1
|
Li P, Sun Y, Wen H, Qi X, Zhang Y, Sun D, Liu C, Li Y. Transcriptomic Analysis Reveals Dynamics of Gene Expression in Liver Tissue of Spotted Sea Bass Under Acute Thermal Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1336-1349. [PMID: 39432208 DOI: 10.1007/s10126-024-10375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
The spotted sea bass (Lateolabrax maculatus), a eurythermal species, exhibits strong adaptability to temperature variations and presents an ideal model for studying heat stress-responsive mechanisms in fish. This study examined the liver transcriptome of spotted sea bass over a 24-h period following exposure to elevated temperatures, rising from 25 to 32 °C. The results revealed significant alterations in gene expression in response to this thermal stress. Specifically, we identified 1702, 1199, 3128, and 2636 differentially expressed genes at 3, 6, 12, and 24 h post-stress, respectively. Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify specific gene modules responsive to heat stress, containing hub genes such as aco2, eci2, h6pd, suclg1, fgg, fga, fgb, f2, and apoba, which play central roles in the heat stress response. Enrichment analyses via KEGG and GSEA indicated that upregulated differentially expressed genes (DEGs) are predominantly involved in protein processing in the endoplasmic reticulum, while downregulated genes are primarily associated with the AGE-RAGE signaling pathways. Additionally, 272 genes exhibited differential alternative splicing, primarily through exon skipping, underscoring the complexity of transcriptomic adaptations. These findings provide deeper insights into the molecular responses to thermal stress and are crucial for advancing the breeding of heat-resistant strains of spotted sea bass.
Collapse
Affiliation(s)
- Pengyu Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Yalong Sun
- University of Maryland Baltimore County, Baltimore, MD, USA
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Yonghang Zhang
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Donglei Sun
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Cong Liu
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, 266003, China.
- Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100/572025, Shandong/Sanya, Hainan, China.
| |
Collapse
|
2
|
El-Sappah AH, Seif MM, Abdel-Kader HH, Soaud SA, Elhamid MAA, Abdelghaffar AM, El-Sappah HH, Sarwar H, Yadav V, Maitra P, Zhao X, Yan K, Li J, Abbas M. Genotoxicity and Trace Elements Contents Analysis in Nile Tilapia (Oreochromis niloticus) Indicated the Levels of Aquatic Contamination at Three Egyptian Areas. Front Vet Sci 2022; 9:818866. [PMID: 35478598 PMCID: PMC9038200 DOI: 10.3389/fvets.2022.818866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
The toxic waste and pollutants of heavy metals continuously pollute freshwater aquatic reservoirs, which have severe implications on aquatic life and human health. The present work aims to evaluate trace elements (Zn, Mn, Cu, Cd, and Pb) along with three sites, Mariout Lake, Abbassa, and River Nile Aswan in Egypt, using Nile tilapia (Oreochromis niloticus) as bioindicator. The quality assurance, health-risk assessment, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), quantitative polymerase chain reaction (qPCR), and micronucleus test were performed to investigate the effect of different trace elements on Hsp70 gene level and micronuclei formation. We observed the highest expression of Hsp70 protein band of 70 KD and stress-responsive Hsp70 gene in the liver followed by gills of Nile tilapia caught from Mariout and Abbassa, but the lowest expression was in Nile tilapia caught from Aswan. Obvious micronuclei were observed under the microscope in erythrocytes, and their number was gradually decreased in the following manner: Mariout > Abbassa > Aswan. Noticeably, Cu, Zn, and Mn contents were low. Still, Pb and Cd contents were higher than the toxicity level recommended by the Food and Agriculture Organization (FAO), The World Health Organization (WHO), and the European Commission (EC). These results showed that Hsp70's appearance at the two levels of mRNA and protein is an effective indicator for aquatic pollution besides the aberration at the chromosome level represented in the micronucleus test. Furthermore, these results showed that Nile tilapia of the Aswan region had comparatively low trace elements contamination and were suitable for consumption.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohamed M. Seif
- Toxicology and Food Contaminants Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| | | | - Salma A. Soaud
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | | | | | - Huda Sarwar
- Department of Bioscience, University of Wah, Wah Cantt, Pakistan
| | - Vivek Yadav
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Xianming Zhao
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Kuan Yan
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Jia Li
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- *Correspondence: Manzar Abbas
| |
Collapse
|
3
|
Reveco-Urzua FE, Hofossæter M, Rao Kovi M, Mydland LT, Ånestad R, Sørby R, Press CM, Lagos L, Øverland M. Candida utilis yeast as a functional protein source for Atlantic salmon (Salmo salar L.): Local intestinal tissue and plasma proteome responses. PLoS One 2019; 14:e0218360. [PMID: 31887112 PMCID: PMC6936787 DOI: 10.1371/journal.pone.0218360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
Microbial ingredients such as Candida utilis yeast are known to be functional protein sources with immunomodulating effects whereas soybean meal causes soybean meal-induced enteritis in the distal intestine of Atlantic salmon (Salmo salar L.). Inflammatory or immunomodulatory stimuli at the local level in the intestine may alter the plasma proteome profile of Atlantic salmon. These deviations can be helpful indicators for fish health and, therefore potential tools in the diagnosis of fish diseases. The present work aimed to identify local intestinal tissue responses and changes in plasma protein profiles of Atlantic salmon fed inactive dry Candida utilis yeast biomass, soybean meal, or combination of soybean meal based diet with various inclusion levels of Candida utilis. A fishmeal based diet was used as control diet. Inclusion of Candida utilis yeast to a fishmeal based diet did not alter the morphology, immune cell population or gene expression of the distal intestine. Lower levels of Candida utilis combined with soybean meal modulated immune cell populations in the distal intestine and reduced the severity of soybean meal-induced enteritis, while higher inclusion levels of Candida utilis were less effective. Changes in the plasma proteomic profile revealed differences between the diets but did not indicate any specific proteins that could be a marker for health or disease. The results suggest that Candida utilis does not alter intestinal morphology or induce major changes in plasma proteome, and thus could be a high-quality alternative protein source with potential functional properties in diets for Atlantic salmon.
Collapse
Affiliation(s)
- Felipe Eduardo Reveco-Urzua
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Mette Hofossæter
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Mallikarjuna Rao Kovi
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Liv Torunn Mydland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Ragnhild Ånestad
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Randi Sørby
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Charles McLean Press
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Leidy Lagos
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
4
|
Clucas GV, Lou RN, Therkildsen NO, Kovach AI. Novel signals of adaptive genetic variation in northwestern Atlantic cod revealed by whole-genome sequencing. Evol Appl 2019; 12:1971-1987. [PMID: 31700539 PMCID: PMC6824067 DOI: 10.1111/eva.12861] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/14/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022] Open
Abstract
Selection can create complex patterns of adaptive differentiation among populations in the wild that may be relevant to management. Atlantic cod in the Northwest Atlantic are at a fraction of their historical abundance and a lack of recovery within the Gulf of Maine has created concern regarding the misalignment of fisheries management structures with biological population structure. To address this and investigate genome-wide patterns of variation, we used low-coverage sequencing to perform a region-wide, whole-genome analysis of fine-scale population structure. We sequenced 306 individuals from 20 sampling locations in U.S. and Canadian waters, including the major spawning aggregations in the Gulf of Maine in addition to spawning aggregations from Georges Bank, southern New England, the eastern Scotian Shelf, and St. Pierre Bank. With genotype likelihoods estimated at almost 11 million loci, we found large differences in haplotype frequencies of previously described chromosomal inversions between Canadian and U.S. sampling locations and also among U.S. sampling locations. Our whole-genome resolution also revealed novel outlier peaks, some of which showed significant genetic differentiation among sampling locations. Comparisons between allochronic winter- and spring-spawning populations revealed highly elevated relative (FST ) and absolute (dxy ) genetic differentiation near genes involved in reproduction, particularly genes associated with the brain-pituitary-gonadal axis, which likely control timing of spawning, contributing to prezygotic isolation. We also found genetic differentiation associated with heat shock proteins and other genes of functional relevance, with complex patterns that may point to multifaceted selection pressures and local adaptation among spawning populations. We provide a high-resolution picture of U.S. Atlantic cod population structure, revealing greater complexity than is currently recognized in management. Our genome-scan approach likely underestimates the full suite of adaptive differentiation among sampling locations. Nevertheless, it should inform the revision of stock boundaries to preserve adaptive genetic diversity and evolutionary potential of cod populations.
Collapse
Affiliation(s)
- Gemma V. Clucas
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| | - R. Nicolas Lou
- Department of Natural ResourcesCornell UniversityIthacaNYUSA
| | | | - Adrienne I. Kovach
- Natural Resources and the EnvironmentUniversity of New HampshireDurhamNHUSA
| |
Collapse
|
5
|
Arambourou H, Planelló R, Llorente L, Fuertes I, Barata C, Delorme N, Noury P, Herrero Ó, Villeneuve A, Bonnineau C. Chironomus riparius exposure to field-collected contaminated sediments: From subcellular effect to whole-organism response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:874-882. [PMID: 30947058 DOI: 10.1016/j.scitotenv.2019.03.384] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
The toxicity of three field-collected sediments differentially contaminated with pesticides, heavy metals, phtalates and polycyclic aromatic hydrocarbons (PAHs), was assessed in Chironomus riparius. For this purpose, C. riparius larvae were exposed throughout their entire life cycle to sediments collected in three sites along the Saulx river in France, and the toxic effects were measured at different levels of biological organization: from the molecular (lipidomic analysis and transcriptional variations) to the whole organism response (respiration rate, shape markers and emergence rate). In the sediment characterized by an intermediate level of contamination with PAHs and phtalates, we detected an increase of the cell stress response and delayed emergence of males. In the group exposed to the most contaminated sediment with PAHs, phtalates and pesticides, genes related to endocrine pathways, cell stress response and biotransformation processes were overexpressed, while female wing shape was affected. Field-collected sediment exposure did not induce significant effects on mentum shape markers or on the lipid profile. The present study provides new insights into the multilevel effects of differentially contaminated sediments in insects. This integrative approach will certainly contribute to improved assessment of the risk that complex mixtures of pollutants pose to the aquatic ecosystem.
Collapse
Affiliation(s)
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| | - Lola Llorente
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | | | - Patrice Noury
- Irstea Lyon, Riverly Research Unit, Villeurbanne, France
| | - Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | | | | |
Collapse
|
6
|
Gendron AD, Sanchez D, Douville M, Houde M. Stress-related gene transcription in fish exposed to parasitic larvae of two freshwater mussels with divergent infection strategies. DISEASES OF AQUATIC ORGANISMS 2019; 132:191-202. [PMID: 31188134 DOI: 10.3354/dao03319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Freshwater unionoid mussels have a unique life cycle involving a temporary parasitic phase. Their larvae (glochidia) attach to the gills or fins of fish hosts where they remain encysted until metamorphosis into free-living juveniles. The physiological response of fish during the critical period of glochidial attachment is not well understood, but recent work suggests that glochidia retention and survival is enhanced in stressed and cortisol-injected hosts. In this study, the early changes induced by glochidiosis were investigated for the first time at the transcriptional level. In 2 separate experiments, juvenile yellow perch Perca flavescens were inoculated with glochidia of Elliptio complanata (a host generalist) and Lampsilis radiata (a host specialist) following a standardized procedure. The transcriptional levels of 5 genes involved in the fish response to stress were assessed in the host liver and gills 24 h post-infection using quantitative real-time PCR. The number of encysted glochidia did not significantly differ between fish inoculated with E. complanata and L. radiata. Both species induced a 3-fold increase of 70 kDa heat-shock protein gene (hsp70) transcription in host liver. However, only E. complanata influenced the transcription of cortisol-regulated genes, notably glucocorticoid receptor DNA-binding factor 1 (grlf1). This gene, known to modulate tissue responsiveness to cortisol, was downregulated in infected fish compared to controls. Our findings suggest that different glochidia species interact with their fish host in distinct ways. Additional studies are required to address this hypothesis and further investigate the significance of the observed host transcriptional responses.
Collapse
Affiliation(s)
- Andrée D Gendron
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec H2Y 2E7, Canada
| | | | | | | |
Collapse
|
7
|
Piotrowska A, Syguda A, Wyrwas B, Chrzanowski L, Luckenbach T, Heipieper HJ. Effects of ammonium-based ionic liquids and 2,4-dichlorophenol on the phospholipid fatty acid composition of zebrafish embryos. PLoS One 2018; 13:e0190779. [PMID: 29342167 PMCID: PMC5771613 DOI: 10.1371/journal.pone.0190779] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/20/2017] [Indexed: 11/18/2022] Open
Abstract
Ionic liquids consisting of a combination of herbicidal anions with a quaternary ammonium cation act as efficient herbicides, which are under consideration to be used in the agriculture. In the present study, we used embryos of the zebrafish (Danio rerio) as a model to assess the toxic potential of ammonium-based ionic liquids for aquatic organisms. As we assumed interference of the partially hydrophobic ionic liquid cation with lipids, we investigated the adaptation response in the lipid composition of the zebrafish embryos, triggered by the ionic compound. Therefore, the impact of ammonium-based ionic liquids with different lengths of the alkyl chain ([C6,C6,C1,C1N][Br], [C8,C8,C1,C1N][Br]) on the phospholipid fatty acid (PLFA) profile of zebrafish embryos up to 72 hours post fertilization (hpf) was examined. Furthermore, the changes in the unsaturation index (UI) of PLFAs, as the sum parameter of membrane fluidity in eukaryotic cells, were presented. The PLFA's UI in the zebrafish embryos upon exposure to quaternary ammonium salts was compared to the UI of the embryos upon exposure to nonionic 2,4-dichlorophenol, which has a similar hydrophobicity but is structurally different to [C8,C8,C1,C1N][Br]. It was shown that for ammonium-based ionic liquid precursors non-specific mode of action occurs and the toxic effect on lipid composition of zebrafish embryos can be well predicted based on chemical properties, like hydrophobicity. Furthermore, the changes in PLFAs, expressed by the UI, can be useful to study toxic effects of organic contamination. However, for zebrafish embryos, after ionic liquids and 2,4-DCP exposure, the changes were observed at high lethal concentrations, which caused the incidence of lethality of 30 and 50% of a group of test animals.
Collapse
Affiliation(s)
- Aleksandra Piotrowska
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Anna Syguda
- Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Bogdan Wyrwas
- Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Lukasz Chrzanowski
- Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
8
|
Herbert MR, Sage C. Autism and EMF? Plausibility of a pathophysiological link - Part I. ACTA ACUST UNITED AC 2013; 20:191-209. [PMID: 24095003 DOI: 10.1016/j.pathophys.2013.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/06/2013] [Accepted: 07/15/2013] [Indexed: 01/02/2023]
Abstract
Although autism spectrum conditions (ASCs) are defined behaviorally, they also involve multileveled disturbances of underlying biology that find striking parallels in the physiological impacts of electromagnetic frequency and radiofrequency exposures (EMF/RFR). Part I of this paper will review the critical contributions pathophysiology may make to the etiology, pathogenesis and ongoing generation of core features of ASCs. We will review pathophysiological damage to core cellular processes that are associated both with ASCs and with biological effects of EMF/RFR exposures that contribute to chronically disrupted homeostasis. Many studies of people with ASCs have identified oxidative stress and evidence of free radical damage, cellular stress proteins, and deficiencies of antioxidants such as glutathione. Elevated intracellular calcium in ASCs may be due to genetics or may be downstream of inflammation or environmental exposures. Cell membrane lipids may be peroxidized, mitochondria may be dysfunctional, and various kinds of immune system disturbances are common. Brain oxidative stress and inflammation as well as measures consistent with blood-brain barrier and brain perfusion compromise have been documented. Part II of this paper will review how behaviors in ASCs may emerge from alterations of electrophysiological oscillatory synchronization, how EMF/RFR could contribute to these by de-tuning the organism, and policy implications of these vulnerabilities. Changes in brain and autonomic nervous system electrophysiological function and sensory processing predominate, seizures are common, and sleep disruption is close to universal. All of these phenomena also occur with EMF/RFR exposure that can add to system overload ('allostatic load') in ASCs by increasing risk, and worsening challenging biological problems and symptoms; conversely, reducing exposure might ameliorate symptoms of ASCs by reducing obstruction of physiological repair. Various vital but vulnerable mechanisms such as calcium channels may be disrupted by environmental agents, various genes associated with autism or the interaction of both. With dramatic increases in reported ASCs that are coincident in time with the deployment of wireless technologies, we need aggressive investigation of potential ASC - EMF/RFR links. The evidence is sufficient to warrant new public exposure standards benchmarked to low-intensity (non-thermal) exposure levels now known to be biologically disruptive, and strong, interim precautionary practices are advocated.
Collapse
Affiliation(s)
- Martha R Herbert
- TRANSCEND Research Program Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| | | |
Collapse
|
9
|
Srikanth K, Pereira E, Duarte AC, Ahmad I. Glutathione and its dependent enzymes' modulatory responses to toxic metals and metalloids in fish--a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2133-2149. [PMID: 23334549 DOI: 10.1007/s11356-012-1459-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Toxic metals and metalloid are being rapidly added from multiple pathways to aquatic ecosystem and causing severe threats to inhabiting fauna including fish. Being common in all the type of aquatic ecosystems such as freshwater, marine and brackish water fish are the first to get prone to toxic metals and metalloids. In addition to a number of physiological/biochemical alterations, toxic metals and metalloids cause enhanced generation of varied reactive oxygen species (ROS) ultimately leading to a situation called oxidative stress. However, as an important component of antioxidant defence system in fish, the tripeptide glutathione (GSH) directly or indirectly regulates the scavenging of ROS and their reaction products. Additionally, several other GSH-associated enzymes such as GSH reductase (GR, EC 1.6.4.2), GSH peroxidase (EC 1.11.1.9), and GSH sulfotransferase (glutathione-S-transferase (GST), EC 2.5.1.18) cumulatively protect fish against ROS and their reaction products accrued anomalies under toxic metals and metalloids stress conditions. The current review highlights recent research findings on the modulation of GSH, its redox couple (reduced glutathione/oxidised glutathione), and other GSH-related enzymes (GR, glutathione peroxidase, GST) involved in the detoxification of harmful ROS and their reaction products in toxic metals and metalloids-exposed fish.
Collapse
Affiliation(s)
- K Srikanth
- Department of Chemistry, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | |
Collapse
|
10
|
Abstract
Organisms exposed to altered salinity must be able to perceive osmolality change because metabolism has evolved to function optimally at specific intracellular ionic strength and composition. Such osmosensing comprises a complex physiological process involving many elements at organismal and cellular levels of organization. Input from numerous osmosensors is integrated to encode magnitude, direction, and ionic basis of osmolality change. This combinatorial nature of osmosensing is discussed with emphasis on fishes.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Science, Physiological Genomics Group, University of California, Davis, Davis, California
| |
Collapse
|
11
|
Dalvi RS, Pal AK, Tiwari LR, Baruah K. Influence of acclimation temperature on the induction of heat-shock protein 70 in the catfish Horabagrus brachysoma (Günther). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:919-927. [PMID: 22143442 DOI: 10.1007/s10695-011-9578-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 11/21/2011] [Indexed: 05/31/2023]
Abstract
Every organism responds to heat stress by synthesizing a group of evolutionarily conserved proteins called the heat-shock proteins (HSPs) that, by acting as molecular chaperones, protect the cell against the aggregation of denatured proteins and play a significant role in adaptation to temperature. The present study aimed to investigate the critical thermal maxima (CTMax) and the expression of HSP70 in different tissues (gill, brain, muscle and liver) of an endemic catfish Horabagrus brachysoma acclimated at either 20 or 30°C for 30 days. To understand the HSP70 response, fish acclimated to the two temperatures were exposed to preset temperatures (26, 30, 34, 36 and 38°C for 20°C acclimated fish and 32, 34, 36, 38 and 40°C for 30°C acclimated fish) for 2 h, followed by 1 h recovery at their respective acclimation temperatures. The HSP70 levels in the gill, brain, muscle and liver tissues were determined by Western blotting of one-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis. A significant (P < 0.05) increase in the CTMax values was observed for fish acclimated at 30°C (41.86 ± 0.39°C) than those acclimated at 20°C (39.13 ± 0.18°C). HSP70 was detected in all the tissues with the highest level in the liver followed by intermediate levels in muscle and brain, and lowest level in gill tissue, irrespective of the acclimation temperatures (20 or 30°C). The HSP70 levels were significantly higher (P < 0.05) in the tissues of fish acclimated at 30°C than those acclimated at 20°C. The mean induction temperature of HSP70 in all the tissues of fish acclimated at either 20 or 30°C was 30 and 34°C, respectively. The optimum temperature for HSP70 induction in all the tissues of fish acclimated at 20°C was 36°C, whereas for fish acclimated at 30°C was 36°C for gill and 38°C for brain, muscle and liver. Decreased levels of HSP70 were noted in all the tissues of fish when exposed to temperatures that exceeded the optimum temperatures for HSP70 inductions. Overall results indicated that acclimation temperature influences both temperature tolerance and induction of HSP70 in H. brachysoma.
Collapse
Affiliation(s)
- Rishikesh S Dalvi
- Division of Fish Nutrition Biochemistry and Physiology, Central Institute of Fisheries Education, Versova, Mumbai, 400061, India.
| | - Asim K Pal
- Division of Fish Nutrition Biochemistry and Physiology, Central Institute of Fisheries Education, Versova, Mumbai, 400061, India
| | - Lalchand R Tiwari
- Department of Zoology, Maharshi Dayanand College, Parel, Mumbai, 400012, India
| | - Kartik Baruah
- Laboratory of Aquaculture Artemia Reference Centre, Ghent University, Rozier 44, 9000, Ghent, Belgium
| |
Collapse
|
12
|
Ferencz A, Juhász R, Butnariu M, Deér AK, Varga IS, Nemcsók J. Expression analysis of heat shock genes in the skin, spleen and blood of common carp (Cyprinus carpio) after cadmium exposure and hypothermia. ACTA BIOLOGICA HUNGARICA 2012; 63:15-25. [PMID: 22453797 DOI: 10.1556/abiol.63.2012.1.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heat shock proteins are chaperones that play a pivotal role in controling multiple regulatory pathways such as stress defense, hormone signaling, cell cycle control, cell proliferation and differentiation, and apoptosis. In this study, the expression patterns of four well-known heat shock genes (hsp70, hsc70-1, hsc70-2 and hsp90α) were characterized in the skin, spleen and blood cells of the common carp, under unstressed conditions and after Cd2+ treatment or hypothermia. The examined genes were expressed in a tissue-specific manner: hsc70-2 was expressed constitutively, and was at best only slightly inducible; hsp90α exhibited a high basic expression in all three tissues, whereas hsc70-1 did so only in the blood cells, the expression of hsp70 proved to be below the level of detection in unstressed fish. Cold shock induced the expression of hsp genes in the spleen (hsp90α) and blood cells (hsp70, hsc70-1 and hsp90α), while Cd2+ treatment has no effect on the expression pattern. The highest inducibilities were detected in the skin: for hsp70 an induction of at least 20-fold after cadmium exposure, for hsc70-1 of at least 30-fold and for hsp90α of 3-fold after hypothermia.
Collapse
Affiliation(s)
- Agnes Ferencz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Hungary
| | | | | | | | | | | |
Collapse
|