotic disease caused by the infection of the protozoa Toxoplasma gondii (T. gondii), and safe and effective therapeutic drugs are lacking. Mitochondria, is an important organelle that maintains T. gondii survival, however, drugs targeting mitochondria are lacking. METHODS The cytotoxicity of BAM15 was detected by CCK-8 and the in vitro effects of BAM15 was detected by qPCR, plaque assay and flow cytometry. Furthermore, the ultrastructural changes of T. gondii after BAM15 treatment were observed by transmission electron microscopy, and further the mitochondrial membrane potential (ΔΨm), ATP level and reactive oxygen species (ROS) of T. gondii after BAM15 treatment were detected. The pharmacokinetic experiments and in vivo infection assays were performed in mice to determine the in vivo effect of BAM15. RESULTS BAM15 had excellent anti-T. gondii activity in vitro and in vivo with an EC50 value of 1.25 μM, while the IC50 of BAM15 in Vero cells was 27.07 μM. Notably, BAM15 significantly inhibited proliferation activity of T. gondii RH strain and Prugniaud strain (PRU), caused T. gondii death. Furthermore, BAM15 treatment induced T. gondii mitochondrial vacuolation and autolysis by TEM. Moreover, the decrease in ΔΨm and ATP level, as well as the increase in ROS production further confirmed the changes CONCLUSIONS: Our study identifies a useful T. gondii mitochondrial inhibitor, which may also serve as a leading molecule to develop therapeutic mitochondrial inhibitors in toxoplasmosis.'
Collapse
Affiliation(s)
- Zhendi Liu
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China
| | - Jiao Mo
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China
| | - Yetian Li
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China
| | - Siyang Liu
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China
| | - Qingyuan Zeng
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China
| | - Jili Zhang
- Health Science Center, Ningbo University, Ningbo, Zhengjiang Province, 315211, People's Republic of China.
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Lanzhou, Gansu Province, 730050, People's Republic of China.
| |
Collapse
|
3
|
Cruz-Bustos T, Dolezal M, Feix AS, Ruttkowski B, Hummel K, Razzazi-Fazeli E, Joachim A. Unravelling the sexual developmental biology of Cystoisospora suis, a model for comparative coccidian parasite studies. Front Cell Infect Microbiol 2023; 13:1271731. [PMID: 37953800 PMCID: PMC10635411 DOI: 10.3389/fcimb.2023.1271731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction The apicomplexan parasite Cystoisospora suis has global significance as an enteropathogen of suckling piglets. Its intricate life cycle entails a transition from an asexual phase to sexual development, ultimately leading to the formation of transmissible oocysts. Methods To advance our understanding of the parasite's cellular development, we complemented previous transcriptome studies by delving into the proteome profiles at five distinct time points of in vitro cultivation through LC/MS-MS analysis. Results A total of 1,324 proteins were identified in the in vitro developmental stages of C. suis, and 1,082 proteins were identified as significantly differentially expressed. Data are available via ProteomeXchange with identifier PXD045050. We performed BLAST, GO enrichment, and KEGG pathway analyses on the up- and downregulated proteins to elucidate correlated events in the C. suis life cycle. Our analyses revealed intriguing metabolic patterns in macromolecule metabolism, DNA- and RNA-related processes, proteins associated with sexual stages, and those involved in cell invasion, reflecting the adaptation of sexual stages to a nutrient-poor and potentially stressful extracellular environment, with a focus on enzymes involved in metabolism and energy production. Discussion These findings have important implications for understanding the developmental biology of C. suis as well as other, related coccidian parasites, such as Eimeria spp. and Toxoplasma gondii. They also support the role of C. suis as a new model for the comparative biology of coccidian tissue cyst stages.
Collapse
Affiliation(s)
- Teresa Cruz-Bustos
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Marlies Dolezal
- Platform for Bioinformatics and Biostatistics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anna Sophia Feix
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Bärbel Ruttkowski
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karin Hummel
- VetCore Facility (Proteomics), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ebrahim Razzazi-Fazeli
- VetCore Facility (Proteomics), University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anja Joachim
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Feix AS, Cruz-Bustos T, Ruttkowski B, Joachim A. In vitro cultivation methods for coccidian parasite research. Int J Parasitol 2023; 53:477-489. [PMID: 36400306 DOI: 10.1016/j.ijpara.2022.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
Abstract
The subclass Coccidia comprises a large group of protozoan parasites, including important pathogens of humans and animals such as Toxoplasma gondii, Neospora caninum, Eimeria spp., and Cystoisospora spp. Their life cycle includes a switch from asexual to sexual stages and is often restricted to a single host species. Current research on coccidian parasites focuses on cell biology and the underlying mechanisms of protein expression and trafficking in different life stages, host cell invasion and host-parasite interactions. Furthermore, novel anticoccidial drug targets are evaluated. Given the variety of research questions and the requirement to reduce and replace animal experimentation, in vitro cultivation of Coccidia needs to be further developed and refined to meet these requirements. For these purposes, established culture systems are constantly improved. In addition, new in vitro culture systems lately gained considerable importance in research on Coccidia. Well established and optimized in vitro cultures of monolayer cells can support the viability and development of parasite stages and even allow completion of the life cycle in vitro, as shown for Cystoisospora suis and Eimeria tenella. Furthermore, new three-dimensional cell culture models are used for propagation of Cryptosporidium spp. (close relatives of the coccidians), and the infection of three-dimensional organoids with T. gondii also gained popularity as the interaction between the parasite and host tissue can be studied in more detail. The latest advances in three-dimensional culture systems are organ-on-a-chip models, that to date have only been tested for T. gondii but promise to accelerate research in other coccidians. Lastly, the completion of the life cycle of C. suis and Cryptosporidium parvum was reported to continue in a host cell-free environment following the first occurrence of asexual stages. Such axenic cultures are becoming increasingly available and open new avenues for research on parasite life cycle stages and novel intervention strategies.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Teresa Cruz-Bustos
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
5
|
Effect of the pseudomonas metabolites HQNO on the Toxoplasma gondii RH strain in vitro and in vivo. Int J Parasitol Drugs Drug Resist 2023; 21:74-80. [PMID: 36758272 PMCID: PMC9929485 DOI: 10.1016/j.ijpddr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Toxoplasmosis is a widespread disease in humans and animals. Currently, toxoplasmosis chemotherapy options are limited due to severe side effects. There is an urgent need to develop new drugs with better efficacy and few side effects. HQNO, a cytochrome bc1 and type II NADH inhibitor in eukaryotes and bacteria, possesses extensive bioactivity. In this study, the cytotoxicity of HQNO was evaluated in Vero cells. The in vitro effects of HQNO were determined by plaque assay and qPCR assay. To determine the in vivo effect of HQNO, pharmacokinetic experiments and in vivo infection assays were performed in mice. The changes in tachyzoites after HQNO exposure were examined by transmission electron microscopy (TEM), MitoTracker Red CMXRos staining, ROS detection and ATP detection. HQNO inhibited T. gondii invasion and proliferation with an EC50 of 0.995 μM. Pharmacokinetic experiments showed that the Cmax of HQNO (20 mg/kg·bw) was 3560 ± 1601 ng/mL (13.73 μM) in healthy BALB/c mouse plasma with no toxicity in vivo. Moreover, HQNO induced a significant decrease in the parasite burden load of T. gondii in mouse peritoneum. TEM revealed alterations in the mitochondria of T. gondii. Further assays verified that HQNO also decreased the mitochondrial membrane potential (ΔΨm) and ATP levels and enhanced the level of reactive oxygen species (ROS) in T. gondii. Hence, HQNO exerted anti-T. gondii activity, which may be related to the damage to the mitochondrial electron transport chain (ETC).
Collapse
|
6
|
Leung JM, Liu J, Wetzel LA, Hu K. Centrin2 from the human parasite Toxoplasma gondii is required for its invasion and intracellular replication. J Cell Sci 2019; 132:jcs.228791. [PMID: 31182647 DOI: 10.1242/jcs.228791] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/03/2019] [Indexed: 12/24/2022] Open
Abstract
Centrins are EF-hand containing proteins ubiquitously found in eukaryotes and are key components of centrioles/basal bodies as well as certain contractile fibers. We previously identified three centrins in the human parasite Toxoplasma gondii, all of which localized to the centrioles. However, one of them, T. gondii (Tg) Centrin2 (CEN2), is also targeted to structures at the apical and basal ends of the parasite, as well as to annuli at the base of the apical cap of the membrane cortex. The role(s) that CEN2 play in these locations were unknown. Here, we report the functional characterization of CEN2 using a conditional knockdown method that combines transcriptional and protein stability control. The knockdown resulted in an ordered loss of CEN2 from its four compartments, due to differences in incorporation kinetics and structural inheritance over successive generations. This was correlated with a major invasion deficiency at early stages of CEN2 knockdown, and replication defects at later stages. These results indicate that CEN2 is incorporated into multiple cytoskeletal structures to serve distinct functions that are required for parasite survival.
Collapse
Affiliation(s)
| | - Jun Liu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Laura A Wetzel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ke Hu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
7
|
Shrestha A, Palmieri N, Abd-Elfattah A, Ruttkowski B, Pagès M, Joachim A. Cloning, expression and molecular characterization of a Cystoisospora suis specific uncharacterized merozoite protein. Parasit Vectors 2017; 10:68. [PMID: 28173829 PMCID: PMC5297187 DOI: 10.1186/s13071-017-2003-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/26/2017] [Indexed: 01/01/2023] Open
Abstract
Background The genome of the apicomplexan parasite Cystoisospora suis (syn. Isospora suis) has recently been sequenced and annotated, opening the possibility for the identification of novel therapeutic targets against cystoisosporosis. It was previously proposed that a 42 kDa uncharacterized merozoite protein, encoded by gene CSUI_005805, might be a relevant vaccine candidate due to its high immunogenic score, high expression level and species-specificity as determined in silico. Methods The 1170 bp coding sequence of the CSUI_005805 gene was PCR amplified and cloned into the bacterial expression vector pQE-31. The specificity of the expressed recombinant protein was evaluated in an immunoblot, and relative levels of expression in different developmental stages and subcellular localization were determined by quantitative real-time PCR and indirect immunofluorescence assay, respectively. Results The CSUI_005805 gene encoded for a 389 amino acid protein containing a histidine-rich region. Quantitative RT-PCR showed that CSUI_005805 was differentially expressed during the early development of C. suis in vitro, with higher transcript levels in merozoites compared to sporozoites. The recombinant protein was specifically recognized by sera from chicken immunized with recombinant CSUI_005805 protein and sera from piglets experimentally infected with C. suis, all of which suggested that despite prokaryotic expression, the recombinant CSUI_005805 protein maintained antigenic determinants and could elicit an immune response in the host. Immunofluorescence labelling and confocal microscopy revealed localization primarily at the surface of the parasite. Conclusions The results suggest that CSUI_005805 is highly expressed in merozoites and might thus be critical for their survival and establishment inside host cells. Owing to its specificity, localization and expression pattern, CSUI_005805 could be exploited as an attractive candidate for alternative control strategies against C. suis such as vaccines. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2003-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aruna Shrestha
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria
| | - Nicola Palmieri
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria
| | - Ahmed Abd-Elfattah
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria
| | | | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria.
| |
Collapse
|
8
|
Targeted disruption of TgPhIL1 in Toxoplasma gondii results in altered parasite morphology and fitness. PLoS One 2011; 6:e23977. [PMID: 21901148 PMCID: PMC3162014 DOI: 10.1371/journal.pone.0023977] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 08/01/2011] [Indexed: 01/08/2023] Open
Abstract
The inner membrane complex (IMC), a series of flattened vesicles at the periphery of apicomplexan parasites, is thought to be important for parasite shape, motility and replication, but few of the IMC proteins that function in these processes have been identified. TgPhIL1, a Toxoplasma gondii protein that was previously identified through photosensitized labeling with 5-[125I] iodonapthaline-1-azide, associates with the IMC and/or underlying cytoskeleton and is concentrated at the apical end of the parasite. Orthologs of TgPhIL1 are found in other apicomplexans, but the function of this conserved protein family is unknown. As a first step towards determining the function of TgPhIL1 and its orthologs, we generated a T. gondii parasite line in which the single copy of TgPhIL1 was disrupted by homologous recombination. The TgPhIL1 knockout parasites have a distinctly different morphology than wild-type parasites, and normal shape is restored in the knockout background after complementation with the wild-type allele. The knockout parasites are outcompeted in culture by parasites expressing functional TgPhIL1, and they generate a reduced parasite load in the spleen and liver of infected mice. These findings demonstrate a role for TgPhIL1 in the morphology, growth and fitness of T. gondii tachyzoites.
Collapse
|
9
|
Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol 2011; 180:109-25. [DOI: 10.1016/j.vetpar.2011.05.032] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Chemical genetic screen identifies Toxoplasma DJ-1 as a regulator of parasite secretion, attachment, and invasion. Proc Natl Acad Sci U S A 2011; 108:10568-73. [PMID: 21670272 DOI: 10.1073/pnas.1105622108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii is a member of the phylum Apicomplexa that includes several important human pathogens, such as Cryptosporidium and Plasmodium falciparum, the causative agent of human malaria. It is an obligate intracellular parasite that can cause severe disease in congenitally infected neonates and immunocompromised individuals. Despite the importance of attachment and invasion to the success of the parasite, little is known about the underlying mechanisms that drive these processes. Here we describe a screen to identify small molecules that block the process of host cell invasion by the T. gondii parasite. We identified a small molecule that specifically and irreversibly blocks parasite attachment and subsequent invasion of host cells. Using tandem orthogonal proteolysis-activity-based protein profiling, we determined that this compound covalently modifies a single cysteine residue in a poorly characterized protein homologous to the human protein DJ-1. Mutation of this key cysteine residue in the native gene sequence resulted in parasites that were resistant to inhibition of host cell attachment and invasion by the compound. Further analysis of the invasion phenotype confirmed that modification of Cys127 on TgDJ-1 resulted in a block of microneme secretion and motility, even in the presence of direct stimulators of calcium release. Together, our results suggest that TgDJ-1 plays an important role that is likely downstream of the calcium flux required for microneme secretion, parasite motility, and subsequent invasion of host cells.
Collapse
|
11
|
Heaslip AT, Leung JM, Carey KL, Catti F, Warshaw DM, Westwood NJ, Ballif BA, Ward GE. A small-molecule inhibitor of T. gondii motility induces the posttranslational modification of myosin light chain-1 and inhibits myosin motor activity. PLoS Pathog 2010; 6:e1000720. [PMID: 20084115 PMCID: PMC2800044 DOI: 10.1371/journal.ppat.1000720] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 12/10/2009] [Indexed: 11/22/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that enters cells by a process of active penetration. Host cell penetration and parasite motility are driven by a myosin motor complex consisting of four known proteins: TgMyoA, an unconventional Class XIV myosin; TgMLC1, a myosin light chain; and two membrane-associated proteins, TgGAP45 and TgGAP50. Little is known about how the activity of the myosin motor complex is regulated. Here, we show that treatment of parasites with a recently identified small-molecule inhibitor of invasion and motility results in a rapid and irreversible change in the electrophoretic mobility of TgMLC1. While the precise nature of the TgMLC1 modification has not yet been established, it was mapped to the peptide Val46-Arg59. To determine if the TgMLC1 modification is responsible for the motility defect observed in parasites after compound treatment, the activity of myosin motor complexes from control and compound-treated parasites was compared in an in vitro motility assay. TgMyoA motor complexes containing the modified TgMLC1 showed significantly decreased motor activity compared to control complexes. This change in motor activity likely accounts for the motility defects seen in the parasites after compound treatment and provides the first evidence, in any species, that the mechanical activity of Class XIV myosins can be modulated by posttranslational modifications to their associated light chains. Toxoplasma gondii and related parasites within the Phylum Apicomplexa are collectively responsible for a great deal of human disease and death worldwide. The ability of apicomplexan parasites to invade cells of their hosts, disseminate through tissues and cause disease depends critically on parasite motility. Motility is driven by a complex of proteins that is well conserved within the phylum; however, very little is known about how the unconventional myosin motor protein at the heart of this motility machinery is regulated. T. gondii serves as a powerful model system for studying apicomplexan motile mechanisms. We show here that a recently identified pharmacological inhibitor of T. gondii motility induces a posttranslational modification of TgMLC1, a protein that binds to the myosin motor protein, TgMyoA. The compound-induced modification of TgMLC1 is associated with a decrease in TgMyoA mechanical activity. These data provide the first glimpse into how TgMyoA is regulated and how a change in the activity of the T. gondii myosin motor complex can affect the motility and infectivity of this important human pathogen.
Collapse
Affiliation(s)
- Aoife T. Heaslip
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Jacqueline M. Leung
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Kimberly L. Carey
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
| | - Federica Catti
- School of Chemistry and Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, Scotland, United Kingdom
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America
| | - Nicholas J. Westwood
- School of Chemistry and Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, Scotland, United Kingdom
| | - Bryan A. Ballif
- Department of Biology and Vermont Genetics Network Proteomics Facility, University of Vermont, Burlington, Vermont, United States of America
| | - Gary E. Ward
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
12
|
Walton JGA, Patterson S, Liu G, Haraldsen JD, Hollick JJ, Slawin AMZ, Ward GE, Westwood NJ. Synthesis and biological evaluation of functionalised tetrahydro-β-carboline analogues as inhibitors of Toxoplasma gondii invasion. Org Biomol Chem 2009. [DOI: 10.1039/b902319d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|