1
|
Beenken KE, Campbell MJ, Smeltzer MS. The ability of sarA to limit protease production plays a key role in the pathogenesis of Staphylococcus aureus osteomyelitis irrespective of the functional status of agr. Infect Immun 2025; 93:e0047324. [PMID: 39611695 PMCID: PMC11784413 DOI: 10.1128/iai.00473-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
We demonstrate that mutation of the staphylococcal accessory regulator A (sarA) in the USA300 strain LAC limits virulence in a murine osteomyelitis model to a greater extent than mutation of the accessory gene regulator (agr) and that it does so irrespective of the functional status of agr. Protease production was decreased in the agr mutant but increased in sarA and sarA/agr mutants to a degree that limited biofilm formation. Extracellular protein A (eSpa) and full-length extracellular nuclease (Nuc1) were absent in the conditioned medium (CM) from sarA and sarA/agr mutants, and their abundance was restored in both mutants by eliminating protease production. Cytotoxicity of CM for osteoblasts and osteoclasts was also reduced in both mutants. Cytotoxicity was restored in a protease-deficient sarA mutant but not in the protease-deficient sarA/agr mutant. Reduced cytotoxicity was correlated with the reduced abundance of full-length α-toxin, LukF, and LukS in sarA and sarA/agr mutants. The abundance of these toxins in their full-length form was increased in the protease-deficient sarA mutant by comparison to LAC, demonstrating that mutation of sarA increases the production of these toxins but increased protease production limits their abundance in full-length and presumably functional forms. Most importantly, eliminating protease production enhanced the virulence of sarA and sarA/agr mutants, but had no impact in the agr mutant. We conclude that a key factor in the attenuation of LAC sarA and sarA/agr mutants in osteomyelitis is the increased production of extracellular proteases and its impact on virulence factors that contribute to biofilm formation and cytotoxicity.IMPORTANCEThe persistent emergence of antibiotic-resistant strains has rekindled interest in anti-virulence strategies to combat S. aureus infections. Numerous reports describe anti-virulence strategies focusing on key regulatory elements that globally influence virulence factor production, the two most commonly targeted being the accessory gene regulator (agr) and the staphylococcal accessory regulator A (sarA). We demonstrate that mutation of sarA limits virulence to a greater extent than mutation of agr and that this can be attributed to increased protease production in both sarA and sarA/agr mutants. This illustrates the critical role of sarA in protease-mediated post-translational regulation in S. aureus. It also suggests that an inhibitor of sarA would be more effective than an inhibitor of agr in overcoming the therapeutic recalcitrance of osteomyelitis and that such an inhibitor would remain effective even in the context of agr mutants known to arise in vivo during the transition from acute to chronic infection.
Collapse
Affiliation(s)
- Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mara J. Campbell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
2
|
Beenken KE, Campbell MJ, Byrum SD, Edmondson RD, Mackintosh SG, Tackett AJ, Smeltzer MS. Staphylococcus aureus Proteins Implicated in the Reduced Virulence of sarA and sarA/agr Mutants in Osteomyelitis. Microorganisms 2025; 13:181. [PMID: 39858949 PMCID: PMC11767506 DOI: 10.3390/microorganisms13010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Using a murine osteomyelitis model, we recently demonstrated that Staphylococcus aureus sarA and sarA/agr mutants generated in the USA300 strain LAC are attenuated to a greater extent than an isogenic agr mutant and that this can be attributed to a significant extent to the increased production of extracellular proteases in both mutants. Based on this, we used a mass-based proteomics approach to compare the proteomes of LAC, its isogenic agr, sarA, and sarA/agr mutants, and isogenic derivatives of all four of these strains unable to produce the extracellular proteases aureolysin, SspA, SspB, ScpA, or SplA-F. This allowed us to identify proteins that were present in reduced amounts in sarA, and sarA/agr mutants owing to the increased production of extracellular proteases. A total of 1039 proteins were detected in conditioned media (CM) from overnight cultures of LAC, and protease-mediated degradation was shown to contribute to the reduced abundance of 224 of these (21.6%) in CM from the sarA and sarA/agr mutants. Among these were specific proteins previously implicated in the pathogenesis and therapeutic recalcitrance of S. aureus osteomyelitis. This demonstrates that the ability of sarA to limit protease production plays a key role in post-translational remodeling of the S. aureus proteome to a degree that can be correlated with reduced virulence in our osteomyelitis model, and that it does so irrespective of the functional status of agr. This also suggests that at least some of these 224 proteins may be viable targets for prophylactic or therapeutic intervention.
Collapse
Affiliation(s)
- Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.J.C.); (M.S.S.)
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (R.D.E.); (S.G.M.); (A.J.T.)
| | - Mara J. Campbell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.J.C.); (M.S.S.)
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (R.D.E.); (S.G.M.); (A.J.T.)
| | - Rick D. Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (R.D.E.); (S.G.M.); (A.J.T.)
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (R.D.E.); (S.G.M.); (A.J.T.)
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA (R.D.E.); (S.G.M.); (A.J.T.)
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.J.C.); (M.S.S.)
| |
Collapse
|
3
|
Reslane I, Watson GF, Handke LD, Fey PD. Regulatory dynamics of arginine metabolism in Staphylococcus aureus. Biochem Soc Trans 2024; 52:2513-2523. [PMID: 39656074 DOI: 10.1042/bst20240710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
Staphylococcus aureus is a highly significant pathogen with several well studied and defined virulence factors. However, the metabolic pathways that are required to facilitate infection are not well described. Previous data have documented that S. aureus requires glucose catabolism during initial stages of infection. Therefore, certain nutrients whose biosynthetic pathway is under carbon catabolite repression and CcpA, including arginine, must be acquired from the host. However, even though S. aureus encodes pathways to synthesize arginine, biosynthesis of arginine is repressed even in the absence of glucose. Why is S. aureus a functional arginine auxotroph? This review discusses recently described regulatory mechanisms that are linked to repression of arginine biosynthesis using either proline or glutamate as substrates. In addition, recent studies are discussed that shed insight into the ultimate mechanisms linking arginine auxotrophy and infection persistence.
Collapse
Affiliation(s)
- Itidal Reslane
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Gabrielle F Watson
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Luke D Handke
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| | - Paul D Fey
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, U.S.A
| |
Collapse
|
4
|
Mousavi Ghahfarrokhi SS, Mahdigholi FS, Amin M. Collateral beauty in the damages: an overview of cosmetics and therapeutic applications of microbial proteases. Arch Microbiol 2023; 205:375. [PMID: 37935975 DOI: 10.1007/s00203-023-03713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Microbial proteases are enzymes secreted by a variety of microorganisms, including bacteria and fungi, and have attracted significant attention due to their versatile applications in the food and pharmaceutical industries. In addition, certain proteases have been used in the development of skin health products and cosmetics. This article provides a review of microbial proteases in terms of their classification, sources, properties, and applications. Moreover, different pharmacological and molecular investigations have been reviewed. Various biological activities of microbial proteases, such as Arazyme, collagenase, elastin, and Nattokinase, which are involved in the digestion of dietary proteins, as well as their potential anti-inflammatory, anti-cancer, antithrombotic, and immunomodulatory effects have been included. Furthermore, their ability to control infections and treat various disorders has been discussed. Finally, this review highlights the potential applications and future perspectives of microbial proteases in biotechnology and biomedicine, and proposes further studies to develop new perspectives for disease control and health-promoting strategies using microbial resources.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fateme Sadat Mahdigholi
- Department of Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Room No. 1-221, Faculty of Pharmacy, 16th Azar Street, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Activation of Human Platelets by Staphylococcus aureus Secreted Protease Staphopain A. Pathogens 2022; 11:pathogens11111237. [DOI: 10.3390/pathogens11111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Infection by Staphylococcus aureus is the leading cause of infective endocarditis (IE). Activation of platelets by this pathogen results in their aggregation and thrombus formation which are considered to be important steps in the development and pathogenesis of IE. Here, we show that a secreted cysteine protease, staphopain A, activates human platelets and induces their aggregation. The culture supernatant of a scpA mutant deficient in staphopain A production was reduced in its ability to trigger platelet aggregation. The platelet agonist activity of purified staphopain A was inhibited by staphostatin A, a specific inhibitor, thus implicating its protease activity in the agonism. In whole blood, using concentrations of staphopain A that were otherwise insufficient to induce platelet aggregation, increased binding to collagen and thrombus formation was observed. Using antagonists specific to protease-activated receptors 1 and 4, we demonstrate their role in mediating staphopain A induced platelet activation.
Collapse
|
6
|
Deepika G, Subbarayadu S, Chaudhary A, Sarma PVGK. Dibenzyl (benzo [d] thiazol-2-yl (hydroxy) methyl) phosphonate (DBTMP) showing anti-S. aureus and anti-biofilm properties by elevating activities of serine protease (SspA) and cysteine protease staphopain B (SspB). Arch Microbiol 2022; 204:397. [PMID: 35708833 DOI: 10.1007/s00203-022-02974-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Staphylococcus aureus biofilms are the pathogenic factor in the spread of infection and are more pronounced in multidrug-resistant strains of S. aureus, where high expression of proteases is observed. Among various proteases, Serine protease (SspA) and cysteine protease Staphopain B (SspB) are known to play a key role in the biofilm formation and removal of biofilms. In earlier studies, we have reported Dibenzyl (benzo [d] thiazol-2-yl (hydroxy) methyl) phosphonate (DBTMP) exhibits anti-S. aureus and anti-biofilm properties by elevating the expression of the protease. In this study, the effect of DBTMP on the activities of SspA, and SspB of S. aureus was evaluated. The SspA and SspB genes of S. aureus ATCC12600 were sequenced (Genbank accession numbers: MZ456982 and MW574006). In S. aureus active SspA is formed by proteolytic cleavage of immature SspA, to get this mature SspA (mSspA), we have PCR amplified the mSspA sequence from the SspA gene. The mSspA and SspB genes were cloned, expressed, and characterized. The pure recombinant proteins rSspB and rmSspA exhibited a single band in SDS-PAGE with a molecular weight of 40 and 30 KD, respectively. The activities of rmSspA and rSspB are 32.33 and 35.45 Units/mL correspondingly. DBTMP elevated the activities of rmSspA and rSspB by docking with respective enzymes. This compound disrupted the biofilms formed by the multidrug-resistant strains of S. aureus and further prevented biofilm formation. These findings explain that DBTMP possesses anti-S. aureus and anti-biofilm features.
Collapse
Affiliation(s)
- G Deepika
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - S Subbarayadu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - Abhijit Chaudhary
- Department of Microbiology, Sri Padmavati Medical College (Women), SVIMS, Tirupati, Andhra Pradesh, 517507, India
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
7
|
Abstract
The human skin is our outermost layer and serves as a protective barrier against external insults. Advances in next generation sequencing have enabled the discoveries of a rich and diverse community of microbes - bacteria, fungi and viruses that are residents of this surface. The genomes of these microbes also revealed the presence of many secretory enzymes. In particular, proteases which are hydrolytic enzymes capable of protein cleavage and degradation are of special interest in the skin environment which is enriched in proteins and lipids. In this minireview, we will focus on the roles of these skin-relevant microbial secreted proteases, both in terms of their widely studied roles as pathogenic agents in tissue invasion and host immune inactivation, and their recently discovered roles in inter-microbial interactions and modulation of virulence factors. From these studies, it has become apparent that while microbial proteases are capable of a wide range of functions, their expression is tightly regulated and highly responsive to the environments the microbes are in. With the introduction of new biochemical and bioinformatics tools to study protease functions, it will be important to understand the roles played by skin microbial secretory proteases in cutaneous health, especially the less studied commensal microbes with an emphasis on contextual relevance.
Collapse
|
8
|
The protealysin operon encodes emfourin, a prototype of a novel family of protein metalloprotease inhibitors. Int J Biol Macromol 2020; 169:583-596. [PMID: 33385454 DOI: 10.1016/j.ijbiomac.2020.12.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/02/2023]
Abstract
Protealysin is a Serratia proteamaculans metalloproteinase of the M4 peptidase family and the prototype of a large group of protealysin-like proteases (PLPs). PLPs are likely involved in bacterial interaction with plants and animals as well as in bacterial pathogenesis. We demonstrated that the PLP genes in bacteria colocalize with the genes of putative conserved proteins. In S. proteamaculans, these two genes form a bicistronic operon. The putative S. proteamaculans protein that we called emfourin (M4in) was expressed in Escherichia coli and characterized. M4in forms a complex with protealysin with a 1:1 stoichiometry and is a potent slow-binding competitive inhibitor of protealysin (Ki = 52 ± 14 pM); besides, M4in is not secreted from S. proteamaculans constitutively. A comparison of amino acid sequences of M4in and its homologs with those of known inhibitors suggests that M4in is the prototype of a new family of protein inhibitors of proteases.
Collapse
|
9
|
Ramirez AM, Beenken KE, Byrum SD, Tackett AJ, Shaw LN, Gimza BD, Smeltzer MS. SarA plays a predominant role in controlling the production of extracellular proteases in the diverse clinical isolates of Staphylococcus aureus LAC and UAMS-1. Virulence 2020; 11:1738-1762. [PMID: 33258416 PMCID: PMC7738309 DOI: 10.1080/21505594.2020.1855923] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
Using DNA affinity chromatography we demonstrate that the S. aureus regulatory proteins MgrA, Rot, SarA, and SarS bind DNA baits derived from the promoter regions associated with the genes encoding aureolysin, ScpAB, SspABC, and SplA-F. Three of four baits also bound SarR and SarZ, the exception in both cases being the ScpAB-associated bait. Using the USA300, methicillin-resistant strain LAC and the USA200, methicillin-sensitive strain UAMS-1, we generated mutations in the genes encoding each of these proteins alone and in combination with sarA and examined the impact on protease production, the accumulation of high molecular weight proteins, and biofilm formation. These studies confirmed that multiple regulatory loci are involved in limiting protease production to a degree that impacts all of these phenotypes, but also demonstrate that sarA plays a predominant role in this regard. Using sarA mutants unable to produce individual proteases alone and in combination with each other, we also demonstrate that the increased production of aureolysin and ScpA is particularly important in defining the biofilm-deficient phenotype of LAC and UAMS-1 sarA mutants, while aureolysin alone plays a key role in defining the reduced accumulation of alpha toxin and overall cytotoxicity as assessed using both osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Aura M. Ramirez
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR, USA
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL
| | - Brittney D. Gimza
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
10
|
Abstract
The complex regulatory role of the proteases necessitates very tight coordination and control of their expression. While this process has been well studied, a major oversight has been the consideration of proteases as a single entity rather than as 10 enzymes produced from four different promoters. As such, in this study, we comprehensively characterized the regulation of each protease promoter, discovering vast differences in the way each protease operon is controlled. Additionally, we broaden the picture of protease regulation using a global screen to identify novel loci controlling protease activity, uncovering a cadre of new effectors of protease expression. The impact of these elements on the activity of proteases and known regulators was characterized by producing a comprehensive regulatory circuit that emphasizes the complexity of protease regulation in Staphylococcus aureus. A primary function of the extracellular proteases of Staphylococcus aureus is to control the progression of infection by selectively modulating the stability of virulence factors. Consequently, a regulatory network exists to titrate protease abundance/activity to influence the accumulation, or lack thereof, of individual virulence factors. Herein, we comprehensively map this system, exploring the regulation of the four protease loci by known and novel factors. In so doing, we determined that seven major elements (SarS, SarR, Rot, MgrA, CodY, SaeR, and SarA) form the primary network of control, with the latter three being the most powerful. We note that expression of aureolysin is largely repressed by these factors, while the spl operon is subject to the strongest upregulation of any protease loci, particularly by SarR and SaeR. Furthermore, when exploring scpA expression, we find it to be profoundly influenced in opposing fashions by SarA (repressor) and SarR (activator). We also present the screening of >100 regulator mutants of S. aureus, identifying 7 additional factors (ArgR2, AtlR, MntR, Rex, XdrA, Rbf, and SarU) that form a secondary circuit of protease control. Primarily, these elements serve as activators, although we reveal XdrA as a new repressor of protease expression. With the exception or ArgR2, each of the new effectors appears to work through the primary network of regulation to influence protease production. Collectively, we present a comprehensive regulatory circuit that emphasizes the complexity of protease regulation and suggest that its existence speaks to the importance of these enzymes to S. aureus physiology and pathogenic potential. IMPORTANCE The complex regulatory role of the proteases necessitates very tight coordination and control of their expression. While this process has been well studied, a major oversight has been the consideration of proteases as a single entity rather than as 10 enzymes produced from four different promoters. As such, in this study, we comprehensively characterized the regulation of each protease promoter, discovering vast differences in the way each protease operon is controlled. Additionally, we broaden the picture of protease regulation using a global screen to identify novel loci controlling protease activity, uncovering a cadre of new effectors of protease expression. The impact of these elements on the activity of proteases and known regulators was characterized by producing a comprehensive regulatory circuit that emphasizes the complexity of protease regulation in Staphylococcus aureus.
Collapse
|
11
|
Tam K, Torres VJ. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0039-2018. [PMID: 30873936 PMCID: PMC6422052 DOI: 10.1128/microbiolspec.gpp3-0039-2018] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Staphylococcus aureus is a formidable pathogen capable of causing infections in different sites of the body in a variety of vertebrate animals, including humans and livestock. A major contribution to the success of S. aureus as a pathogen is the plethora of virulence factors that manipulate the host's innate and adaptive immune responses. Many of these immune modulating virulence factors are secreted toxins, cofactors for activating host zymogens, and exoenzymes. Secreted toxins such as pore-forming toxins and superantigens are highly inflammatory and can cause leukocyte cell death by cytolysis and clonal deletion, respectively. Coagulases and staphylokinases are cofactors that hijack the host's coagulation system. Exoenzymes, including nucleases and proteases, cleave and inactivate various immune defense and surveillance molecules, such as complement factors, antimicrobial peptides, and surface receptors that are important for leukocyte chemotaxis. Additionally, some of these secreted toxins and exoenzymes can cause disruption of endothelial and epithelial barriers through cell lysis and cleavage of junction proteins. A unique feature when examining the repertoire of S. aureus secreted virulence factors is the apparent functional redundancy exhibited by the majority of the toxins and exoenzymes. However, closer examination of each virulence factor revealed that each has unique properties that have important functional consequences. This chapter provides a brief overview of our current understanding of the major secreted virulence factors critical for S. aureus pathogenesis.
Collapse
Affiliation(s)
- Kayan Tam
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, NY 10016
| |
Collapse
|
12
|
Zhang S, Xu Z, Sun H, Sun L, Shaban M, Yang X, Zhu L. Genome-Wide Identification of Papain-Like Cysteine Proteases in Gossypium hirsutum and Functional Characterization in Response to Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2019; 10:134. [PMID: 30842780 PMCID: PMC6391353 DOI: 10.3389/fpls.2019.00134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/28/2019] [Indexed: 05/12/2023]
Abstract
Cotton, a natural fiber producing crop of huge importance, is often prone to attack of Verticillium dahliae. Papain-like cysteine proteases (PLCPs) constitute a large family in plants and were proposed to involve in plant defense against pathogen attack in a number of studies. However, there is no detailed characterization of PLCP genes in cotton against infection of V. dahliae. In this study, we carried out a genome-wide analysis in cotton and identified seventy-eight PLCPs, which were divided into nine subfamilies based on their evolution phylogeny: RD21 (responsive to desiccation 21), CEP (cysteine endopeptidase), XCP (xylem cysteine peptidase), XBCP3 (xylem bark cysteine peptidase 3), THI, SAG12 (senescence-associated gene 12), RD19 (responsive to desiccation 19), ALP (aleurain-like protease) and CTB (cathepsin B-like). Genes in each subfamily exhibit a similar structure and motif composition. The expression patterns of these genes in different organs were examined, and subfamily RD21 was the most abundant in these families. Expression profiles under abiotic stress showed that thirty-five PLCP genes were induced by multiple stresses. Further transcriptome analysis showed that sixteen PLCP genes were up-regulated in response to V. dahliae in cotton. Among those, GhRD21-7 showed a higher transcription level than most other PLCP genes. Additionally, over-expression of GhRD21-7 led to enhanced resistance and RNAi lines were more susceptible to V. dahliae in cotton. Our results provide valuable information for future functional genomic studies of PLCP gene family in cotton.
Collapse
|
13
|
Liu J, Sharma A, Niewiara MJ, Singh R, Ming R, Yu Q. Papain-like cysteine proteases in Carica papaya: lineage-specific gene duplication and expansion. BMC Genomics 2018; 19:26. [PMID: 29306330 PMCID: PMC5756445 DOI: 10.1186/s12864-017-4394-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/15/2017] [Indexed: 11/30/2022] Open
Abstract
Background Papain-like cysteine proteases (PLCPs), a large group of cysteine proteases structurally related to papain, play important roles in plant development, senescence, and defense responses. Papain, the first cysteine protease whose structure was determined by X-ray crystallography, plays a crucial role in protecting papaya from herbivorous insects. Except the four major PLCPs purified and characterized in papaya latex, the rest of the PLCPs in papaya genome are largely unknown. Results We identified 33 PLCP genes in papaya genome. Phylogenetic analysis clearly separated plant PLCP genes into nine subfamilies. PLCP genes are not equally distributed among the nine subfamilies and the number of PLCPs in each subfamily does not increase or decrease proportionally among the seven selected plant species. Papaya showed clear lineage-specific gene expansion in the subfamily III. Interestingly, all four major PLCPs purified from papaya latex, including papain, chymopapain, glycyl endopeptidase and caricain, were grouped into the lineage-specific expansion branch in the subfamily III. Mapping PLCP genes on chromosomes of five plant species revealed that lineage-specific expansions of PLCP genes were mostly derived from tandem duplications. We estimated divergence time of papaya PLCP genes of subfamily III. The major duplication events leading to lineage-specific expansion of papaya PLCP genes in subfamily III were estimated at 48 MYA, 34 MYA, and 16 MYA. The gene expression patterns of the papaya PLCP genes in different tissues were assessed by transcriptome sequencing and qRT-PCR. Most of the papaya PLCP genes of subfamily III expressed at high levels in leaf and green fruit tissues. Conclusions Tandem duplications played the dominant role in affecting copy number of PLCPs in plants. Significant variations in size of the PLCP subfamilies among species may reflect genetic adaptation of plant species to different environments. The lineage-specific expansion of papaya PLCPs of subfamily III might have been promoted by the continuous reciprocal selective effects of herbivore attack and plant defense. Electronic supplementary material The online version of this article (10.1186/s12864-017-4394-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Liu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education; College of Life Science; Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Anupma Sharma
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
| | - Marie Jamille Niewiara
- Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ratnesh Singh
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education; College of Life Science; Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Department of Plant Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Qingyi Yu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education; College of Life Science; Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, 75252, USA. .,Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
14
|
Liu H, Hu M, Wang Q, Cheng L, Zhang Z. Role of Papain-Like Cysteine Proteases in Plant Development. FRONTIERS IN PLANT SCIENCE 2018; 9:1717. [PMID: 30564252 PMCID: PMC6288466 DOI: 10.3389/fpls.2018.01717] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/05/2018] [Indexed: 05/18/2023]
Abstract
Papain-like cysteine proteases (PLCP) are prominent peptidases found in most living organisms. In plants, PLCPs was divided into nine subgroups based on functional and structural characterization. They are key enzymes in protein proteolysis and involved in numerous physiological processes. In this paper, we reviewed the updated achievements of physiological roles of plant PLCPs in germination, development, senescence, immunity, and stress responses.
Collapse
Affiliation(s)
- Huijuan Liu
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Menghui Hu
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Qi Wang
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Lin Cheng
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Zaibao Zhang
- Henan Key Laboratory of Tea Plant Biology, Xinyang Normal University, Xinyang, China
- College of Life Science, Xinyang Normal University, Xinyang, China
- *Correspondence: Zaibao Zhang,
| |
Collapse
|
15
|
Pietrocola G, Nobile G, Rindi S, Speziale P. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases. Front Cell Infect Microbiol 2017; 7:166. [PMID: 28529927 PMCID: PMC5418230 DOI: 10.3389/fcimb.2017.00166] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/18/2017] [Indexed: 01/29/2023] Open
Abstract
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Giulia Nobile
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Simonetta Rindi
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Pietro Speziale
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| |
Collapse
|
16
|
Amino Acid Catabolism in Staphylococcus aureus and the Function of Carbon Catabolite Repression. mBio 2017; 8:mBio.01434-16. [PMID: 28196956 PMCID: PMC5312079 DOI: 10.1128/mbio.01434-16] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus must rapidly adapt to a variety of carbon and nitrogen sources during invasion of a host. Within a staphylococcal abscess, preferred carbon sources such as glucose are limiting, suggesting that S. aureus survives through the catabolism of secondary carbon sources. S. aureus encodes pathways to catabolize multiple amino acids, including those that generate pyruvate, 2-oxoglutarate, and oxaloacetate. To assess amino acid catabolism, S. aureus JE2 and mutants were grown in complete defined medium containing 18 amino acids but lacking glucose (CDM). A mutation in the gudB gene, coding for glutamate dehydrogenase, which generates 2-oxoglutarate from glutamate, significantly reduced growth in CDM, suggesting that glutamate and those amino acids generating glutamate, particularly proline, serve as the major carbon source in this medium. Nuclear magnetic resonance (NMR) studies confirmed this supposition. Furthermore, a mutation in the ackA gene, coding for acetate kinase, also abrogated growth of JE2 in CDM, suggesting that ATP production from pyruvate-producing amino acids is also critical for growth. In addition, although a functional respiratory chain was absolutely required for growth, the oxygen consumption rate and intracellular ATP concentration were significantly lower during growth in CDM than during growth in glucose-containing media. Finally, transcriptional analyses demonstrated that expression levels of genes coding for the enzymes that synthesize glutamate from proline, arginine, and histidine are repressed by CcpA and carbon catabolite repression. These data show that pathways important for glutamate catabolism or ATP generation via Pta/AckA are important for growth in niches where glucose is not abundant, such as abscesses within skin and soft tissue infections. S. aureus is a significant cause of both morbidity and mortality worldwide. This bacterium causes infections in a wide variety of organ systems, the most common being skin and soft tissue. Within a staphylococcal abscess, levels of glucose, a preferred carbon source, are limited due to the host immune response. Therefore, S. aureus must utilize other available carbon sources such as amino acids or peptides to proliferate. Our results show that glutamate and amino acids that serve as substrates for glutamate synthesis, particularly proline, function as major carbon sources during growth, whereas other amino acids that generate pyruvate are important for ATP synthesis via substrate-level phosphorylation in the Pta-AckA pathway. Our data support a model whereby certain amino acid catabolic pathways, and acquisition of those particular amino acids, are crucial for growth in niches where glucose is not abundant.
Collapse
|
17
|
Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities. Nutrients 2016; 8:nu8100644. [PMID: 27763541 PMCID: PMC5084031 DOI: 10.3390/nu8100644] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022] Open
Abstract
Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD), which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders.
Collapse
|
18
|
Kędzior M, Seredyński R, Gutowicz J. Microbial inhibitors of cysteine proteases. Med Microbiol Immunol 2016; 205:275-96. [PMID: 27048482 DOI: 10.1007/s00430-016-0454-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/24/2016] [Indexed: 01/06/2023]
Abstract
Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted.
Collapse
Affiliation(s)
- Mateusz Kędzior
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| | - Rafał Seredyński
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Jan Gutowicz
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| |
Collapse
|
19
|
Zhang Z, Abdel-Razek O, Hawgood S, Wang G. Protective Role of Surfactant Protein D in Ocular Staphylococcus aureus Infection. PLoS One 2015; 10:e0138597. [PMID: 26398197 PMCID: PMC4580580 DOI: 10.1371/journal.pone.0138597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/01/2015] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is one of the most common pathogens causing keratitis. Surfactant protein D (SP-D) plays a critical role in host defense and innate immunity. In order to investigate the role of SP-D in ocular S. aureus infection, the eyes of wild-type (WT) and SP-D knockout (SP-D KO) C57BL/6 mice were infected with S. aureus (107 CFU/eye) in the presence and absence of cysteine protease inhibitor(E64).Bacterial counts in the ocular surface were examined 3, 6, 12, 24 hrs after infection. Bacterial phagocytosis by neutrophils and bacterial invasion in ocular epithelial cells were evaluated quantitatively. S. aureus-induced ocular injury was determined with corneal fluorescein staining. The results demonstrated that SP-D is expressed in ocular surface epithelium and the lacrimal gland; WT mice had increased clearance of S. aureus from the ocular surface (p<0.05) and reduced ocular injury compared with SP-D KO mice. The protective effects of SP-D include increased bacterial phagocytosis by neutrophils (p<0.05) and decreased bacterial invasion into epithelial cells (p<0.05) in WT mice compared to in SP-D KO mice. In the presence of inhibitor (E64), WT mice showed enhanced bacterial clearance (p<0.05) and reduced ocular injury compared to absent E64 while SP-D KO mice did not. Collectively, we concluded that SP-D protects the ocular surface from S. aureus infection but cysteine protease impairs SP-D function in this murine model, and that cysteine protease inhibitor may be a potential therapeutic agent in S. aureus keratitis.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Surgery, The State University of New York, Upstate Medical University, Syracuse, New York, United States of America
- Departments of Ophthalmology, Zhejiang Medical College Affiliated Zhejiang Hospital, Hangzhou, Zhejiang, P. R. China
| | - Osama Abdel-Razek
- Department of Surgery, The State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Samuel Hawgood
- Department of Pediatrics and the Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
| | - Guirong Wang
- Department of Surgery, The State University of New York, Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Lee M, Van Bever H. The role of antiseptic agents in atopic dermatitis. Asia Pac Allergy 2014; 4:230-40. [PMID: 25379483 PMCID: PMC4215429 DOI: 10.5415/apallergy.2014.4.4.230] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/12/2014] [Indexed: 11/04/2022] Open
Abstract
The skin of individuals with atopic dermatitis has a susceptibility to be colonized with Staphylococcus aureus. This has been associated with increased frequency and severity of exacerbations of atopic dermatitis. Therefore, there is a growing interest in the use of antiseptic agents to target primary bacterial colonization and infection. Antiseptic agents have been found to be better tolerated and less likely to induce bacterial resistance as compared to antibiotics. There is also a wide variety of antiseptic agents available. The efficacy of antiseptic agents has yet to be established as the studies reviewed previously have been small and of suboptimal quality. This review discusses the rationale behind targeting S. aureus with antiseptic agents and presents findings from a review of studies assessing the efficacy of antiseptics in atopic dermatitis in the last five years. Four studies were found, including a bleach bath study which has already been reviewed elsewhere. The remaining 3 studies assessed the efficacy of sodium hypochlorite containing cleansing body wash, sodium hypochlorite baths and 1% triclosan in leave on emollient. These studies suggested some benefit for the inclusion of antiseptic use with the mainstay management of atopic dermatitis, including a potential steroid sparring effect. However, there are many limitations to these studies which therefore warrant further investigation on the impact of antiseptic use in atopic dermatitis.
Collapse
Affiliation(s)
- Melissa Lee
- Department of Paediatrics, University Children's Medical Institute, Yong Loo Lin School of Medicine, Singapore 119077, Singapore
| | - Hugo Van Bever
- Department of Paediatrics, University Children's Medical Institute, Yong Loo Lin School of Medicine, Singapore 119077, Singapore
| |
Collapse
|
21
|
Staphopains in Staphylococcus aureus bacteremia: Virulence activities related to the onset of septic shock, coagulation disorders, and infectious endocarditis. J Oral Biosci 2014. [DOI: 10.1016/j.job.2014.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Carroll RK, Veillard F, Gagne DT, Lindenmuth JM, Poreba M, Drag M, Potempa J, Shaw LN. The Staphylococcus aureus leucine aminopeptidase is localized to the bacterial cytosol and demonstrates a broad substrate range that extends beyond leucine. Biol Chem 2014; 394:791-803. [PMID: 23241672 DOI: 10.1515/hsz-2012-0308] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/12/2012] [Indexed: 12/31/2022]
Abstract
Staphylococcus aureus is a potent pathogen of humans exhibiting a broad disease range, in part due to an extensive repertoire of secreted virulence factors, including proteases. Recently, we identified the first example of an intracellular protease (leucine aminopeptidase, LAP) that is required for virulence in S. aureus. Disruption of pepZ, the gene encoding LAP, had no affect on the growth rate of bacteria; however, in systemic and localized infection models the pepZ mutant had significantly attenuated virulence. Recently, a contradictory report was published suggesting that LAP is an extracellular enzyme and it is required for growth in S. aureus. Here, we investigate these results and confirm our previous findings that LAP is localized to the bacterial cytosol and is not required for growth. In addition, we conduct a biochemical investigation of purified recombinant LAP, identifying optimal conditions for enzymatic activity and substrate preference for hydrolysis. Our results show that LAP has a broad substrate range, including activity against the dipeptide cysteine-glycine, and that leucine is not the primary target of LAP.
Collapse
Affiliation(s)
- Ronan K Carroll
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Staphylococcus aureus is a known cause of chronic biofilm infections that can reside on medical implants or host tissue. Recent studies have demonstrated an important role for proteinaceous material in the biofilm structure. The S. aureus genome encodes many secreted proteases, and there is growing evidence that these enzymes have self-cleavage properties that alter biofilm integrity. However, the specific contribution of each protease and mechanism of biofilm modulation is not clear. To address this issue, we utilized a sigma factor B (ΔsigB) mutant where protease activity results in a biofilm-negative phenotype, thereby creating a condition where the protease(s) responsible for the phenotype could be identified. Using a plasma-coated microtiter assay, biofilm formation was restored to the ΔsigB mutant through the addition of the cysteine protease inhibitor E-64 or by using Staphostatin inhibitors that specifically target the extracellular cysteine proteases SspB and ScpA (called Staphopains). Through construction of gene deletion mutants, we determined that an sspB scpA double mutant restored ΔsigB biofilm formation, and this recovery could be replicated in plasma-coated flow cell biofilms. Staphopain levels were also found to be decreased under biofilm-forming conditions, possibly allowing biofilm establishment. The treatment of S. aureus biofilms with purified SspB or ScpA enzyme inhibited their formation, and ScpA was also able to disperse an established biofilm. The antibiofilm properties of ScpA were conserved across S. aureus strain lineages. These findings suggest an underappreciated role of the SspB and ScpA cysteine proteases in modulating S. aureus biofilm architecture.
Collapse
|
24
|
The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth. Antimicrob Agents Chemother 2013; 57:3388-91. [PMID: 23587952 DOI: 10.1128/aac.00129-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A novel papain inhibitory protein (SPI) from Streptomyces mobaraensis was studied to measure its inhibitory effect on bacterial cysteine protease activity (Staphylococcus aureus SspB) and culture supernatants (Porphyromonas gingivalis, Bacillus anthracis). Further, growth of Bacillus anthracis, Staphylococcus aureus, Pseudomonas aeruginosa, and Vibrio cholerae was completely inhibited by 10 μM SPI. At this concentration of SPI, no cytotoxicity was observed. We conclude that SPI inhibits bacterial virulence factors and has the potential to become a novel therapeutic treatment against a range of unrelated pathogenic bacteria.
Collapse
|
25
|
A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. mBio 2013; 4:e00537-12. [PMID: 23404398 PMCID: PMC3573662 DOI: 10.1128/mbio.00537-12] [Citation(s) in RCA: 667] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To enhance the research capabilities of investigators interested in Staphylococcus aureus, the Nebraska Center for Staphylococcal Research (CSR) has generated a sequence-defined transposon mutant library consisting of 1,952 strains, each containing a single mutation within a nonessential gene of the epidemic community-associated methicillin-resistant S. aureus (CA-MRSA) isolate USA300. To demonstrate the utility of this library for large-scale screening of phenotypic alterations, we spotted the library on indicator plates to assess hemolytic potential, protease production, pigmentation, and mannitol utilization. As expected, we identified many genes known to function in these processes, thus validating the utility of this approach. Importantly, we also identified genes not previously associated with these phenotypes. In total, 71 mutants displayed differential hemolysis activities, the majority of which were not previously known to influence hemolysin production. Furthermore, 62 mutants were defective in protease activity, with only 14 previously demonstrated to be involved in the production of extracellular proteases. In addition, 38 mutations affected pigment formation, while only 7 influenced mannitol fermentation, underscoring the sensitivity of this approach to identify rare phenotypes. Finally, 579 open reading frames were not interrupted by a transposon, thus providing potentially new essential gene targets for subsequent antibacterial discovery. Overall, the Nebraska Transposon Mutant Library represents a valuable new resource for the research community that should greatly enhance investigations of this important human pathogen. Infections caused by Staphylococcus aureus cause significant morbidity and mortality in both community and hospital environments. Specific-allelic-replacement mutants are required to study the biology of this organism; however, this process is costly and time-consuming. We describe the construction and validation of a sequence-defined transposon mutant library available for use by the scientific community through the Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA) strain repository. In addition, complementary resources, including a website (http://app1.unmc.edu/fgx/) and genetic tools that expedite the allelic replacement of the transposon in the mutants with useful selectable markers and fluorescent reporter fusions, have been generated. Overall, this library and associated tools will have a significant impact on studies investigating S. aureus pathogenesis and biology and serve as a useful paradigm for the study of other bacterial systems.
Collapse
|
26
|
Kantyka T, Pyrc K, Gruca M, Smagur J, Plaza K, Guzik K, Zeglen S, Ochman M, Potempa J. Staphylococcus aureus proteases degrade lung surfactant protein A potentially impairing innate immunity of the lung. J Innate Immun 2012; 5:251-60. [PMID: 23235402 DOI: 10.1159/000345417] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/23/2012] [Indexed: 11/19/2022] Open
Abstract
The pulmonary surfactant is a complex mixture of lipids and proteins that is important for respiratory lung functions, which also provides the first line of innate immune defense. Pulmonary surfactant protein-A (SP-A) is a major surfactant component with immune functions with importance during Staphylococcus aureus infections that has been demonstrated in numerous studies. The current study showed that S. aureus can efficiently cleave the SP-A protein using its arsenal of proteolytic enzymes. This degradation appears to be mediated by cysteine proteases, in particular staphopain A (ScpA). The staphopain-mediated proteolysis of SP-A resulted in a decrease or complete abolishment of SP-A biological activity, including the promotion of S. aureus phagocytosis by neutrophils, aggregation of Gram-negative bacteria and bacterial cell adherence to epithelium. Significantly, ScpA has also efficiently degraded SP-A in complete bronchi-alveolar lavage fluid from human lungs. This indicates that staphopain activity in the lungs is resistant to protease inhibitors, thus suggesting that SP-A can be cleaved in vivo. Collectively, this study showed that the S. aureus protease ScpA is an important virulence factor that may impair innate immunity of the lungs.
Collapse
Affiliation(s)
- Tomasz Kantyka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nuxoll AS, Halouska SM, Sadykov MR, Hanke ML, Bayles KW, Kielian T, Powers R, Fey PD. CcpA regulates arginine biosynthesis in Staphylococcus aureus through repression of proline catabolism. PLoS Pathog 2012; 8:e1003033. [PMID: 23209408 PMCID: PMC3510247 DOI: 10.1371/journal.ppat.1003033] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 10/01/2012] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus is a leading cause of community-associated and nosocomial infections. Imperative to the success of S. aureus is the ability to adapt and utilize nutrients that are readily available. Genomic sequencing suggests that S. aureus has the genes required for synthesis of all twenty amino acids. However, in vitro experimentation demonstrates that staphylococci have multiple amino acid auxotrophies, including arginine. Although S. aureus possesses the highly conserved anabolic pathway that synthesizes arginine via glutamate, we demonstrate here that inactivation of ccpA facilitates the synthesis of arginine via the urea cycle utilizing proline as a substrate. Mutations within putA, rocD, arcB1, argG and argH abolished the ability of S. aureus JE2 ccpA::tetL to grow in the absence of arginine, whereas an interruption in argJBCF, arcB2, or proC had no effect. Furthermore, nuclear magnetic resonance demonstrated that JE2 ccpA::ermB produced 13C5 labeled arginine when grown with 13C5 proline. Taken together, these data support the conclusion that S. aureus synthesizes arginine from proline during growth on secondary carbon sources. Furthermore, although highly conserved in all sequenced S. aureus genomes, the arginine anabolic pathway (ArgJBCDFGH) is not functional under in vitro growth conditions. Finally, a mutation in argH attenuated virulence in a mouse kidney abscess model in comparison to wild type JE2 demonstrating the importance of arginine biosynthesis in vivo via the urea cycle. However, mutations in argB, argF, and putA did not attenuate virulence suggesting both the glutamate and proline pathways are active and they, or their pathway intermediates, can complement each other in vivo. Although Staphylococcus aureus encodes the highly conserved arginine biosynthesis pathway via glutamate, arginine is an essential amino acid. We found that a mutation in ccpA, a gene encoding a protein facilitating carbon catabolite repression, mediates arginine biosynthesis under in vitro growth conditions. However, both genetic and biochemical evidence suggested that a S. aureus ccpA mutant synthesizes arginine via proline and the urea cycle, a pathway not demonstrated in bacteria before. Furthermore, an animal model of S. aureus infection demonstrated the importance of arginine biosynthesis in vivo. This new pathway sheds light on important host-pathogen interactions and suggests S. aureus has evolved to address arginine depletion in the host by synthesizing arginine from a readily available substrate such as proline.
Collapse
Affiliation(s)
- Austin S. Nuxoll
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Steven M. Halouska
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Marat R. Sadykov
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mark L. Hanke
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kenneth W. Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
28
|
Carroll RK, Robison TM, Rivera FE, Davenport JE, Jonsson IM, Florczyk D, Tarkowski A, Potempa J, Koziel J, Shaw LN. Identification of an intracellular M17 family leucine aminopeptidase that is required for virulence in Staphylococcus aureus. Microbes Infect 2012; 14:989-99. [PMID: 22613209 DOI: 10.1016/j.micinf.2012.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/10/2012] [Accepted: 04/23/2012] [Indexed: 12/29/2022]
Abstract
Staphylococcus aureus is a highly virulent bacterial pathogen capable of causing a variety of ailments throughout the human body. It is a major public health concern due to the continued emergence of highly pathogenic methicillin resistant strains (MRSA) both within hospitals and in the community. Virulence in S. aureus is mediated by an array of secreted and cell wall associated virulence factors, including toxins, hemolysins and proteases. In this work we identify a leucine aminopeptidase (LAP, pepZ) that strongly impacts the pathogenic abilities of S. aureus. Disruption of the pepZ gene in either Newman or USA300 resulted in a dramatic attenuation of virulence in both localized and systemic models of infection. LAP is required for survival inside human macrophages and gene expression analysis shows that pepZ expression is highest in the intracellular environment. We examine the cellular location of LAP and demonstrate that it is localized to the bacterial cytosol. These results identify for the first time an intracellular leucine aminopeptidase that influences disease causation in a Gram-positive bacterium.
Collapse
Affiliation(s)
- Ronan K Carroll
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, 4202 East Fowler Ave, ISA2015 Tampa, FL 33620, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|