1
|
Dupak R, Hrnkova J, Simonova N, Kovac J, Ivanisova E, Kalafova A, Schneidgenova M, Prnova MS, Brindza J, Tokarova K, Capcarova M. The consumption of sea buckthorn (Hippophae rhamnoides L.) effectively alleviates type 2 diabetes symptoms in spontaneous diabetic rats. Res Vet Sci 2022; 152:261-269. [PMID: 36063603 DOI: 10.1016/j.rvsc.2022.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
Sea buckthorn (Hippophae rhamnoides L.) is described by various beneficial effects as it contains several bioactive substances characterized by antioxidant effects. These effects are closely related to the reduction of oxidative stress that is involved in the development of the disease. One such diseases is Diabetes mellitus, the prevalence of which is growing and is associated primarily with diet, lack of exercise and/or genetics. This study intends to examine the effects of sea buckthorn and metformin on body weight, water and feed intake, glycaemia, insulinemia, sorbitol accumulation and cataract development in Zucker diabetic fatty rats, which represent an animal model of type 2 Diabetes mellitus, as well as to characterize the individual content of bioactive substances and the antioxidant activity of sea buckthorn. Particular concentrations were applied (500 and 1000 mg.kg-1 body weight of sea buckthorn, and combinations with 150 mg.kg-1 body weight of metformin) by gastric gavage. The total antioxidant capacity and bioactive compounds were determined by spectrophotometric analysis. The best results of the study showed suppression of hyperglycaemia, water intake, decreased sorbitol levels in the lens of the eyes after sea buckthorn treatment. Determination of bioactive compounds showed significantly higher values in dry berries when compared to fresh berries of sea buckthorn and high total antioxidant capacity. Our results represent an interest in sea buckthorn and its potential use in the treatment of Diabetes mellitus as well as other experimental studies.
Collapse
Affiliation(s)
- Rudolf Dupak
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Jana Hrnkova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Nikoleta Simonova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Jan Kovac
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Eva Ivanisova
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Anna Kalafova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Monika Schneidgenova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Marta Soltesova Prnova
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Science, Dubravska cesta 9, 841 04 Bratislava, Slovak Republic.
| | - Jan Brindza
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Katarina Tokarova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Marcela Capcarova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| |
Collapse
|
2
|
DNA Damage Regulates the Functions of the RNA Binding Protein Sam68 through ATM-Dependent Phosphorylation. Cancers (Basel) 2022; 14:cancers14163847. [PMID: 36010841 PMCID: PMC9405969 DOI: 10.3390/cancers14163847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Alterations of the complex network of interactions between the DNA damage response pathway and RNA metabolism have been described in several tumors, and increasing efforts are devoted to the elucidation of the molecular mechanisms involved in this network. Previous large-scale proteomic studies identified the RNA binding protein Sam68 as a putative target of the ATM kinase. Herein, we demonstrate that ATM phosphorylates Sam68 upon DNA damage induction, and this post-translational modification regulates both the signaling function of Sam68 in the initial phase of the DNA damage response and its RNA processing activity. Thus, our study uncovers anew crosstalk between ATM and Sam68, which may represent a paradigm for the functional interaction between the DDR pathway and RNA binding proteins, and a possible actionabletarget in human cancers. Abstract Cancer cells frequently exhibit dysregulation of the DNA damage response (DDR), genomic instability, and altered RNA metabolism. Recent genome-wide studies have strongly suggested an interaction between the pathways involved in the cellular response to DDR and in the regulation of RNA metabolism, but the molecular mechanism(s) involved in this crosstalk are largely unknown. Herein, we found that activation of the DDR kinase ATM promotes its interaction with Sam68, leading to phosphorylation of this multifunctional RNA binding protein (RBP) on three residues: threonine 61, serine 388 and serine 390. Moreover, we demonstrate that ATM-dependent phosphorylation of threonine 61 promotes the function of Sam68 in the DDR pathway and enhances its RNA processing activity. Importantly, ATM-mediated phosphorylation of Sam68 in prostate cancer cells modulates alternative polyadenylation of transcripts that are targets of Sam68, supporting the notion that the ATM–Sam68 axis exerts a multifaceted role in the response to DNA damage. Thus, our work validates Sam68 as an ATM kinase substrate and uncovers an unexpected bidirectional interplay between ATM and Sam68, which couples the DDR pathway to modulation of RNA metabolism in response to genotoxic stress.
Collapse
|
3
|
Ruta V, Pagliarini V, Sette C. Coordination of RNA Processing Regulation by Signal Transduction Pathways. Biomolecules 2021; 11:biom11101475. [PMID: 34680108 PMCID: PMC8533259 DOI: 10.3390/biom11101475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Signal transduction pathways transmit the information received from external and internal cues and generate a response that allows the cell to adapt to changes in the surrounding environment. Signaling pathways trigger rapid responses by changing the activity or localization of existing molecules, as well as long-term responses that require the activation of gene expression programs. All steps involved in the regulation of gene expression, from transcription to processing and utilization of new transcripts, are modulated by multiple signal transduction pathways. This review provides a broad overview of the post-translational regulation of factors involved in RNA processing events by signal transduction pathways, with particular focus on the regulation of pre-mRNA splicing, cleavage and polyadenylation. The effects of several post-translational modifications (i.e., sumoylation, ubiquitination, methylation, acetylation and phosphorylation) on the expression, subcellular localization, stability and affinity for RNA and protein partners of many RNA-binding proteins are highlighted. Moreover, examples of how some of the most common signal transduction pathways can modulate biological processes through changes in RNA processing regulation are illustrated. Lastly, we discuss challenges and opportunities of therapeutic approaches that correct RNA processing defects and target signaling molecules.
Collapse
Affiliation(s)
- Veronica Ruta
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (V.R.); (V.P.)
- Laboratory of Neuroembryology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
4
|
Arginine methylation by PRMT2 promotes IFN-β production through TLR4/IRF3 signaling pathway. Mol Immunol 2021; 139:202-210. [PMID: 34583098 DOI: 10.1016/j.molimm.2021.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022]
Abstract
A balance between the positive and negative regulation of toll-like receptor (TLR) signaling pathways is required to avoid detrimental and inappropriate inflammatory responses. Although some protein post-translational modifications (PTMs) such as phosphorylation and ubiquitination have been demonstrated to potently modulate innate immune responses, the role of methylation, an important PTM, control of TLR4 signaling pathway remains unclear. In this study, we found that protein arginine methyltransferase 1, 2 and 3 (PRMT1, 2 and 3) were recruited to methylate TLR4-CD (cytoplasmic domain) after lipopolysaccharide (LPS) stimulation respectively, but the effect of PRMT2 on arginine methylation of TLR4-CD is the most significant among above three PRMTs, which prompted us to focus on PRMT2. Reduction of PRMT2 expression down-regulated arginine (R) methylation level of TLR4 with or without LPS treatment. Methionine 115 (M115) mediated PRMT2 catalyzed-arginine methylation of TLR4 on R731 and R812. Furthermore, PRMT1, 2 and 3 was recruited to methylate interferon regulatory factor 3 (IRF3) after LPS stimulation respectively, but the effect of PRMT2 on arginine methylation of IRF3 is the most significant among the above three PRMTs. Arginine methylation of TLR4 on R812 or arginine methylation of IRF3 on R285 mediated the interaction between TLR4 and IRF3 respectively. Arginine methylation of IRF3 on R285 induced by LPS led to its dimerization and promoted its translocation from the cytoplasm to the nucleus. In addition, the enhancement of arginine methylation of TLR4 induced by PRMT1 or 2 increased IRF3 transcription activity with or without LPS treatment, while PRMT2 with histidine 112 glutamine (H112Q) or methionine 115 isoleucine (M115I) mutation and TLR4 with arginine 812 lysine (R812K) mutation decreased it. Arginine methylation of TLR4 on R812 or PRMT2 enhanced interferon-β (IFN-β) production. Our study reveals a critical role for PRMT2 and protein arginine methylation in the enhancement of IFN-β production via TLR4/IRF3 signaling pathway and may provide a therapeutic strategy to control endotoxemia.
Collapse
|
5
|
Bitaraf A, Razmara E, Bakhshinejad B, Yousefi H, Vatanmakanian M, Garshasbi M, Cho WC, Babashah S. The oncogenic and tumor suppressive roles of RNA-binding proteins in human cancers. J Cell Physiol 2021; 236:6200-6224. [PMID: 33559213 DOI: 10.1002/jcp.30311] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Posttranscriptional regulation is a mechanism for the cells to control gene regulation at the RNA level. In this process, RNA-binding proteins (RBPs) play central roles and orchestrate the function of RNA molecules in multiple steps. Accumulating evidence has shown that the aberrant regulation of RBPs makes contributions to the initiation and progression of tumorigenesis via numerous mechanisms such as genetic changes, epigenetic alterations, and noncoding RNA-mediated regulations. In this article, we review the effects caused by RBPs and their functional diversity in the malignant transformation of cancer cells that occurs through the involvement of these proteins in various stages of RNA regulation including alternative splicing, stability, polyadenylation, localization, and translation. Besides this, we review the various interactions between RBPs and other crucial posttranscriptional regulators such as microRNAs and long noncoding RNAs in the pathogenesis of cancer. Finally, we discuss the potential approaches for targeting RBPs in human cancers.
Collapse
Affiliation(s)
- Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Mousa Vatanmakanian
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Transcriptome programs involved in the development and structure of the cerebellum. Cell Mol Life Sci 2021; 78:6431-6451. [PMID: 34406416 PMCID: PMC8558292 DOI: 10.1007/s00018-021-03911-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/02/2021] [Indexed: 12/23/2022]
Abstract
In the past two decades, mounting evidence has modified the classical view of the cerebellum as a brain region specifically involved in the modulation of motor functions. Indeed, clinical studies and engineered mouse models have highlighted cerebellar circuits implicated in cognitive functions and behavior. Furthermore, it is now clear that insults occurring in specific time windows of cerebellar development can affect cognitive performance later in life and are associated with neurological syndromes, such as Autism Spectrum Disorder. Despite its almost homogenous cytoarchitecture, how cerebellar circuits form and function is not completely elucidated yet. Notably, the apparently simple neuronal organization of the cerebellum, in which Purkinje cells represent the only output, hides an elevated functional diversity even within the same neuronal population. Such complexity is the result of the integration of intrinsic morphogenetic programs and extracellular cues from the surrounding environment, which impact on the regulation of the transcriptome of cerebellar neurons. In this review, we briefly summarize key features of the development and structure of the cerebellum before focusing on the pathways involved in the acquisition of the cerebellar neuron identity. We focus on gene expression and mRNA processing programs, including mRNA methylation, trafficking and splicing, that are set in motion during cerebellar development and participate to its physiology. These programs are likely to add new layers of complexity and versatility that are fundamental for the adaptability of cerebellar neurons.
Collapse
|
7
|
De Paola E, Forcina L, Pelosi L, Pisu S, La Rosa P, Cesari E, Nicoletti C, Madaro L, Mercatelli N, Biamonte F, Nobili A, D'Amelio M, De Bardi M, Volpe E, Caporossi D, Sette C, Musarò A, Paronetto MP. Sam68 splicing regulation contributes to motor unit establishment in the postnatal skeletal muscle. Life Sci Alliance 2020; 3:3/10/e201900637. [PMID: 32753528 PMCID: PMC7409371 DOI: 10.26508/lsa.201900637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Sam68 ensures the establishment of neuromuscular junctions (NMJs) and motor unit integrity by orchestrating a neuronal splicing program. RNA-binding proteins orchestrate the composite life of RNA molecules and impact most physiological processes, thus underlying complex phenotypes. The RNA-binding protein Sam68 regulates differentiation processes by modulating splicing, polyadenylation, and stability of select transcripts. Herein, we found that Sam68−/− mice display altered regulation of alternative splicing in the spinal cord of key target genes involved in synaptic functions. Analysis of the motor units revealed that Sam68 ablation impairs the establishment of neuromuscular junctions and causes progressive loss of motor neurons in the spinal cord. Importantly, alterations of neuromuscular junction morphology and properties in Sam68−/− mice correlate with defects in muscle and motor unit integrity. Sam68−/− muscles display defects in postnatal development, with manifest signs of atrophy. Furthermore, fast-twitch muscles in Sam68−/− mice show structural features typical of slow-twitch muscles, suggesting alterations in the metabolic and functional properties of myofibers. Collectively, our data identify a key role for Sam68 in muscle development and suggest that proper establishment of motor units requires timely expression of synaptic splice variants.
Collapse
Affiliation(s)
- Elisa De Paola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy.,IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| | - Laura Forcina
- Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Laura Pelosi
- Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Simona Pisu
- Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Piergiorgio La Rosa
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| | - Eleonora Cesari
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy.,Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Heart, Rome, Italy
| | - Carmine Nicoletti
- Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Luca Madaro
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Heart, Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy.,IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| | - Filippo Biamonte
- Institute of Biochemistry and Clinical Biochemistry, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Annalisa Nobili
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy.,Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Marcello D'Amelio
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy.,Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Marco De Bardi
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| | - Elisabetta Volpe
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Claudio Sette
- IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy .,Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio Musarò
- Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy .,IRCCS (Institute for Treatment and Research) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
8
|
Mulati A, Ma S, Zhang H, Ren B, Zhao B, Wang L, Liu X, Zhao T, Kamanova S, Sair AT, Liu Z, Liu X. Sea-Buckthorn Flavonoids Alleviate High-Fat and High-Fructose Diet-Induced Cognitive Impairment by Inhibiting Insulin Resistance and Neuroinflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5835-5846. [PMID: 32363873 DOI: 10.1021/acs.jafc.0c00876] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sea-buckthorn flavonoids (SFs) have been used as functional food components for their bioactive potential in preventing metabolic complications caused by diet, such as obesity and inflammation. However, the protective effect of SFs on cognitive functions is not fully clear. In this study, a high-fat and high-fructose diet (HFFD)-induced obese mice model was treated with SFs for 14 weeks. It was found that the oral SF administration (0.06% and 0.31% w/w, mixed in diet) significantly reduced bodyweight gain and insulin resistance in the HFFD-fed mice. SFs significantly prevented HFFD-induced neuronal loss and memory impairment in behavioral tests. Additionally, SFs also suppressed the HFFD-induced synaptic dysfunction and neuronal damages by increasing the protein expressions of PSD-95. Furthermore, SF treatment activated the ERK/CREB/BDNF and IRS-1/AKT pathways and inactivated the NF-κB signaling and its downstream inflammatory mediator expressions. In conclusion, SFs are a potential nutraceutical to prevent high-energy density diet-induced cognitive impairments, which could be possibly explained by their mediating effects on insulin signaling and inflammatory responses in the brain.
Collapse
Affiliation(s)
- Aiziguli Mulati
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Shaobo Ma
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Hongbo Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Luanfeng Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Xiaoning Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Tong Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Svetlana Kamanova
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Ali Tahir Sair
- Department of Food Science, Cornell University, Ithaca, New York 14850, United States
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
- Department of Food Science, Cornell University, Ithaca, New York 14850, United States
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| |
Collapse
|
9
|
Maroni P. Leptin, Adiponectin, and Sam68 in Bone Metastasis from Breast Cancer. Int J Mol Sci 2020; 21:ijms21031051. [PMID: 32033341 PMCID: PMC7037668 DOI: 10.3390/ijms21031051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
The most serious aspect of neoplastic disease is the spread of cancer cells to secondary sites. Skeletal metastases can escape detection long after treatment of the primary tumour and follow-up. Bone tissue is a breeding ground for many types of cancer cells, especially those derived from the breast, prostate, and lung. Despite advances in diagnosis and therapeutic strategies, bone metastases still have a profound impact on quality of life and survival and are often responsible for the fatal outcome of the disease. Bone and the bone marrow environment contain a wide variety of cells. No longer considered a passive filler, bone marrow adipocytes have emerged as critical contributors to cancer progression. Released by adipocytes, adipokines are soluble factors with hormone-like functions and are currently believed to affect tumour development. Src-associated in mitosis of 68 kDa (Sam68), originally discovered as a protein physically associated with and phosphorylated by c-Src during mitosis, is now recognised as an important RNA-binding protein linked to tumour onset and progression of disease. Sam68 also regulates splicing events and recent evidence reports that dysregulation of these events is a key step in neoplastic transformation and tumour progression. The present review reports recent findings on adipokines and Sam68 and their role in breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Paola Maroni
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy
| |
Collapse
|
10
|
The RNA binding protein Sam68 controls T helper 1 differentiation and anti-mycobacterial response through modulation of miR-29. Cell Death Differ 2018; 26:1169-1180. [PMID: 30258098 DOI: 10.1038/s41418-018-0201-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022] Open
Abstract
Polarization of naive T cells into interferon (IFN)-γ-producing T helper 1 (Th1) cells is an essential event in the inflammatory response to pathogens. Herein, we identify the RNA binding protein Sam68 as a specific modulator of Th1 differentiation. Sam68-knockout (ko) naive T cells are strongly defective in IL-12-mediated Th1 polarization and express low levels of T-bet and Eomes. Consequently, Sam68-ko Th1 cells are significantly impaired in IFN-γ production. Moreover, we found that Sam68 is required for the induction of an inflammatory Th1 response during Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection, thus limiting bacterial dissemination in the lungs. Mechanistically, Sam68 directly binds to the microRNA miR-29, a negative regulator of Th1 response, and inhibits its expression during BCG infection. These findings uncover a novel post-transcriptional mechanism required for the Th1-mediated defense against intracellular pathogens and identify a new function for Sam68 in the regulation of the immune response.
Collapse
|
11
|
MAPK signaling couples SCF-mediated degradation of translational regulators to oocyte meiotic progression. Proc Natl Acad Sci U S A 2018; 115:E2772-E2781. [PMID: 29496961 DOI: 10.1073/pnas.1715439115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) are important regulators of gene expression programs, especially during gametogenesis. How the abundance of particular RBPs is restricted to defined stages of meiosis remains largely elusive. Here, we report a molecular pathway that subjects two nonrelated but broadly evolutionarily conserved translational regulators (CPB-3/CPEB and GLD-1/STAR) to proteosomal degradation in Caenorhabditis elegans germ cells at the transition from pachytene to diplotene of meiotic prophase. Both RBPs are recognized by the same ubiquitin ligase complex, containing the molecular scaffold Cullin-1 and the tumor suppressor SEL-10/FBXW7 as its substrate recognition subunit. Destabilization of either RBP through this Skp, Cullin, F-box-containing complex (SCF) ubiquitin ligase appears to loosen its negative control over established target mRNAs, and presumably depends on a prior phosphorylation of CPB-3 and GLD-1 by MAPK (MPK-1), whose activity increases in mid- to late pachytene to promote meiotic progression and oocyte differentiation. Thus, we propose that the orchestrated degradation of RBPs via MAPK-signaling cascades during germ cell development may act to synchronize meiotic with sexual differentiation gene expression changes.
Collapse
|
12
|
Wen H, Li P, Ma H, Zheng J, Yu Y, Lv G. High expression of Sam68 in sacral chordomas is associated with worse clinical outcomes. Onco Targets Ther 2017; 10:4691-4700. [PMID: 29026317 PMCID: PMC5626414 DOI: 10.2147/ott.s147446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Src-associated in mitosis of 68 kDa (Sam68), also known as KHDRBS1 (KH domain-containing, RNA-binding, signal transduction-associated 1), is a member of the signal transduction and activation of RNA family. Previous studies have demonstrated that the aberrant expression of Sam68 is associated with the progression and prognosis of a variety of cancers, but little is known about its expression and role in chordomas, which are rare and aggressive bone neoplasms. In this study, we analyzed 40 tumor tissues and 20 distant normal tissues obtained from 40 patients with sacral chordoma using immunohistochemistry, and observed the expression of Sam68 was significantly upregulated in sacral chordomas compared with normal tissues (P=0.001). A positive correlation between the expression of Sam68 and the cell proliferation index Ki-67 was determined using Spearman’s rank correlation test (γ =0.599, P<0.001). In addition, high expression of Sam68 was significantly associated with surrounding muscle invasion (P<0.001). Moreover, Kaplan–Meier curves showed that patients with overexpressed Sam68 had shorter local recurrence-free survival time (P<0.001). Lastly, multivariate analysis indicated that Sam68 is an independent prognostic factor for the local recurrence-free survival of sacral chordomas (hazard ratio =5.929, 95% CI: 1.092–32.188, P=0.039). Our findings suggest the use of Sam68 as a predictor for the recurrence of sacral chordomas.
Collapse
Affiliation(s)
- Hai Wen
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pengzhi Li
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hong Ma
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaoyun Zheng
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yipin Yu
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guohua Lv
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Sun X, Fu K, Hodgson A, Wier EM, Wen MG, Kamenyeva O, Xia X, Koo LY, Wan F. Sam68 Is Required for DNA Damage Responses via Regulating Poly(ADP-ribosyl)ation. PLoS Biol 2016; 14:e1002543. [PMID: 27635653 PMCID: PMC5026359 DOI: 10.1371/journal.pbio.1002543] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/04/2016] [Indexed: 01/08/2023] Open
Abstract
The rapid and robust synthesis of polymers of adenosine diphosphate (ADP)-ribose (PAR) chains, primarily catalyzed by poly(ADP-ribose) polymerase 1 (PARP1), is crucial for cellular responses to DNA damage. However, the precise mechanisms through which PARP1 is activated and PAR is robustly synthesized are not fully understood. Here, we identified Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel signaling molecule in DNA damage responses (DDRs). In the absence of Sam68, DNA damage-triggered PAR production and PAR-dependent DNA repair signaling were dramatically diminished. With serial cellular and biochemical assays, we demonstrated that Sam68 is recruited to and significantly overlaps with PARP1 at DNA lesions and that the interaction between Sam68 and PARP1 is crucial for DNA damage-initiated and PARP1-conferred PAR production. Utilizing cell lines and knockout mice, we illustrated that Sam68-deleted cells and animals are hypersensitive to genotoxicity caused by DNA-damaging agents. Together, our findings suggest that Sam68 plays a crucial role in DDR via regulating DNA damage-initiated PAR production. The RNA-binding protein Sam68 has unexpected function in the early signaling of DNA damage, and is critical for the activation and regulation of poly(ADP-ribose) polymerase 1 in response to DNA damage. Maintaining genome integrity is crucial for all organisms, and failure to do so can lead to fatal diseases such as cancer. Exposure to challenging environments can induce DNA strand breaks or other lesions; thus, rapid and appropriate DNA damage responses (DDRs) need to be in place to detect and repair the damage. Cellular networks use a variety of signaling molecules and post-translational modifications that are crucial for the signaling of DNA breaks to repair machineries. Poly(adenosine diphosphate [ADP]-ribosyl)ation (PARylation) and activation of the enzyme poly(ADP-ribose) polymerase 1 (PARP1) is a post-translational modification that occurs within seconds upon DNA damage detection and triggers downstream DDR signaling; however, it remains obscure whether other molecules, beyond DNA strand breaks, stimulate or control PARP1 activity. We report here that a novel DDR signaling molecule, Src-associated substrate during mitosis of 68 kDa (Sam68), has a crucial function in governing the DNA damage-initiated PARP1 activation and polymers of ADP-ribose (PAR) production. We show that Sam68 is recruited to and significantly overlaps with PARP1 at DNA lesions and that the Sam68-PARP1 interaction is critical for DNA damage-initiated PARP1 activation and PAR production both in vitro and in vivo. Sam68-deleted cells and animals have a diminished PAR-dependent DNA repair signaling and are hypersensitive to genotoxicity caused by DNA-damaging agents. Hence, our data reveal an unexpected function for Sam68 in DNA damage-initiated early signaling and provide a novel mechanism on the activation and regulation of PARP1 in DDR.
Collapse
Affiliation(s)
- Xin Sun
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Andrea Hodgson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Eric M. Wier
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Matthew G. Wen
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Olena Kamenyeva
- Biological Imaging Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xue Xia
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Lily Y. Koo
- Biological Imaging Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Fu K, Sun X, Wier EM, Hodgson A, Liu Y, Sears CL, Wan F. Sam68/KHDRBS1 is critical for colon tumorigenesis by regulating genotoxic stress-induced NF-κB activation. eLife 2016; 5. [PMID: 27458801 PMCID: PMC4959885 DOI: 10.7554/elife.15018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor kappa B (NF-κB)-mediated transcription is an important mediator for cellular responses to DNA damage. Genotoxic agents trigger a 'nuclear-to-cytoplasmic' NF-κB activation signaling pathway; however, the early nuclear signaling cascade linking DNA damage and NF-κB activation is poorly understood. Here we report that Src-associated-substrate-during-mitosis-of-68kDa/KH domain containing, RNA binding, signal transduction associated 1 (Sam68/KHDRBS1) is a key NF-κB regulator in genotoxic stress-initiated signaling pathway. Sam68 deficiency abolishes DNA damage-stimulated polymers of ADP-ribose (PAR) production and the PAR-dependent NF-κB transactivation of anti-apoptotic genes. Sam68 deleted cells are hypersensitive to genotoxicity caused by DNA damaging agents. Upregulated Sam68 coincides with elevated PAR production and NF-κB-mediated anti-apoptotic transcription in human and mouse colon cancer. Knockdown of Sam68 sensitizes human colon cancer cells to genotoxic stress-induced apoptosis and genetic deletion of Sam68 dampens colon tumor burden in mice. Together our data reveal a novel function of Sam68 in the genotoxic stress-initiated nuclear signaling, which is crucial for colon tumorigenesis. DOI:http://dx.doi.org/10.7554/eLife.15018.001 Cells use signaling pathways to detect and respond to harmful conditions by switching on genes that keep the cell healthy. One important pathway is the nuclear factor kappa B (NF-κB) signaling pathway, which is activated by many stimuli. These stimuli may come from infections from outside the cell or may originate inside the cell, as seen for DNA damage caused by irradiation, chemicals or rapid DNA replication in cancer cells. Most of a cell’s DNA is located in the cell nucleus. However, NF-κB proteins are normally located outside the nucleus, in the cell’s cytoplasm. Damage to DNA triggers a signal from the nucleus to the cytoplasm. This signal activates the NF-κB proteins, which move into the nucleus and turn on genes that help the cell to recover from the damage. These genes include those that prevent the cell from self-destructing. In one step of the NF-κB activation process, chain-like molecules called polymers are made from a compound called poly(ADP-ribose), or PAR for short. However, few other details are known about how the damaged DNA in the nucleus signals to the cytoplasm. A protein called Sam68, which is found in the cell nucleus, has been linked to DNA damage signaling. Fu, Sun et al. now present evidence that suggests that if mouse cells lack Sam68, they do not produce PAR polymers in response to DNA damage. In addition, these cells could not trigger the PAR-dependent signaling cascade that is essential for activating NF-κB and for turning on the protective genes. Consequently, cells that lacked Sam68 were extremely sensitive to agents that cause DNA damage, such as chemicals and irradiation. The NF-κB pathway is regulated incorrectly in some cancers, but is also activated by DNA damage caused by cancer treatments. Therefore, Fu, Sun et al. also explored the role of Sam68 in cancer. Reducing the levels of Sam68 made human colon cancer cells more likely to self-destruct when they were exposed to DNA-damaging agents. Furthermore, removing Sam68 from mice that spontaneously grow colon cancer caused their tumors to develop more slowly than mice that retained Sam68 in their cells. Overall, the findings presented by Fu, Sun et al. suggest that Sam68 regulates the signal from the nucleus to the cytoplasm that activates NF-κB proteins in response to DNA damage. Sam68 also appears to be important for helping colon cancer cells grow and survive. Future challenges will be to understand how Sam68 regulates the production of the PAR polymer in this response and to explore whether Sam68 can be targeted for treating cancer. DOI:http://dx.doi.org/10.7554/eLife.15018.002
Collapse
Affiliation(s)
- Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Xin Sun
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Eric M Wier
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Andrea Hodgson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, John Hopkins University, Baltimore, United States
| | - Yue Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Cynthia L Sears
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, John Hopkins University, Baltimore, United States.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, United States
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, United States
| |
Collapse
|
15
|
Rai DK, Lawrence P, Kloc A, Schafer E, Rieder E. Analysis of the interaction between host factor Sam68 and viral elements during foot-and-mouth disease virus infections. Virol J 2015; 12:224. [PMID: 26695943 PMCID: PMC4689063 DOI: 10.1186/s12985-015-0452-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/10/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The nuclear protein Src-associated protein of 68 kDa in mitosis (Sam68) is known to bind RNA and be involved in cellular processes triggered in response to environmental stresses, including virus infection. Interestingly, Sam68 is a multi-functional protein implicated in the life cycle of retroviruses and picornaviruses and is also considered a marker of virus-induced stress granules (SGs). Recently, we demonstrated the partial redistribution of Sam68 to the cytoplasm in FMDV infected cells, its interaction with viral protease 3C(pro), and found a significant reduction in viral titers as consequence of Sam68-specific siRNA knockdowns. Despite of that, details of how it benefits FMDV remains to be elucidated. METHODS Sam68 cytoplasmic localization was examined by immunofluorescent microscopy, counterstaining with antibodies against Sam68, a viral capsid protein and markers of SGs. The relevance of RAAA motifs in the IRES was investigated using electromobility shift assays with Sam68 protein and parental and mutant FMDV RNAs. In addition, full genome WT and mutant or G-luc replicon RNAs were tested following transfection in mammalian cells. The impact of Sam68 depletion to virus protein and RNA synthesis was investigated in a cell-free system. Lastly, through co-immunoprecipitation, structural modeling, and subcellular fractionation, viral protein interactions with Sam68 were explored. RESULTS FMDV-induced cytoplasmic redistribution of Sam68 resulted in it temporarily co-localizing with SG marker: TIA-1. Mutations that disrupted FMDV IRES RAAA motifs, with putative affinity to Sam68 in domain 3 and 4 cause a reduction on the formation of ribonucleoprotein complexes with this protein and resulted in non-viable progeny viruses and replication-impaired replicons. Furthermore, depletion of Sam68 in cell-free extracts greatly diminished FMDV RNA replication, which was restored by addition of recombinant Sam68. The results here demonstrated that Sam68 specifically co-precipitates with both FMDV 3D(pol) and 3C(pro) consistent with early observations of FMDV 3C(pro)-induced cleavage of Sam68. CONCLUSION We have found that Sam68 is a specific binding partner for FMDV non-structural proteins 3C(pro) and 3D(pol) and showed that mutations at RAAA motifs in IRES domains 3 and 4 cause a decrease in Sam68 affinity to these RNA elements and rendered the mutant RNA non-viable. Interestingly, in FMDV infected cells re-localized Sam68 was transiently detected along with SG markers in the cytoplasm. These results support the importance of Sam68 as a host factor co-opted by FMDV during infection and demonstrate that Sam68 interact with both, FMDV RNA motifs in the IRES and viral non-structural proteins 3C(pro) and 3D(pol).
Collapse
Affiliation(s)
- Devendra K Rai
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, USDA/ARS/NAA, P.O. Box 848, Greenport, NY, 11944, USA.
| | - Paul Lawrence
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, USDA/ARS/NAA, P.O. Box 848, Greenport, NY, 11944, USA.
| | - Anna Kloc
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, USDA/ARS/NAA, P.O. Box 848, Greenport, NY, 11944, USA.
| | - Elizabeth Schafer
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, USDA/ARS/NAA, P.O. Box 848, Greenport, NY, 11944, USA.
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, United States Department of Agriculture, Agricultural Research Service, Plum Island Animal Disease Center, USDA/ARS/NAA, P.O. Box 848, Greenport, NY, 11944, USA.
| |
Collapse
|
16
|
SAM68: Signal Transduction and RNA Metabolism in Human Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:528954. [PMID: 26273626 PMCID: PMC4529925 DOI: 10.1155/2015/528954] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
Alterations in expression and/or activity of splicing factors as well as mutations in cis-acting
splicing regulatory sequences contribute to cancer phenotypes. Genome-wide
studies have revealed more than 15,000 tumor-associated splice variants derived from
genes involved in almost every aspect of cancer cell biology, including proliferation,
differentiation, cell cycle control, metabolism, apoptosis, motility, invasion, and
angiogenesis. In the past decades, several RNA binding proteins (RBPs) have been
implicated in tumorigenesis. SAM68 (SRC associated in mitosis of 68 kDa) belongs to
the STAR (signal transduction and activation of RNA metabolism) family of RBPs.
SAM68 is involved in several steps of mRNA metabolism, from transcription to
alternative splicing and then to nuclear export. Moreover, SAM68 participates in signaling
pathways associated with cell response to stimuli, cell cycle transitions, and viral
infections. Recent evidence has linked this RBP to the onset and progression of
different tumors, highlighting misregulation of SAM68-regulated splicing events as a
key step in neoplastic transformation and tumor progression. Here we review recent
studies on the role of SAM68 in splicing regulation and we discuss its contribution to
aberrant pre-mRNA processing in cancer.
Collapse
|
17
|
Zhou J, Cheng M, Boriboun C, Ardehali MM, Jiang C, Liu Q, Han S, Goukassian DA, Tang YL, Zhao TC, Zhao M, Cai L, Richard S, Kishore R, Qin G. Inhibition of Sam68 triggers adipose tissue browning. J Endocrinol 2015; 225:181-9. [PMID: 25934704 PMCID: PMC4482239 DOI: 10.1530/joe-14-0727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 12/12/2022]
Abstract
Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms that promote energy expenditure can be utilized for effective therapy. Src-associated in mitosis of 68 kDa (Sam68) is potentially significant, because knockout (KO) of Sam68 leads to markedly reduced adiposity. In the present study, we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We first found that Sam68 KO mice have a significantly reduced body weight as compared to controls, and the difference is explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake; rather, they were associated with enhanced physical activity. When they were fed a high-fat diet, Sam68 KO mice gained much less body weight and fat mass than their WT littermates did, and they displayed an improved glucose and insulin tolerance. In Sam68 KO mice, the brown adipose tissue (BAT), inguinal, and epididymal depots were smaller, and their adipocytes were less hypertrophied as compared to their WT littermates. The BAT of Sam68 KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty acid oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68 KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16, and Ppargc1a genes was greater as compared to WT controls, which suggests that the loss of Sam68 also promotes WAT browning. Furthermore, in all of the fat depots of the Sam68 KO mice, the expression of M2 macrophage markers was up-regulated, and that of M1 markers was down-regulated. Thus, Sam68 plays a crucial role in controlling thermogenesis and may be targeted to combat obesity and associated disorders.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adipogenesis
- Adipose Tissue, Brown/cytology
- Adipose Tissue, Brown/immunology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Adipose Tissue, White/cytology
- Adipose Tissue, White/immunology
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Adiposity
- Animals
- Behavior, Animal
- Cell Size
- Disease Resistance
- Energy Intake
- Energy Metabolism
- Gene Expression Regulation
- Heterozygote
- Insulin Resistance
- Ion Channels/biosynthesis
- Macrophages/immunology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondrial Proteins/biosynthesis
- Motor Activity
- Obesity/immunology
- Obesity/metabolism
- Obesity/pathology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Thermogenesis
- Uncoupling Protein 1
Collapse
Affiliation(s)
- Junlan Zhou
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Min Cheng
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Chan Boriboun
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mariam M Ardehali
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Changfei Jiang
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qinghua Liu
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shuling Han
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - David A Goukassian
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yao-Liang Tang
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ting C Zhao
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ming Zhao
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lu Cai
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stéphane Richard
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Raj Kishore
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Gangjian Qin
- Department of Medicine-Cardiology Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Tarry 14-721, Chicago, Illinois 60611, USA Department of Cardiology Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China Department of Biochemistry University of Ottawa, Ottawa, Ontario, Canada Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China College of Life Sciences, South-Central University for Nationalities, Wuhan, Hubei, China GeneSys Research Institute CardioVascular Research Center, Tufts University School of Medicine, Boston, Massachusetts, USA Department of Medicine Medical College of Georgia, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA Department of Surgery Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, USA Kosair Children Hospital Research Institute Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA Lady Davis Institute for Medical Research McGill University, Montreal, Quebec, Canada Center for Translational Medicine Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Beadell AV, Haag ES. Evolutionary Dynamics of GLD-1-mRNA complexes in Caenorhabditis nematodes. Genome Biol Evol 2014; 7:314-35. [PMID: 25502909 PMCID: PMC4316625 DOI: 10.1093/gbe/evu272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2014] [Indexed: 12/17/2022] Open
Abstract
Given the large number of RNA-binding proteins and regulatory RNAs within genomes, posttranscriptional regulation may be an underappreciated aspect of cis-regulatory evolution. Here, we focus on nematode germ cells, which are known to rely heavily upon translational control to regulate meiosis and gametogenesis. GLD-1 belongs to the STAR-domain family of RNA-binding proteins, conserved throughout eukaryotes, and functions in Caenorhabditis elegans as a germline-specific translational repressor. A phylogenetic analysis across opisthokonts shows that GLD-1 is most closely related to Drosophila How and deuterostome Quaking, both implicated in alternative splicing. We identify messenger RNAs associated with C. briggsae GLD-1 on a genome-wide scale and provide evidence that many participate in aspects of germline development. By comparing our results with published C. elegans GLD-1 targets, we detect nearly 100 that are conserved between the two species. We also detected several hundred Cbr-GLD-1 targets whose homologs have not been reported to be associated with C. elegans GLD-1 in either of two independent studies. Low expression in C. elegans may explain the failure to detect most of them, but a highly expressed subset are strong candidates for Cbr-GLD-1-specific targets. We examine GLD-1-binding motifs among targets conserved in C. elegans and C. briggsae and find that most, but not all, display evidence of shared ancestral binding sites. Our work illustrates both the conservative and the dynamic character of evolution at the posttranslational level of gene regulation, even between congeners.
Collapse
Affiliation(s)
- Alana V Beadell
- Program in Behavior, Evolution, Ecology, and Systematics, University of Maryland, College Park Present address: Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | - Eric S Haag
- Program in Behavior, Evolution, Ecology, and Systematics, University of Maryland, College Park Department of Biology, University of Maryland, College Park
| |
Collapse
|
19
|
Cappellari M, Bielli P, Paronetto MP, Ciccosanti F, Fimia GM, Saarikettu J, Silvennoinen O, Sette C. The transcriptional co-activator SND1 is a novel regulator of alternative splicing in prostate cancer cells. Oncogene 2014; 33:3794-802. [PMID: 23995791 DOI: 10.1038/onc.2013.360] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/03/2013] [Accepted: 07/05/2013] [Indexed: 01/12/2023]
Abstract
Splicing abnormalities have profound impact in human cancer. Several splicing factors, including SAM68, have pro-oncogenic functions, and their increased expression often correlates with human cancer development and progression. Herein, we have identified using mass spectrometry proteins that interact with endogenous SAM68 in prostate cancer (PCa) cells. Among other interesting proteins, we have characterized the interaction of SAM68 with SND1, a transcriptional co-activator that binds spliceosome components, thus coupling transcription and splicing. We found that both SAM68 and SND1 are upregulated in PCa cells with respect to benign prostate cells. Upregulation of SND1 exerts a synergic effect with SAM68 on exon v5 inclusion in the CD44 mRNA. The effect of SND1 on CD44 splicing required SAM68, as it was compromised after knockdown of this protein or mutation of the SAM68-binding sites in the CD44 pre-mRNA. More generally, we found that SND1 promotes the inclusion of CD44 variable exons by recruiting SAM68 and spliceosomal components on CD44 pre-mRNA. Inclusion of the variable exons in CD44 correlates with increased proliferation, motility and invasiveness of cancer cells. Strikingly, we found that knockdown of SND1, or SAM68, reduced proliferation and migration of PCa cells. Thus, our findings strongly suggest that SND1 is a novel regulator of alternative splicing that promotes PCa cell growth and survival.
Collapse
Affiliation(s)
- M Cappellari
- 1] Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy [2] Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - P Bielli
- 1] Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy [2] Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - M P Paronetto
- 1] Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Rome, Italy [2] Department of Health Sciences, University of Rome Foro Italico, Rome, Italy
| | - F Ciccosanti
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases 'Lazzaro Spallanzani', Rome, Italy
| | - G M Fimia
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases 'Lazzaro Spallanzani', Rome, Italy
| | - J Saarikettu
- Laboratory of Molecular Immunology, School of Medicine and Institute of Biomedical Technology, Biomeditech, University of Tampere, Tampere, Finland
| | - O Silvennoinen
- 1] Laboratory of Molecular Immunology, School of Medicine and Institute of Biomedical Technology, Biomeditech, University of Tampere, Tampere, Finland [2] Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - C Sette
- 1] Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy [2] Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
20
|
Giuliani G, Giuliani F, Volk T, Rabouille C. The Drosophila RNA-binding protein HOW controls the stability of dgrasp mRNA in the follicular epithelium. Nucleic Acids Res 2014; 42:1970-86. [PMID: 24217913 PMCID: PMC3919595 DOI: 10.1093/nar/gkt1118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 11/14/2022] Open
Abstract
Post-transcriptional regulation of RNA stability and localization underlies a wide array of developmental processes, such as axon guidance and epithelial morphogenesis. In Drosophila, ectopic expression of the classically Golgi peripheral protein dGRASP at the plasma membrane is achieved through its mRNA targeting at key developmental time-points, in a process critical to follicular epithelium integrity. However, the trans-acting factors that tightly regulate the spatio-temporal dynamics of dgrasp are unknown. Using an in silico approach, we identified two putative HOW Response Elements (HRE1 and HRE2) within the dgrasp open reading frame for binding to Held Out Wings (HOW), a member of the Signal Transduction and Activation of RNA family of RNA-binding proteins. Using RNA immunoprecipitations, we confirmed this by showing that the short cytoplasmic isoform of HOW binds directly to dgrasp HRE1. Furthermore, HOW loss of function in vivo leads to a significant decrease in dgrasp mRNA levels. We demonstrate that HRE1 protects dgrasp mRNA from cytoplasmic degradation, but does not mediate its targeting. We propose that this binding event promotes the formation of ribonucleoprotein particles that ensure dgrasp stability during transport to the basal plasma membrane, thus enabling the local translation of dgrasp for its roles at non-Golgi locations.
Collapse
Affiliation(s)
- Giuliano Giuliani
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel and The Department of Cell Biology, UMC Utrecht, The Netherlands
| | - Fabrizio Giuliani
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel and The Department of Cell Biology, UMC Utrecht, The Netherlands
| | - Talila Volk
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel and The Department of Cell Biology, UMC Utrecht, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands, Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel and The Department of Cell Biology, UMC Utrecht, The Netherlands
| |
Collapse
|
21
|
Fu K, Sun X, Zheng W, Wier EM, Hodgson A, Tran DQ, Richard S, Wan F. Sam68 modulates the promoter specificity of NF-κB and mediates expression of CD25 in activated T cells. Nat Commun 2013; 4:1909. [PMID: 23715268 PMCID: PMC3684077 DOI: 10.1038/ncomms2916] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/19/2013] [Indexed: 12/23/2022] Open
Abstract
CD25, the alpha chain of the interleukin-2 receptor, is expressed in activated T cells and has a significant role in autoimmune disease and tumorigenesis; however, the mechanisms regulating transcription of CD25 remain elusive. Here we identify the Src-associated substrate during mitosis of 68 kDa (Sam68) as a novel non-Rel component in the nuclear factor-kappaB (NF-κB) complex that confers CD25 transcription. Our results demonstrate that Sam68 has an essential role in the induction and maintenance of CD25 in T cells. T-cell receptor engagement triggers translocation of the inhibitor of NF-κB kinase alpha (IKKα) from the cytoplasm to the nucleus, where it phosphorylates Sam68, causing complex formation with NF-κB in the nucleus. These findings reveal the important roles of KH domain-containing components and their spatial interactions with IKKs in determining the binding targets of NF-κB complexes, thus shedding novel insights into the regulatory specificity of NF-κB.
Collapse
Affiliation(s)
- Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21025, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sánchez-Jiménez F, Sánchez-Margalet V. Role of Sam68 in post-transcriptional gene regulation. Int J Mol Sci 2013; 14:23402-23419. [PMID: 24287914 PMCID: PMC3876053 DOI: 10.3390/ijms141223402] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 01/10/2023] Open
Abstract
The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.
Collapse
Affiliation(s)
- Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology and Immunology, UGC Clinical Biochemistry, Virgen Macarena University Hospital, Avenue. Sánchez Pizjuan 4, Medical School, University of Seville, Seville 41009; Spain; E-Mail:
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, UGC Clinical Biochemistry, Virgen Macarena University Hospital, Avenue. Sánchez Pizjuan 4, Medical School, University of Seville, Seville 41009; Spain; E-Mail:
| |
Collapse
|
23
|
Naro C, Sette C. Phosphorylation-mediated regulation of alternative splicing in cancer. Int J Cell Biol 2013; 2013:151839. [PMID: 24069033 PMCID: PMC3771450 DOI: 10.1155/2013/151839] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/26/2013] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing (AS) is one of the key processes involved in the regulation of gene expression in eukaryotic cells. AS catalyzes the removal of intronic sequences and the joining of selected exons, thus ensuring the correct processing of the primary transcript into the mature mRNA. The combinatorial nature of AS allows a great expansion of the genome coding potential, as multiple splice-variants encoding for different proteins may arise from a single gene. Splicing is mediated by a large macromolecular complex, the spliceosome, whose activity needs a fine regulation exerted by cis-acting RNA sequence elements and trans-acting RNA binding proteins (RBP). The activity of both core spliceosomal components and accessory splicing factors is modulated by their reversible phosphorylation. The kinases and phosphatases involved in these posttranslational modifications significantly contribute to AS regulation and to its integration in the complex regulative network that controls gene expression in eukaryotic cells. Herein, we will review the major canonical and noncanonical splicing factor kinases and phosphatases, focusing on those whose activity has been implicated in the aberrant splicing events that characterize neoplastic transformation.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| |
Collapse
|
24
|
Filosa G, Barabino SML, Bachi A. Proteomics strategies to identify SUMO targets and acceptor sites: a survey of RNA-binding proteins SUMOylation. Neuromolecular Med 2013; 15:661-76. [PMID: 23979992 DOI: 10.1007/s12017-013-8256-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/08/2013] [Indexed: 01/09/2023]
Abstract
SUMOylation is a protein posttranslational modification that participates in the regulation of numerous biological processes within the cells. Small ubiquitin-like modifier (SUMO) proteins are members of the ubiquitin-like protein family and, similarly to ubiquitin, are covalently linked to a lysine residue on a target protein via a multi-enzymatic cascade. To assess the specific mechanism triggered by SUMOylation, the identification of SUMO protein substrates and of the precise acceptor site to which SUMO is bound is of critical relevance. Despite hundreds of mammalian proteins have been described as targets of SUMOylation, the identification of the precise acceptor sites still represents an important analytical challenge because of the relatively low stoichiometry in vivo and the highly dynamic nature of this modification. Moreover, mass spectrometry-based identification of SUMOylated sites is hampered by the large peptide remnant of SUMO proteins that are left on the modified lysine residue upon tryptic digestion. The present review provides a survey of the strategies that have been exploited in order to enrich, purify and identify SUMOylation substrates and acceptor sites in human cells on a large-scale format. The success of the presented strategies helped to unravel the numerous activities of this modification, as it was shown by the exemplary case of the RNA-binding protein family, whose SUMOylation is here reviewed.
Collapse
Affiliation(s)
- Giuseppe Filosa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | | | | |
Collapse
|
25
|
Liao WT, Liu JL, Wang ZG, Cui YM, Shi L, Li TT, Zhao XH, Chen XT, Ding YQ, Song LB. High expression level and nuclear localization of Sam68 are associated with progression and poor prognosis in colorectal cancer. BMC Gastroenterol 2013; 13:126. [PMID: 23937454 PMCID: PMC3751151 DOI: 10.1186/1471-230x-13-126] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 08/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Src-associated in mitosis (Sam68; 68 kDa) has been implicated in the oncogenesis and progression of several human cancers. The aim of this study was to investigate the clinicopathologic significance of Sam68 expression and its subcellular localization in colorectal cancer (CRC). METHODS Sam68 expression was examined in CRC cell lines, nine matched CRC tissues and adjacent noncancerous tissues using reverse transcription (RT)-PCR, quantitative RT-PCR and Western blotting. Sam68 protein expression and localization were determined in 224 paraffin-embedded archived CRC samples using immunohistochemistry. Statistical analyses were applied to evaluate the clinicopathologic significance. RESULTS Sam68 was upregulated in CRC cell lines and CRC, as compared with normal tissues; high Sam68 expression was detected in 120/224 (53.6%) of the CRC tissues. High Sam68 expression correlated significantly with poor differentiation (P = 0.033), advanced T stage (P < 0.001), N stage (P = 0.023) and distant metastasis (P = 0.033). Sam68 nuclear localization correlated significantly with poor differentiation (P = 0.002) and T stage (P =0.021). Patients with high Sam68 expression or Sam68 nuclear localization had poorer overall survival than patients with low Sam68 expression or Sam68 cytoplasmic localization. Patients with high Sam68 expression had a higher risk of recurrence than those with low Sam68 expression. CONCLUSIONS Overexpression of Sam68 correlated highly with cancer progression and poor differentiation in CRC. High Sam68 expression and Sam68 nuclear localization were associated with poorer overall survival.
Collapse
|
26
|
Sernbo S, Borrebaeck CAK, Uhlén M, Jirström K, Ek S. Nuclear T-STAR protein expression correlates with HER2 status, hormone receptor negativity and prolonged recurrence free survival in primary breast cancer and decreased cancer cell growth in vitro. PLoS One 2013; 8:e70596. [PMID: 23923007 PMCID: PMC3726654 DOI: 10.1371/journal.pone.0070596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/24/2013] [Indexed: 01/08/2023] Open
Abstract
T-STAR (testis-signal transduction and activation of RNA) is an RNA binding protein, containing an SH3-binding domain and thus potentially playing a role in integration of cell signaling and RNA metabolism. The specific function of T-STAR is unknown and its implication in cancer is poorly characterized. Expression of T-STAR has been reported in human testis, muscle and brain tissues, and is associated with a growth-inhibitory role in immortalized fibroblasts. The aim of this paper was to investigate the functional role of T-STAR through (i) survival analysis of patients with primary invasive breast cancer and (ii) experimental evaluation of the effect of T-STAR on breast cancer cell growth. T-STAR protein expression was analysed by immunohistochemistry (IHC) in tissue microarrays with tumors from 289 patients with primary invasive breast cancer, and correlations to clinicopathological characteristics, recurrence-free and overall survival (RFS and OS) and established tumor markers such as HER2 and ER status were evaluated. In addition, the function of T-STAR was investigated using siRNA-mediated knock-down and overexpression of the gene in six breast cancer cell lines. Of the tumors analysed, 86% showed nuclear T-STAR expression, which was significantly associated with an improved RFS and strongly associated with positive HER2 status and negative hormone receptor status. Furthermore, experimental data showed that overexpression of T-STAR decreased cellular growth while knock-down increased it, as shown both by thymidine incorporation and metabolic activity. In summary, we demonstrate that T-STAR protein expression correlates with an improved RFS in primary breast cancer. This is supported by functional data, indicating that T-STAR regulation is of importance both for breast cancer biology and clinical outcome but future studies are needed to determine a potential role in patient stratification.
Collapse
Affiliation(s)
- Sandra Sernbo
- Department of Immunotechnology, CREATE Health, Lund University, Lund, Sweden
| | | | - Mathias Uhlén
- Department of Biotechnology, AlbaNova University Center, Royal Institute of Technology, Stockholm, Sweden
| | - Karin Jirström
- Department of Clinical Sciences, Division of Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Sara Ek
- Department of Immunotechnology, CREATE Health, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
27
|
Sette C. Alternative splicing programs in prostate cancer. Int J Cell Biol 2013; 2013:458727. [PMID: 23983695 PMCID: PMC3747374 DOI: 10.1155/2013/458727] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/11/2013] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) remains one of the most frequent causes of death for cancer in the male population. Although the initial antiandrogenic therapies are efficacious, PCa often evolves into a hormone-resistant, incurable disease. The genetic and phenotypic heterogeneity of this type of cancer renders its diagnosis and cure particularly challenging. Mounting evidence indicates that alternative splicing, the process that allows production of multiple mRNA variants from each gene, contributes to the heterogeneity of the disease. Key genes for the biology of normal and neoplastic prostate cells, such as those encoding for the androgen receptor and cyclin D1, are alternatively spliced to yield protein isoforms with different or even opposing functions. This review illustrates some examples of genes whose alternative splicing regulation is relevant to PCa biology and discusses the possibility to exploit alternative splicing regulation as a novel tool for prognosis, diagnosis, and therapeutic approaches to PCa.
Collapse
Affiliation(s)
- Claudio Sette
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata,” 00133 Rome, Italy
- Laboratory of Neuroembryology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| |
Collapse
|
28
|
Semenyuk PI, Muronetz VI, Haertlé T, Izumrudov VA. Effect of poly(phosphate) anions on glyceraldehyde-3-phosphate dehydrogenase structure and thermal aggregation: comparison with influence of poly(sulfoanions). Biochim Biophys Acta Gen Subj 2013; 1830:4800-5. [PMID: 23811344 DOI: 10.1016/j.bbagen.2013.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/09/2013] [Accepted: 06/17/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND It is well documented that poly(sulfate) and poly(sulfonate) anions suppress protein thermal aggregation much more efficiently than poly(carboxylic) anions, but as a rule, they denature protein molecules. In this work, a polymer of different nature, i.e. poly(phosphate) anion (PP) was used to elucidate the influence of phosphate groups on stability and thermal aggregation of the model enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). METHODS Isothermal titration calorimetry and differential scanning calorimetry were used for studying the protein-polyanion interactions and the influence of bound polyanions on the protein structure. The enzymatic activity of GAPDH and size of the complexes were measured. The aggregation level was determined from the turbidity. RESULTS Highly polymerized PP chains were able to suppress the aggregation completely, but at significantly higher concentrations as compared with poly(styrenesulfonate) (PSS) or dextran sulfate chains of the same degree of polymerization. The effect of PP on the enzyme structure and activity was much gentler as opposed to the binding of dextran sulfate or, especially, PSS that denatured GAPDH molecules with the highest efficacy caused by short PSS chains. These findings agreed well with the enhanced affinity of polysulfoanions to GAPDH. CONCLUSIONS The revealed trends might help to illuminate the mechanism of control of proteins functionalities by insertion of charged groups of different nature through posttranslational modifications. GENERAL SIGNIFICANCE Practical implementation of the results could be the use of PP chains as promising tools to suppress the proteins aggregation without noticeable loss in the enzymatic activity.
Collapse
Affiliation(s)
- Pavel I Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Moscow, Russia.
| | | | | | | |
Collapse
|
29
|
Chen P, Li F, Xu Z, Li Z, Yi XP. Expression and distribution of Src in the nucleus of myocytes in cardiac hypertrophy. Int J Mol Med 2013; 32:165-73. [PMID: 23673471 DOI: 10.3892/ijmm.2013.1382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/03/2013] [Indexed: 11/05/2022] Open
Abstract
The Src kinase is involved in signaling events leading to cardiac hypertrophy. The exact effects of tyrosine phosphorylation and subnuclear distribution on cardiac hypertrophy and failure remain to be investigated. In this study, we examined the intranuclear expression and distribution of c-Src, Src phosphorylated at tyrosine 529 (Src[pY529]), Src phosphorylated at tyrosine 418 (Src[pY418]) and Src phosphorylated at tyrosine 215 (Src[pY215]) in the myocardial nuclei of the left ventricle (LV) from 2-, 6-, 12- and 18-month-old spontaneously hypertensive heart failure (SHHF) rats and age-matched Wistar-Kyoto (WKY) rats as normotensive controls by western blot analysis, immunofluorescent labeling and immunoprecipitation. Cellular Src (c-Src) expression in the myocardial nuclei of the LV of the 2-, 6-, 12- and 18-month-old SHHF rats was not significantly different from that in the myocardial nuclei of the LV of the age-matched WKY rats. Although there were no significant differences observed between the levels of Src[pY529] and Src[pY418] in the myocardial nuclei of the LV of the 2-month-old SHHF and WKY rats, the expression of Src[pY529] significantly decreased, while that of Src[pY418] significantly increased in the myocardial nuclei of the LV of the 6-, 12- and 18-month-old SHHF rats compared to the age-matched WKY controls. Furthermore, as demonstrated by double labeling with antibodies against fibrillarin and Src-associated in mitosis 68 kDa (Sam68), c-Src was co-localized with both Sam68 and fibrillarin in the nuclei; Src[pY529] co-localized with fibrillarin, but Src[pY418] co-localized with Sam68. The results from the present study suggest that the dephosphorylation of Src tyrosine kinase 529, the phosphorylation of tyrosine 418 and their subnuclear redistribution are involved in endonuclear signal transduction in cardiac myocytes, which regulates the development and progression of LV eccentric hypertrophy induced by hypertension.
Collapse
Affiliation(s)
- Ping Chen
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | | | | | | | | |
Collapse
|
30
|
Ehrmann I, Dalgliesh C, Liu Y, Danilenko M, Crosier M, Overman L, Arthur HM, Lindsay S, Clowry GJ, Venables JP, Fort P, Elliott DJ. The tissue-specific RNA binding protein T-STAR controls regional splicing patterns of neurexin pre-mRNAs in the brain. PLoS Genet 2013; 9:e1003474. [PMID: 23637638 PMCID: PMC3636136 DOI: 10.1371/journal.pgen.1003474] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 03/07/2013] [Indexed: 11/18/2022] Open
Abstract
The RNA binding protein T-STAR was created following a gene triplication 520-610 million years ago, which also produced its two parologs Sam68 and SLM-1. Here we have created a T-STAR null mouse to identify the endogenous functions of this RNA binding protein. Mice null for T-STAR developed normally and were fertile, surprisingly, given the high expression of T-STAR in the testis and the brain, and the known infertility and pleiotropic defects of Sam68 null mice. Using a transcriptome-wide search for splicing targets in the adult brain, we identified T-STAR protein as a potent splicing repressor of the alternatively spliced segment 4 (AS4) exons from each of the Neurexin1-3 genes, and exon 23 of the Stxbp5l gene. T-STAR protein was most highly concentrated in forebrain-derived structures like the hippocampus, which also showed maximal Neurexin1-3 AS4 splicing repression. In the absence of endogenous T-STAR protein, Nrxn1-3 AS4 splicing repression dramatically decreased, despite physiological co-expression of Sam68. In transfected cells Neurexin3 AS4 alternative splicing was regulated by either T-STAR or Sam68 proteins. In contrast, Neurexin2 AS4 splicing was only regulated by T-STAR, through a UWAA-rich response element immediately downstream of the regulated exon conserved since the radiation of bony vertebrates. The AS4 exons in the Nrxn1 and Nrxn3 genes were also associated with distinct patterns of conserved UWAA repeats. Consistent with an ancient mechanism of splicing control, human T-STAR protein was able to repress splicing inclusion of the zebrafish Nrxn3 AS4 exon. Although Neurexin1-3 and Stxbp5l encode critical synaptic proteins, T-STAR null mice had no detectable spatial memory deficits, despite an almost complete absence of AS4 splicing repression in the hippocampus. Our work identifies T-STAR as an ancient and potent tissue-specific splicing regulator that uses a concentration-dependent mechanism to co-ordinately regulate regional splicing patterns of the Neurexin1-3 AS4 exons in the mouse brain.
Collapse
Affiliation(s)
- Ingrid Ehrmann
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Caroline Dalgliesh
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yilei Liu
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marina Danilenko
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Moira Crosier
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lynn Overman
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen M. Arthur
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Susan Lindsay
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gavin J. Clowry
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Julian P. Venables
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Philippe Fort
- Universités Montpellier 2 et 1, UMR 5237, Centre de Recherche de Biochimie Macromoléculaire, CNRS, Montpellier, France
| | - David J. Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
31
|
Nir R, Grossman R, Paroush Z, Volk T. Phosphorylation of the Drosophila melanogaster RNA-binding protein HOW by MAPK/ERK enhances its dimerization and activity. PLoS Genet 2012; 8:e1002632. [PMID: 22479211 PMCID: PMC3315481 DOI: 10.1371/journal.pgen.1002632] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 02/20/2012] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster Held Out Wings (HOW) is a conserved RNA-binding protein (RBP) belonging to the STAR family, whose closest mammalian ortholog Quaking (QKI) has been implicated in embryonic development and nervous system myelination. The HOW RBP modulates a variety of developmental processes by controlling mRNA levels and the splicing profile of multiple key regulatory genes; however, mechanisms regulating its activity in tissues have yet to be elucidated. Here, we link receptor tyrosine kinase (RTK) signaling to the regulation of QKI subfamily of STAR proteins, by showing that HOW undergoes phosphorylation by MAPK/ERK. Importantly, we show that this modification facilitates HOW dimerization and potentiates its ability to bind RNA and regulate its levels. Employing an antibody that specifically recognizes phosphorylated HOW, we show that HOW is phosphorylated in embryonic muscles and heart cardioblasts in vivo, thus documenting for the first time Serine/Threonine (Ser/Thr) phosphorylation of a STAR protein in the context of an intact organism. We also identify the sallimus/D-titin (sls) gene as a novel muscle target of HOW-mediated negative regulation and further show that this regulation is phosphorylation-dependent, underscoring the physiological relevance of this modification. Importantly, we demonstrate that HOW Thr phosphorylation is reduced following muscle-specific knock down of Drosophila MAPK rolled and that, correspondingly, Sls is elevated in these muscles, similarly to the HOW RNAi effect. Taken together, our results provide a coherent mechanism of differential HOW activation; MAPK/ERK-dependent phosphorylation of HOW promotes the formation of HOW dimers and thus enhances its activity in controlling mRNA levels of key muscle-specific genes. Hence, our findings bridge between MAPK/ERK signaling and RNA regulation in developing muscles.
Collapse
Affiliation(s)
- Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rona Grossman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ze'ev Paroush
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
32
|
Goel R, Raju R, Maharudraiah J, Sameer Kumar GS, Ghosh K, Kumar A, Lakshmi TP, Sharma J, Sharma R, Balakrishnan L, Pan A, Kandasamy K, Christopher R, Krishna V, Mohan SS, Harsha HC, Mathur PP, Pandey A, Keshava Prasad TS. A Signaling Network of Thyroid-Stimulating Hormone. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2011; 4:10.4172/jpb.1000195. [PMID: 24255551 PMCID: PMC3830942 DOI: 10.4172/jpb.1000195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human thyroid stimulating hormone (TSH) is a glycoprotein secreted by the anterior part of the pituitary gland. TSH plays an important physiological role in the regulation of hypothalamic-pituitary-thyroid axis by modulating the release of the thyroid hormones from the thyroid gland. It induces iodine uptake by the thyroid, promotes thyroid epithelial differentiation and growth, and protects thyroid cells from apoptosis. Impairment of TSH signal transduction pathway leads to thyroid disorders such as goitre, hypothyroidism and hyperthyroidism, which can have complex clinical manifestations. TSH signaling is largely effected through two separate pathways, the adenylate cyclase and the phospholipase C pathways. In spite of its biomedical importance, a concise signaling map of TSH pathway is not available in the public domain. Therefore, we have generated a detailed signaling map of TSH pathway by systematically cataloging the molecular reactions induced by TSH including protein-protein interactions, post-translational modifications, protein translocation events and activation/inhibition reactions. We have cataloged 40 molecular association events, 42 enzyme-substrate reactions and 16 protein translocation events in TSH signaling pathway resource. Additionally, we have documented 208 genes, which are differentially regulated by TSH. We have provided the details of TSH pathway through NetPath (http://www.netpath.org), which is a publicly available resource for human signaling pathways developed by our group. We have also depicted the map of TSH signaling using NetSlim criteria (http://www.netpath.org/netslim/) and provided pathway maps in Wikipathways (http://www.wikipathways.org/). We anticipate that the availability of TSH pathway as a community resource will enhance further biomedical investigations into the function and effects of this important hormone.
Collapse
Affiliation(s)
- Renu Goel
- Institute of Bioinformatics, International Tech Park, Bangalore-560 066, India
- Department of Biotechnology, Kuvempu University, Shankaraghatta-577 451, India
| | - Rajesh Raju
- Institute of Bioinformatics, International Tech Park, Bangalore-560 066, India
- Department of Biotechnology, Kuvempu University, Shankaraghatta-577 451, India
| | - Jagadeesha Maharudraiah
- Institute of Bioinformatics, International Tech Park, Bangalore-560 066, India
- RajaRajeshwari Medical College and Hospital, Bangalore-560 074, India
- Rajiv Gandhi University of Health Sciences, Bangalore-560 041, India
| | - Ghantasala S. Sameer Kumar
- Institute of Bioinformatics, International Tech Park, Bangalore-560 066, India
- Department of Biotechnology, Kuvempu University, Shankaraghatta-577 451, India
| | - Krishna Ghosh
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry 605 014, India
| | - Amit Kumar
- Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605 014, India
| | - T. Pragna Lakshmi
- Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605 014, India
| | - Jyoti Sharma
- Institute of Bioinformatics, International Tech Park, Bangalore-560 066, India
- Manipal University, Madhav Nagar, Manipal, Karnataka 576 104, India
| | - Rakesh Sharma
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore, 560 066, India
| | - Lavanya Balakrishnan
- Institute of Bioinformatics, International Tech Park, Bangalore-560 066, India
- Department of Biotechnology, Kuvempu University, Shankaraghatta-577 451, India
| | - Archana Pan
- Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605 014, India
| | - Kumaran Kandasamy
- Research Center for Molecular Medicine of the Austrian Academy of Sciences,Vienna, Austria
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore, 560 066, India
| | - V. Krishna
- Department of Biotechnology, Kuvempu University, Shankaraghatta-577 451, India
| | - S. Sujatha Mohan
- Institute of Bioinformatics, International Tech Park, Bangalore-560 066, India
- Department of Biotechnology, Kuvempu University, Shankaraghatta-577 451, India
- Research Unit for Immunoinformatics, RIKEN Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Kanagawa 230-0045, Japan
| | - H. C. Harsha
- Institute of Bioinformatics, International Tech Park, Bangalore-560 066, India
| | - Premendu P. Mathur
- Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605 014, India
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, USA
| | - T. S. Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Bangalore-560 066, India
- Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605 014, India
- Manipal University, Madhav Nagar, Manipal, Karnataka 576 104, India
| |
Collapse
|
33
|
Sam68 interacts with IRS1. Biochem Pharmacol 2011; 83:78-87. [PMID: 22005517 DOI: 10.1016/j.bcp.2011.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 12/18/2022]
Abstract
Sam68 (Src associated in mitosis) is a RNA binding protein that links cellular signaling to RNA processing. In previous studies we found that insulin promotes Sam68 relocalization in the cytoplasm allowing Sam68 to associate with p85PI3K, Grb2, GAP and probably the insulin receptor (IR), modulating insulin action positively. In the present work, we wanted to define the role of Sam68 in the first stages of IR signaling. Both BRET and co-immunoprecipitation assays have been used for the study of Sam68 binding to IR, IRS1 and p85-PI3K. BRET saturation experiments indicated, for the first time, that Sam68 associates with IRS1 in basal condition. To map the region of Sam68 implicated in the interaction with IRS1, different Sam68 mutants deleted in the proline-rich domains were used. The deletion of P0, P1 and P2 proline rich domains in N-terminus as well as P4 and P5 in C-terminus of Sam68 increased BRET(50), thus indicating that the affinity of Sam68 for IRS1 is lower when these domains are missing. Moreover, in IR-transfected HEK-293 cells, BRET saturation experiment indicated that insulin increases the affinity between Sam68-Rluc and IRS1-YFP. In conclusion, our data indicate that Sam68 interacts with IRS-1 in basal conditions, and insulin increases the affinity between these two partners.
Collapse
|
34
|
Mittal N, Scherrer T, Gerber AP, Janga SC. Interplay between posttranscriptional and posttranslational interactions of RNA-binding proteins. J Mol Biol 2011; 409:466-79. [PMID: 21501624 DOI: 10.1016/j.jmb.2011.03.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/02/2011] [Accepted: 03/29/2011] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) play important roles in the posttranscriptional control of gene expression. However, our understanding of how RBPs interact with each other at different regulatory levels to coordinate the RNA metabolism of the cell is rather limited. Here, we construct the posttranscriptional regulatory network among 69 experimentally studied RBPs in yeast to show that more than one-third of the RBPs autoregulate their expression at the posttranscriptional level and demonstrate that autoregulatory RBPs show reduced protein noise with a tendency to encode for hubs in this network. We note that in- and outdegrees in the posttranscriptional RBP-RBP regulatory network exhibit gaussian and scale-free distributions, respectively. This network was also densely interconnected with extensive cross-talk between RBPs belonging to different posttranscriptional steps, regulating varying numbers of cellular RNA targets. We show that feed-forward loops and superposed feed-forward/feedback loops are the most significant three-node subgraphs in this network. Analysis of the corresponding protein-protein interaction (posttranslational) network revealed that it is more modular than the posttranscriptional regulatory network. There is significant overlap between the regulatory and protein-protein interaction networks, with RBPs that potentially control each other at the posttranscriptional level tending to physically interact and being part of the same ribonucleoprotein (RNP) complex. Our observations put forward a model wherein RBPs could be classified into those that can stably interact with a limited number of protein partners, forming stable RNP complexes, and others that form transient hubs, having the ability to interact with multiple RBPs forming many RNPs in the cell.
Collapse
Affiliation(s)
- Nitish Mittal
- Biozentrum, University of Basel, Klingelbergstrasse, Switzerland
| | | | | | | |
Collapse
|