1
|
Gao R, Zong Y, Zhang S, Guo G, Zhang W, Chen Z, Lu R, Liu C, Wang Y, Li Y. Efficient isolated microspore culture protocol for callus induction and plantlet regeneration in japonica rice (Oryza sativa L.). PLANT METHODS 2024; 20:76. [PMID: 38790046 PMCID: PMC11127448 DOI: 10.1186/s13007-024-01189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Isolated microspore culture is a useful biotechnological technique applied in modern plant breeding programs as it can produce doubled haploid (DH) plants and accelerate the development of new varieties. Furthermore, as a single-cell culture technique, the isolated microspore culture provides an excellent platform for studying microspore embryogenesis. However, the reports on isolated microspore culture are rather limited in rice due to the low callus induction rate, poor regeneration capability, and high genotypic dependency. The present study developed an effective isolated microspore culture protocol for high-frequency androgenesis in four japonica rice genotypes. Several factors affecting the isolated microspore culture were studied to evaluate their effects on callus induction and plantlet regeneration. RESULTS Low-temperature pre-treatment at 4 ℃ for 10-15 days could effectively promote microspore embryogenesis in japonica rice. A simple and efficient method was proposed for identifying the microspore developmental stage. The anthers in yellow-green florets located on the second type of primary branch on the rice panicle were found to be the optimal stage for isolated microspore culture. The most effective induction media for callus induction were IM2 and IM3, depending on the genotype. The optimal concentration of 2, 4-D in the medium for callus induction was 1 mg/L. Callus induction was negatively affected by a high concentration of KT over 1.5 mg/L. The differentiation medium suitable for japonica rice microspore callus comprised 1/2 MS, 2 mg/L 6-BA, 0.5 mg/L NAA, 30 g/L sucrose, and 6 g/L agar. The regeneration frequency of the four genotypes ranged from 61-211 green plantlets per 100 mg calli, with Chongxiangjing showing the highest regeneration frequency. CONCLUSIONS This study presented an efficient protocol for improved callus induction and green plantlet regeneration in japonica rice via isolated microspore culture, which could provide valuable support for rice breeding and genetic research.
Collapse
Affiliation(s)
- Runhong Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yingjie Zong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Shuwei Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Guimei Guo
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Wenqi Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Zhiwei Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Ruiju Lu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Chenghong Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yifei Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| | - Yingbo Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.
| |
Collapse
|
2
|
Dubey R, Zustovi R, Landschoot S, Dewitte K, Verlinden G, Haesaert G, Maenhout S. Harnessing monocrop breeding strategies for intercrops. FRONTIERS IN PLANT SCIENCE 2024; 15:1394413. [PMID: 38799097 PMCID: PMC11119317 DOI: 10.3389/fpls.2024.1394413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Intercropping is considered advantageous for many reasons, including increased yield stability, nutritional value and the provision of various regulating ecosystem services. However, intercropping also introduces diverse competition effects between the mixing partners, which can negatively impact their agronomic performance. Therefore, selecting complementary intercropping partners is the key to realizing a well-mixed crop production. Several specialized intercrop breeding concepts have been proposed to support the development of complementary varieties, but their practical implementation still needs to be improved. To lower this adoption threshold, we explore the potential of introducing minor adaptations to commonly used monocrop breeding strategies as an initial stepping stone towards implementing dedicated intercrop breeding schemes. While we acknowledge that recurrent selection for reciprocal mixing abilities is likely a more effective breeding paradigm to obtain genetic progress for intercrops, a well-considered adaptation of monoculture breeding strategies is far less intrusive concerning the design of the breeding programme and allows for balancing genetic gain for both monocrop and intercrop performance. The main idea is to develop compatible variety combinations by improving the monocrop performance in the two breeding pools in parallel and testing for intercrop performance in the later stages of selection. We show that the optimal stage for switching from monocrop to intercrop testing should be adapted to the specificity of the crop and the heritability of the traits involved. However, the genetic correlation between the monocrop and intercrop trait performance is the primary driver of the intercrop breeding scheme optimization process.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Steven Maenhout
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Camacho-Fernández C, Corral-Martínez P, Calabuig-Serna A, Arjona-Mudarra P, Sancho-Oviedo D, Boutilier K, Seguí-Simarro JM. The different response of Brassica napus genotypes to microspore embryogenesis induced by heat shock and trichostatin A is not determined by changes in cell wall structure and composition but by different stress tolerance. PHYSIOLOGIA PLANTARUM 2024; 176:e14405. [PMID: 38923567 DOI: 10.1111/ppl.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
During microspore embryogenesis, microspores are induced to develop into haploid embryos. In Brassica napus, microspore embryogenesis is induced by a heat shock (HS), which initially produces embryogenic structures with different cell wall architectures and compositions, and with different potentials to develop into embryos. The B. napus DH4079 and DH12075 genotypes have high and very low embryo yields, respectively. In DH12075, embryo yield is greatly increased by combining HS and the histone deacetylase (HDAC) inhibitor trichostatin A (TSA). However, we show that HS + TSA inhibits embryogenesis in the highly embryogenic DH4079 line. To ascertain why TSA has such different effects in these lines, we treated DH4079 and DH12075 microspore cultures with TSA and compared the cell wall structure and composition of the different embryogenic structures in both lines, specifically the in situ levels and distribution of callose, cellulose, arabinogalactan proteins and high and low methyl-esterified pectin. For both lines, HS + TSA led to the formation of cell walls unfavorable for embryogenesis progression, with reduced levels of arabinogalactan proteins, reduced cell adhesion of inner walls and altered pectin composition. Thus, TSA effects on cell walls cannot explain their different embryogenic response to TSA. We also applied TSA to DH4079 cultures at different times and concentrations before HS application, with no negative effects on embryogenic induction. These results indicate that DH4079 microspores are hypersensitive to combined TSA and HS treatments, and open up new hypotheses about the causes of such hypersensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | - Kim Boutilier
- Bioscience, Wageningen University and Research, Wageningen, AA, Netherlands
| | | |
Collapse
|
4
|
Chang Y, Tang H, Wang S, Li X, Huang P, Zhang J, Wang K, Yan Y, Ye X. Efficient induction and rapid identification of haploid grains in tetraploid wheat by editing genes TtMTL and pyramiding anthocyanin markers. FRONTIERS IN PLANT SCIENCE 2024; 15:1346364. [PMID: 38567139 PMCID: PMC10985189 DOI: 10.3389/fpls.2024.1346364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Doubled haploid (DH) technology provides an effective way to generate homozygous genetic and breeding materials over a short period of time. We produced three types of homozygous TtMTL gene-edited mutants (mtl-a, mtl-b, and mtl-ab) by CRISPR/Cas9 in durum wheat. PCR restriction enzymes and sequencing confirmed that the editing efficiency was up to 53.5%. The seed-setting rates of the three types of mutants ranged from 20% to 60%. Abnormal grain phenotypes of kernel, embryo, and both embryo and endosperm abortions were observed in the progenies of the mutants. The average frequency of embryo-less grains was 25.3%. Chromosome counting, guard cell length, and flow cytometry confirmed that the haploid induction rate was in the range of 3%-21% in the cross- and self-pollinated progenies of the mtl mutants (mtl-a and mtl-ab). Furthermore, we co-transformed two vectors, pCRISPR/Cas9-MTL and pBD68-(ZmR + ZmC1), into durum wheat, to pyramide Ttmtl-edited mutations and embryo-specifically expressed anthocyanin markers, and developed a homozygous durum haploid inducer with purple embryo (DHIPE). Using DHIPE as the male parent to be crossed with the wild-type Kronos, the grains with white embryos were identified as haploid, while the grains with purple embryos were diploid. These findings will promote the breeding of new tetraploid wheat varieties.
Collapse
Affiliation(s)
- Yanan Chang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environment Improvement, College of Life Science, Capital Normal University, Beijing, China
| | - Huali Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Surong Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xi Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peipei Huang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiahui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environment Improvement, College of Life Science, Capital Normal University, Beijing, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Broughton S, Castello M, Liu L, Killen J, McMullan C. Anther Culture Protocols for Barley and Wheat. Methods Mol Biol 2024; 2827:243-266. [PMID: 38985275 DOI: 10.1007/978-1-0716-3954-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Doubled haploid (DH) techniques remain valuable tools for wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) genetic improvement, and DH populations are used extensively in breeding and research endeavors. Several techniques are available for DH production in wheat and barley. Here, we describe two simple, robust anther culture methods used to produce more than 15,000 DH wheat and barley lines annually in Australia.
Collapse
Affiliation(s)
- Sue Broughton
- Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| | - Marieclaire Castello
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Li Liu
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Julie Killen
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Christopher McMullan
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
| |
Collapse
|
6
|
Ibrahim E, Rychlá A, Alquicer G, Slavíková L, Peng Q, Klíma M, Vrbovský V, Trebicki P, Kundu JK. Evaluation of Resistance of Oilseed Rape Genotypes to Turnip Yellows Virus. PLANTS (BASEL, SWITZERLAND) 2023; 12:2501. [PMID: 37447062 DOI: 10.3390/plants12132501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Turnip yellows virus (TuYV), is one of the most important pathogens of oilseed rape, which has caused enormous yield losses in all growing regions of the world in recent years. Therefore, there is a need for resistant varieties for sustainable crop protection. We have investigated the resistance of known varieties and newly developed advanced-breeding lines of oilseed rape to TuYV in greenhouse and field trials. We have analysed the TuYV titre of individual genotypes inoculated with the virus using viruliferous aphids Myzus persicae. The genotypes 'DK Temptation' and 'Rescator' had the lowest and highest virus titres, respectively, and were used as resistant and susceptible models for comparative analyses with other genotypes. In the greenhouse, the best results were obtained with the genotypes 'OP-8143 DH' (2.94 × 105 copies), OP-BN-72 (3.29 × 105 copies), 'Navajo' (3.58 × 105 copies) and 'SG-C 21215' (4.09 × 105 copies), which reached virus titres about 2 times higher than the minimum virus concentration measured in 'DK Temptation' (1.80 × 105 copies). In the field trials, the genotypes 'Navajo' (3.39 × 105 copies), 'OP-8148 DH' (4.44 × 105 copies), 'SG-C 21215' (6.80 × 105 copies) and OP-8480 (7.19 × 105 copies) had the lowest virus titres and reached about 3 times the virus titre of DK Temptation (2.54 × 105 copies). Both trials showed that at least two commercial varieties (e.g., DK Temptation, Navajo) and three advanced breeding lines (e.g., OP-8143 DH, OP-BN-72, SG-C 21215) had low titres of the virus after TuYV infection. This indicates a high level of resistance to TuYV in 'Navajo' or the newly developed breeding lines and the basis of resistance is probably different from R54 (as in 'DK Temptation'). Furthermore, the greenhouse trials together with RT -qPCR-based virus titre analysis could be a cost-effective and efficient method to assess the level of resistance of a given genotype to TuYV infection compared to the field trials. However, further research is needed to identify the underlying mechanisms causing this difference in susceptibility.
Collapse
Affiliation(s)
- Emad Ibrahim
- Crop Research Institute, 16106 Prague, Czech Republic
| | - Andrea Rychlá
- OSEVA Development and Research Ltd., Oilseed Research Institute, 74601 Opava, Czech Republic
| | | | | | - Qi Peng
- Crop Research Institute, 16106 Prague, Czech Republic
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | | | - Viktor Vrbovský
- OSEVA Development and Research Ltd., Oilseed Research Institute, 74601 Opava, Czech Republic
| | - Piotr Trebicki
- Applied BioSciences, Macquarie University, Sydney 2109, Australia
| | | |
Collapse
|
7
|
Wang H, Hou H, Jan CC, Chao WS. Irradiated Pollen-Induced Parthenogenesis for Doubled Haploid Production in Sunflowers ( Helianthus spp.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2430. [PMID: 37446990 DOI: 10.3390/plants12132430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Doubled haploid (DH) technology is a tool used to develop large numbers of inbred lines and increase the rate of genetic gain by shortening the breeding cycles. However, previous attempts to produce DH sunflower plants (Helianthus spp.) have resulted in limited success. In this research, we applied gamma-induced parthenogenesis to assist the production of DH sunflowers. The objectives of the study included (1) identifying optimal gamma ray doses for inducing DH sunflowers using two cytoplasmic male sterility (CMS) lines as female plants and two male pollinators with recognizable morphological markers, (2) selecting new male pollinators from wild sunflower varieties, and (3) testing the efficacy of the selected male pollinators using emasculated non-male sterile sunflower lines as female plants. In these experiments, pollen grains were irradiated with gamma ray doses ranging from 50 to 200 Gy. The optimal gamma ray dose for pollen grain irradiation and DH plant production was identified to be 100 Gy. In addition, a cultivated (G11/1440) and a wild-type (ANN1811) sunflower line can be used as common male pollinators for their distinctive morphological markers and wide capacity for DH induction by gamma-irradiated pollen grains.
Collapse
Affiliation(s)
- Hongxia Wang
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA
| | - Hongyan Hou
- Mathematics Department, Minnesota State University, Moorhead, MN 56563, USA
| | - Chao-Chien Jan
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA
| | - Wun S Chao
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, USA
| |
Collapse
|
8
|
Lantos C, Jancsó M, Székely Á, Szalóki T, Venkatanagappa S, Pauk J. Development of In Vitro Anther Culture for Doubled Haploid Plant Production in Indica Rice ( Oryza sativa L.) Genotypes. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091774. [PMID: 37176830 PMCID: PMC10180916 DOI: 10.3390/plants12091774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Anther culture is an efficient biotechnological tool in modern plant breeding programs to produce new varieties and parental lines in hybrid seed productions. However, some bottlenecks-low induction rate, genotype dependency, albinism-restrict the widespread utilization of in vitro anther culture in rice breeding, especially in Oryza sativa ssp. indica (indica) genotypes, while an improved efficient protocol can shorten the process of breeding. Three different induction media (N6NDK, N6NDZ, Ali-1) and four plant regeneration media (mMSNBK1, MSNBK3, MSNBKZ1, MSNBKZ2) were tested with five indica rice genotypes to increase the efficiency of in vitro androgenesis (number of calli and regenerated green plantlets). The production of calli was more efficient on the N6NDK medium with an average 88.26 calli/100 anthers and N6NDZ medium with an average of 103.88 calli/100 anthers as compared to Ali-1 with an average of 6.96 calli/100 anthers. The production of green plantlets was greater when calli was produced on N6NDK medium (2.15 green plantlets/100 anthers) compared when produced on to N6NDZ medium (1.18 green plantlets/100 anthers). Highest green plantlets production (4.7 green plantlets/100 anthers) was achieved when mMSNBK1 plant regeneration medium was used on calli produced utilizing N6NDK induction medium. In the best overall treatment (N6NDK induction medium and mMSNBK1 plant regeneration medium), four tested genotypes produced green plantlets. However, the genotype influenced the efficiency, and the green plantlets production ranged from 0.4 green plantlets/100 anthers to 8.4 green plantlets/100 anthers. The ploidy level of 106 acclimatized indica rice plantlets were characterized with flow cytometric analyses to calculate the percentage of spontaneous chromosome doubling. Altogether, 48 haploid-, 55 diploid-, 2 tetraploid- and 1 mixoploid plantlets were identified among the regenerant plantlets, and the spontaneous chromosome doubling percentage was 51.89%. Utilization of DH plants have been integrated as a routine method in the Hungarian rice breeding program. The tetraploid lines can be explored for their potential to offer new scopes for rice research and breeding directions in the future.
Collapse
Affiliation(s)
- Csaba Lantos
- Department of Biotechnology, Cereal Research Non-Profit Ltd., P.O. Box 391, H-6701 Szeged, Hungary
| | - Mihály Jancsó
- Research Center for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Anna-liget 35, H-5540 Szarvas, Hungary
| | - Árpád Székely
- Research Center for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Anna-liget 35, H-5540 Szarvas, Hungary
| | - Tímea Szalóki
- Research Center for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Anna-liget 35, H-5540 Szarvas, Hungary
| | - Shoba Venkatanagappa
- International Rice Research Institute, DAPO Box 7777, INGER & ASEAN RiceNet and NARVI Global Networks Rice Breeding Platform (S.V.), Metro Manila 1301, Philippines
| | - János Pauk
- Department of Biotechnology, Cereal Research Non-Profit Ltd., P.O. Box 391, H-6701 Szeged, Hungary
| |
Collapse
|
9
|
Koehler AD, Rossi ML, Carneiro VTC, Cabral GB, Martinelli AP, Dusi DMA. Anther development in Brachiaria brizantha (syn. Urochloa brizantha) and perspective for microspore in vitro culture. PROTOPLASMA 2023; 260:571-587. [PMID: 35947212 DOI: 10.1007/s00709-022-01802-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Brachiaria, a genus from the Poaceae family, is largely cultivated as forage in Brazil. Among the most cultivated varieties of Brachiaria spp., B. brizantha cv. Marandu (syn. Urochloa brizantha) is of great agronomical importance due to the large areas cultivated with this species. This cultivar is apomictic and tetraploid. Sexual diploid genotype is available for this species. The difference in levels of ploidy among sexual and apomictic plants contributes to hindering Brachiaria breeding programs. The induction of haploids and double haploids is of great interest for the generation of new genotypes with potential use in intraspecific crosses. A key factor for the success of this technique is identifying adequate microspore developmental stages for efficient embryogenesis induction. Knowledge of the morphological changes during microsporogenesis and microgametogenesis and sporophytic tissues composing the anther is critical for identifying the stages in which microspores present a higher potential for embryogenic callus and somatic embryo through in vitro culture. In this work, morphological markers were associated with anther and pollen grain developmental stages, through histological analysis. Anther development was divided into 11 stages using morphological and cytological characteristics, from anther with archesporial cells to anther dehiscence. The morphological characteristics of each stage are presented. In addition, the response of stage 8 anthers to in vitro culture indicates microspores initiating somatic embryogenic pathway.
Collapse
Affiliation(s)
- Andréa D Koehler
- University of Sao Paulo, CENA, Av. Centenario 303, Piracicaba, SP, 13416-903, Brazil
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasilia, DF, 70.770-917, Brazil
| | - Mônica L Rossi
- University of Sao Paulo, CENA, Av. Centenario 303, Piracicaba, SP, 13416-903, Brazil
| | - Vera T C Carneiro
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasilia, DF, 70.770-917, Brazil
| | - Glaucia B Cabral
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasilia, DF, 70.770-917, Brazil
| | - Adriana P Martinelli
- University of Sao Paulo, CENA, Av. Centenario 303, Piracicaba, SP, 13416-903, Brazil
| | - Diva M A Dusi
- Brazilian Agricultural Research Corporation (Embrapa), Embrapa Genetic Resources and Biotechnology, Cx.Postal 02372, Brasilia, DF, 70.770-917, Brazil.
| |
Collapse
|
10
|
Lantos C, Jancsó M, Székely Á, Nagy É, Szalóki T, Pauk J. Improvement of Anther Culture to integrate Doubled Haploid Technology in Temperate Rice ( Oryza sativa L.) Breeding. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243446. [PMID: 36559559 PMCID: PMC9788575 DOI: 10.3390/plants11243446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 05/27/2023]
Abstract
Doubled haploid (DH) plant production, such as anther culture (AC), is an effective tool used in modern rice breeding programs. The improved efficient protocols applied can shorten the process of breeding. The effect of combinations of plant growth regulators (2.5 mg/L NAA, 1 mg/L 2,4-D and 0.5 mg/L kinetin; 2 mg/L 2,4-D and 0.5 mg/L BAP) in the induction medium were compared in AC for five rice breeding materials and combinations. Induction of calli ranged from 264.6 ± 67.07 to 468.8 ± 123.2 calli/100 anthers in AC of rice genotypes. Two basal media (MS and N6) and two combinations of growth regulators (1 mg/L NAA, 1 mg/L BAP and 1 mg/L kinetin; 1.5 mg/L BAP, 0.5 mg/L NAA and 0.5 mg/L kinetin) were used as regeneration media. The in vitro green plant production was the highest with the application of the N6NDK induction medium (NAA, 2,4-D and kinetin) and the MS-based regeneration medium (1 mg/L NAA, 1 mg/BAP and 1 mg/L kinetin) in anther culture of the '1009' genotype (95.2 green plantlets/100 anthers). The mean of five genotypes was 24.48 green plantlets/100 anthers for the best treatment. Flow cytometric analyses conducted identified the microspore origin of the haploid calli produced in AC, while the uniformity of spontaneous DH plants was checked in the DH1 and DH2 generations. Spontaneous chromosome doubling ranged from 38.1% to 57.9% (mean 42.1%), depending on the breeding source. The generated and selected DH lines were tested in micro- and small-plot field experiments to identify promising lines for a pedigree breeding program. The improved AC method was integrated in a Hungarian temperate rice pedigree breeding program.
Collapse
Affiliation(s)
- Csaba Lantos
- Department of Biotechnology, Cereal Research Non-Profit Ltd., P.O. Box 391, H-6701 Szeged, Hungary
| | - Mihály Jancsó
- Research Center for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Anna-liget 35, H-5540 Szarvas, Hungary
| | - Árpád Székely
- Research Center for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Anna-liget 35, H-5540 Szarvas, Hungary
| | - Éva Nagy
- Oud’s Amazone Trading Pty Ltd., Risleys Hill Road, Federal, NSW 2480, Australia
| | - Tímea Szalóki
- Research Center for Irrigation and Water Management, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Anna-liget 35, H-5540 Szarvas, Hungary
| | - János Pauk
- Department of Biotechnology, Cereal Research Non-Profit Ltd., P.O. Box 391, H-6701 Szeged, Hungary
| |
Collapse
|
11
|
Wijerathna-Yapa A, Ramtekey V, Ranawaka B, Basnet BR. Applications of In Vitro Tissue Culture Technologies in Breeding and Genetic Improvement of Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:2273. [PMID: 36079653 PMCID: PMC9459818 DOI: 10.3390/plants11172273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/13/2022] [Accepted: 08/29/2022] [Indexed: 12/20/2022]
Abstract
Sources of new genetic variability have been limited to existing germplasm in the past. Wheat has been studied extensively for various agronomic traits located throughout the genome. The large size of the chromosomes and the ability of its polyploid genome to tolerate the addition or loss of chromosomes facilitated rapid progress in the early study of wheat genetics using cytogenetic techniques. At the same time, its large genome size has limited the progress in genetic characterization studies focused on diploid species, with a small genome and genetic engineering procedures already developed. Today, the genetic transformation and gene editing procedures offer attractive alternatives to conventional techniques for breeding wheat because they allow one or more of the genes to be introduced or altered into an elite cultivar without affecting its genetic background. Recently, significant advances have been made in regenerating various plant tissues, providing the essential basis for regenerating transgenic plants. In addition, Agrobacterium-mediated, biolistic, and in planta particle bombardment (iPB) gene delivery procedures have been developed for wheat transformation and advanced transgenic wheat development. As a result, several useful genes are now available that have been transferred or would be helpful to be transferred to wheat in addition to the current traditional effort to improve trait values, such as resistance to abiotic and biotic factors, grain quality, and plant architecture. Furthermore, the in planta genome editing method will significantly contribute to the social implementation of genome-edited crops to innovate the breeding pipeline and leverage unique climate adaptations.
Collapse
Affiliation(s)
- Akila Wijerathna-Yapa
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Vinita Ramtekey
- ICAR-Indian Institute of Seed Science, Kushmaur, Mau, Uttar Pradesh 275103, India
| | - Buddhini Ranawaka
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, QLD 4072, Australia
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Bhoja Raj Basnet
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), El Batán 56237, Mexico
| |
Collapse
|
12
|
Zhong Y, Wang Y, Chen B, Liu J, Wang D, Li M, Qi X, Liu C, Boutilier K, Chen S. Establishment of a dmp based maternal haploid induction system for polyploid Brassica napus and Nicotiana tabacum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1281-1294. [PMID: 35249255 DOI: 10.1111/jipb.13244] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Doubled haploid (DH) technology is used to obtain homozygous lines in a single generation, a technique that significantly accelerates the crop breeding trajectory. Traditionally, in vitro culture is used to generate DHs, but this technique is limited by species and genotype recalcitrance. In vivo haploid induction (HI) through seed is widely and efficiently used in maize and was recently extended to several other crops. Here we show that in vivo HI can be triggered by mutation of DMP maternal haploid inducer genes in allopolyploid (allotetraploid) Brassica napus and Nicotiana tabacum. We developed a pipeline for selection of DMP orthologs for clustered regularly interspaced palindromic repeats mutagenesis and demonstrated average amphihaploid induction rates of 2.4% and 1.2% in multiple B. napus and N. tabacum genotypes, respectively. These results further confirmed the HI ability of DMP gene in polyploid dicot crops. The DMP-HI system offers a novel DH technology to facilitate breeding in these crops. The success of this approach and the conservation of DMP genes in dicots suggest the broad applicability of this technique in other dicot crops.
Collapse
Affiliation(s)
- Yu Zhong
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuwen Wang
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Baojian Chen
- Bioscience, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Jinchu Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Dong Wang
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mengran Li
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaolong Qi
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chenxu Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Kim Boutilier
- Bioscience, Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Shaojiang Chen
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization/Engineering Research Center for Maize Breeding, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Cheng Q, Jiang S, Xu F, Wang Q, Xiao Y, Zhang R, Zhao J, Yan J, Ma C, Wang X. Genome optimization via virtual simulation to accelerate maize hybrid breeding. Brief Bioinform 2021; 23:6407728. [PMID: 34676389 DOI: 10.1093/bib/bbab447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
The employment of doubled-haploid (DH) technology in maize has vastly accelerated the efficiency of developing inbred lines. The selection of superior lines has to rely on genotypes with genomic selection (GS) model, rather than phenotypes due to the high expense of field phenotyping. In this work, we implemented 'genome optimization via virtual simulation (GOVS)' using the genotype and phenotype data of 1404 maize lines and their F1 progeny. GOVS simulates a virtual genome encompassing the most abundant 'optimal genotypes' or 'advantageous alleles' in a genetic pool. Such a virtually optimized genome, although can never be developed in reality, may help plot the optimal route to direct breeding decisions. GOVS assists in the selection of superior lines based on the genomic fragments that a line contributes to the simulated genome. The assumption is that the more fragments of optimal genotypes a line contributes to the assembly, the higher the likelihood of the line favored in the F1 phenotype, e.g. grain yield. Compared to traditional GS method, GOVS-assisted selection may avoid using an arbitrary threshold for the predicted F1 yield to assist selection. Additionally, the selected lines contributed complementary sets of advantageous alleles to the virtual genome. This feature facilitates plotting the optimal route for DH production, whereby the fewest lines and F1 combinations are needed to pyramid a maximum number of advantageous alleles in the new DH lines. In summary, incorporation of DH production, GS and genome optimization will ultimately improve genomically designed breeding in maize. Short abstract: Doubled-haploid (DH) technology has been widely applied in maize breeding industry, as it greatly shortens the period of developing homozygous inbred lines via bypassing several rounds of self-crossing. The current challenge is how to efficiently screen the large volume of inbred lines based on genotypes. We present the toolbox of genome optimization via virtual simulation (GOVS), which complements the traditional genomic selection model. GOVS simulates a virtual genome encompassing the most abundant 'optimal genotypes' in a breeding population, and then assists in selection of superior lines based on the genomic fragments that a line contributes to the simulated genome. Availability of GOVS (https://govs-pack.github.io/) to the public may ultimately facilitate genomically designed breeding in maize.
Collapse
Affiliation(s)
- Qian Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Shuqing Jiang
- National Maize Improvement Center of China Agricultural University, Beijing, China
| | - Feng Xu
- National Maize Improvement Center of China Agricultural University, Beijing, China
| | - Qian Wang
- National Maize Improvement Center of China Agricultural University, Beijing, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology at Huazhong Agricultural University, Wuhan, China
| | - Ruyang Zhang
- Maize Research Center at Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiuran Zhao
- Maize Research Center at Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology at Huazhong Agricultural University, Wuhan, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, China
| | - Xiangfeng Wang
- Sanya Institute of China Agricultural University, Hainan, China
| |
Collapse
|