1
|
Han Y, Zhao H, Gao Y, Chen H, Du J, Hu Z. Identification of miRNA-mRNA regulatory network during the germination of soybean seed (Glycine max) and the role of Gma-miR1512a-GmKIN10 interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109853. [PMID: 40168859 DOI: 10.1016/j.plaphy.2025.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/15/2024] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Seed germination is a key and complex physiological process in plant life, including soybeans. Here, we explored the miRNA-mRNA transcriptome changes and the key genes in the germination stages of the soybean. Morphological analysis showed that the imbibition of seeds was completed at 12 h, and the embryo broke through the seed coat at 36 h. During seed germination, mRNA and miRNA sequencing identified 20845 differentially expressed mRNAs (DEMs) and 421 differentially expressed miRNAs (DEMIs) at three specific time points: 12 h, 36 h, and 108 h. KEGG enrichment revealed that plant hormone signal transduction, plant-pathogen interaction and MAPK signaling pathway-plant were the crucial biological processes for seed germination. ABA and GA related DEMs on plant hormone signal transduction were abundant. miRNA-mRNA integrated analysis showed that 5170 miRNA-mRNA pairs were found. During germination, 20 significant miRNA-mRNA interactions were identified, involving the top 10 differentially expressed miRNAs (DEMIs) and 198 differentially expressed mRNAs (DEMs). Interestingly, the expression level of Gma-miR1512a increased significantly during soybean seed germination. This miRNA specifically regulates GmKIN10, homologous to AtKIN10, which mediates germination. To verify this interaction, co-agroinjection of GmKIN10-GFP/GUS and Gma-miR1512a into tobacco leaves demonstrated that Gma-miR1512a can inhibit GmKIN10 expression by cleaving its target site. Furthermore, the function of Gma-miR1512a-GmKIN10 were verified by overexpression transgene. Although Arabidopsis seeds overexpressing Gma-miR1512a (OE-Gma-miR1512a) showed no significant differences in germination indices compared to wild-type (WT) seeds, those overexpressing GmKIN10 (OE-GmKIN10) exhibited significantly lower germination indices. The seeds germination index of GmKIN10 and Gma-miR1512a double overexpression lines recovered. Additionally, the yeast two-hybrid assay, protein interaction prediction,and molecular docking all showed that GmKIN10 might interact with GmPP2A and GmDSP4. This study identified a complex miRNA-mRNA regulatory network that plays a crucial role in soybean seed germination. Specifically, Gma-miR1512a was found to regulate GmKIN10, significantly influencing germination rates and hormone signaling pathways.
Collapse
Affiliation(s)
- Yiqiang Han
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China; National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang Province, PR China.
| | - Hongyan Zhao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China; National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang Province, PR China
| | - Yamei Gao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China; Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in the Cold Region, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Haonan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China; National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang Province, PR China
| | - Jidao Du
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China; College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, PR China
| | - Zheng Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| |
Collapse
|
2
|
Lakra AR. X-Ray Crystallography Based Epitope Mapping of Glycoproteins and RNA in Chandipura Vesiculovirus for Vaccine Design. Immunology 2025; 175:52-66. [PMID: 39904746 DOI: 10.1111/imm.13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/30/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
This study investigates potential epitopes in the glycoprotein and RNA of Chandipura vesiculovirus (CHPV) using MHC Class I (HLA-A0201) and MHC Class II (DRB1_0101) molecules with 3D structures derived from x-ray crystallography. Computationally derived peptides were mapped and subjected to in silico docking, revealing promising targets for CD8+ cytotoxic and CD4+ helper T cells. Key factors analysed include solvent accessible surface area (SASA), Debye-Waller factor (B-factor), and polar bond interactions. Post-docking, removal of N-acetylglucosamine (NAG) increased peptide stability and reduced B-factors, while SO4 presence had minimal impact. SASA values increased by up to 237.5% with MHC Class I, and RNA docking with MHC Class II displayed mixed SASA changes. Polar bond interactions also increased post-docking, indicating the strong potential of identified CHPV epitopes.
Collapse
|
3
|
He T, Wang ZY, Xu B, Zhong CJ, Wang LN, Shi HC, Yang ZY, Zhou SQ, Li H, Hu B, Zhu XD, Shen YH, Zhou J, Fan J, Sun HC, Huang C. CXCL6 Reshapes Lipid Metabolism and Induces Neutrophil Extracellular Trap Formation in Cholangiocarcinoma Progression and Immunotherapy Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503009. [PMID: 40305734 DOI: 10.1002/advs.202503009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/31/2025] [Indexed: 05/02/2025]
Abstract
The chemokine CXCL6 is identified as a pivotal regulator of biological processes across multiple malignancies. However, its function in cholangiocarcinoma (CCA) is underexplored. Tumor profiling for CXCL6 is performed using a public database. Both in vitro and in vivo experiments are utilized to evaluate the oncogenic effects of CXCL6 on CCA. Additionally, RNA-Seq is employed to detect transcriptomic changes related to CXCL6 expression in CCA cells and neutrophils. Molecular docking, fluorescence colocalization, and Co-IP are used to elucidate a direct interaction between JAKs and CXCR1/2. Additionally, LC-MS lipidomics and explored the impact of CXCL6 on immunotherapy in vivo. CXCL6 is upregulated in CCA tissues and promoted the proliferation and metastasis of CCA. Mechanistically, CXCL6 regulated the CXCR1/2-JAK-STAT/PI3K axis in CCA via autocrine signaling, leading to lipid metabolic reprogramming, and promoted neutrophil extracellular traps (NETs) formation by activating the RAS/MAPK pathway in neutrophils. Eventually, NETs formation induced immunotherapy resistance in CCA by blocking CD8+T cell infiltration. CXCL6 modulates CCA progression through the CXCR1/2-JAK-STAT/PI3K axis and reshaping its lipid metabolism. CXCL6 also mediates immunotherapy resistance through NETs, which may be a potential therapeutic target and biomarker for CCA.
Collapse
Affiliation(s)
- Tian He
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zi-Yi Wang
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bin Xu
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng-Jie Zhong
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu-Na Wang
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Huan-Chen Shi
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zi-Yue Yang
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shi-Qi Zhou
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui Li
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bo Hu
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiao-Dong Zhu
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ying-Hao Shen
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui-Chuan Sun
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng Huang
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
4
|
Guo J, Jia Z, Yang Y, Wang N, Xue Y, Xiao L, Wang F, Wang L, Wang X, Liu Y, Wang J, Gong W, Zhao H, Liang Y, Wu X. Bioinformatics analysis, immunogenicity, and therapeutic efficacy evaluation of a novel multi-stage, multi-epitope DNA vaccine for tuberculosis. Int Immunopharmacol 2025; 152:114415. [PMID: 40086060 DOI: 10.1016/j.intimp.2025.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND The global tuberculosis (TB) epidemic remains severe. We aimed to develop a therapeutic DNA vaccine as an adjunct to TB treatment to improve efficacy. METHODS The W545 DNA vaccine was constructed using the M. tuberculosis (MTB) antigens Ag85A and Rv1419, integrated with epitopes from the Ag85B, Rv3407, and Rv2628. Bioinformatics tools were used to predict and analyze the physicochemical properties, structure modelling and molecular docking, epitopes (HTL, CTL, and B-cell), safety, population coverage, and simulated immunization of the W545 vaccine protein. Animal studies were then performed to evaluate the vaccine's immunogenicity by measuring Th1-type immune responses (IFN-γ, IL-2) and IgG antibody levels, as well as its therapeutic efficacy in reducing lung inflammation and pathological damage in a murine TB model. RESULTS The vaccine protein is a 70 kDa hydrophilic protein with a half-life of 30 h, an instability index of 43.33, and strong affinity to Toll-like receptor (TLR) 2 and TLR4. It contains 397 helper T cell (HTL) epitopes, 248 cytotoxic T cell (CTL) epitopes, and 27 B cell epitopes, with broad population coverage (global: 99.7 %, Chinese: 97.6 %). The W545 vaccine significantly induced a Th1-type immune response, producing high levels of IFN-γ (5.38 pg/ml ± 0.89 pg/ml) and IgG antibodies (OD450: 0.13 ± 0.06). It also reduced the lung weight index, tissue lesions, and severity in the murine TB model. CONCLUSION The W545 DNA vaccine effectively induces a Th1-type immune response, alleviates pathological damage, and demonstrates potential as an immunotherapeutic agent. Bioinformatics analysis provides valuable guidance for vaccine design and optimization.
Collapse
MESH Headings
- Animals
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Tuberculosis Vaccines/immunology
- Tuberculosis Vaccines/genetics
- Computational Biology
- Mycobacterium tuberculosis/immunology
- Mice
- Female
- Antigens, Bacterial/immunology
- Antigens, Bacterial/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Molecular Docking Simulation
- Tuberculosis/immunology
- Mice, Inbred BALB C
- Immunogenicity, Vaccine
- Humans
- Bacterial Proteins/immunology
- Bacterial Proteins/genetics
- Interferon-gamma
- Immunoglobulin G/blood
- Th1 Cells/immunology
- Antibodies, Bacterial/blood
- Disease Models, Animal
Collapse
Affiliation(s)
- Jinzhong Guo
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China; Graduate School, Hebei North University, Zhangjiakou, Hebei 07502312200, China
| | - Zaixing Jia
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care Medicine, Hebei Institute of Respiratory Diseases, Shijiazhuang, Hebei 050000, China
| | - Yourong Yang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Nan Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Yong Xue
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Li Xiao
- Respiratory Research Institute, Senior Department of Pulmonary & Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing 100091,China
| | - Fenghua Wang
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing 100091,China
| | - Lan Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Xiaoou Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Yinping Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Jie Wang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China
| | - Haimei Zhao
- Graduate School, Hebei North University, Zhangjiakou, Hebei 07502312200, China
| | - Yan Liang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China.
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing 100091, China; Graduate School, Hebei North University, Zhangjiakou, Hebei 07502312200, China.
| |
Collapse
|
5
|
Mahecha-Ortíz JD, Enríquez-Flores S, De la Mora De la Mora I, Flores-López LA, Gutierrez-Castrellón P, López-Velázquez G, Sánchez-Mora R, García-Torres I. In silico design of ankyrin repeat proteins that bind to the insulin-like growth factor type 1 receptor. J Mol Graph Model 2025; 139:109055. [PMID: 40286497 DOI: 10.1016/j.jmgm.2025.109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/29/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
Ankyrins are proteins widely distributed in nature that mediate protein‒protein interactions. Owing to their outstanding stability and ability to recognize targets, ankyrins have been used as therapeutic and diagnostic tools in several diseases, including cancer. Insulin-like growth factor type 1 receptor (IGF-1R) is overexpressed in a variety of cancers, making it an attractive molecular target. Advances in anticancer treatment have focused on inhibiting the binding between IGF-1R and its natural ligand, IGF1. In this work, three ankyrins were designed to interact with IGF-1R, and molecular models using AlphaFold were generated. The designed ankyrin sequences included amino acids of IGF1 that recognize IGF-1R: a two-module ankyrin (DAN2SON), a loop ankyrin (Loop-DAN2SON) and a bispecific ankyrin (BI-DAN2SON-D1). Models with the best results from the predicted local distance difference test and predicted assigned error values were used to perform rigid binding tests with the ClusPro server. The best complexes were selected based on the binding energies. Further analysis of the interactions was performed with the PDBsum server. The three IGF1-R complexes showed negative free binding energies, indicating that the binding of these proteins could be energetically favorable. Molecular binding assays revealed that DAN2SON and Loop-DAN2SON bind to IGF-1R at the natural ligand binding site via hydrogen bonds and salt bridge interactions. This work shows that using artificial intelligence to generate protein models allows prediction of interactions between ankyrins and the IGF-1R, to be confirmed in subsequent studies using both in vitro and in vivo models.
Collapse
Affiliation(s)
- José Daniel Mahecha-Ortíz
- Semillero y Grupo de Biotecnología y Genética UCMC, Facultad Ciencias de la Salud, Universidad Colegio Mayor de Cundinamarca, Bogotá, Colombia.
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil. Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico.
| | - Ignacio De la Mora De la Mora
- Laboratorio de Biomoléculas y Salud Infantil. Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico.
| | - Luis A Flores-López
- Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI)-Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico.
| | - Pedro Gutierrez-Castrellón
- Innovación y Desarrollo de Estrategias en Salud (IDEAS), Mexico City, Mexico; International Scientific Council for Probiotics A.C., Mexico City, Mexico.
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil. Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico.
| | - Ruth Sánchez-Mora
- Semillero y Grupo de Biotecnología y Genética UCMC, Facultad Ciencias de la Salud, Universidad Colegio Mayor de Cundinamarca, Bogotá, Colombia.
| | - Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil. Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico.
| |
Collapse
|
6
|
Ershov PV, Yablokov EO, Mezentsev YV, Ivanov AS. Human prostacyclin and thromboxane synthases: Molecular interactions, regulation, and pharmacology. Biochimie 2025; 234:76-88. [PMID: 40222477 DOI: 10.1016/j.biochi.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
Prostanoids are lipid mediators of the human body that are involved in the inflammation and platelet aggregation. Prostacyclin is a vasodilator and inhibitor of platelet aggregation, and a product of the enzymatic reaction catalyzed by prostacyclin synthase (PTGIS). Thromboxane is a vasoconstrictor and synthesized by thromboxane synthase (TBXAS1). An imbalance of prostanoids can accompany cardio-/cerebrovascular diseases and cancers. PTGIS and TBXAS1 are clinically relevant membrane-bound enzymes of the multigene family of cytochromes P450 (CYPs), also known as CYP8A1 and CYP5A1, respectively. Particular studies of these functional antagonists will contribute to the elucidation of pathogenic mechanisms. The purpose of this work was to analyze the literature landscape over a period of 2020-2024 in the field of biological, pharmacogenomic, and pharmacological features of PTGIS and TBXAS1 as well as to explore the potential of their regulation at the post-transcriptional and post-translational levels using systems biological analysis. The review discusses recent findings on the novel aspects of both synthases established in gene knockout and overexpression experiments, current preclinical pharmacology, and potential ways of gene expression regulation. Identification of protein-protein interactions and post-translational modifications appear to be the main options for modulating PTGIS and TBXAS1 activity. The microsomal CYPs are known to form complexes with each other and direct interactions of CYP2E1 with both synthases can probably lead to modulation of their activity. Progress in the preclinical development of low molecular weight compounds as inhibitors of TBXAS1 is more prospective than PTGIS that is applied as gene therapy biologicals for in vivo production of prostacyclin due to its noticeable anticancer and vasodilator effects.
Collapse
Affiliation(s)
- Pavel V Ershov
- Institute of Biomedical Chemistry, 10, Pogodinskaya Street, 119121, Moscow, Russia.
| | - Evgeniy O Yablokov
- Institute of Biomedical Chemistry, 10, Pogodinskaya Street, 119121, Moscow, Russia
| | - Yuri V Mezentsev
- Institute of Biomedical Chemistry, 10, Pogodinskaya Street, 119121, Moscow, Russia
| | - Alexis S Ivanov
- Institute of Biomedical Chemistry, 10, Pogodinskaya Street, 119121, Moscow, Russia
| |
Collapse
|
7
|
Long Y, Chen X, Chen J, Zhang H, Lin Y, Cheng S, Pu N, Zhou X, Sheng R, Abubakar YS, Zheng H, Yun Y, Lu G, Wang Z, Zheng W. Golgi-associated retrograde protein (GARP) complex recruits retromer to trans-Golgi network for FgKex2 and FgSnc1 recycling, necessary for the development and pathogenicity of Fusarium graminearum. THE NEW PHYTOLOGIST 2025; 246:666-688. [PMID: 39953835 DOI: 10.1111/nph.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
In eukaryotes, the retromer complex plays a crucial role in the sorting and retrograde transport of cargo proteins from endosomes to the trans-Golgi network (TGN). Despite its importance, the molecular details of this intracellular transport process remain unclear. Here, we have identified a Golgi-associated retrograde protein (GARP) complex as a mediator of vesicle transport that facilitates the recruitment of the retromer complex to the TGN to exert its functions. The GARP complex is mainly localized in the TGN where it interacts with the retromer complex. This interaction is evolutionarily conserved across species. Furthermore, we identified FgKex2 and FgSnc1 as cargo proteins in the GARP/retromer-mediated recycling pathway. Loss of GARP or retromer results in a complete missorting of FgKex2 and FgSnc1 into the vacuolar degradation pathway, which affects the growth, development, biogenesis of toxisomes and pathogenicity of Fusarium graminearum. In summary, we demonstrate for the first time that GARP promotes the recruitment of retromer from endosomes to the TGN, thereby establishing a GARP/retromer transport pathway that coordinates the recycling of cargo proteins FgKex2 and FgSnc1. This process is essential for maintaining sustained growth and development and significantly contributes to the pathogenicity of F. graminearum.
Collapse
Affiliation(s)
- Yunfei Long
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Xin Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Jia Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Haoran Zhang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Ying Lin
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Shuyuan Cheng
- Jiangxi Agricultural University, College of Agriculture, Nanchang, Jiangxi, 330000, China
| | - Neng Pu
- Agricultural and Rural Comprehensive Service Center, Shuitang Town, Xinping County, Yunnan, 653400, China
| | - Xuandong Zhou
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Renzhi Sheng
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, 810281, Nigeria
| | - Huawei Zheng
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Yingzi Yun
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Guodong Lu
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| | - Zonghua Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Wenhui Zheng
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350000, China
| |
Collapse
|
8
|
Tytarenko A, Singh A, Ambati VK, Copeland MM, Kundrotas PJ, Halfmann R, Kasyanov PO, Feinberg EA, Vakser IA. Highly Optimized Simulation of Atomic Resolution Cell-Like Protein Environment. J Phys Chem B 2025; 129:3183-3190. [PMID: 40077832 PMCID: PMC11956777 DOI: 10.1021/acs.jpcb.4c07769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Computational approaches can provide details of molecular mechanisms in a crowded environment inside cells. Protein docking predicts stable configurations of molecular complexes, which correspond to deep energy minima. Systematic docking approaches, such as those based on fast Fourier transform (FFT), also map the entire intermolecular energy landscape by determining the position and depth of the full spectrum of the energy minima. Such mapping allows speeding up simulations by precalculating the intermolecular energy values. Our earlier study combined FFT docking with the Monte Carlo protocol, enabling simulation of cell-size, crowded protein systems with seconds, and longer trajectories at atomic resolution, several orders of magnitude longer than those achievable by alternative approaches. In this study, we present a further drastic extension of the modeling capabilities by parallelized implementation of the simulation protocol. The procedure was applied to a panel of Death Fold Domains that form nucleated polymers in human innate immune signaling, recapitulating their homooligomerization tendencies and providing insights into the molecular mechanisms of polymer nucleation. The parallelized protocol allows extension of the simulation trajectories by orders of magnitude beyond the previously reported implementation, reaching into the uncharted territory of atomic resolution simulation of cell-sized systems.
Collapse
Affiliation(s)
- Andrii
M. Tytarenko
- Institute
for Applied System Analysis at the Igor Sikorsky Kyiv Polytechnic
Institute, Kyiv 03056, Ukraine
| | - Amar Singh
- Computational
Biology Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Vineeth Kumar Ambati
- Computational
Biology Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Matthew M. Copeland
- Computational
Biology Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Petras J. Kundrotas
- Computational
Biology Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Randal Halfmann
- Stowers
Institute for Medical Research, Kansas City, Missouri 64110, United States
- Department
of Biochemistry and Molecular Biology, University
of Kansas Medical Center, Kansas
City, Kansas 66160, United States
| | - Pavlo O. Kasyanov
- Institute
for Applied System Analysis at the Igor Sikorsky Kyiv Polytechnic
Institute, Kyiv 03056, Ukraine
| | - Eugene A. Feinberg
- Department
of Applied Mathematics and Statistics, Stony
Brook University, Stony
Brook, New York 11794, United States
| | - Ilya A. Vakser
- Computational
Biology Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Department
of Molecular Biosciences, The University
of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
9
|
Singh A, Tytarenko AM, Ambati VK, Copeland MM, Kundrotas PJ, Kasyanov PO, Feinberg EA, Vakser IA. GRAMMCell: Docking-based Cell Modeling Resource. J Mol Biol 2025:169085. [PMID: 40133778 DOI: 10.1016/j.jmb.2025.169085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025]
Abstract
The environment inside biological cells is densely populated by macromolecules and other cellular components. The crowding has a significant impact on folding and stability of macromolecules, and on kinetics of molecular interactions. Computational approaches to cell modeling, such as molecular dynamics, provide details of macromolecular behavior in concentrated solutions. However, such simulations are either slow, when carried out at atomic resolution, or significantly coarse-grained. Protein docking has been widely used for predicting structures of protein complexes. Systematic docking approaches, such as those based on Fast Fourier Transform (FFT), map the entire intermolecular energy landscape by determining the position and depth of the energy minima. The GRAMMCell web server implements docking-based approach for simulating cell crowded environment by sampling the intermolecular energy landscape generated by GRAMM (Global RAnge Molecular Matching). GRAMM systematically maps the landscape by a spectrum of docking poses corresponding to stable (deep energy minima) and transient (shallow minima) protein interactions. The sampling of these energy landscapes of a large system of proteins is performed in GRAMMCell using highly optimized Markov Chain Monte Carlo protocol. The procedure allows simulation of extra-long trajectories of large, crowded protein systems with atomic resolution accuracy. GRAMMCell is available at https://grammcell.compbio.ku.edu.
Collapse
Affiliation(s)
- Amar Singh
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Andrii M Tytarenko
- Institute for Applied System Analysis at the Igor Sikorsky Kyiv Polytechnic Institute, Kyiv 03056, Ukraine
| | - Vineeth Kumar Ambati
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Matthew M Copeland
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA
| | - Pavlo O Kasyanov
- Institute for Applied System Analysis at the Igor Sikorsky Kyiv Polytechnic Institute, Kyiv 03056, Ukraine
| | - Eugene A Feinberg
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, KS 66045, USA; Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
10
|
Leung J, Qu L, Ye Q, Zhong Z. The immune duality of osteopontin and its therapeutic implications for kidney transplantation. Front Immunol 2025; 16:1520777. [PMID: 40093009 PMCID: PMC11906708 DOI: 10.3389/fimmu.2025.1520777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Osteopontin (OPN) is a multifunctional glycoprotein with various structural domains that enable it to perform diverse functions in both physiological and pathological states. This review comprehensively examines OPN from multiple perspectives, including its protein structure, interactions with receptors, interactions with immune cells, and roles in kidney diseases and transplantation. This review explores the immunological duality of OPN and its significance and value as a biomarker and therapeutic target in kidney transplantation. In cancer, OPN typically promotes tumor evasion by suppressing the immune system. Conversely, in immune-related kidney diseases, particularly kidney transplantation, OPN activates the immune system by enhancing the migration and activation of immune cells, thereby exacerbating kidney damage. This immunological duality may stem from different OPN splice variants and the exposure, after cleavage, of different structural domains, which play distinct biological roles in cellular interactions. Additionally, OPN has a significant biological impact posttransplantation and on chronic kidney disease and, highlighting its importance as a biomarker and potential therapeutic target. Future research should further explore the specific mechanisms of OPN in kidney transplantation to improve treatment strategies and enhance patient quality of life.
Collapse
Affiliation(s)
- Junto Leung
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
| | - Lei Qu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
- The 3rd Xiangya Hospital of Central South University, NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
| |
Collapse
|
11
|
Ma A, Wang H, Jia H, Yu S, Zhu W, Yu K, Ma Y, Li Y, Li J. Mining and Modification of Key Functional Regions of the Nattokinase Propeptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4152-4163. [PMID: 39904540 DOI: 10.1021/acs.jafc.4c09651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The nattokinase propeptide acts as an intramolecular chaperone that is essential for the correct folding of the mature peptide. Understanding key catalytic regions and sites in this propeptide is crucial for enhancing the nattokinase folding efficiency. Through bioinformatics and enzyme activity screening, we pinpointed critical sites affecting folding efficiency and identified mutants Y106V and A103T. In fermentation, their crude enzyme activities reached 277.83 and 205.63% of those of WT, respectively. Mutant Y106V exhibited a 19.2% increase in the specific enzyme activity, improving both the folding efficiency and peptide conformation. Molecular dynamics simulations elucidated the catalytic changes in Y106V and A103T. Optimization of fermentation processes for these mutants yielded nattokinase levels of 317.042 and 336.65 U/mL. This study lays a foundation for further research on nattokinase propeptide function and modification.
Collapse
Affiliation(s)
- Aixia Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Hong Wang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Huiyang Jia
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Shuya Yu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Wenhui Zhu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Kongfang Yu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Ye Ma
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Yuan Li
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
12
|
Ortega-Vallbona R, Johansson L, Carpio LE, Serrano-Candelas E, Mahdizadeh SJ, Fearnhead H, Gozalbes R, Eriksson LA. Computational Characterization of the Interaction of CARD Domains in the Apoptosome. Biochemistry 2025; 64:401-418. [PMID: 39761026 PMCID: PMC11755718 DOI: 10.1021/acs.biochem.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
The apoptosome, a critical protein complex in apoptosis regulation, relies on intricate interactions between its components, particularly the proteins containing the Caspase Activation and Recruitment Domain (CARD). This work presents a thorough computational analysis of the stability and specificity of CARD-CARD interactions within the apoptosome. Departing from available crystal structures, we identify important residues for the interaction between the CARD domains of Apaf-1 and Caspase-9. Our results underscore the essential role of these residues in apoptosome activity, offering prospects for targeted intervention strategies. Available experimental complex structures were able to validate the protein-protein docking consensus approach used herein. We furthermore extended our analysis to explore the specificity of CARD-CARD interactions by cross-docking experiments between apoptosome and PIDDosome components, between which there should not be any interaction despite belonging to the same death fold subfamily. Our findings indicate that native interactions within individual complexes exhibit greater stability than the cross-docked complexes, emphasizing the specificity required for effective protein complex formation. This study enhances our understanding of apoptotic regulation and demonstrates the utility of computational approaches in elucidating intricate protein-protein interactions.
Collapse
Affiliation(s)
| | - Linda Johansson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Göteborg 405 30, Sweden
| | - Laureano E. Carpio
- ProtoQSAR
SL, Parque Tecnológico de Valencia, Paterna, Valencia 46980, Spain
- Moldrug
AI Systems SL, Olimpia
Arozena Torres 45, Valencia 46018, Spain
| | | | - Sayyed Jalil Mahdizadeh
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Göteborg 405 30, Sweden
| | - Howard Fearnhead
- Pharmacology
and Therapeutics, National University of
Ireland Galway, Galway H91 TK33, Ireland
| | - Rafael Gozalbes
- ProtoQSAR
SL, Parque Tecnológico de Valencia, Paterna, Valencia 46980, Spain
- Moldrug
AI Systems SL, Olimpia
Arozena Torres 45, Valencia 46018, Spain
| | - Leif A. Eriksson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Göteborg 405 30, Sweden
| |
Collapse
|
13
|
Dhiman D, Sethi A, Sinha R, Biswas S, Franklin G, Mondal D. Bioinspired design of DNA in aqueous ionic liquid media for sustainable packaging of horseradish peroxidase under biotic stress. Chem Commun (Camb) 2025; 61:1613-1616. [PMID: 39744967 DOI: 10.1039/d4cc05803h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
We show that a combination of DNA and ionic liquid significantly increases the stability and activity of HRP and achieves a 4.8-fold higher peroxidase activity than PBS buffer. Also, HRP retains 84% of its activity in IL+DNA compared to 24% in PBS against trypsin digestion. Molecular modeling and spectroscopic studies reveal a protective microenvironment.
Collapse
Affiliation(s)
- Diksha Dhiman
- Institute of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Aaftaab Sethi
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, Poznan 61-614, Poland
| | - Rakesh Sinha
- Institute of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Sagar Biswas
- Institute of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Gregory Franklin
- Institute of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Dibyendu Mondal
- Institute of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| |
Collapse
|
14
|
Tang R, Zhao C, Dong J, Liu X, Chang L, Li J, Dong H, Lv Y, Luo Z, Wu M, Shen S, Shan Q, Li Y, Chen Q, Li R, He L, Cao Q, Tang G, Jia X. Post-transcriptional and post-translational regulation of anthocyanin biosynthesis in sweetpotato by Ib-miR2111 and IbKFB: Implications for health promotion. J Adv Res 2025:S2090-1232(25)00042-6. [PMID: 39826613 DOI: 10.1016/j.jare.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Sweetpotato (Ipomoea batatas (L.) Lam.) is a genetically intricate hexaploid crop. The purple-fleshed variety, enriched with anthocyanin pigments, is an outstanding source for creating high-value functional products. Previous research on anthocyanin biosynthesis has primarily focused on the above-ground plant parts at the transcriptional level. However, the regulatory mechanisms underlying anthocyanin accumulation in underground tuberous roots of sweetpotato remain largely unexplored. OBJECTIVES This study aimed to elucidate the post-transcriptional and post-translational mechanisms of Ib-miR2111 and its target gene IbKFB in anthocyanin synthesis in sweetpotato. METHODS Genetic manipulation techniques were used to validate the function of Ib-miR2111 and IbKFB in anthocyanin biosynthesis in sweetpotato. To investigate how IbKFB works, a series of protein interaction assays, including yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC), GST pull-down, co-immunoprecipitation (Co-IP), and ubiquitination, were conducted. Additionally, the impact of anthocyanin extracts from the genetically modified sweetpotato lines on inflammatory cells morphology, cytokine expression, and cell proliferation were evaluated using in vitro assays. RESULTS Purple-fleshed sweetpotato (PFSP) varieties exhibited elevated Ib-miR2111 expression compared to white-fleshed sweetpotato (WFSP) varieties, with an inverse expression pattern in IbKFB. Genetic manipulations, including overexpression, CRISPR/Cas9 knockouts, and targeted mutations, confirmed their critical roles in anthocyanin modulation. Furthermore, IbKFB's interactions and ubiquitination with phenylalanine ammonia-lyase 1 (IbPAL1) and glyceraldehyde-3-phosphate dehydrogenase 1 (IbGAPCp1) were elucidated, revealing intricate regulatory mechanisms. Enhanced anthocyanin content showed significant effects on inflammatory cell morphology, cytokine expression, and cell proliferation. CONCLUSION This study provides new insights into the regulatory mechanisms of Ib-miR2111 and IbKFB in anthocyanin biosynthesis and suggests potential health benefits of anthocyanin-rich sweetpotatoes.
Collapse
Affiliation(s)
- Ruimin Tang
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Cailiang Zhao
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jingjian Dong
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiayu Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Henan University, Kaifeng, Henan 475004, China
| | - Lu Chang
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jianghui Li
- Institute of Cotton, Shanxi Agricultural University, Yuncheng, Shanxi 044000, China
| | - Haitao Dong
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yuntao Lv
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhuang Luo
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Meiling Wu
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shan Shen
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qianwen Shan
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yuan Li
- Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Qijun Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Runzhi Li
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Liheng He
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Qinghe Cao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, China.
| | - Guiliang Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA.
| | - Xiaoyun Jia
- Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
15
|
Gao B, Jing Y, Li X, Cong S. Ubiquitin specific peptidase 11 knockdown slows Huntington's disease progression via regulating mitochondrial dysfunction and neuronal damage depending on PTEN-mediated AKT pathway. Mol Med 2025; 31:7. [PMID: 39780069 PMCID: PMC11715466 DOI: 10.1186/s10020-024-01061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear. METHODS To interfere with USP11 expression, adeno-associated viruses 2 containing USP11-specific shRNA were injected into the bilateral striatum of 12-week-old R6/1 and WT mice. In vitro, the inducible PC12 cell model of HD was used in which the expression of an N-terminal truncation of huntingtin, with either wild type (Q23) or expanded polyglutamine (Q74) can be induced by the doxycycline. USP11 was knocked down to study its role in HD. The protein expression patterns in Q74 cells were quantified by label-free proteomics to further explore the target protein of USP11. Detecting the association between USP11 and Phosphatase and Tensin Homolog (PTEN) through Co-IP. RESULTS Herein, USP11 was found to be upregulated in the striatum of R6/1 mice (an HD model with gradual development of symptoms) in an age-dependent manner. The spontaneous HD was alleviated by silencing USP11, as evidenced by improved locomotor activity and spatial memory, attenuated striatal atrophy in R6/1 mice, reduced accumulation of mutant huntingtin protein, and restored mitochondrial function in vitro and in vivo. The results of label-free proteomics revealed a significant change in the protein expression profile. Through functional enrichment, we focused on PTEN, known as a negative regulator of the AKT pathway. We demonstrated that USP11 downregulation promoted ubiquitination modification of PTEN and activated the AKT pathway, and PTEN overexpression reversed the effects of USP11 knockdown. CONCLUSIONS Collectively, USP11 knockdown protects R6/1 mouse neurons from oxidative stress by alleviating mitochondrial dysfunction, thereby preventing the HD progression. This is achieved by inhibiting PTEN expression, which in turn activates the AKT pathway. This study suggests that USP11-PTEN-AKT signaling pathway may be a new attractive therapeutic target for HD.
Collapse
Affiliation(s)
- Bai Gao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuchen Jing
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xi Li
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
16
|
Roy A, Sudhamalla B. ATAD2 and TWIST1 Interaction Promotes MYC Activation in Colorectal Carcinoma. Biochemistry 2025; 64:114-126. [PMID: 39686835 DOI: 10.1021/acs.biochem.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2) is significantly up-regulated in many cancer types and contributes to poor patient outcomes. ATAD2 exhibits a multidomain architecture comprising an N-terminal acidic domain, two AAA+ ATPase domains, a bromodomain, and a C-terminal domain. The AAA+ ATPase domain facilitates protein oligomerization and ATP binding, while the bromodomain recognizes acetylated lysine in histones and nonhistone proteins. ATAD2 involvement in cancer extends across multiple signaling pathways, such as Rb-E2F1, PI3K/AKT, and TGF-β1/Smad3, which promotes cell proliferation and cancer progression. Herein, we report that ATAD2 directly interacts with TWIST1, and both N-terminal regions of proteins mediate the interaction. Immunofluorescence experiments suggested that ATAD2 and TWIST1 primarily colocalize in the nucleus. Notably, our qPCR results revealed the functional significance of ATAD2-TWIST1 interaction by demonstrating their synergistic effect on the transcriptional activation of MYC in colorectal carcinoma cell lines. Moreover, the ChIP-qPCR result further indicates that ATAD2 and TWIST1 significantly localize in the promoter of the MYC gene. In addition, analysis of The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) data suggests a correlation between ATAD2, TWIST1, and MYC overexpression and poor survival rates in colorectal carcinoma. Lastly, the overexpression of ATAD2 and TWIST1 enhances cell proliferation, emphasizing their role in colorectal carcinoma progression through MYC activation. Together, these results suggest that ATAD2 is a crucial factor in TWIST1-dependent MYC gene activation, resulting in an active ATAD2-TWIST1-MYC axis that contributes to colon cancer cell proliferation.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
17
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Vecchio M, Sortino M, Musumeci G, Vinciguerra M, Di Rosa M. Exploring SERPINA3 as a neuroinflammatory modulator in Alzheimer's disease with sex and regional brain variations. Metab Brain Dis 2025; 40:83. [PMID: 39754632 DOI: 10.1007/s11011-024-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
SERPINA3, a serine protease inhibitor, is strongly associated with neuroinflammation, a typical condition of AD. Its expression is linked to microglial and astrocytic markers, suggesting it plays a significant role in modulating neuroinflammatory responses. In this study, we examined the SERPINA3 expression levels, along with CHI3L1, in various brain regions of AD patients and non-demented healthy controls (NDHC). Nineteen microarray datasets were analyzed, with brain samples stratified by sex and age from areas including the prefrontal cortex, occipital lobe, and cerebellum. Results showed that SERPINA3 was significantly highly expressed in AD patients compared to NDHCs only in males. Sex-specific differences were observed only in NDHCs, where females had higher SERPINA3 levels than males. ROC analysis suggested that SERPINA3 could be a strong marker for distinguishing AD in males but not females. In NDHCs, SERPINA3 expression correlated more strongly with age than in AD patients. In brain regions, SERPINA3 expression in NDHC females was higher across multiple areas, while in AD patients, this difference was limited to the prefrontal cortex. The most significant differences between NDHC and AD patients were found in the occipital and prefrontal regions. Furthermore, we identified a potential nuclear localization for SERPINA3, supported by immunohistochemistry analysis from The Human Protein Atlas. Correlation with neuropathological traits, including Clinical Dementia Rating (CDR) and Braak Neurofibrillary Tangle Score, showed positive significant associations between SERPINA3 and CDR in AD patients. Performing a docking analysis, we revealed an interaction region between SERPINA3 and CHI3L1 proteins, suggesting a potential role in AD. Tissue transcriptomic deconvolution analysis indicated a significant overlap between SERPINA3 expression and microglial/astrocytic signatures, suggesting that SERPINA3 plays a key role in modulating neuroinflammation in AD.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Via Santa Sofia n.78, Catania, 95100, Sicily, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Michele Vecchio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Martina Sortino
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute, Medical University Varna, Varna, Bulgaria
- Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
18
|
Liu L, Wang Y, Guo J, Han Z, Yu K, Song Y, Chen H, Gao H, Yang Y, Zhao Z. Natural variation in MdNAC5 contributes to fruit firmness and ripening divergence in apple. HORTICULTURE RESEARCH 2025; 12:uhae284. [PMID: 39866962 PMCID: PMC11758708 DOI: 10.1093/hr/uhae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025]
Abstract
Fruit firmness is an important trait for characterizing the quality and value of apple. It also serves as an indicator of fruit maturity, as it is a complex trait regulated by multiple genes. Resequencing techniques can be employed to elucidate variations in such complex fruit traits. Here, the whole genomes of 294 F 1 hybrids of 'Fuji' and 'Cripp's Pink' were resequenced, and a high-density binmap was constructed using 5014 bin markers with a total map distance of 2213.23 cM and an average map distance of 0.44 cM. Quantitative trait loci (QTLs) of traits related to fruit were mapped, and an A-T allele variant identified in the coding region of MdNAC5 was found to potentially regulate fruit firmness and ripening. The overexpression of MdNAC5 A resulted in higher production of methionine and 1-aminocyclopropanecarboxylic acid compared to MdNAC5 T , leading to reduced fruit firmness and accelerated ripening in apples and tomatoes. Furthermore, the activities of MdNAC5 A and MdNAC5 T were enhanced through their differential binding to the promoter regions of MdACS1 and MdERF3. Spatial variations in MdNAC5 A and MdNAC5 T caused changes in MdACS1 expression following their interaction with MdERF3. Ultimately, utilizing different MdNAC5 alleles offers a strategy to manipulate fruit firmness in apple breeding.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianhua Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ziqi Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kaixuan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yaxiao Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongfei Chen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yazhou Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
19
|
Xie S, Zuo K, De Rubeis S, Ruggerone P, Carloni P. Molecular basis of the CYFIP2 and NCKAP1 autism-linked variants in the WAVE regulatory complex. Protein Sci 2025; 34:e5238. [PMID: 39660913 PMCID: PMC11632847 DOI: 10.1002/pro.5238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
The WAVE regulatory pentameric complex regulates actin remodeling. Two components of it (CYFIP2 and NCKAP1) are encoded by genes whose genetic mutations increase the risk for autism spectrum disorder (ASD) and related neurodevelopmental disorders. Here, we use a newly developed computational protocol and hotspot analysis to uncover the functional impact of these mutations at the interface of the correct isoforms of the two proteins into the complex. The mutations turn out to be located on the surfaces involving the largest number of hotspots of the complex. Most of them decrease the affinity of the proteins for the rest of the complex, but some have the opposite effect. The results are fully consistent with the available experimental data. The observed changes in the WAVE regulatory complex stability might impact on complex activation and ultimately play a role in the aberrant pathway of the complex, leading to the cell derangement associated with the disease.
Collapse
Affiliation(s)
- Song Xie
- Computational BiomedicineInstitute of Advanced Simulation IAS‐5 and Institute of Neuroscience and Medicine INM‐9, Forschungszentrum Jülich GmbHJülichGermany
- Department of PhysicsRWTH Aachen UniversityAachenGermany
| | - Ke Zuo
- Computational BiomedicineInstitute of Advanced Simulation IAS‐5 and Institute of Neuroscience and Medicine INM‐9, Forschungszentrum Jülich GmbHJülichGermany
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative MedicineCollege of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and SciencesChongqingChina
- Department of PhysicsUniversity of CagliariMonserratoCagliariItaly
| | - Silvia De Rubeis
- Seaver Autism Center for Research and TreatmentIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- The Mindich Child Health and Development InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Paolo Ruggerone
- Department of PhysicsUniversity of CagliariMonserratoCagliariItaly
| | - Paolo Carloni
- Computational BiomedicineInstitute of Advanced Simulation IAS‐5 and Institute of Neuroscience and Medicine INM‐9, Forschungszentrum Jülich GmbHJülichGermany
- Department of PhysicsRWTH Aachen UniversityAachenGermany
- JARA Institute: Molecular Neuroscience and ImagingInstitute of Neuroscience and Medicine INM‐11, Forschungszentrum Jülich GmbHJülichGermany
| |
Collapse
|
20
|
Li T, Zhou X, Wang Y, Liu X, Fan Y, Li R, Zhang H, Xu Y. AtCIPK20 regulates microtubule stability to mediate stomatal closure under drought stress in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:5297-5314. [PMID: 39189953 DOI: 10.1111/pce.15112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024]
Abstract
Drought stress is a common abiotic challenge that profoundly impacts plant growth and development. As sessile organisms, plants rely on various physiological and morphological adaptations to cope with drought conditions. The CIPK (calcineurin B-like protein-interacting protein kinase) family proteins play a pivotal role in mediating plant responses to abiotic stress through modulation of cellular membrane events via the CBL-CIPK complex. However, reports documenting the CIPKs' regulation of non-membrane events are scant. In this study, we discovered a novel subcellular localisation pattern of the AtCIPK20 protein of Arabidopsis, specifically to cortical microtubules (cMT), which is distinct from previously reported localisation patterns of plant CIPKs. AtCIPK20 regulates ABA-induced loss of cMT organisation in guard cells, thereby facilitating stomatal closure, mitigating leaf water loss, and protecting plants from drought stress in Arabidopsis. The C-terminal regulatory domain of AtCIPK20 governs its cMT targeting, whereas the interaction of AtCIPK20 with its CBL partners disrupts this localisation. Notably, the cMT targeting characteristic of AtCIPK20 is not exclusive, as several other CIPK members in Arabidopsis, maize, and rice exhibit similar localisation patterns. These findings broaden our current understanding of the role of plant CIPK members in abiotic stress resistance and suggest that future exploration of CIPK molecular functions should adopt a more comprehensive perspective.
Collapse
Affiliation(s)
- Tao Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xuna Zhou
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yixiao Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xueqin Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yudong Fan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Ruiqi Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Huiyong Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yufang Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
21
|
Chen S, Zhang P, Zhu G, Wang B, Cai J, Song L, Wan J, Yang Y, Du J, Cai Y, Zhou J, Fan J, Dai Z. Targeting GSDME-mediated macrophage polarization for enhanced antitumor immunity in hepatocellular carcinoma. Cell Mol Immunol 2024; 21:1505-1521. [PMID: 39496854 PMCID: PMC11607431 DOI: 10.1038/s41423-024-01231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/23/2024] [Accepted: 10/13/2024] [Indexed: 11/06/2024] Open
Abstract
Despite the notable efficacy of anti-PD1 therapy in the management of hepatocellular carcinoma (HCC) patients, resistance in most individuals necessitates additional investigation. For this study, we collected tumor tissues from nine HCC patients receiving anti-PD1 monotherapy and conducted RNA sequencing. These findings revealed significant upregulation of GSDME, which is predominantly expressed by tumor-associated macrophages (TAMs), in anti-PD1-resistant patients. Furthermore, patients with elevated levels of GSDME+ macrophages in HCC tissues presented a poorer prognosis. The analysis of single-cell sequencing data and flow cytometry revealed that the suppression of GSDME expression in nontumor cells resulted in a decrease in the proportion of M2-like macrophages within the tumor microenvironment (TIME) of HCC while concurrently augmenting the cytotoxicity of CD8 + T cells. The non-N-terminal fragment of GSDME within macrophages combines with PDPK1, thereby activating the PI3K-AKT pathway and facilitating M2-like polarization. The small-molecule Eliprodil inhibited the increase in PDPK1 phosphorylation mediated by GSDME site 1. The combination of Eliprodil and anti-PD1 was effective in the treatment of both spontaneous HCC in c-Myc + /+;Alb-Cre + /+ mice and in a hydrodynamic tail vein injection model, which provides a promising strategy for novel combined immunotherapy.
Collapse
Affiliation(s)
- Shiping Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Peiling Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Guiqi Zhu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Biao Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jialiang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Lina Song
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jinglei Wan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Yi Yang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junxian Du
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yufan Cai
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
22
|
Dey S, Bruner J, Brown M, Roof M, Chowdhury R. Identification and biophysical characterization of epitope atlas of Porcine Reproductive and Respiratory Syndrome Virus. Comput Struct Biotechnol J 2024; 23:3348-3357. [PMID: 39310279 PMCID: PMC11416235 DOI: 10.1016/j.csbj.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) have been a critical threat to swine health since 1987 due to its high mutation rate and substantial economic loss over half a billion dollar in USA. The rapid mutation rate of PRRSV presents a significant challenge in developing an effective vaccine. Even though surveillance and intervention studies have recently (2019) unveiled utilization of PRRSV glycoprotein 5 (GP5; encoded by ORF5 gene) to induce immunogenic reaction and production of neutralizing antibodies in porcine populations, the future viral generations can accrue escape mutations. In this study we identify 63 porcine-PRRSV protein-protein interactions which play primary or ancillary roles in viral entry and infection. Using genome-proteome annotation, protein structure prediction, multiple docking experiments, and binding energy calculations, we identified a list of 75 epitope locations on PRRSV proteins crucial for infection. Additionally, using machine learning-based diffusion model, we designed 56 stable immunogen peptides that contain one or more of these epitopes with their native tertiary structures stabilized through optimized N- and C-terminus flank sequences and interspersed with appropriate linker regions. Our workflow successfully identified numerous known interactions and predicted several novel PRRSV-porcine interactions. By leveraging the structural and sequence insights, this study paves the way for more effective, high-avidity, multi-valent PRRSV vaccines, and leveraging neural networks for immunogen design.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Jennifer Bruner
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Maria Brown
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Mike Roof
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
- Vaccines and Immunotherapeutics Platform, Iowa State University, Ames, IA, USA
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| |
Collapse
|
23
|
Jain H, Rawal E, Kumar P, Sain SK, Siwach P. In Silico Investigation of the Interactions Between Cotton Leaf Curl Multan Virus Proteins and the Transcriptional Gene Silencing Factors of Gossypium hirsutum L. J Mol Evol 2024; 92:891-911. [PMID: 39542922 DOI: 10.1007/s00239-024-10216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
The highly dynamic nature of the Cotton leaf curl virus (CLCuV) complex (causing Cotton leaf curl disease, a significant global threat to cotton) presents a formidable challenge in unraveling precise molecular mechanisms governing viral-host interactions. To address this challenge, the present study investigated the molecular interactions of 6 viral proteins (Rep, TrAP, C4, C5, V2, and βC1) with 18 cotton Transcriptional Gene Silencing (TGS) proteins. Protein-protein dockings conducted for different viral-host protein pairs using Clustered Protein Docking (ClusPro) and Global RAnge Molecular Matching (GRAMM) (216 docking runs), revealed variable binding energies. The interacting pairs with the highest binding affinities were further scrutinized using bioCOmplexes COntact MAPS (COCOMAPS) server, which revealed robust binding of three viral proteins- TrAP, C4, and C5 with 14 TGS proteins, identifying several novel interactions (not reported yet by earlier studies), such as TrAP targeting DCL3, HDA6, and SUVH6; C4 targeting RAV2, CMT2, and DMT1; and C5 targeting CLSY1, RDR1, RDR2, AGO4, SAMS, and SAHH. Visualizing these interactions in PyMol provided a detailed insight into interacting regions. Further assessment of the impact of 18 variants of the C4 protein on interaction with CMT2 revealed no correlation between sequence variation and docking energies. However, conserved residues in the C4 binding regions emerged as potential targets for disrupting viral integrity. Hence, this study provides valuable insights into the viral-host interplay, advancing our understanding of Cotton leaf curl Multan virus pathogenicity and opening novel avenues for devising various antiviral strategies by targeting the host-viral interacting regions after experimental validation.
Collapse
Affiliation(s)
- Heena Jain
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, 125055, India
| | - Ekta Rawal
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, 125055, India
| | - Prabhat Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, 125055, India
| | - Satish Kumar Sain
- ICAR-Central Institute of Cotton Research, Regional Station-Sirsa, Sirsa, Haryana, 125055, India
| | - Priyanka Siwach
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, 125055, India.
| |
Collapse
|
24
|
Xia H, Ji B, Qiao D, Peng S. CellMsg: graph convolutional networks for ligand-receptor-mediated cell-cell communication analysis. Brief Bioinform 2024; 26:bbae716. [PMID: 39800874 PMCID: PMC11725396 DOI: 10.1093/bib/bbae716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
The role of cell-cell communications (CCCs) is increasingly recognized as being important to differentiation, invasion, metastasis, and drug resistance in tumoral tissues. Developing CCC inference methods using traditional experimental methods are time-consuming, labor-intensive, cannot handle large amounts of data. To facilitate inference of CCCs, we proposed a computational framework, called CellMsg, which involves two primary steps: identifying ligand-receptor interactions (LRIs) and measuring the strength of LRIs-mediated CCCs. Specifically, CellMsg first identifies high-confident LRIs based on multimodal features of ligands and receptors and graph convolutional networks. Then, CellMsg measures the strength of intercellular communication by combining the identified LRIs and single-cell RNA-seq data using a three-point estimation method. Performance evaluation on four benchmark LRI datasets by five-fold cross validation demonstrated that CellMsg accurately captured the relationships between ligands and receptors, resulting in the identification of high-confident LRIs. Compared with other methods of identifying LRIs, CellMsg has better prediction performance and robustness. Furthermore, the LRIs identified by CellMsg were successfully validated through molecular docking. Finally, we examined the overlap of LRIs between CellMsg and five other classical CCC databases, as well as the intercellular crosstalk among seven cell types within a human melanoma tissue. In summary, CellMsg establishes a complete, reliable, and well-organized LRI database and an effective CCC strength evaluation method for each single-cell RNA-seq data. It provides a computational tool allowing researchers to decipher intercellular communications. CellMsg is freely available at https://github.com/pengsl-lab/CellMsg.
Collapse
Affiliation(s)
- Hong Xia
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Boya Ji
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Debin Qiao
- School of Computer and Artificial Intelligence, ZhengZhou University, Zhengzhou 450001, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
25
|
Liu Z, Li X, Cui L, Feng S, Han Z, Zhang Y, Liu S, Li H. Co-Regulation Mechanism of Host p53 and Fos in Transcriptional Activation of ILTV Immediate-Early Gene ICP4. Microorganisms 2024; 12:2069. [PMID: 39458378 PMCID: PMC11510328 DOI: 10.3390/microorganisms12102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Infectious laryngotracheitis virus (ILTV) exhibits a cascade expression pattern of encoded genes, and ICP4 is the only immediate-early gene of ILTV, which plays a crucial role in initiating the subsequent viral genes. Therefore, studying the transcriptional regulation mechanism of ICP4 holds promise for effectively blocking ILTV infection and spread. Host transcriptional factors p53 and Fos are proven to regulate a variety of viral infections, and our previous studies have demonstrated their synergistic effects in regulating ILTV infection. In this study, we constructed eukaryotic expression vectors for p53 and Fos as well as their specific siRNAs and transfected them into a chicken hepatoma cell line. The results showed that knocking down p53 or Fos significantly inhibited ICP4 transcription, while overexpressing p53 or Fos had an opposite effect. A further CoIP and ChIP-qPCR assay suggested p53 and Fos physically interacted with each other, and jointly bound to the upstream transcriptional regulatory region of ICP4. To elucidate the specific mechanisms of p53 and Fos in regulating ICP4 transcription, we designed p53 and Fos protein mutants by mutating their DNA binding domains, which significantly reduced their binding ability to DNA without affecting their interaction. The results showed that Fos directly bound to the promoter region of ICP4 as a binding target of p53, and the p53-Fos protein complex acted as a transcriptional co-regulator of ICP4. Studying the transcriptional process and regulatory pattern of ICP4 is of great significance for understanding the molecular mechanism of ILTV infection, and thus for finding effective methods to control and prevent it.
Collapse
Affiliation(s)
- Zheyi Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.L.); (X.L.); (L.C.); (Z.H.)
- School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.F.); (Y.Z.)
| | - Xuefeng Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.L.); (X.L.); (L.C.); (Z.H.)
- School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.F.); (Y.Z.)
| | - Lu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.L.); (X.L.); (L.C.); (Z.H.)
- School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.F.); (Y.Z.)
| | - Shufeng Feng
- School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.F.); (Y.Z.)
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.L.); (X.L.); (L.C.); (Z.H.)
| | - Yu Zhang
- School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.F.); (Y.Z.)
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.L.); (X.L.); (L.C.); (Z.H.)
| | - Hai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (Z.L.); (X.L.); (L.C.); (Z.H.)
- School of Basic Medical Sciences, Translational Medicine Institute, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry, Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (S.F.); (Y.Z.)
| |
Collapse
|
26
|
Fakhar M, Gul M, Li W. Interactive Structural Analysis of KH3-4 Didomains of IGF2BPs with Preferred RNA Motif Having m 6A Through Dynamics Simulation Studies. Int J Mol Sci 2024; 25:11118. [PMID: 39456902 PMCID: PMC11508745 DOI: 10.3390/ijms252011118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
m6A modification is the most common internal modification of messenger RNA in eukaryotes, and the disorder of m6A can trigger cancer progression. The GGACU is considered the most frequent consensus sequence of target transcripts which have a GGAC m6A core motif. Newly identified m6A 'readers' insulin-like growth factor 2 mRNA-binding proteins modulate gene expression by binding to the m6A binding sites of target mRNAs, thereby affecting various cancer-related processes. The dynamic impact of the methylation at m6A within the GGAC motif on human IGF2BPs has not been investigated at the structural level. In this study, through in silico analysis, we mapped IGF2BPs binding sites for the GGm6AC RNA core motif of target mRNAs. Subsequent molecular dynamics simulation analysis at 400 ns revealed that only the KH4 domain of IGF2BP1, containing the 503GKGG506 motif and its periphery residues, was involved in the interaction with the GGm6AC backbone. Meanwhile, the methyl group of m6A is accommodated by a shallow hydrophobic cradle formed by hydrophobic residues. Interestingly, in IGF2BP2 and IGF2BP3 complexes, the RNA was observed to shift from the KH4 domain to the KH3 domain in the simulation at 400 ns, indicating a distinct dynamic behavior. This suggests a conformational stabilization upon binding, likely essential for the functional interactions involving the KH3-4 domains. These findings highlight the potential of targeting IGF2BPs' interactions with m6A modifications for the development of novel oncological therapies.
Collapse
Affiliation(s)
- Muhammad Fakhar
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (M.F.); (M.G.)
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mehreen Gul
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (M.F.); (M.G.)
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (M.F.); (M.G.)
| |
Collapse
|
27
|
Meyer N, Arroyo N, Roustan L, Janot J, Charles‐Achille S, Torrent J, Picaud F, Balme S. Secondary Nucleation of Aβ Revealed by Single-Molecule and Computational Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404916. [PMID: 39159070 PMCID: PMC11497034 DOI: 10.1002/advs.202404916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/07/2024] [Indexed: 08/21/2024]
Abstract
Understanding the mechanisms underlying amyloid-β (Aβ) aggregation is pivotal in the context of Alzheimer's disease. This study aims to elucidate the secondary nucleation process of Aβ42 peptides by combining experimental and computational methods. Using a newly developed nanopipette-based amyloid seeding and translocation assay, confocal fluorescence spectroscopy, and molecular dynamics simulations, the influence of the seed properties on Aβ aggregation is investigated. Both fragmented and unfragmented seeds played distinct roles in the formation of oligomers, with fragmented seeds facilitating the formation of larger aggregates early in the incubation phase. The results show that secondary nucleation leads to the formation of oligomers of various sizes and structures as well as larger fibrils structured in β-sheets. From these findings a mechanism of secondary nucleation involving two types of aggregate populations, one released and one growing on the mother fiber is proposed.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonMontpellier34095France
| | - Nicolas Arroyo
- UR SINERGIESUniversity of Besançon16 route de GrayBesançon25000France
| | - Lois Roustan
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonMontpellier34095France
| | - Jean‐Marc Janot
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonMontpellier34095France
| | - Saly Charles‐Achille
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonMontpellier34095France
| | - Joan Torrent
- INMUniversity of MontpellierINSERMMontpellier34090France
| | - Fabien Picaud
- UR SINERGIESUniversity of Besançon16 route de GrayBesançon25000France
| | - Sébastien Balme
- Institut Européen des MembranesUMR5635 University of Montpellier ENCSM CNRSPlace Eugène BataillonMontpellier34095France
| |
Collapse
|
28
|
Trujillo P, Garavaglia P, Alvarez G, Aduviri S, Domene C, Cannata J, Asciutto EK, García GA, Pickholz M. Insight from atomistic molecular dynamics simulations into the supramolecular assembly of the aldo-keto reductase from Trypanosoma cruzi. J Mol Model 2024; 30:346. [PMID: 39316137 DOI: 10.1007/s00894-024-06153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
CONTEXT Currently, Chagas disease represents an important public health problem affecting more than 8 million people worldwide. The vector of this disease is the Trypanosoma cruzi (Tc) parasite. Our research specifically focuses on the structure and aggregation states of the enzyme aldo-keto reductase of Tc (TcAKR) reported in this parasite. TcAKR belongs to the aldo-keto reductase (AKR) superfamily, enzymes that catalyze redox reactions involved in crucial biological processes. While most AKRs are found in monomeric forms, some have been reported to form dimeric and tetrameric structures. This is the case for some TcAKR. To better understand how TcAKR multimers form and remain stable, we conducted a comprehensive computational analysis using molecular dynamics (MD) simulations. Our approach to elucidating the aggregation states of TcAKR involved two strategies. Initially, we explored the dynamic behaviour of pre-assembled TcAKR dimers. Subsequently, we examined the self-aggregation of eight monomers. This investigation led to the identification of crucial residues that contribute to the stabilization of protein-protein interactions. It was also found that TcAKRs can form stable supramolecular assemblies, with each monomer typically surrounded by three first neighbours. These findings align with experimental reports of tetrameric or more complex supramolecular structures. Our computational studies could guide further experimental investigations aiming at drug development and assist in designing strategies to modulate aggregation. METHOD Atomistic molecular dynamics simulations were carried out. The TcAKR 3D model structure was obtained by homology modelling using the Swiss Model for the TcAKR sequence (GenBank accession no. EU558869). Further, we checked the model with Alphafold2 and found a high degree of similarity between models. Several tools were used to build the dimers including CLUSPRO, GRAMM-Docking, Hdock, and Py-dock. Protein superstructures were built using the PACKMOL package. CHARMM-GUI was used to set up the simulation systems. GROMACS version 2020.5 was used to perform the simulations with the CHARMM36 force field for the protein and ions and the TIP3P model for water. Further analyses were performed using VMD, GROMACS, AMBER tools, MDLovoFit, bio3d, and in-house programs.
Collapse
Affiliation(s)
- Pablo Trujillo
- Department of Physics, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- CONICET-University of Buenos Aires, Physics Institute of Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Patricia Garavaglia
- National Institute of Parasitology "Dr. Mario Fatala Chaben" ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Guadalupe Alvarez
- School of Science and Technology, National University of San Martín (UNSAM), ICIFI, CONICET, San Martín, Argentina
| | - Sebastian Aduviri
- Department of Physics, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- CONICET-University of Buenos Aires, Physics Institute of Buenos Aires (IFIBA), Buenos Aires, Argentina
| | - Carmen Domene
- Department of Chemistry, University of Bath, 1 South Bldg, Claverton Down, Bath, BA27AY, UK
| | - Joaquín Cannata
- Institute for Biotechnological Research (IIB-INTECH) "Dr. Rodolfo A. Ugalde", National University of General San Martín-CONICET, San Martín, Argentina
| | - Eliana K Asciutto
- School of Science and Technology, National University of San Martín (UNSAM), ICIFI, CONICET, San Martín, Argentina
| | - Gabriela A García
- National Institute of Parasitology "Dr. Mario Fatala Chaben" ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Mónica Pickholz
- Department of Physics, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina.
- CONICET-University of Buenos Aires, Physics Institute of Buenos Aires (IFIBA), Buenos Aires, Argentina.
| |
Collapse
|
29
|
Belinskaia DA, Shestakova NN, Samodurova KV, Goncharov NV. Computational Study of Molecular Mechanism for the Involvement of Human Serum Albumin in the Renin-Angiotensin-Aldosterone System. Int J Mol Sci 2024; 25:10260. [PMID: 39408590 PMCID: PMC11476573 DOI: 10.3390/ijms251910260] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
Human serum albumin (HSA) is an endogenous inhibitor of angiotensin I-converting enzyme (ACE) and, thus, plays a key role in the renin-angiotensin-aldosterone system (RAAS). However, little is known about the mechanism of interaction between these proteins, and the structure of the HSA-ACE complex has not yet been obtained experimentally. The purpose of the presented work is to apply computer modeling methods to study the interaction of HSA with ACE in order to obtain preliminary details about the mechanism of their interaction. Ten possible HSA-ACE complexes were obtained by the procedure of macromolecular docking. Based on the number of steric and polar contacts between the proteins, three leading complexes were selected, the stabilities of which were then tested by molecular dynamics (MD) simulation. Based on the results of MD simulation, the two most probable conformations of the HSA-ACE complex were selected. The analysis of these conformations revealed that the processes of oxidation of the thiol group of Cys34 of HSA and the binding of albumin to ACE can reciprocally affect each other. Known point mutations in the albumin molecules Glu82Lys, Arg114Gly, Glu505Lys, Glu565Lys and Lys573Glu can also affect the interaction with ACE. According to the result of MD simulation, the known ACE mutations, albeit associated with various diseases, do not affect the HSA-ACE interaction. A comparative analysis was performed of the resulting HSA-ACE complexes with those obtained by AlphaFold 3 as well as with the crystal structure of the HSA and the neonatal Fc receptor (FcRn) complex. It was found that domains DI and DIII of albumin are involved in binding both ACE and FcRn. The obtained results of molecular modeling outline the direction for further study of the mechanisms of HSA-ACE interaction in vitro. Information about these mechanisms will help in the design and improvement of pharmacotherapy aimed at modulation of the physiological activity of ACE.
Collapse
Affiliation(s)
| | | | | | - Nikolay V. Goncharov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 St. Petersburg, Russia; (D.A.B.); (N.N.S.); (K.V.S.)
| |
Collapse
|
30
|
Roshanara, Tandon R, Baig MS, Das S, Srivastava R, Puri N, Nakhasi HL, Selvapandiyan A. Identifying Rab2 Protein as a Key Interactor of Centrin1 Essential for Leishmania donovani Growth. ACS Infect Dis 2024; 10:3273-3288. [PMID: 39110117 DOI: 10.1021/acsinfecdis.4c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Previously, we have demonstrated that deletion of a growth-regulating gene (LdCen1) in the Leishmania donovani parasite (LdCen1-/-) attenuated the parasite's intracellular amastigote growth but not the growth of extracellular promastigotes. LdCen1-/- parasites were found to be safe and efficacious against homologous and heterologous Leishmania species as a vaccine candidate in animal models. The reason for the differential growth of LdCen1-/- between the two stages of the parasite needed investigation. Here, we report that LdCen1 interacts with a novel Ras-associated binding protein in L. donovani (LdRab2) to compensate for the growth of LdCen1-/- promastigotes. LdRab2 was isolated by protein pull-down from the parasite lysate, followed by nano-LC-MS/MS identification. The RAB domain sequence and the functional binding partners of the LdRab2 protein were predicted via Search Tool for the Retrieval of Interacting Proteins (STRING) analysis. The closeness of the LdRab2 protein to other reported centrin-binding proteins with different functions in other organisms was analyzed via phylogenetic analysis. Furthermore, in vitro and in silico analyses revealed that LdRab2 also interacts with other L. donovani centrins 3-5. Since centrin is a calcium-binding protein, we further investigated calcium-based interactions and found that the binding of LdRab2 to LdCen1 and LdCen4 is calcium-independent, whereas the interactions with LdCen3 and LdCen5 are calcium-dependent. The colocalization of LdCen1 and LdRab2 at the cellular basal-body region by immunofluorescence supports their possible functional association. The elevated expression of the LdRab2 protein in the mutant promastigotes suggested a probable role in compensating for the promastigote growth of this mutant strain, probably in association with other parasite centrins.
Collapse
Affiliation(s)
- Roshanara
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Rati Tandon
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | | | - Sanchita Das
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rahul Srivastava
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, Maryland 20993, United States
| | | |
Collapse
|
31
|
Singh A, Kundrotas PJ, Vakser IA. Diffusion of proteins in crowded solutions studied by docking-based modeling. J Chem Phys 2024; 161:095101. [PMID: 39225532 PMCID: PMC11374379 DOI: 10.1063/5.0220545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
The diffusion of proteins is significantly affected by macromolecular crowding. Molecular simulations accounting for protein interactions at atomic resolution are useful for characterizing the diffusion patterns in crowded environments. We present a comprehensive analysis of protein diffusion under different crowding conditions based on our recent docking-based approach simulating an intracellular crowded environment by sampling the intermolecular energy landscape using the Markov Chain Monte Carlo protocol. The procedure was extensively benchmarked, and the results are in very good agreement with the available experimental and theoretical data. The translational and rotational diffusion rates were determined for different types of proteins under crowding conditions in a broad range of concentrations. A protein system representing most abundant protein types in the E. coli cytoplasm was simulated, as well as large systems of other proteins of varying sizes in heterogeneous and self-crowding solutions. Dynamics of individual proteins was analyzed as a function of concentration and different diffusion rates in homogeneous and heterogeneous crowding. Smaller proteins diffused faster in heterogeneous crowding of larger molecules, compared to their diffusion in the self-crowded solution. Larger proteins displayed the opposite behavior, diffusing faster in the self-crowded solution. The results show the predictive power of our structure-based simulation approach for long timescales of cell-size systems at atomic resolution.
Collapse
Affiliation(s)
- Amar Singh
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Petras J Kundrotas
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045, USA
| | - Ilya A Vakser
- Computational Biology Program, The University of Kansas, Lawrence, Kansas 66045, USA
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
32
|
Canela-Pérez I, Azuara-Liceaga E, Cuéllar P, Saucedo-Cárdenas O, Valdés J. Multiple types of nuclear localization signals in Entamoeba histolytica. Biochem Biophys Rep 2024; 39:101770. [PMID: 39055170 PMCID: PMC11269297 DOI: 10.1016/j.bbrep.2024.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Entamoeba histolytica is a protozoan parasite that belongs to the Amoebozoa supergroup whose study related to the nucleocytoplasmic transport of proteins through the nucleus is poorly studied. In this work, we have performed in silico predictions of the potential nuclear localization signals (NLS) corresponding to the proteome of 8201 proteins from Entamoeba histolytica annotated in the AmoebaDB database. We have found the presence of monopartite nuclear localization signals (MNLSs), bipartite nuclear localization signals (BNLSs), and non-canonical monopartite NLSs with lengths exceeding 20 amino acid residues. Additionally, we detected a new type of NLS consisting of multiple juxtaposed bipartite NLSs (JNLSs) that have not been described in any eukaryotic organism. Also, we have generated consensus sequences for the nuclear import of proteins with the NLSs obtained. Docking experiments between EhImportin α and an MNLS, BNLS, and JNLS outlined the interacting residues between the Importin and cargo proteins, emphasizing their putative roles in nuclear import. By transfecting HA-tagged protein constructs, we assessed the nuclear localization of MNLS (U1A and U2AF1), JMNLS (U2AF2), and non-canonical NLS (N-terminus of Pol ll) in vivo. Our data provide the basis for understanding the nuclear transport process in E. histolytica.
Collapse
Affiliation(s)
- Israel Canela-Pérez
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508 colonia San Pedro Zacatenco, GAM, CDMX, 07360, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, 03100, Mexico
| | - Patricia Cuéllar
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, 03100, Mexico
| | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, 67700, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508 colonia San Pedro Zacatenco, GAM, CDMX, 07360, Mexico
| |
Collapse
|
33
|
Lim CP, Leow CH, Lim HT, Kok BH, Chuah C, Oliveira JIN, Jones M, Leow CY. Insights into structural vaccinology harnessed for universal coronavirus vaccine development. Clin Exp Vaccine Res 2024; 13:202-217. [PMID: 39144127 PMCID: PMC11319108 DOI: 10.7774/cevr.2024.13.3.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 08/16/2024] Open
Abstract
Structural vaccinology is pivotal in expediting vaccine design through high-throughput screening of immunogenic antigens. Leveraging the structural and functional characteristics of antigens and immune cell receptors, this approach employs protein structural comparison to identify conserved patterns in key pathogenic components. Molecular modeling techniques, including homology modeling and molecular docking, analyze specific three-dimensional (3D) structures and protein interactions and offer valuable insights into the 3D interactions and binding affinity between vaccine candidates and target proteins. In this review, we delve into the utilization of various immunoinformatics and molecular modeling tools to streamline the development of broad-protective vaccines against coronavirus disease 2019 variants. Structural vaccinology significantly enhances our understanding of molecular interactions between hosts and pathogens. By accelerating the pace of developing effective and targeted vaccines, particularly against the rapidly mutating severe acute respiratory syndrome coronavirus 2 and other prevalent infectious diseases, this approach stands at the forefront of advancing immunization strategies. The combination of computational techniques and structural insights not only facilitates the identification of potential vaccine candidates but also contributes to the rational design of vaccines, fostering a more efficient and targeted approach to combatting infectious diseases.
Collapse
Affiliation(s)
- Chin Peng Lim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Hui Ting Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Candy Chuah
- Faculty of Medicine, Asian Institute of Medical Science and Technology University, Bedong, Malaysia
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Malcolm Jones
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
34
|
Mikaeeli S, Ben Djoudi Ouadda A, Evagelidis A, Essalmani R, Ramos OHP, Fruchart-Gaillard C, Seidah NG. Insights into PCSK9-LDLR Regulation and Trafficking via the Differential Functions of MHC-I Proteins HFE and HLA-C. Cells 2024; 13:857. [PMID: 38786080 PMCID: PMC11119474 DOI: 10.3390/cells13100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
PCSK9 is implicated in familial hypercholesterolemia via targeting the cell surface PCSK9-LDLR complex toward lysosomal degradation. The M2 repeat in the PCSK9's C-terminal domain is essential for its extracellular function, potentially through its interaction with an unidentified "protein X". The M2 repeat was recently shown to bind an R-x-E motif in MHC-class-I proteins (implicated in the immune system), like HLA-C, and causing their lysosomal degradation. These findings suggested a new role of PCSK9 in the immune system and that HLA-like proteins could be "protein X" candidates. However, the participation of each member of the MHC-I protein family in this process and their regulation of PCSK9's function have yet to be determined. Herein, we compared the implication of MHC-I-like proteins such as HFE (involved in iron homeostasis) and HLA-C on the extracellular function of PCSK9. Our data revealed that the M2 domain regulates the intracellular sorting of the PCSK9-LDLR complex to lysosomes, and that HFE is a new target of PCSK9 that inhibits its activity on the LDLR, whereas HLA-C enhances its function. This work suggests the potential modulation of PCSK9's functions through interactions of HFE and HLA-C.
Collapse
Affiliation(s)
- Sepideh Mikaeeli
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), University of Montreal, Montreal, QC H2W 1R7, Canada; (S.M.); (A.B.D.O.); (A.E.); (R.E.)
| | - Ali Ben Djoudi Ouadda
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), University of Montreal, Montreal, QC H2W 1R7, Canada; (S.M.); (A.B.D.O.); (A.E.); (R.E.)
| | - Alexandra Evagelidis
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), University of Montreal, Montreal, QC H2W 1R7, Canada; (S.M.); (A.B.D.O.); (A.E.); (R.E.)
| | - Rachid Essalmani
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), University of Montreal, Montreal, QC H2W 1R7, Canada; (S.M.); (A.B.D.O.); (A.E.); (R.E.)
| | - Oscar Henrique Pereira Ramos
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, 91191 Gif-sur-Yvette, France; (O.H.P.R.); (C.F.-G.)
| | - Carole Fruchart-Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, 91191 Gif-sur-Yvette, France; (O.H.P.R.); (C.F.-G.)
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM), University of Montreal, Montreal, QC H2W 1R7, Canada; (S.M.); (A.B.D.O.); (A.E.); (R.E.)
| |
Collapse
|
35
|
Araujo-Abad S, Rizzuti B, Vidal M, Abian O, Fárez-Vidal ME, Velazquez-Campoy A, de Juan Romero C, Neira JL. Unveiling the Binding between the Armadillo-Repeat Domain of Plakophilin 1 and the Intrinsically Disordered Transcriptional Repressor RYBP. Biomolecules 2024; 14:561. [PMID: 38785968 PMCID: PMC11117474 DOI: 10.3390/biom14050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Plakophilin 1 (PKP1), a member of the p120ctn subfamily of the armadillo (ARM)-repeat-containing proteins, is an important structural component of cell-cell adhesion scaffolds although it can also be ubiquitously found in the cytoplasm and the nucleus. RYBP (RING 1A and YY1 binding protein) is a multifunctional intrinsically disordered protein (IDP) best described as a transcriptional regulator. Both proteins are involved in the development and metastasis of several types of tumors. We studied the binding of the armadillo domain of PKP1 (ARM-PKP1) with RYBP by using in cellulo methods, namely immunofluorescence (IF) and proximity ligation assay (PLA), and in vitro biophysical techniques, namely fluorescence, far-ultraviolet (far-UV) circular dichroism (CD), and isothermal titration calorimetry (ITC). We also characterized the binding of the two proteins by using in silico experiments. Our results showed that there was binding in tumor and non-tumoral cell lines. Binding in vitro between the two proteins was also monitored and found to occur with a dissociation constant in the low micromolar range (~10 μM). Finally, in silico experiments provided additional information on the possible structure of the binding complex, especially on the binding ARM-PKP1 hot-spot. Our findings suggest that RYBP might be a rescuer of the high expression of PKP1 in tumors, where it could decrease the epithelial-mesenchymal transition in some cancer cells.
Collapse
Affiliation(s)
- Salome Araujo-Abad
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, 170124 Quito, Ecuador;
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy;
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
| | - Miguel Vidal
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Calle Ramiro de Maeztu, 9, 28040 Madrid, Spain;
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - María Esther Fárez-Vidal
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain;
- Instituto de Investigación Biomédica IBS, Granada, Complejo Hospitalario Universitario de Granada, Universidad de Granada, 18071 Granada, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Camino de Juan Romero
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Spain
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l’Almazara 11, 03203 Elche, Spain
| | - José L. Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; (O.A.); (A.V.-C.)
| |
Collapse
|
36
|
Kravchenko A, de Vries SJ, Smaïl-Tabbone M, Chauvot de Beauchene I. HIPPO: HIstogram-based Pseudo-POtential for scoring protein-ssRNA fragment-based docking poses. BMC Bioinformatics 2024; 25:129. [PMID: 38532339 DOI: 10.1186/s12859-024-05733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The RNA-Recognition motif (RRM) is a protein domain that binds single-stranded RNA (ssRNA) and is present in as much as 2% of the human genome. Despite this important role in biology, RRM-ssRNA interactions are very challenging to study on the structural level because of the remarkable flexibility of ssRNA. In the absence of atomic-level experimental data, the only method able to predict the 3D structure of protein-ssRNA complexes with any degree of accuracy is ssRNA'TTRACT, an ssRNA fragment-based docking approach using ATTRACT. However, since ATTRACT parameters are not ssRNA-specific and were determined in 2010, there is substantial opportunity for enhancement. RESULTS Here we present HIPPO, a composite RRM-ssRNA scoring potential derived analytically from contact frequencies in near-native versus non-native docking models. HIPPO consists of a consensus of four distinct potentials, each extracted from a distinct reference pool of protein-trinucleotide docking decoys. To score a docking pose with one potential, for each pair of RNA-protein coarse-grained bead types, each contact is awarded or penalised according to the relative frequencies of this contact distance range among the correct and incorrect poses of the reference pool. Validated on a fragment-based docking benchmark of 57 experimentally solved RRM-ssRNA complexes, HIPPO achieved a threefold or higher enrichment for half of the fragments, versus only a quarter with the ATTRACT scoring function. In particular, HIPPO drastically improved the chance of very high enrichment (12-fold or higher), a scenario where the incremental modelling of entire ssRNA chains from fragments becomes viable. However, for the latter result, more research is needed to make it directly practically applicable. Regardless, our approach already improves upon the state of the art in RRM-ssRNA modelling and is in principle extendable to other types of protein-nucleic acid interactions.
Collapse
Affiliation(s)
- Anna Kravchenko
- Université de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France
| | | | | | | |
Collapse
|