1
|
Akter S, Rahman MA, Ashrafudoulla M, Mahamud AGMSU, Chowdhury MAH, Ha SD. Mechanistic and bibliometric insights into RpoS-mediated biofilm regulation and its strategic role in food safety applications. Crit Rev Food Sci Nutr 2025:1-15. [PMID: 39879107 DOI: 10.1080/10408398.2025.2458755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Biofilm, complex structures formed by microorganisms within an extracellular polymeric matrix, pose significant challenges in the sector by harboring dangerous pathogens and complicating decontamination, thereby increasing the risk of foodborne illnesses. This article provides a comprehensive review of the sigma factor, rpoS's role in biofilm development, specifically in gram-negative bacteria, and how the genetic, environmental, and regulatory elements influence rpoS activity with its critical role in bacterial stress responses. Our findings reveal that rpoS is a pivotal regulator of biofilm formation, enhancing bacterial survival in adverse conditions. Key factors affecting rpoS activity include oxidative and osmotic stress and nutrient availability. Understanding rpoS-mediated regulatory pathways is essential for developing targeted biofilm management strategies to improve food quality and safety. Furthermore, a bibliometric analysis highlights significant research trends and gaps in the literature, guiding future research directions. Future research should focus on detailed mechanistic studies of rpoS-mediated biofilm regulation, the development of specific rpoS inhibitors, and innovative approaches like biofilm-resistant surface coatings. This knowledge can lead to more effective contamination prevention and overall food safety enhancements.
Collapse
Affiliation(s)
- Shirin Akter
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, Anseong, Republic of Korea
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Ashikur Rahman
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, Anseong, Republic of Korea
- Bangladesh Fisheries Research Institute, Mymensingh, Bangladesh
| | - Md Ashrafudoulla
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea
- National Institutes of Health, Bethesda, MD, USA
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA
| | | | - Md Anamul Hasan Chowdhury
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, Anseong, Republic of Korea
| | - Sang-Do Ha
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
2
|
Fang ZX, Kuang XY, Li YH, Yu RX, Wang F, Luo SW. Comparative Analysis of the Probiotic Features of Lysinibacillus and Enterobacter Strains Isolated from Gut Tract of Triploid Cyprinid Fish. Curr Microbiol 2025; 82:91. [PMID: 39825897 DOI: 10.1007/s00284-025-04074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
Gut mucosal immunity of teleost is mainly governed by mucosa-associated lymphoid tissues (MALT) and indigenous microbiota on mucosal surfaces of gut tract, which can confer protection against pathogenic invasion. However, the probiotic features of bacterial isolates from gut tract of triploid cyprinid fish (TCF) were largely unclear. In this study, Lysinibacillus and Enterobacter strains were isolated for probiotic identification. Whole genome sequencing (WGS) analysis indicated that Lysinibacillus and Enterobacter isolates possessed a variety of functional genes associated with probiotic features. Biofilm-forming activity (BFA) were one of the most important probiotic features, which can enable probiotic strains to communicate with indigenous microbiota by forming sessile community and then confer protection against stressors and invading pathogens. In this study, Lysinibacillus and Enterobacter isolates displayed high levels of BFA, hydrophobicity as well as aggregating potentials. Moreover, supernatants of probiotic isolates not only decreased pathogenic BFA and growth activity, but also showed high decomposing activity to macronutrients. These results indicated that probiotic isolates from gut tract of TCFs may pose protective roles in health of farmed fish.
Collapse
Affiliation(s)
- Zi-Xuan Fang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xu-Ying Kuang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yao-Hui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ruo-Xing Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Fei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploidy Fish Reproduction and Breeding of the State Education Ministry, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.
| |
Collapse
|
3
|
Whittle EE, Orababa O, Osgerby A, Siasat P, Element SJ, Blair JMA, Overton TW. Efflux pumps mediate changes to fundamental bacterial physiology via membrane potential. mBio 2024; 15:e0237024. [PMID: 39248573 PMCID: PMC11481890 DOI: 10.1128/mbio.02370-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
Efflux pumps are well known to be an important mechanism for removing noxious substances such as antibiotics from bacteria. Given that many antibiotics function by accumulating inside bacteria, efflux pumps contribute to resistance. Efflux pump inactivation is a potential strategy to combat antimicrobial resistance, as bacteria would not be able to pump out antibiotics. We recently discovered that the impact of loss of efflux function is only apparent in actively growing cells. We demonstrated that the global transcriptome of Salmonella Typhimurium is drastically altered during slower growth leading to stationary-phase cells having a remodeled, less permeable envelope that prevents antibiotics entering the cell. Here, we investigated the effects of deleting the major efflux pump of Salmonella Typhimurium, AcrB, on global gene transcription across growth. We revealed that an acrB knockout entered stationary phase later than the wild-type strain SL1344 and displayed increased and prolonged expression of genes responsible for anaerobic energy metabolism. We devised a model linking efflux and membrane potential, whereby deactivation of AcrB prevents influx of protons across the inner membrane and thereby hyperpolarization. Knockout or deactivation of AcrB was demonstrated to increase membrane potential. We propose that the global transcription regulator ArcBA senses changes to the redox state of the quinol pool (linked to the membrane potential of the bacterium) and coordinates the shift from exponential to stationary phase via the key master regulators RpoS, Rsd, and Rmf. Inactivation of efflux pumps therefore influences the fundamental physiology of Salmonella, with likely impacts on multiple phenotypes.IMPORTANCEWe demonstrate for the first time that deactivation of efflux pumps brings about changes to gross bacterial physiology and metabolism. Rather than simply being a response to noxious substances, efflux pumps appear to play a key role in maintenance of membrane potential and thereby energy metabolism. This discovery suggests that efflux pump inhibition or inactivation might have unforeseen positive consequences on antibiotic activity. Given that stationary-phase bacteria are more resistant to antibiotic uptake, late entry into stationary phase would prolong antibiotic accumulation by bacteria. Furthermore, membrane hyperpolarization could result in increased generation of reactive species proposed to be important for the activity of some antibiotics. Finally, changes in gross physiology could also explain the decreased virulence of efflux mutants.
Collapse
Affiliation(s)
- Emily E. Whittle
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Oluwatosin Orababa
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Alexander Osgerby
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Pauline Siasat
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Sarah J. Element
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Jessica M. A. Blair
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Tim W. Overton
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Mascher T. Past, Present, and Future of Extracytoplasmic Function σ Factors: Distribution and Regulatory Diversity of the Third Pillar of Bacterial Signal Transduction. Annu Rev Microbiol 2023; 77:625-644. [PMID: 37437215 DOI: 10.1146/annurev-micro-032221-024032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Responding to environmental cues is a prerequisite for survival in the microbial world. Extracytoplasmic function σ factors (ECFs) represent the third most abundant and by far the most diverse type of bacterial signal transduction. While archetypal ECFs are controlled by cognate anti-σ factors, comprehensive comparative genomics efforts have revealed a much higher abundance and regulatory diversity of ECF regulation than previously appreciated. They have also uncovered a diverse range of anti-σ factor-independent modes of controlling ECF activity, including fused regulatory domains and phosphorylation-dependent mechanisms. While our understanding of ECF diversity is comprehensive for well-represented and heavily studied bacterial phyla-such as Proteobacteria, Firmicutes, and Actinobacteria (phylum Actinomycetota)-our current knowledge about ECF-dependent signaling in the vast majority of underrepresented phyla is still far from complete. In particular, the dramatic extension of bacterial diversity in the course of metagenomic studies represents both a new challenge and an opportunity in expanding the world of ECF-dependent signal transduction.
Collapse
Affiliation(s)
- Thorsten Mascher
- General Microbiology, Technische Universität Dresden, Dresden, Germany;
| |
Collapse
|
5
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
6
|
Li G, Yao Y. TorR/TorS Two-Component system resists extreme acid environment by regulating the key response factor RpoS in Escherichia coli. Gene 2022; 821:146295. [PMID: 35181503 DOI: 10.1016/j.gene.2022.146295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/26/2021] [Accepted: 02/04/2022] [Indexed: 01/23/2023]
Abstract
Response to acid stress is critical for Escherichia coli to successfully complete its life-cycle. Acid resistance is an indispensable mechanism that allows neutralophilic bacteria, such as E. coli, to survive in the gastrointestinal tract. Escherichia coli acid tolerance has been extensively studied over the past decades, and most studies have focused on mechanisms of gene regulation. Bacterial two-component signal transduction systems sense and respond to external environmental changes through regulating genes expression. However, there has been little research on the mechanism of the TorR/TorS system in acid resistance, and how TorR/TorS regulate the expression ofacid-resistantgenes is still unclear. We found that TorR/TorS deletion in E. coli cells led to a growth defect in extreme acid conditions,andthis defectmightdepend on the nutritional conditionsand growth phase.TorS/TorR sensed an extremely acidic environment, and this TorR phosphorylation process might not be entirely dependent on TorS.RNA-seqand RT-qPCR results suggested that TorR regulated expressions of gadB, gadC, hdeA, gadE, mdtE, mdtF, gadX, and slp acid-resistant genes. Compared with wild-type cells, the stress response factor RpoSlevels and itsexpressions were significantly decreased in Δ torR cellsstimulated by extreme acid. And under these circumstances, the expression of iraM was significantly reduced to 0.6-fold inΔ torR cells. Electrophoreticmobility shift assay showed that TorR-His6 could interact with the rpoS promoter sequence in vitro. β-galactosidase activity assayresultsapprovedthat TorR might bind the rpoS promoter region in vivo. After the mutation of the TorR-box in the rpoS promoter region, these interactions were no longer observed. Taken together, we propose thatTorS and potential Hanks model Ser/Thr kinase received an external acid stress signal and then phosphorylated TorR, which guided the expressions of a variety of acid resistance genes. Moreover,TorRcoped with extreme acid environmentsthroughRpoS, levels of which might be maintained byIraM. Finally,TorR may confer E. coli with the abilityto resist gastric acid, allowing the bacterium to reach the surface of the terminal ileum and large intestine mucosal epithelial cells through the gastric acid barrier, andestablishcolonization and pathogenicity.
Collapse
Affiliation(s)
- Guotao Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Yuan Yao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; Department of Neurology, Inner Mongolia People's Hospital, Hohhot, China.
| |
Collapse
|
7
|
Smirnova GV, Tyulenev AV, Muzyka NG, Oktyabrsky ON. Study of the contribution of active defense mechanisms to ciprofloxacin tolerance in Escherichia coli growing at different rates. Antonie Van Leeuwenhoek 2022; 115:233-251. [PMID: 35022927 DOI: 10.1007/s10482-021-01693-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022]
Abstract
Using rpoS, tolC, ompF, and recA knockouts, we investigated their effect on the physiological response and lethality of ciprofloxacin in E. coli growing at different rates on glucose, succinate or acetate. We have shown that, regardless of the strain, the degree of changes in respiration, membrane potential, NAD+/NADH ratio, ATP and glutathione (GSH) strongly depends on the initial growth rate and the degree of its inhibition. The deletion of the regulator of the general stress response RpoS, although it influenced the expression of antioxidant genes, did not significantly affect the tolerance to ciprofloxacin at all growth rates. The mutant lacking TolC, which is a component of many E. coli efflux pumps, showed the same sensitivity to ciprofloxacin as the parent. The absence of porin OmpF slowed down the entry of ciprofloxacin into cells, prolonged growth and shifted the optimal bactericidal concentration towards higher values. Deficiency of RecA, a regulator of the SOS response, dramatically altered the late phase of the SOS response (SOS-dependent cell death), preventing respiratory inhibition and a drop in membrane potential. The recA mutation inverted GSH fluxes across the membrane and abolished ciprofloxacin-induced H2S production. All studied mutants showed an inverse linear relationship between logCFU ml-1 and the specific growth rate. Mutations shifted the plot of this dependence relative to the parental strain according to their significance for ciprofloxacin tolerance. The crucial role of the SOS system is confirmed by dramatic shift down of this plot in the recA mutant.
Collapse
Affiliation(s)
- Galina V Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081.
| | - Aleksey V Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081
| | - Nadezda G Muzyka
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081
| | - Oleg N Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, Russia, 614081
| |
Collapse
|
8
|
The effect of ArcA on the growth, motility, biofilm formation, and virulence of Plesiomonas shigelloides. BMC Microbiol 2021; 21:266. [PMID: 34607564 PMCID: PMC8489083 DOI: 10.1186/s12866-021-02322-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The anoxic redox control binary system plays an important role in the response to oxygen as a signal in the environment. In particular, phosphorylated ArcA, as a global transcription factor, binds to the promoter regions of its target genes to regulate the expression of aerobic and anaerobic metabolism genes. However, the function of ArcA in Plesiomonas shigelloides is unknown. RESULTS In the present study, P. shigelloides was used as the research object. The differences in growth, motility, biofilm formation, and virulence between the WT strain and the ΔarcA isogenic deletion mutant strain were compared. The data showed that the absence of arcA not only caused growth retardation of P. shigelloides in the log phase, but also greatly reduced the glucose utilization in M9 medium before the stationary phase. The motility of the ΔarcA mutant strain was either greatly reduced when grown in swim agar, or basically lost when grown in swarm agar. The electrophoretic mobility shift assay results showed that ArcA bound to the promoter regions of the flaK, rpoN, and cheV genes, indicating that ArcA directly regulates the expression of these three motility-related genes in P. shigelloides. Meanwhile, the ability of the ΔarcA strain to infect Caco-2 cells was reduced by 40%; on the contrary, its biofilm formation was enhanced. Furthermore, the complementation of the WT arcA gene from pBAD33-arcA+ was constructed and all of the above features of the pBAD33-arcA+ complemented strain were restored to the WT level. CONCLUSIONS We showed the effect of ArcA on the growth, motility, biofilm formation, and virulence of Plesiomonas shigelloides, and demonstrated that ArcA functions as a positive regulator controls the motility of P. shigelloides by directly regulating the expression of flaK, rpoN and cheV genes.
Collapse
|
9
|
Patel V, Matange N. Adaptation and compensation in a bacterial gene regulatory network evolving under antibiotic selection. eLife 2021; 10:70931. [PMID: 34591012 PMCID: PMC8483737 DOI: 10.7554/elife.70931] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Gene regulatory networks allow organisms to generate coordinated responses to environmental challenges. In bacteria, regulatory networks are re-wired and re-purposed during evolution, though the relationship between selection pressures and evolutionary change is poorly understood. In this study, we discover that the early evolutionary response of Escherichia coli to the antibiotic trimethoprim involves derepression of PhoPQ signaling, an Mg2+-sensitive two-component system, by inactivation of the MgrB feedback-regulatory protein. We report that derepression of PhoPQ confers trimethoprim-tolerance to E. coli by hitherto unrecognized transcriptional upregulation of dihydrofolate reductase (DHFR), target of trimethoprim. As a result, mutations in mgrB precede and facilitate the evolution of drug resistance. Using laboratory evolution, genome sequencing, and mutation re-construction, we show that populations of E. coli challenged with trimethoprim are faced with the evolutionary ‘choice’ of transitioning from tolerant to resistant by mutations in DHFR, or compensating for the fitness costs of PhoPQ derepression by inactivating the RpoS sigma factor, itself a PhoPQ-target. Outcomes at this evolutionary branch-point are determined by the strength of antibiotic selection, such that high pressures favor resistance, while low pressures favor cost compensation. Our results relate evolutionary changes in bacterial gene regulatory networks to strength of selection and provide mechanistic evidence to substantiate this link.
Collapse
Affiliation(s)
- Vishwa Patel
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, The Maharaja Sayajirao University of Baroda, Vadodara, India.,Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Nishad Matange
- Indian Institute of Science Education and Research (IISER), Pune, India
| |
Collapse
|
10
|
Smirnova GV, Tyulenev AV, Muzyka NG, Oktyabrsky ON. Study of the relationship between extracellular superoxide and glutathione production in batch cultures of Escherichia coli. Res Microbiol 2020; 171:301-310. [PMID: 32721518 DOI: 10.1016/j.resmic.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 11/26/2022]
Abstract
Aerobically growing Escherichia coli generates superoxide flux into the periplasm via the oxidation of dihydromenaquinone and simultaneously carries out continuous transmembrane cycling of glutathione (GSH). Here we have shown that, under the conditions of a gradual decrease in dissolved oxygen (dO2), characteristic of batch culture, the global regulatory system ArcB/ArcA can play an important role in the coordinated control of extracellular superoxide and GSH fluxes and their interaction with intracellular antioxidant systems. The lowest superoxide production was observed in the menA and arcB mutants, while the atpA, atpC and atpE mutants generated superoxide 1.3-1.5 times faster than the parent. The share of exported glutathione in the ubiC, atpA, atpC, and atpE mutants was 2-3 times higher compared to the parent. A high direct correlation (r = 0.87, p = 0.01) between extracellular superoxide and GSH was revealed. The menA and arcB mutants, as well as the cydD mutant lacking the GSH export system CydDC, were not capable of GSH excretion with a decrease in dO2, which indicates a positive control of GSH export by ArcB. In contrast, ArcB downregulates sodA, therefore, an inverse correlation (r = -0.86, p = 0.013) between superoxide production and sodA expression was observed.
Collapse
Affiliation(s)
- Galina V Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, 614081, Russia.
| | - Aleksey V Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, 614081, Russia.
| | - Nadezda G Muzyka
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, 614081, Russia.
| | - Oleg N Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, 614081, Russia.
| |
Collapse
|
11
|
Fang K, Park OJ, Hong SH. Controlling biofilms using synthetic biology approaches. Biotechnol Adv 2020; 40:107518. [PMID: 31953206 PMCID: PMC7125041 DOI: 10.1016/j.biotechadv.2020.107518] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/22/2022]
Abstract
Bacterial biofilms are formed by the complex but ordered regulation of intra- or inter-cellular communication, environmentally responsive gene expression, and secretion of extracellular polymeric substances. Given the robust nature of biofilms due to the non-growing nature of biofilm bacteria and the physical barrier provided by the extracellular matrix, eradicating biofilms is a very difficult task to accomplish with conventional antibiotic or disinfectant treatments. Synthetic biology holds substantial promise for controlling biofilms by improving and expanding existing biological tools, introducing novel functions to the system, and re-conceptualizing gene regulation. This review summarizes synthetic biology approaches used to eradicate biofilms via protein engineering of biofilm-related enzymes, utilization of synthetic genetic circuits, and the development of functional living agents. Synthetic biology also enables beneficial applications of biofilms through the production of biomaterials and patterning biofilms with specific temporal and spatial structures. Advances in synthetic biology will add novel biofilm functionalities for future therapeutic, biomanufacturing, and environmental applications.
Collapse
Affiliation(s)
- Kuili Fang
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Oh-Jin Park
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA; Department of Biological and Chemical Engineering, Yanbian University of Science and Technology, Yanji, Jilin, People's Republic of China
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
12
|
Li J, Zhang X, Ashokkumar M, Liu D, Ding T. Molecular regulatory mechanisms of Escherichia coli O157:H7 in response to ultrasonic stress revealed by proteomic analysis. ULTRASONICS SONOCHEMISTRY 2020; 61:104835. [PMID: 31670254 DOI: 10.1016/j.ultsonch.2019.104835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/22/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
The antimicrobial effects of ultrasonic filed have been studied for years at the phenotypic level, but there is little research to reveal the molecular regulatory mechanisms underlying the phenotypes. In this study, isobaric tag for relative and absolute quantification (iTRAQ) proteome was applied to analyze the regulatory networks of Escherichia coli O157:H7 in response to ultrasonic stress in whole-genome scale. A total of 1856 differentially expressed proteins were identified, of which 1141 were significant up-regulated and 715 down-regulated compared with live control cells. The comprehensive proteome coverage analysis showed that ultrasonic filed influenced various metabolic pathways in Escherichia coli O157:H7 cells. The ultrasound-induced up-regulation of global stress response regulator RpoS, bacterial mechanosensitive channels and SOS response protein RecA were described from the molecular level for the first time. In addition, we proposed a possible action mechanism that the free radicals produced by acoustic cavitation might enter into cells via the activated mechanosensitive channels, leading to the elevated intracellular ROS level and subsequent cell death. Last but not the least, we illustrated the all-or-nothing phenomenon of power ultrasound might due to the destruction of crucial cell defensive systems, including heat shock proteins and oxidative response regulators. These new findings can let us understand the ultrasonic effects more deeply and will contribute to this area.
Collapse
Affiliation(s)
- Jiao Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China
| | - Xinglin Zhang
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Donghong Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
13
|
Under Elevated c-di-GMP in Escherichia coli, YcgR Alters Flagellar Motor Bias and Speed Sequentially, with Additional Negative Control of the Flagellar Regulon via the Adaptor Protein RssB. J Bacteriol 2019; 202:JB.00578-19. [PMID: 31611290 DOI: 10.1128/jb.00578-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
In Escherichia coli and Salmonella, the c-di-GMP effector YcgR inhibits flagellar motility by interacting directly with the motor to alter both its bias and speed. Here, we demonstrate that in both of these bacteria, YcgR acts sequentially, altering motor bias first and then decreasing motor speed. We show that when c-di-GMP levels are high, deletion of ycgR restores wild-type motor behavior in E. coli, indicating that YcgR is the only motor effector in this bacterium. Yet, motility and chemotaxis in soft agar do not return to normal, suggesting that there is a second mechanism that inhibits motility under these conditions. In Salmonella, c-di-GMP-induced synthesis of extracellular cellulose has been reported to entrap flagella and to be responsible for the YcgR-independent motility defect. We found that this is not the case in E. coli Instead, we found through reversion analysis that deletion of rssB, which codes for a response regulator/adaptor protein that normally directs ClpXP protease to target σS for degradation, restored wild-type motility in the ycgR mutant. Our data suggest that high c-di-GMP levels may promote altered interactions between these proteins to downregulate flagellar gene expression.IMPORTANCE Flagellum-driven motility has been studied in E. coli and Salmonella for nearly half a century. Over 60 genes control flagellar assembly and function. The expression of these genes is regulated at multiple levels in response to a variety of environmental signals. Cues that elevate c-di-GMP levels, however, inhibit motility by direct binding of the effector YcgR to the flagellar motor. In this study conducted mainly in E. coli, we show that YcgR is the only effector of motor control and tease out the order of YcgR-mediated events. In addition, we find that the σS regulator protein RssB contributes to negative regulation of flagellar gene expression when c-di-GMP levels are elevated.
Collapse
|
14
|
Herr CQ, Macomber L, Kalliri E, Hausinger RP. Glutarate L-2-hydroxylase (CsiD/GlaH) is an archetype Fe(II)/2-oxoglutarate-dependent dioxygenase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:63-90. [PMID: 31564307 DOI: 10.1016/bs.apcsb.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Escherichia coli gene initially named ygaT is located adjacent to lhgO, encoding L-2-hydroxyglutarate oxidase/dehydrogenase, and the gabDTP gene cluster, utilized for γ-aminobutyric acid (GABA) metabolism. Because this gene is transcribed specifically during periods of carbon starvation, it was renamed csiD for carbon starvation induced. The CsiD protein was structurally characterized and shown to possess a double-stranded ß-helix fold, characteristic of a large family of non-heme Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenases. Consistent with a role in producing the substrate for LhgO, CsiD was shown to be a glutarate L-2-hydroxylase. We review the kinetic and structural properties of glutarate L-2-hydroxylase from E. coli and other species, and we propose a catalytic mechanism for this archetype 2OG-dependent hydroxylase. Glutarate can be derived from l-lysine within the cell, with the gabDT genes exhibiting expanded reactivities beyond those known for GABA metabolism. The complete CsiD-containing pathway provides a means for the cell to obtain energy from the metabolism of l-lysine during periods of carbon starvation. To reflect the role of this protein in the cell, a renaming of csiD to glaH has been proposed.
Collapse
Affiliation(s)
- Caitlyn Q Herr
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Lee Macomber
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Efthalia Kalliri
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
15
|
Fiebig A, Varesio LM, Alejandro Navarreto X, Crosson S. Regulation of the Erythrobacter litoralis DSM 8509 general stress response by visible light. Mol Microbiol 2019; 112:442-460. [PMID: 31125464 DOI: 10.1111/mmi.14310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/23/2023]
Abstract
Extracytoplasmic function (ECF) sigma factors are environmentally responsive transcriptional regulators. In Alphaproteobacteria, σEcfG activates general stress response (GSR) transcription and protects cells from multiple stressors. A phosphorylation-dependent protein partner switching mechanism, involving HWE/HisKA_2-family histidine kinases, underlies σEcfG activation. The identity of these sensor kinases and the signals that regulate them remain largely uncharacterized. We have developed the aerobic anoxygenic photoheterotroph (AAP), Erythrobacter litoralis DSM 8509, as a comparative genetic model to investigate GSR. Using this system, we sought to define the role of visible light and a photosensory HWE kinase, LovK, in regulation of GSR transcription. We identified three HWE kinase genes that collectively control GSR: gsrK and lovK are activators, while gsrP is a repressor. In wild-type cells, GSR transcription is activated in the dark and nearly off in the light, and the opposing activities of gsrK and gsrP are sufficient to modulate GSR transcription in response to illumination. In the absence of gsrK and gsrP, lovK alone is sufficient to activate GSR transcription. lovK is a more robust activator in the dark, and light-dependent regulation by LovK requires that its N-terminal LOV domain be photochemically active. Our studies establish a role for visible light and an ensemble of HWE kinases in light-dependent regulation of GSR transcription in E. litoralis.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Lydia M Varesio
- The Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Sean Crosson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.,The Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
16
|
Lin TH, Chen Y, Kuo JT, Lai YC, Wu CC, Huang CF, Lin CT. Phosphorylated OmpR Is Required for Type 3 Fimbriae Expression in Klebsiella pneumoniae Under Hypertonic Conditions. Front Microbiol 2018; 9:2405. [PMID: 30369914 PMCID: PMC6194325 DOI: 10.3389/fmicb.2018.02405] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/20/2018] [Indexed: 11/28/2022] Open
Abstract
OmpR/EnvZ is a two-component system that senses osmotic signals and controls downstream gene expression in many species of Enterobacteriaceae. However, the role of OmpR/EnvZ in Klebsiella pneumoniae remains unknown. In this study, we found that production of MrkA, the major subunit of type 3 fimbriae, was decreased under hypertonic conditions. A deletion mutant of ompR and a site-directed mutant with a single amino acid substitution of aspartate 55 to alanine (D55A), which mimics the unphosphorylated form of OmpR, markedly reduced MrkA production under hypertonic conditions. These results indicate that K. pneumoniae type 3 fimbriae expression is activated by the phosphorylated form of OmpR (OmpR∼P). Although no typical OmpR∼P binding site was found in the PmrkA sequence, mrkA mRNA levels and PmrkA activity were decreased in the ΔompR and ompRD55A strains compared with the wild type (WT) strain, indicating that OmpR∼P mediates type 3 fimbriae expression at the transcriptional level. Previous reports have demonstrated that a cyclic-di-GMP (c-di-GMP) related gene cluster, mrkHIJ, regulates the expression of type 3 fimbriae. We found that both the ompR and ompRD55A mutants exhibited decreased mrkHIJ mRNA levels, intracellular c-di-GMP concentration, and bacterial biofilm amount, but increased total intracellular phosphodiesterase activity in response to hypertonic conditions. These results indicate that OmpR∼P regulates type 3 fimbriae expression to influence K. pneumoniae biofilm formation via MrkHIJ and modulation of intracellular c-di-GMP levels. Taken together, we herein provide evidence that OmpR∼P acts as a critical factor in the regulation of the c-di-GMP signaling pathway, type 3 fimbriae expression, and biofilm amount in K. pneumoniae in response to osmotic stresses.
Collapse
Affiliation(s)
- Tien-Huang Lin
- Department of Urology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualian, Taiwan
| | - Yeh Chen
- Department of Biotechnology, Hungkuang University, Taichung, Taiwan
| | - Jong-Tar Kuo
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, Taiwan
| | - Yi-Chyi Lai
- Department of Microbiology and Immunology, Chung-Shan Medical University, Taichung, Taiwan
| | - Chien-Chen Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Fa Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Ting Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
17
|
Wang M, Chen B, Fang Y, Tan T. Cofactor engineering for more efficient production of chemicals and biofuels. Biotechnol Adv 2017; 35:1032-1039. [DOI: 10.1016/j.biotechadv.2017.09.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023]
|
18
|
Abstract
Two-component systems are a dominant form of bacterial signal transduction. The prototypical two-component system consists of a sensor that responds to a specific input(s) by modifying the output of a cognate regulator. Because the output of a two-component system is the amount of phosphorylated regulator, feedback mechanisms may alter the amount of regulator, and/or modify the ability of a sensor or other proteins to alter the phosphorylation state of the regulator. Two-component systems may display intrinsic feedback whereby the amount of phosphorylated regulator changes under constant inducing conditions and without the participation of additional proteins. Feedback control allows a two-component system to achieve particular steady-state levels, to reach a given steady state with distinct dynamics, to express coregulated genes in a given order, and to activate a regulator to different extents, depending on the signal acting on the sensor.
Collapse
Affiliation(s)
- Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536; .,Yale Microbial Sciences Institute, West Haven, Connecticut 06516
| |
Collapse
|
19
|
An RpoHI-Dependent Response Promotes Outgrowth after Extended Stationary Phase in the Alphaproteobacterium Rhodobacter sphaeroides. J Bacteriol 2017; 199:JB.00249-17. [PMID: 28507242 DOI: 10.1128/jb.00249-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022] Open
Abstract
Under unfavorable growth conditions, bacteria enter stationary phase and can maintain cell viability over prolonged periods with no increase in cell number. To obtain insights into the regulatory mechanisms that allow bacteria to resume growth when conditions become favorable again (outgrowth), we performed global transcriptome analyses at different stages of growth for the alphaproteobacterium Rhodobacter sphaeroides The majority of genes were not differentially expressed across growth phases. After a short stationary phase (about 20 h after growth starts to slow down), only 7% of the genes showed altered expression (fold change of >1.6 or less than -1.6, corresponding to a log2 fold change of >0.65 or less than -0.65, respectively) compared to expression at exponential phase. Outgrowth induced a distinct response in gene expression which was strongly influenced by the length of the preceding stationary phase. After a long stationary phase (about 64 h after growth starts to slow down), a much larger number of genes (15.1%) was induced in outgrowth than after a short stationary phase (1.7%). Many of those genes are known members of the RpoHI/RpoHII regulons and have established functions in stress responses. A main effect of RpoHI on the transcriptome in outgrowth after a long stationary phase was confirmed. Growth experiments with mutant strains further support an important function in outgrowth after prolonged stationary phase for the RpoHI and RpoHII sigma factors.IMPORTANCE In natural environments, the growth of bacteria is limited mostly by lack of nutrients or other unfavorable conditions. It is important for bacterial populations to efficiently resume growth after being in stationary phase, which may last for long periods. Most previous studies on growth-phase-dependent gene expression did not address outgrowth after stationary phase. This study on growth-phase-dependent gene regulation in a model alphaproteobacterium reveals, for the first time, that the length of the stationary phase strongly impacts the transcriptome during outgrowth. The alternative sigma factors RpoHI and RpoHII, which are important regulators of stress responses in alphaproteobacteria, play a major role during outgrowth following prolonged stationary phase. These findings provide the first insight into the regulatory mechanisms enabling efficient outgrowth.
Collapse
|
20
|
Sun C, Guo Y, Tang K, Wen Z, Li B, Zeng Z, Wang X. MqsR/MqsA Toxin/Antitoxin System Regulates Persistence and Biofilm Formation in Pseudomonas putida KT2440. Front Microbiol 2017; 8:840. [PMID: 28536573 PMCID: PMC5422877 DOI: 10.3389/fmicb.2017.00840] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/24/2017] [Indexed: 11/23/2022] Open
Abstract
Bacterial toxin/antitoxin (TA) systems have received increasing attention due to their prevalence, diverse structures, and important physiological functions. In this study, we identified and characterized a type II TA system in a soil bacterium Pseudomonas putida KT2440. This TA system belongs to the MqsR/MqsA family. We found that PP_4205 (MqsR) greatly inhibits cell growth in P. putida KT2440 and Escherichia coli, the antitoxin PP_4204 (MqsA) neutralizes the toxicity of the toxin MqsR, and the two genes encoding them are co-transcribed. MqsR and MqsA interact with each other directly in vivo and MqsA is a negative regulator of the TA operon through binding to the promoter. Consistent with the MqsR/MqsA pair in E. coli, the binding of the toxin MqsR to MqsA inhibits the DNA binding ability of MqsA in P. putida KT2440. Disruption of the mqsA gene which induces mqsR expression increases persister cell formation 53-fold, while overexpressing mqsA which represses mqsR expression reduces persister cell formation 220-fold, suggesting an important role of MqsR in persistence in P. putida KT2440. Furthermore, both MqsR and MqsA promote biofilm formation. As a DNA binding protein, MqsA can also negatively regulate an ECF sigma factor AlgU and a universal stress protein PP_3288. Thus, we revealed an important regulatory role of MqsR/MqsA in persistence and biofilm formation in P. putida KT2440.
Collapse
Affiliation(s)
- Chenglong Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China.,University of Chinese Academy of SciencesBeijing, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Zhongling Wen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China.,University of Chinese Academy of SciencesBeijing, China
| | - Baiyuan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Zhenshun Zeng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
| |
Collapse
|
21
|
Kang A, Meadows CW, Canu N, Keasling JD, Lee TS. High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production. Metab Eng 2017; 41:125-134. [DOI: 10.1016/j.ymben.2017.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/09/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
|
22
|
Masuda H, Inouye M. Toxins of Prokaryotic Toxin-Antitoxin Systems with Sequence-Specific Endoribonuclease Activity. Toxins (Basel) 2017; 9:toxins9040140. [PMID: 28420090 PMCID: PMC5408214 DOI: 10.3390/toxins9040140] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023] Open
Abstract
Protein translation is the most common target of toxin-antitoxin system (TA) toxins. Sequence-specific endoribonucleases digest RNA in a sequence-specific manner, thereby blocking translation. While past studies mainly focused on the digestion of mRNA, recent analysis revealed that toxins can also digest tRNA, rRNA and tmRNA. Purified toxins can digest single-stranded portions of RNA containing recognition sequences in the absence of ribosome in vitro. However, increasing evidence suggests that in vivo digestion may occur in association with ribosomes. Despite the prevalence of recognition sequences in many mRNA, preferential digestion seems to occur at specific positions within mRNA and also in certain reading frames. In this review, a variety of tools utilized to study the nuclease activities of toxins over the past 15 years will be reviewed. A recent adaptation of an RNA-seq-based technique to analyze entire sets of cellular RNA will be introduced with an emphasis on its strength in identifying novel targets and redefining recognition sequences. The differences in biochemical properties and postulated physiological roles will also be discussed.
Collapse
Affiliation(s)
- Hisako Masuda
- School of Sciences, Indiana University Kokomo, Kokomo, IN 46902, USA.
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08854, USA.
| |
Collapse
|
23
|
Shiratsuchi A, Nitta M, Kuroda A, Komiyama C, Gawasawa M, Shimamoto N, Tuan TQ, Morita T, Aiba H, Nakanishi Y. Inhibition of Phagocytic Killing of Escherichia coli in Drosophila Hemocytes by RNA Chaperone Hfq. THE JOURNAL OF IMMUNOLOGY 2016; 197:1298-307. [PMID: 27357148 DOI: 10.4049/jimmunol.1501953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
An RNA chaperone of Escherichia coli, called host factor required for phage Qβ RNA replication (Hfq), forms a complex with small noncoding RNAs to facilitate their binding to target mRNA for the alteration of translation efficiency and stability. Although the role of Hfq in the virulence and drug resistance of bacteria has been suggested, how this RNA chaperone controls the infectious state remains unknown. In the present study, we addressed this issue using Drosophila melanogaster as a host for bacterial infection. In an assay for abdominal infection using adult flies, an E. coli strain with mutation in hfq was eliminated earlier, whereas flies survived longer compared with infection with a parental strain. The same was true with flies deficient in humoral responses, but the mutant phenotypes were not observed when a fly line with impaired hemocyte phagocytosis was infected. The results from an assay for phagocytosis in vitro revealed that Hfq inhibits the killing of E. coli by Drosophila phagocytes after engulfment. Furthermore, Hfq seemed to exert this action partly through enhancing the expression of σ(38), a stress-responsive σ factor that was previously shown to be involved in the inhibition of phagocytic killing of E. coli, by a posttranscriptional mechanism. Our study indicates that the RNA chaperone Hfq contributes to the persistent infection of E. coli by maintaining the expression of bacterial genes, including one coding for σ(38), that help bacteria evade host immunity.
Collapse
Affiliation(s)
- Akiko Shiratsuchi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; and
| | - Mao Nitta
- School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; and
| | - Ayumi Kuroda
- School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; and
| | - Chiharu Komiyama
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Mitsuko Gawasawa
- School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; and
| | - Naoto Shimamoto
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Tran Quoc Tuan
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Teppei Morita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Suzuka, Mie 513-0816, Japan
| | - Hiroji Aiba
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, Suzuka, Mie 513-0816, Japan
| | - Yoshinobu Nakanishi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan; and
| |
Collapse
|
24
|
Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production. Metab Eng 2016; 34:25-35. [DOI: 10.1016/j.ymben.2015.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/02/2015] [Accepted: 12/07/2015] [Indexed: 11/20/2022]
|
25
|
Gibson JL, Lombardo MJ, Aponyi I, Vera Cruz D, Ray MP, Rosenberg SM. Atypical Role for PhoU in Mutagenic Break Repair under Stress in Escherichia coli. PLoS One 2015; 10:e0123315. [PMID: 25961709 PMCID: PMC4427277 DOI: 10.1371/journal.pone.0123315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 01/02/2023] Open
Abstract
Mechanisms of mutagenesis activated by stress responses drive pathogen/host adaptation, antibiotic and anti-fungal-drug resistance, and perhaps much of evolution generally. In Escherichia coli, repair of double-strand breaks (DSBs) by homologous recombination is high fidelity in unstressed cells, but switches to a mutagenic mode using error-prone DNA polymerases when the both the SOS and general (σS) stress responses are activated. Additionally, the σE response promotes spontaneous DNA breakage that leads to mutagenic break repair (MBR). We identified the regulatory protein PhoU in a genetic screen for functions required for MBR. PhoU negatively regulates the phosphate-transport and utilization (Pho) regulon when phosphate is in excess, including the PstB and PstC subunits of the phosphate-specific ABC transporter PstSCAB. Here, we characterize the PhoU mutation-promoting role. First, some mutations that affect phosphate transport and Pho transcriptional regulation decrease mutagenesis. Second, the mutagenesis and regulon-expression phenotypes do not correspond, revealing an apparent new function(s) for PhoU. Third, the PhoU mutagenic role is not via activation of the σS, SOS or σE responses, because mutations (or DSBs) that restore mutagenesis to cells defective in these stress responses do not restore mutagenesis to phoU cells. Fourth, the mutagenesis defect in phoU-mutant cells is partially restored by deletion of arcA, a gene normally repressed by PhoU, implying that a gene(s) repressed by ArcA promotes mutagenic break repair. The data show a new role for PhoU in regulation, and a new regulatory branch of the stress-response signaling web that activates mutagenic break repair in E. coli.
Collapse
Affiliation(s)
- Janet L. Gibson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mary-Jane Lombardo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ildiko Aponyi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Diana Vera Cruz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mellanie P. Ray
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
26
|
Affiliation(s)
- Máire Begley
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland;
| | - Colin Hill
- School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland;
| |
Collapse
|
27
|
The general stress response in Alphaproteobacteria. Trends Microbiol 2015; 23:164-71. [DOI: 10.1016/j.tim.2014.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/18/2022]
|
28
|
Otto CC, Koehl JL, Solanky D, Haydel SE. Metal ions, not metal-catalyzed oxidative stress, cause clay leachate antibacterial activity. PLoS One 2014; 9:e115172. [PMID: 25502790 PMCID: PMC4263752 DOI: 10.1371/journal.pone.0115172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/19/2014] [Indexed: 11/28/2022] Open
Abstract
Aqueous leachates prepared from natural antibacterial clays, arbitrarily designated CB-L, release metal ions into suspension, have a low pH (3.4–5), generate reactive oxygen species (ROS) and H2O2, and have a high oxidation-reduction potential. To isolate the role of pH in the antibacterial activity of CB clay mixtures, we exposed three different strains of Escherichia coli O157:H7 to 10% clay suspensions. The clay suspension completely killed acid-sensitive and acid-tolerant E. coli O157:H7 strains, whereas incubation in a low-pH buffer resulted in a minimal decrease in viability, demonstrating that low pH alone does not mediate antibacterial activity. The prevailing hypothesis is that metal ions participate in redox cycling and produce ROS, leading to oxidative damage to macromolecules and resulting in cellular death. However, E. coli cells showed no increase in DNA or protein oxidative lesions and a slight increase in lipid peroxidation following exposure to the antibacterial leachate. Further, supplementation with numerous ROS scavengers eliminated lipid peroxidation, but did not rescue the cells from CB-L-mediated killing. In contrast, supplementing CB-L with EDTA, a broad-spectrum metal chelator, reduced killing. Finally, CB-L was equally lethal to cells in an anoxic environment as compared to the aerobic environment. Thus, ROS were not required for lethal activity and did not contribute to toxicity of CB-L. We conclude that clay-mediated killing was not due to oxidative damage, but rather, was due to toxicity associated directly with released metal ions.
Collapse
Affiliation(s)
- Caitlin C. Otto
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Jennifer L. Koehl
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Dipesh Solanky
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Shelley E. Haydel
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- The Biodesign Institute Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
29
|
Arthur JC, Gharaibeh RZ, Mühlbauer M, Perez-Chanona E, Uronis JM, McCafferty J, Fodor AA, Jobin C. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun 2014; 5:4724. [PMID: 25182170 PMCID: PMC4155410 DOI: 10.1038/ncomms5724] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 07/17/2014] [Indexed: 02/07/2023] Open
Abstract
Enterobacteria, especially Escherichia coli, are abundant in patients with inflammatory bowel disease or colorectal cancer (CRC). However, it is unclear whether cancer is promoted by inflammation-induced expansion of E. coli and/or changes in expression of specific microbial genes. Here we use longitudinal (2, 12 and 20 weeks) 16S rRNA sequencing of luminal microbiota from ex-germ free mice to show that inflamed Il10−/− mice maintain a higher abundance of Enterobacteriaceae than healthy wild-type mice. Experiments with mono-colonized Il10−/− mice reveal that host inflammation is necessary for E. coli cancer-promoting activity. RNA-sequence analysis indicates significant changes in E. coli gene catalogue in Il10−/− mice, with changes mostly driven by adaptation to the intestinal environment. Expression of specific genes present in the tumor-promoting E. coli pks island are modulated by inflammation/CRC development. Thus, progression of inflammation in Il10−/− mice supports Enterobacteriaceae and alters a small subset of microbial genes important for tumor development.
Collapse
Affiliation(s)
- Janelle C Arthur
- 1] Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27713, USA [2]
| | - Raad Z Gharaibeh
- 1] Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA [2] Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, North Carolina 28081, USA [3]
| | - Marcus Mühlbauer
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27713, USA
| | - Ernesto Perez-Chanona
- 1] Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27713, USA [2] Department of Medicine, University of Florida, Gainesville, Florida 32611, USA
| | - Joshua M Uronis
- 1] Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27713, USA [2]
| | - Jonathan McCafferty
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
| | - Christian Jobin
- 1] Department of Medicine, University of Florida, Gainesville, Florida 32611, USA [2] Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
30
|
Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the 'core' and 'flexible' Pacific Ocean Virome. ISME JOURNAL 2014; 9:472-84. [PMID: 25093636 DOI: 10.1038/ismej.2014.143] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 06/22/2014] [Accepted: 06/24/2014] [Indexed: 11/09/2022]
Abstract
Microbes drive myriad ecosystem processes, and their viruses modulate microbial-driven processes through mortality, horizontal gene transfer, and metabolic reprogramming by viral-encoded auxiliary metabolic genes (AMGs). However, our knowledge of viral roles in the oceans is primarily limited to surface waters. Here we assess the depth distribution of protein clusters (PCs) in the first large-scale quantitative viral metagenomic data set that spans much of the pelagic depth continuum (the Pacific Ocean Virome; POV). This established 'core' (180 PCs; one-third new to science) and 'flexible' (423K PCs) community gene sets, including niche-defining genes in the latter (385 and 170 PCs are exclusive and core to the photic and aphotic zones, respectively). Taxonomic annotation suggested that tailed phages are ubiquitous, but not abundant (<5% of PCs) and revealed depth-related taxonomic patterns. Functional annotation, coupled with extensive analyses to document non-viral DNA contamination, uncovered 32 new AMGs (9 core, 20 photic and 3 aphotic) that introduce ways in which viruses manipulate infected host metabolism, and parallel depth-stratified host adaptations (for example, photic zone genes for iron-sulphur cluster modulation for phage production, and aphotic zone genes for high-pressure deep-sea survival). Finally, significant vertical flux of photic zone viruses to the deep sea was detected, which is critical for interpreting depth-related patterns in nature. Beyond the ecological advances outlined here, this catalog of viral core, flexible and niche-defining genes provides a resource for future investigation into the organization, function and evolution of microbial molecular networks to mechanistically understand and model viral roles in the biosphere.
Collapse
Affiliation(s)
- Bonnie L Hurwitz
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Jennifer R Brum
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Matthew B Sullivan
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
31
|
Puentes-Téllez PE, van Elsas JD. Differential stress resistance and metabolic traits underlie coexistence in a sympatrically evolved bacterial population. Environ Microbiol 2014; 17:889-900. [PMID: 24976459 DOI: 10.1111/1462-2920.12551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/18/2014] [Indexed: 12/01/2022]
Abstract
Following intermittent batch growth in Luria-Bertani (LB) broth for about 1000 generations, differentially evolved forms were found in a population of Escherichia coli cells. Studies on this population revealed the emergence of key polymorphisms, as evidenced by analysis of both whole genome sequences and transcription analysis. Here, we investigated the phenotypic nature of several key forms and found a remarkable (interactive) coexistence of forms which highlights the presence of different ecological roles pointing at a dichotomy in: (i) tolerance to environmental stresses and (ii) the capacity to utilize particular carbon sources such as galactose. Both forms differed from their common ancestor by different criteria. This apparent coexistence of two diverged forms points at the occurrence of niche partitioning as a consequence of dichotomous adaptive evolution. Remarkably, the two forms were shown to continue to coexist - in varying ratio's - in an experiment that cycled them through periods of nutrient feast (plentiful growth substrates) and famine (growth-restrictive - stress conditions). The results further indicated that the equilibrium of the coexistence was destroyed when one of the parameters was high tuned, jeopardizing the stability of the coexisting pair.
Collapse
|
32
|
|
33
|
Martínez LC, Vadyvaloo V. Mechanisms of post-transcriptional gene regulation in bacterial biofilms. Front Cell Infect Microbiol 2014; 4:38. [PMID: 24724055 PMCID: PMC3971182 DOI: 10.3389/fcimb.2014.00038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/08/2014] [Indexed: 12/19/2022] Open
Abstract
Biofilms are characterized by a dense multicellular community of microorganisms that can be formed by the attachment of bacteria to an inert surface and to each other. The development of biofilm involves the initial attachment of planktonic bacteria to a surface, followed by replication, cell-to-cell adhesion to form microcolonies, maturation, and detachment. Mature biofilms are embedded in a self-produced extracellular polymeric matrix composed primarily of bacterial-derived exopolysaccharides, specialized proteins, adhesins, and occasionally DNA. Because the synthesis and assembly of biofilm matrix components is an exceptionally complex process, the transition between its different phases requires the coordinate expression and simultaneous regulation of many genes by complex genetic networks involving all levels of gene regulation. The finely controlled intracellular level of the chemical second messenger molecule, cyclic-di-GMP is central to the post-transcriptional mechanisms governing the switch between the motile planktonic lifestyle and the sessile biofilm forming state in many bacteria. Several other post-transcriptional regulatory mechanisms are known to dictate biofilm development and assembly and these include RNA-binding proteins, small non-coding RNAs, toxin-antitoxin systems, riboswitches, and RNases. Post-transcriptional regulation is therefore a powerful molecular mechanism employed by bacteria to rapidly adjust to the changing environment and to fine tune gene expression to the developmental needs of the cell. In this review, we discuss post-transcriptional mechanisms that influence the biofilm developmental cycle in a variety of pathogenic bacteria.
Collapse
Affiliation(s)
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Animal Health, Washington State UniversityPullman, WA, USA
| |
Collapse
|
34
|
Treviño-Quintanilla LG, Freyre-González JA, Martínez-Flores I. Anti-Sigma Factors in E. coli: Common Regulatory Mechanisms Controlling Sigma Factors Availability. Curr Genomics 2014; 14:378-87. [PMID: 24396271 PMCID: PMC3861889 DOI: 10.2174/1389202911314060007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 11/22/2022] Open
Abstract
In bacteria, transcriptional regulation is a key step in cellular gene expression. All bacteria contain a core RNA polymerase that is catalytically competent but requires an additional σ factor for specific promoter recognition and correct transcriptional initiation. The RNAP core is not able to selectively bind to a given σ factor. In contrast, different σ factors have different affinities for the RNAP core. As a consequence, the concentration of alternate σ factors requires strict regulation in order to properly control the delicate interplay among them, which favors the competence for the RNAP core. This control is archived by different σ/anti-σ controlling mechanisms that shape complex regulatory networks and cascades, and enable the response to sudden environmental cues, whose global understanding is a current challenge for systems biology. Although there have been a number of excellent studies on each of these σ/anti-σ post-transcriptional regulatory systems, no comprehensive comparison of these mechanisms in a single model organism has been conducted. Here, we survey all these systems in E. coli dissecting and analyzing their inner workings and highlightin their differences. Then, following an integral approach, we identify their commonalities and outline some of the principles exploited by the cell to effectively and globally reprogram the transcriptional machinery. These principles provide guidelines for developing biological synthetic circuits enabling an efficient and robust response to sudden stimuli.
Collapse
Affiliation(s)
- Luis Gerardo Treviño-Quintanilla
- Departamento de Tecnología Ambiental, Universidad Politécnica del Estado de Morelos. Blvd. Cuauhnáhuac 566, Col. Lomas del Texcal, 62550. Jiutepec, Morelos, México
| | - Julio Augusto Freyre-González
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Av. Universidad s/n, Col. Chamilpa, 62210. Cuernavaca, Morelos, México
| | - Irma Martínez-Flores
- Departamento de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Apdo. Postal 510-3, 62250. Cuernavaca, Morelos, México
| |
Collapse
|
35
|
Shiratsuchi A, Shimamoto N, Nitta M, Tuan TQ, Firdausi A, Gawasawa M, Yamamoto K, Ishihama A, Nakanishi Y. Role for σ38 in prolonged survival of Escherichia coli in Drosophila melanogaster. THE JOURNAL OF IMMUNOLOGY 2013; 192:666-75. [PMID: 24337747 DOI: 10.4049/jimmunol.1300968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bacteria adapt themselves to host environments by altering the pattern of gene expression. The promoter-recognizing subunit σ of bacterial RNA polymerase plays a major role in the selection of genes to be transcribed. Among seven σ factors of Escherichia coli, σ(38) is responsible for the transcription of genes in the stationary phase and under stressful conditions. We found a transient increase of σ(38) when E. coli was injected into the hemocoel of Drosophila melanogaster. The loss of σ(38) made E. coli rapidly eliminated in flies, and flies infected with σ(38)-lacking E. coli stayed alive longer than those infected with the parental strain. This was also observed in fly lines defective in humoral immune responses, but not in flies in which phagocytosis was impaired. The lack of σ(38) did not influence the susceptibility of E. coli to phagocytosis, but made them vulnerable to killing after engulfment. The changes caused by the loss of σ(38) were recovered by the forced expression of σ(38)-encoding rpoS as well as σ(38)-regulated katE and katG coding for enzymes that detoxify reactive oxygen species. These results collectively suggested that σ(38) contributes to the prolonged survival of E. coli in Drosophila by inducing the production of enzymes that protect bacteria from killing in phagocytes. Considering the similarity in the mechanism of innate immunity against invading bacteria between fruit flies and humans, the products of these genes could be new targets for the development of more effective antibacterial remedies.
Collapse
Affiliation(s)
- Akiko Shiratsuchi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cyclic Di-GMP receptor PlzA controls virulence gene expression through RpoS in Borrelia burgdorferi. Infect Immun 2013; 82:445-52. [PMID: 24218478 DOI: 10.1128/iai.01238-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
As an obligate pathogen, the Lyme disease spirochete Borrelia burgdorferi has a streamlined genome that encodes only two two-component signal transduction systems, Hk1-Rrp1 and Hk2-Rrp2 (in addition to CheA-CheY systems). The output of Hk1-Rrp1 is the production of the second messenger cyclic di-GMP (c-di-GMP), which is indispensable for B. burgdorferi to survive in the tick vector. The output of Hk2-Rrp2 is the transcriptional activation of the global regulator RpoS, which is essential for the pathogen to accomplish its tick-mouse transmission and to establish mammalian infection. Although evidence indicates that these two systems communicate with each other, how they are connected is not fully understood. In this study, we showed that the c-di-GMP-binding protein PlzA, a downstream effector of Rrp1, positively modulates the production of RpoS, a global regulator and downstream target of Rrp2. Thus, PlzA functions as a connector that links Hk1-Rrp1 with Hk2-Rrp2. We further showed that PlzA regulates rpoS expression through modulation of another regulator, BosR, at both the transcriptional and the posttranscriptional levels. In addition, PlzA was also capable of regulating rpoS expression independently of Rrp1, suggesting that besides being a c-di-GMP-binding protein, PlzA has other functions. Along with the previous finding of PlzA controlling motility, these studies demonstrate that PlzA is a multifunctional protein. These findings further reinforce the notion that B. burgdorferi utilizes its limited signaling systems and regulators to govern multiple cellular processes during its complex enzootic cycle between ticks and mammals.
Collapse
|
37
|
Hill NS, Buske PJ, Shi Y, Levin PA. A moonlighting enzyme links Escherichia coli cell size with central metabolism. PLoS Genet 2013; 9:e1003663. [PMID: 23935518 PMCID: PMC3723540 DOI: 10.1371/journal.pgen.1003663] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 06/08/2013] [Indexed: 11/18/2022] Open
Abstract
Growth rate and nutrient availability are the primary determinants of size in single-celled organisms: rapidly growing Escherichia coli cells are more than twice as large as their slow growing counterparts. Here we report the identification of the glucosyltransferase OpgH as a nutrient-dependent regulator of E. coli cell size. During growth under nutrient-rich conditions, OpgH localizes to the nascent septal site, where it antagonizes assembly of the tubulin-like cell division protein FtsZ, delaying division and increasing cell size. Biochemical analysis is consistent with OpgH sequestering FtsZ from growing polymers. OpgH is functionally analogous to UgtP, a Bacillus subtilis glucosyltransferase that inhibits cell division in a growth rate-dependent fashion. In a striking example of convergent evolution, OpgH and UgtP share no homology, have distinct enzymatic activities, and appear to inhibit FtsZ assembly through different mechanisms. Comparative analysis of E. coli and B. subtilis reveals conserved aspects of growth rate regulation and cell size control that are likely to be broadly applicable. These include the conservation of uridine diphosphate glucose as a proxy for nutrient status and the use of moonlighting enzymes to couple growth rate-dependent phenomena to central metabolism. The observation that growth rate and nutrient availability strongly influence bacterial cell size was made over forty years ago. Yet, the molecular mechanisms responsible for this phenomenon have remained elusive. Using a genetic approach, we identified proteins responsible for increasing Escherichia coli cell size under nutrient-rich conditions. Our data indicate that OpgH, a glucosyltransferase involved in cell envelope biogenesis, interacts with FtsZ, a key component of the bacterial cell division machinery. In the presence of a modified sugar, UDP-glucose, OpgH interacts with FtsZ to delay the timing of division machinery assembly. Comparison of the E. coli pathway with the parallel Bacillus subtilis pathway illuminates a striking example of convergent evolution in which two highly divergent bacteria employ unrelated glucosyltransferases for an essential part of cell cycle regulation and reveals aspects of metabolic and physiological control that are potentially applicable to all forms of life.
Collapse
Affiliation(s)
- Norbert S. Hill
- Department of Biology, Washington University, Saint Louis, Missouri, United States of America
| | - Paul J. Buske
- Department of Biology, Washington University, Saint Louis, Missouri, United States of America
| | - Yue Shi
- Department of Biology, Washington University, Saint Louis, Missouri, United States of America
| | - Petra Anne Levin
- Department of Biology, Washington University, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
38
|
Sunya S, Bideaux C, Molina-Jouve C, Gorret N. Short-term dynamic behavior of Escherichia coli in response to successive glucose pulses on glucose-limited chemostat cultures. J Biotechnol 2013; 164:531-42. [DOI: 10.1016/j.jbiotec.2013.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/22/2012] [Accepted: 01/14/2013] [Indexed: 01/20/2023]
|
39
|
Al Mamun AAM, Lombardo MJ, Shee C, Lisewski AM, Gonzalez C, Lin D, Nehring RB, Saint-Ruf C, Gibson JL, Frisch RL, Lichtarge O, Hastings PJ, Rosenberg SM. Identity and function of a large gene network underlying mutagenic repair of DNA breaks. Science 2012; 338:1344-8. [PMID: 23224554 PMCID: PMC3782309 DOI: 10.1126/science.1226683] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mechanisms of DNA repair and mutagenesis are defined on the basis of relatively few proteins acting on DNA, yet the identities and functions of all proteins required are unknown. Here, we identify the network that underlies mutagenic repair of DNA breaks in stressed Escherichia coli and define functions for much of it. Using a comprehensive screen, we identified a network of ≥93 genes that function in mutation. Most operate upstream of activation of three required stress responses (RpoS, RpoE, and SOS, key network hubs), apparently sensing stress. The results reveal how a network integrates mutagenic repair into the biology of the cell, show specific pathways of environmental sensing, demonstrate the centrality of stress responses, and imply that these responses are attractive as potential drug targets for blocking the evolution of pathogens.
Collapse
Affiliation(s)
- Abu Amar M. Al Mamun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Mary-Jane Lombardo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Chandan Shee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Andreas M. Lisewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Caleb Gonzalez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Dongxu Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Ralf B. Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Claude Saint-Ruf
- U1001 INSERM, Université Paris, Descartes, Sorbonne Paris cité, site Necker, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | - Janet L. Gibson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Ryan L. Frisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030–3411, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
40
|
Sakamoto A, Terui Y, Yamamoto T, Kasahara T, Nakamura M, Tomitori H, Yamamoto K, Ishihama A, Michael AJ, Igarashi K, Kashiwagi K. Enhanced biofilm formation and/or cell viability by polyamines through stimulation of response regulators UvrY and CpxR in the two-component signal transducing systems, and ribosome recycling factor. Int J Biochem Cell Biol 2012; 44:1877-86. [PMID: 22814172 DOI: 10.1016/j.biocel.2012.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/07/2012] [Accepted: 07/10/2012] [Indexed: 01/26/2023]
Abstract
We have reported that polyamines increase cell viability at the stationary phase of cell growth through translational stimulation of ribosome modulation factor, and SpoT and RpoZ proteins involved in the synthesis and function of ppGpp in Escherichia coli. Since biofilm formation is also involved in cell viability, we looked for proteins involved in biofilm formation and cell viability whose synthesis is stimulated by polyamines at the level of translation. It was found that the synthesis of response regulators UvrY and CpxR in the two-component signal transducing systems and ribosome recycling factor (RRF) was increased by polyamines at the level of translation. Polyamine stimulation of the synthesis of UvrY and RRF was dependent on the existence of the inefficient initiation codons UUG and GUG in uvrY and frr mRNA, respectively; and polyamine stimulation of CpxR synthesis was dependent on the existence of an unusual location of a Shine-Dalgarno (SD) sequence in cpxR mRNA. Biofilm formation and cell viability in the absence of polyamines was increased by transformation of modified uvrY and cpxR genes, and cell viability by modified frr gene whose translation occurs effectively without polyamines. The results indicate that polyamines are necessary for both biofilm formation and cell viability.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Martínez-Gómez K, Flores N, Castañeda HM, Martínez-Batallar G, Hernández-Chávez G, Ramírez OT, Gosset G, Encarnación S, Bolivar F. New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microb Cell Fact 2012; 11:46. [PMID: 22513097 PMCID: PMC3390287 DOI: 10.1186/1475-2859-11-46] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycerol has enhanced its biotechnological importance since it is a byproduct of biodiesel synthesis. A study of Escherichia coli physiology during growth on glycerol was performed combining transcriptional-proteomic analysis as well as kinetic and stoichiometric evaluations in the strain JM101 and certain derivatives with important inactivated genes. RESULTS Transcriptional and proteomic analysis of metabolic central genes of strain JM101 growing on glycerol, revealed important changes not only in the synthesis of MglB, LamB and MalE proteins, but also in the overexpression of carbon scavenging genes: lamB, malE, mglB, mglC, galP and glk and some members of the RpoS regulon (pfkA, pfkB, fbaA, fbaB, pgi, poxB, acs, actP and acnA). Inactivation of rpoS had an important effect on stoichiometric parameters and growth adaptation on glycerol. The observed overexpression of poxB, pta, acs genes, glyoxylate shunt genes (aceA, aceB, glcB and glcC) and actP, suggested a possible carbon flux deviation into the PoxB, Acs and glyoxylate shunt. In this scenario acetate synthesized from pyruvate with PoxB was apparently reutilized via Acs and the glyoxylate shunt enzymes. In agreement, no acetate was detected when growing on glycerol, this strain was also capable of glycerol and acetate coutilization when growing in mineral media and derivatives carrying inactivated poxB or pckA genes, accumulated acetate. Tryptophanase A (TnaA) was synthesized at high levels and indole was produced by this enzyme, in strain JM101 growing on glycerol. Additionally, in the isogenic derivative with the inactivated tnaA gene, no indole was detected and acetate and lactate were accumulated. A high efficiency aromatic compounds production capability was detected in JM101 carrying pJLBaroG(fbr)tktA, when growing on glycerol, as compared to glucose. CONCLUSIONS The overexpression of several carbon scavenging, acetate metabolism genes and the absence of acetate accumulation occurred in JM101 cultures growing on glycerol. To explain these results it is proposed that in addition to the glycolytic metabolism, a gluconeogenic carbon recycling process that involves acetate is occurring simultaneously in this strain when growing on glycerol. Carbon flux from glycerol can be efficiently redirected in JM101 strain into the aromatic pathway using appropriate tools.
Collapse
Affiliation(s)
- Karla Martínez-Gómez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| | - Héctor M Castañeda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| | - Gabriel Martínez-Batallar
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico
| | - Georgina Hernández-Chávez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| | - Octavio T Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| | - Sergio Encarnación
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico
| | - Francisco Bolivar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| |
Collapse
|
42
|
Bialecka-Fornal M, Lee HJ, DeBerg HA, Gandhi CS, Phillips R. Single-cell census of mechanosensitive channels in living bacteria. PLoS One 2012; 7:e33077. [PMID: 22427953 PMCID: PMC3302805 DOI: 10.1371/journal.pone.0033077] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 02/09/2012] [Indexed: 12/13/2022] Open
Abstract
Bacteria are subjected to a host of different environmental stresses. One such insult occurs when cells encounter changes in the osmolarity of the surrounding media resulting in an osmotic shock. In recent years, a great deal has been learned about mechanosensitive (MS) channels which are thought to provide osmoprotection in these circumstances by opening emergency release valves in response to membrane tension. However, even the most elementary physiological parameters such as the number of MS channels per cell, how MS channel expression levels influence the physiological response of the cells, and how this mean number of channels varies from cell to cell remain unanswered. In this paper, we make a detailed quantitative study of the expression of the mechanosensitive channel of large conductance (MscL) in different media and at various stages in the growth history of bacterial cultures. Using both quantitative fluorescence microscopy and quantitative Western blots our study complements earlier electrophysiology-based estimates and results in the following key insights: i) the mean number of channels per cell is much higher than previously estimated, ii) measurement of the single-cell distributions of such channels reveals marked variability from cell to cell and iii) the mean number of channels varies under different environmental conditions. The regulation of MscL expression displays rich behaviors that depend strongly on culturing conditions and stress factors, which may give clues to the physiological role of MscL. The number of stress-induced MscL channels and the associated variability have far reaching implications for the in vivo response of the channels and for modeling of this response. As shown by numerous biophysical models, both the number of such channels and their variability can impact many physiological processes including osmoprotection, channel gating probability, and channel clustering.
Collapse
Affiliation(s)
- Maja Bialecka-Fornal
- Biochemistry and Molecular Biophysics Option, California Institute of Technology, Pasadena, California, United States of America
| | - Heun Jin Lee
- Department of Applied Physics, California Institute of Technology, Pasadena, California, United States of America
| | - Hannah A. DeBerg
- Department of Physics and the Center for Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Chris S. Gandhi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Rob Phillips
- Biochemistry and Molecular Biophysics Option, California Institute of Technology, Pasadena, California, United States of America
- Department of Applied Physics, California Institute of Technology, Pasadena, California, United States of America
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
|
44
|
Wilf NM, Salmond GPC. The stationary phase sigma factor, RpoS, regulates the production of a carbapenem antibiotic, a bioactive prodigiosin and virulence in the enterobacterial pathogen Serratia sp. ATCC 39006. MICROBIOLOGY-SGM 2011; 158:648-658. [PMID: 22194349 DOI: 10.1099/mic.0.055780-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Serratia sp. ATCC 39006 (S39006) is a Gram-negative bacterium that is virulent in plant (potato) and invertebrate animal (Caenorhabditis elegans) models. It produces two secondary metabolite antibiotics, a prodigiosin and a carbapenem, and the exoenzymes pectate lyase and cellulase. We showed previously that deletion of the RNA chaperone Hfq abolished antibiotic production and attenuated virulence in both animal and plant hosts. Hfq and dependent small RNAs (sRNAs) are known to regulate the post-transcriptional expression of rpoS, which encodes σ(S), the stationary phase sigma factor subunit of RNA polymerase. An S39006 hfq deletion mutant showed decreased transcript levels of rpoS. Therefore, in this study we investigated whether the phenotypes regulated by Hfq were mediated through its control of rpoS. Whereas loss of Hfq abolished prodigiosin and carbapenem production and attenuated virulence in both C. elegans and potato, characterization of an S39006 rpoS mutant showed unexpectedly elevated prodigiosin and carbapenem production. Furthermore, the rpoS mutant exhibited attenuated animal pathogenesis, but not plant pathogenesis. Additionally, a homologue of the Hfq-dependent sRNA, RprA, was identified and shown to regulate prodigiosin production in a manner consistent with its role in positively regulating translation of rpoS mRNA. Combined, these results demonstrate that Hfq regulation of secondary metabolism and plant pathogenesis is independent of RpoS and establishes RpoS and RprA as regulators of antibiotic production.
Collapse
Affiliation(s)
- Nabil M Wilf
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
45
|
Abstract
In their stressful natural environments, bacteria often are in stationary phase and use their limited resources for maintenance and stress survival. Underlying this activity is the general stress response, which in Escherichia coli depends on the σS (RpoS) subunit of RNA polymerase. σS is closely related to the vegetative sigma factor σ70 (RpoD), and these two sigmas recognize similar but not identical promoter sequences. During the postexponential phase and entry into stationary phase, σS is induced by a fine-tuned combination of transcriptional, translational, and proteolytic control. In addition, regulatory "short-cuts" to high cellular σS levels, which mainly rely on the rapid inhibition of σS proteolysis, are triggered by sudden starvation for various nutrients and other stressful shift conditons. σS directly or indirectly activates more than 500 genes. Additional signal input is integrated by σS cooperating with various transcription factors in complex cascades and feedforward loops. Target gene products have stress-protective functions, redirect metabolism, affect cell envelope and cell shape, are involved in biofilm formation or pathogenesis, or can increased stationary phase and stress-induced mutagenesis. This review summarizes these diverse functions and the amazingly complex regulation of σS. At the molecular level, these processes are integrated with the partitioning of global transcription space by sigma factor competition for RNA polymerase core enzyme and signaling by nucleotide second messengers that include cAMP, (p)ppGpp, and c-di-GMP. Physiologically, σS is the key player in choosing between a lifestyle associated with postexponential growth based on nutrient scavenging and motility and a lifestyle focused on maintenance, strong stress resistance, and increased adhesiveness. Finally, research with other proteobacteria is beginning to reveal how evolution has further adapted function and regulation of σS to specific environmental niches.
Collapse
|
46
|
Hu Y, Benedik MJ, Wood TK. Antitoxin DinJ influences the general stress response through transcript stabilizer CspE. Environ Microbiol 2011; 14:669-79. [PMID: 22026739 DOI: 10.1111/j.1462-2920.2011.02618.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Antitoxins are becoming recognized as proteins that regulate more than their own synthesis; for example, we found previously that antitoxin MqsA of the Escherichia coli toxin/antitoxin (TA) pair MqsR/MqsA directly represses the gene encoding the stationary-phase sigma factor RpoS. Here, we investigated the physiological role of antitoxin DinJ of the YafQ/DinJ TA pair and found DinJ also affects the general stress response by decreasing RpoS levels. Corroborating the reduced RpoS levels upon producing DinJ, the RpoS-regulated phenotypes of catalase activity, cell adhesins and cyclic diguanylate decreased while swimming increased. Using a transcriptome search and DNA-binding assays, we determined that the mechanism by which DinJ reduces RpoS is by repressing cspE at the LexA palindrome; cold-shock protein CspE enhances translation of rpoS mRNA. Inactivation of CspE abolishes the ability of DinJ to influence RpoS. Hence, DinJ influences the general stress response indirectly by regulating cspE.
Collapse
Affiliation(s)
- Ying Hu
- Department of Chemical Engineering, Texas A & M University, College Station, TX 77843-3122, USA
| | | | | |
Collapse
|
47
|
Intergenic sequence comparison of Escherichia coli isolates reveals lifestyle adaptations but not host specificity. Appl Environ Microbiol 2011; 77:7620-32. [PMID: 21908635 DOI: 10.1128/aem.05909-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Establishing the risk of human infection is one of the goals of public health. For bacterial pathogens, the virulence and zoonotic potential can often be related to their host source. Escherichia coli bacteria are common contaminants of water associated with human recreation and consumption, and many strains are pathogenic. In this study, we analyzed three promoter-containing intergenic regions from 284 diverse E. coli isolates in an attempt to identify molecular signatures associated with specific host types. Promoter sequences controlling production of curli fimbriae, flagella, and nutrient import yielded a phylogenetic tree with isolates clustered by established phylogenetic grouping (A, B1, B2, and D) but not by host source. Virulence genes were more prevalent in groups B2 and D isolates and in human isolates. Group B1 isolates, primarily from nonhuman sources, were the most genetically similar, indicating that they lacked molecular adaptations to specific host environments and were likely host generalists. Conversely, B2 isolates, primarily from human sources, displayed greater genetic distances and were more likely to be host adapted. In agreement with these hypotheses, prevalence of σ(S) activity and the rdar morphotype, phenotypes associated with environmental survival, were significantly higher in B1 isolates than in B2 isolates. Based on our findings, we speculate that E. coli host specificity is not defined by genome-wide sequence changes but, rather, by the presence or absence of specific genes and associated promoter elements. Furthermore, the requirements for colonization of the human gastrointestinal tract may lead to E. coli lifestyle changes along with selection for increased virulence.
Collapse
|
48
|
Increasing recombinant protein production in Escherichia coli through metabolic and genetic engineering. J Ind Microbiol Biotechnol 2011; 38:1891-910. [PMID: 21901404 DOI: 10.1007/s10295-011-1034-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
Abstract
Different hosts have been used for recombinant protein production, ranging from simple bacteria, such as Escherichia coli and Bacillus subtilis, to more advanced eukaryotes as Saccharomyces cerevisiae and Pichia pastoris, to very complex insect and animal cells. All have their advantages and drawbacks and not one seems to be the perfect host for all purposes. In this review we compare the characteristics of all hosts used in commercial applications of recombinant protein production, both in the area of biopharmaceuticals and industrial enzymes. Although the bacterium E. coli remains a very often used organism, several drawbacks limit its possibility to be the first-choice host. Furthermore, we show what E. coli strains are typically used in high cell density cultivations and compare their genetic and physiological differences. In addition, we summarize the research efforts that have been done to improve yields of heterologous protein in E. coli, to reduce acetate formation, to secrete the recombinant protein into the periplasm or extracellular milieu, and to perform post-translational modifications. We conclude that great progress has been made in the incorporation of eukaryotic features into E. coli, which might allow the bacterium to regain its first-choice status, on the condition that these research efforts continue to gain momentum.
Collapse
|
49
|
Impact of a stress-inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:13659-64. [PMID: 21808005 DOI: 10.1073/pnas.1104681108] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Basic ideas about the constancy and randomness of mutagenesis that drives evolution were challenged by the discovery of mutation pathways activated by stress responses. These pathways could promote evolution specifically when cells are maladapted to their environment (i.e., are stressed). However, the clearest example--a general stress-response-controlled switch to error-prone DNA break (double-strand break, DSB) repair--was suggested to be peculiar to an Escherichia coli F' conjugative plasmid, not generally significant, and to occur by an alternative stress-independent mechanism. Moreover, mechanisms of spontaneous mutation in E. coli remain obscure. First, we demonstrate that this same mechanism occurs in chromosomes of starving F(-) E. coli. I-SceI endonuclease-induced chromosomal DSBs increase mutation 50-fold, dependent upon general/starvation- and DNA-damage-stress responses, DinB error-prone DNA polymerase, and DSB-repair proteins. Second, DSB repair is also mutagenic if the RpoS general-stress-response activator is expressed in unstressed cells, illustrating a stress-response-controlled switch to mutagenic repair. Third, DSB survival is not improved by RpoS or DinB, indicating that mutagenesis is not an inescapable byproduct of repair. Importantly, fourth, fully half of spontaneous frame-shift and base-substitution mutation during starvation also requires the same stress-response, DSB-repair, and DinB proteins. These data indicate that DSB-repair-dependent stress-induced mutation, driven by spontaneous DNA breaks, is a pathway that cells usually use and a major source of spontaneous mutation. These data also rule out major alternative models for the mechanism. Mechanisms that couple mutagenesis to stress responses can allow cells to evolve rapidly and responsively to their environment.
Collapse
|
50
|
Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. EMBO J 2011; 30:3442-53. [PMID: 21792174 DOI: 10.1038/emboj.2011.246] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/28/2011] [Indexed: 02/02/2023] Open
Abstract
Production of non-canonical D-amino acids (NCDAAs) in stationary phase promotes remodelling of peptidoglycan (PG), the polymer that comprises the bacterial cell wall. Impairment of NCDAAs production leads to excessive accumulation of PG and hypersensitivity to osmotic shock; however, the mechanistic bases for these phenotypes were not previously determined. Here, we show that incorporation of NCDAAs into PG is a critical means by which NCDAAs control PG abundance and strength. We identified and reconstituted in vitro two (of at least three) distinct processes that mediate NCDAA incorporation. Diverse bacterial phyla incorporate NCDAAs into their cell walls, either through periplasmic editing of the mature PG or via incorporation into PG precursor subunits in the cytosol. Production of NCDAAs in Vibrio cholerae requires the stress response sigma factor RpoS, suggesting that NCDAAs may aid bacteria in responding to varied environmental challenges. The widespread capacity of diverse bacteria, including non-producers, to incorporate NCDAAs suggests that these amino acids may serve as both autocrine- and paracrine-like regulators of chemical and physical properties of the cell wall in microbial communities.
Collapse
|