1
|
Gattoni G, Keitley D, Sawle A, Benito-Gutiérrez E. An ancient apical patterning system sets the position of the forebrain in chordates. SCIENCE ADVANCES 2025; 11:eadq4731. [PMID: 39854450 PMCID: PMC11758999 DOI: 10.1126/sciadv.adq4731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates. Using functional approaches, we show Wnt signaling regulating this co-expression module in amphioxus, like the aGRN in echinoderms, and that its overactivation suppresses forebrain identity. This suggests a previously undescribed role for Wnt signaling in amphioxus in determining the position of the forebrain. We propose this Wnt-regulated gene co-expression module as a possible mechanism by which the brain set antero-dorsally early in chordate evolution.
Collapse
Affiliation(s)
- Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Daniel Keitley
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ashley Sawle
- Cancer Research UK, Cambridge Institute, Cambridge, UK
| | | |
Collapse
|
2
|
Bayala EX, Sinha P, Wittkopp PJ. Protocol for dissecting Drosophila pupae and visualizing RNA expression using hybridization chain reaction. STAR Protoc 2024; 5:103456. [PMID: 39576730 PMCID: PMC11616507 DOI: 10.1016/j.xpro.2024.103456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Visualizing RNA expression in the Drosophila epidermis during pupal development is challenging because the tissue is fragile during early pupal stages and increasingly impermeable at later stages. Here, we present a protocol for tissue dissection and detection of RNA in situ. We describe steps for using the hybridization chain reaction (HCR) in early and late Drosophila pupal stages (and larval imaginal discs). This protocol facilitates the study of dynamically changing patterns in gene expression during pupal development.
Collapse
Affiliation(s)
- Erick X Bayala
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Pratyush Sinha
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patricia J Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Rees JM, Kirk K, Gattoni G, Hockman D, Sleight VA, Ritter DJ, Benito-Gutierrez È, Knapik EW, Crump JG, Fabian P, Gillis JA. A pre-vertebrate endodermal origin of calcitonin-producing neuroendocrine cells. Development 2024; 151:dev202821. [PMID: 39109637 PMCID: PMC11698069 DOI: 10.1242/dev.202821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/25/2024] [Indexed: 09/17/2024]
Abstract
Vertebrate calcitonin-producing cells (C-cells) are neuroendocrine cells that secrete the small peptide hormone calcitonin in response to elevated blood calcium levels. Whereas mouse C-cells reside within the thyroid gland and derive from pharyngeal endoderm, avian C-cells are located within ultimobranchial glands and have been reported to derive from the neural crest. We use a comparative cell lineage tracing approach in a range of vertebrate model systems to resolve the ancestral embryonic origin of vertebrate C-cells. We find, contrary to previous studies, that chick C-cells derive from pharyngeal endoderm, with neural crest-derived cells instead contributing to connective tissue intimately associated with C-cells in the ultimobranchial gland. This endodermal origin of C-cells is conserved in a ray-finned bony fish (zebrafish) and a cartilaginous fish (the little skate, Leucoraja erinacea). Furthermore, we discover putative C-cell homologs within the endodermally-derived pharyngeal epithelium of the ascidian Ciona intestinalis and the amphioxus Branchiostoma lanceolatum, two invertebrate chordates that lack neural crest cells. Our findings point to a conserved endodermal origin of C-cells across vertebrates and to a pre-vertebrate origin of this cell type along the chordate stem.
Collapse
Affiliation(s)
- Jenaid M. Rees
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Katie Kirk
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Cape Town 7935, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town 7935, South Africa
| | | | - Dylan J. Ritter
- Department of Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, TN 37240, USA
| | | | - Ela W. Knapik
- Department of Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, TN 37240, USA
- Vanderbilt Genetics Institute, Vanderbilt School of Medicine, Nashville, TN 37232, USA
| | - J. Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Peter Fabian
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J. Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
4
|
Mercurio S, Gattoni G, Scarì G, Ascagni M, Barzaghi B, Elphick MR, Croce JC, Schubert M, Benito-Gutiérrez E, Pennati R. A feather star is born: embryonic development and nervous system organization in the crinoid Antedon mediterranea. Open Biol 2024; 14:240115. [PMID: 39165121 PMCID: PMC11336682 DOI: 10.1098/rsob.240115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024] Open
Abstract
Crinoids belong to the Echinodermata, marine invertebrates with a highly derived adult pentaradial body plan. As the sister group to all other extant echinoderms, crinoids occupy a key phylogenetic position to explore the evolutionary history of the whole phylum. However, their development remains understudied compared with that of other echinoderms. Therefore, the aim here was to establish the Mediterranean feather star (Antedon mediterranea) as an experimental system for developmental biology. We first set up a method for culturing embryos in vitro and defined a standardized staging system for this species. We then optimized protocols to characterize the morphological and molecular development of the main structures of the feather star body plan. Focusing on the nervous system, we showed that the larval apical organ includes serotonergic, GABAergic and glutamatergic neurons, which develop within a conserved anterior molecular signature. We described the composition of the early post-metamorphic nervous system and revealed that it has an anterior signature. These results further our knowledge on crinoid development and provide new techniques to investigate feather star embryogenesis. This will pave the way for the inclusion of crinoids in comparative studies addressing the origin of the echinoderm body plan and the evolutionary diversification of deuterostomes.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Giorgio Scarì
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Miriam Ascagni
- Unitech NOLIMITS, Università degli Studi di Milano, Milan, Italy
| | - Benedetta Barzaghi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Maurice R. Elphick
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Jenifer C. Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Elia Benito-Gutiérrez
- Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Genentech, South San Francisco, CA, USA
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Grau-Bové X, Subirana L, Meister L, Soubigou A, Neto A, Elek A, Naranjo S, Fornas O, Gomez-Skarmeta JL, Tena JJ, Irimia M, Bertrand S, Sebé-Pedrós A, Escriva H. An amphioxus neurula stage cell atlas supports a complex scenario for the emergence of vertebrate head mesoderm. Nat Commun 2024; 15:4550. [PMID: 38811547 PMCID: PMC11136973 DOI: 10.1038/s41467-024-48774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
The emergence of new structures can often be linked to the evolution of novel cell types that follows the rewiring of developmental gene regulatory subnetworks. Vertebrates are characterized by a complex body plan compared to the other chordate clades and the question remains of whether and how the emergence of vertebrate morphological innovations can be related to the appearance of new embryonic cell populations. We previously proposed, by studying mesoderm development in the cephalochordate amphioxus, a scenario for the evolution of the vertebrate head mesoderm. To further test this scenario at the cell population level, we used scRNA-seq to construct a cell atlas of the amphioxus neurula, stage at which the main mesodermal compartments are specified. Our data allowed us to validate the presence of a prechordal-plate like territory in amphioxus. Additionally, the transcriptomic profile of somite cell populations supports the homology between specific territories of amphioxus somites and vertebrate cranial/pharyngeal and lateral plate mesoderm. Finally, our work provides evidence that the appearance of the specific mesodermal structures of the vertebrate head was associated to both segregation of pre-existing cell populations, and co-option of new genes for the control of myogenesis.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Lydvina Meister
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Anaël Soubigou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Ana Neto
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Oscar Fornas
- Flow Cytometry Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France.
- Institut universitaire de France (IUF), Paris, France.
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France.
| |
Collapse
|
6
|
Mayeur H, Lanoizelet M, Quillien A, Menuet A, Michel L, Martin KJ, Dejean S, Blader P, Mazan S, Lagadec R. When Bigger Is Better: 3D RNA Profiling of the Developing Head in the Catshark Scyliorhinus canicula. Front Cell Dev Biol 2021; 9:744982. [PMID: 34746140 PMCID: PMC8569936 DOI: 10.3389/fcell.2021.744982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
We report the adaptation of RNA tomography, a technique allowing spatially resolved, genome-wide expression profiling, to a species occupying a key phylogenetic position in gnathostomes, the catshark Scyliorhinus canicula. We focused analysis on head explants at an embryonic stage, shortly following neural tube closure and of interest for a number of developmental processes, including early brain patterning, placode specification or the establishment of epithalamic asymmetry. As described in the zebrafish, we have sequenced RNAs extracted from serial sections along transverse, horizontal and sagittal planes, mapped the data onto a gene reference taking advantage of the high continuity genome recently released in the catshark, and projected read counts onto a digital model of the head obtained by confocal microscopy. This results in the generation of a genome-wide 3D atlas, containing expression data for most protein-coding genes in a digital model of the embryonic head. The digital profiles obtained for candidate forebrain regional markers along antero-posterior, dorso-ventral and left-right axes reproduce those obtained by in situ hybridization (ISH), with expected relative organizations. We also use spatial autocorrelation and correlation as measures to analyze these data and show that they provide adequate statistical tools to extract novel expression information from the model. These data and tools allow exhaustive searches of genes exhibiting any predefined expression characteristic, such a restriction to a territory of interest, thus providing a reference for comparative analyses across gnathostomes. This methodology appears best suited to species endowed with large embryo or organ sizes and opens novel perspectives to a wide range of evo-devo model organisms, traditionally counter-selected on size criterion.
Collapse
Affiliation(s)
- Hélène Mayeur
- CNRS, Sorbonne Université, UMR 7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls sur Mer, France
| | - Maxence Lanoizelet
- CNRS, Sorbonne Université, UMR 7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls sur Mer, France
| | - Aurélie Quillien
- Molecular, Cellular and Developmental Biology (MCD UMR 5077), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arnaud Menuet
- UMR 7355, Experimental and Molecular Immunology and Neurogenetics, CNRS and University of Orléans, Orléans, France
| | - Léo Michel
- CNRS, Sorbonne Université, UMR 7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls sur Mer, France
| | - Kyle John Martin
- United Kingdom Research and Innovation, Biotechnology and Biological Sciences Research Council, Swindon, United Kingdom
| | - Sébastien Dejean
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS, UMR 5219, Toulouse, France
| | - Patrick Blader
- Molecular, Cellular and Developmental Biology (MCD UMR 5077), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sylvie Mazan
- CNRS, Sorbonne Université, UMR 7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls sur Mer, France
| | - Ronan Lagadec
- CNRS, Sorbonne Université, UMR 7232-Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls sur Mer, France
| |
Collapse
|
7
|
Benito-Gutiérrez È, Gattoni G, Stemmer M, Rohr SD, Schuhmacher LN, Tang J, Marconi A, Jékely G, Arendt D. The dorsoanterior brain of adult amphioxus shares similarities in expression profile and neuronal composition with the vertebrate telencephalon. BMC Biol 2021; 19:110. [PMID: 34020648 PMCID: PMC8139002 DOI: 10.1186/s12915-021-01045-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/06/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The evolutionary origin of the telencephalon, the most anterior part of the vertebrate brain, remains obscure. Since no obvious counterpart to the telencephalon has yet been identified in invertebrate chordates, it is difficult to trace telencephalic origins. One way to identify homologous brain parts between distantly related animal groups is to focus on the combinatorial expression of conserved regionalisation genes that specify brain regions. RESULTS Here, we report the combined expression of conserved transcription factors known to specify the telencephalon in the vertebrates in the chordate amphioxus. Focusing on adult specimens, we detect specific co-expression of these factors in the dorsal part of the anterior brain vesicle, which we refer to as Pars anterodorsalis (PAD). As in vertebrates, expression of the transcription factors FoxG1, Emx and Lhx2/9 overlaps that of Pax4/6 dorsally and of Nkx2.1 ventrally, where we also detect expression of the Hedgehog ligand. This specific pattern of co-expression is not observed prior to metamorphosis. Similar to the vertebrate telencephalon, the amphioxus PAD is characterised by the presence of GABAergic neurons and dorsal accumulations of glutamatergic as well as dopaminergic neurons. We also observe sustained proliferation of neuronal progenitors at the ventricular zone of the amphioxus brain vesicle, as observed in the vertebrate brain. CONCLUSIONS Our findings suggest that the PAD in the adult amphioxus brain vesicle and the vertebrate telencephalon evolved from the same brain precursor region in ancestral chordates, which would imply homology of these structures. Our comparative data also indicate that this ancestral brain already contained GABA-, glutamatergic and dopaminergic neurons, as is characteristic for the olfactory bulb of the vertebrate telencephalon. We further speculate that the telencephalon might have evolved in vertebrates via a heterochronic shift in developmental timing.
Collapse
Affiliation(s)
- Èlia Benito-Gutiérrez
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Manuel Stemmer
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Present Address: Max-Planck Institute for Neurobiology in Martinsried, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Silvia D Rohr
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Laura N Schuhmacher
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Present Address: Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jocelyn Tang
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Aleksandra Marconi
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| |
Collapse
|
8
|
Pond AJR, Hwang S, Verd B, Steventon B. A deep learning approach for staging embryonic tissue isolates with small data. PLoS One 2021; 16:e0244151. [PMID: 33417603 PMCID: PMC7793293 DOI: 10.1371/journal.pone.0244151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Machine learning approaches are becoming increasingly widespread and are now present in most areas of research. Their recent surge can be explained in part due to our ability to generate and store enormous amounts of data with which to train these models. The requirement for large training sets is also responsible for limiting further potential applications of machine learning, particularly in fields where data tend to be scarce such as developmental biology. However, recent research seems to indicate that machine learning and Big Data can sometimes be decoupled to train models with modest amounts of data. In this work we set out to train a CNN-based classifier to stage zebrafish tail buds at four different stages of development using small information-rich data sets. Our results show that two and three dimensional convolutional neural networks can be trained to stage developing zebrafish tail buds based on both morphological and gene expression confocal microscopy images, achieving in each case up to 100% test accuracy scores. Importantly, we show that high accuracy can be achieved with data set sizes of under 100 images, much smaller than the typical training set size for a convolutional neural net. Furthermore, our classifier shows that it is possible to stage isolated embryonic structures without the need to refer to classic developmental landmarks in the whole embryo, which will be particularly useful to stage 3D culture in vitro systems such as organoids. We hope that this work will provide a proof of principle that will help dispel the myth that large data set sizes are always required to train CNNs, and encourage researchers in fields where data are scarce to also apply ML approaches.
Collapse
Affiliation(s)
| | - Seongwon Hwang
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Berta Verd
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Benjamin Steventon
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Zawisza-Álvarez M, Pérez-Calles C, Gattoni G, Garcia-Fernàndez J, Benito-Gutiérrez È, Herrera-Úbeda C. The ADAR Family in Amphioxus: RNA Editing and Conserved Orthologous Site Predictions. Genes (Basel) 2020; 11:genes11121440. [PMID: 33265998 PMCID: PMC7761149 DOI: 10.3390/genes11121440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 01/21/2023] Open
Abstract
RNA editing is a relatively unexplored process in which transcribed RNA is modified at specific nucleotides before translation, adding another level of regulation of gene expression. Cephalopods use it extensively to increase the regulatory complexity of their nervous systems, and mammals use it too, but less prominently. Nevertheless, little is known about the specifics of RNA editing in most of the other clades and the relevance of RNA editing from an evolutionary perspective remains unknown. Here we analyze a key element of the editing machinery, the ADAR (adenosine deaminase acting on RNA) gene family, in an animal with a key phylogenetic position at the root of chordates: the cephalochordate amphioxus. We show, that as in cephalopods, ADAR genes in amphioxus are predominantly expressed in the nervous system; we identify a number of RNA editing events in amphioxus; and we provide a newly developed method to identify RNA editing events in highly polymorphic genomes using orthology as a guide. Overall, our work lays the foundations for future comparative analysis of RNA-editing events across the metazoan tree.
Collapse
Affiliation(s)
- Michał Zawisza-Álvarez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08007 Barcelona, Spain; (M.Z.-Á.); (C.P.-C.); (J.G.-F.)
| | - Claudia Pérez-Calles
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08007 Barcelona, Spain; (M.Z.-Á.); (C.P.-C.); (J.G.-F.)
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08007 Barcelona, Spain; (M.Z.-Á.); (C.P.-C.); (J.G.-F.)
| | - Èlia Benito-Gutiérrez
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK;
- Correspondence: (È.B.-G.); (C.H.-Ú.)
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08007 Barcelona, Spain; (M.Z.-Á.); (C.P.-C.); (J.G.-F.)
- Correspondence: (È.B.-G.); (C.H.-Ú.)
| |
Collapse
|