1
|
Broadbent L. Winter viruses: we can do more to prevent a surge in cases. BMJ 2025; 388:r77. [PMID: 39814412 DOI: 10.1136/bmj.r77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
2
|
Lee CY. Exploring Potential Intermediates in the Cross-Species Transmission of Influenza A Virus to Humans. Viruses 2024; 16:1129. [PMID: 39066291 PMCID: PMC11281536 DOI: 10.3390/v16071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The influenza A virus (IAV) has been a major cause of several pandemics, underscoring the importance of elucidating its transmission dynamics. This review investigates potential intermediate hosts in the cross-species transmission of IAV to humans, focusing on the factors that facilitate zoonotic events. We evaluate the roles of various animal hosts, including pigs, galliformes, companion animals, minks, marine mammals, and other animals, in the spread of IAV to humans.
Collapse
Affiliation(s)
- Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
3
|
Bialy D, Richardson S, Chrzastek K, Bhat S, Polo N, Freimanis G, Iqbal M, Shelton H. Recombinant A(H6N1)-H274Y avian influenza virus with dual drug resistance does not require permissive mutations to retain the replicative fitness in vitro and in ovo. Virology 2024; 590:109954. [PMID: 38086284 DOI: 10.1016/j.virol.2023.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
The possible emergence of drug-resistant avian flu raises concerns over the limited effectiveness of currently approved antivirals (neuraminidase inhibitors - NAIs) in the hypothetical event of a zoonotic spillover. Our study demonstrated that the recombinant avian A(H6N1) viruses showed reduced inhibition (RI) by multiple NAI drugs following the introduction of point mutations found predominantly in the neuraminidase gene (NA) of NAI-resistant human influenza strains (E119V, R292K and H274Y; N2 numbering). Moreover, A(H6N1)-H274Y showed increased replication efficiency in vitro, and a fitness advantage over wild-type (WT) when co-inoculated into embryonated hen's eggs. The results presented in our study together with the zoonotic potential of the A(H6N1) virus as evidenced by the human infection from 2013, highlight the need for enhanced monitoring of NAI resistance-associated signatures in circulating LPAI (low pathogenic avian influenza) globally.
Collapse
Affiliation(s)
- Dagmara Bialy
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom.
| | - Samuel Richardson
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Klaudia Chrzastek
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Sushant Bhat
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Noemi Polo
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Graham Freimanis
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Munir Iqbal
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Holly Shelton
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| |
Collapse
|
4
|
Wang B, Zheng H, Dong X, Zhang W, Wu J, Chen H, Zhang J, Zhou A. The Identification Distinct Antiviral Factors Regulated Influenza Pandemic H1N1 Infection. Int J Microbiol 2024; 2024:6631882. [PMID: 38229736 PMCID: PMC10791480 DOI: 10.1155/2024/6631882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
Influenza pandemic with H1N1 (H1N1pdms) causes severe lung damage and "cytokine storm," leading to higher mortality and global health emergencies in humans and animals. Explaining host antiviral molecular mechanisms in response to H1N1pdms is important for the development of novel therapies. In this study, we organised and analysed multimicroarray data for mouse lungs infected with different H1N1pdm and nonpandemic H1N1 strains. We found that H1N1pdms infection resulted in a large proportion of differentially expressed genes (DEGs) in the infected lungs compared with normal lungs, and the number of DEGs increased markedly with the time of infection. In addition, we found that different H1N1pdm strains induced similarly innate immune responses and the identified DEGs during H1N1pdms infection were functionally concentrated in defence response to virus, cytokine-mediated signalling pathway, regulation of innate immune response, and response to interferon. Moreover, comparing with nonpandemic H1N1, we identified ten distinct DEGs (AREG, CXCL13, GATM, GPR171, IFI35, IFI47, IFIT3, ORM1, RETNLA, and UBD), which were enriched in immune response and cell surface receptor signalling pathway as well as interacted with immune response-related dysregulated genes during H1N1pdms. Our discoveries will provide comprehensive insights into host responding to pandemic with influenza H1N1 and find broad-spectrum effective treatment.
Collapse
Affiliation(s)
- Baoxin Wang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Hao Zheng
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Xia Dong
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Wenhua Zhang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Hongbo Chen
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Jing Zhang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| | - Ao Zhou
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan 430023, Hubei, China
| |
Collapse
|
5
|
Hawkins SFC, Guest PC. Multiplex Quantitative Polymerase Chain Reaction Test to Identify SARS-CoV-2 Variants. Methods Mol Biol 2022; 2511:67-78. [PMID: 35838952 DOI: 10.1007/978-1-0716-2395-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quantitative polymerase chain reaction (qPCR) is a routinely used method for detection and quantitation of gene expression in real time. This is achieved through the incorporation and measurement of fluorescent reporter probes in the amplified cDNA strands, since the fluorescent signals increase as the reaction progresses. The availability of multiple probes which fluoresce at different wavelengths allows for multiplexing as this gives rise to amplicons with unique fluorescent signatures. Here we describe a method using the Inhibitor-Tolerant RT-qPCR kit, developed by Meridian Bioscience kit which allows simultaneous real-time quantitation of the UK, South Africa, and Brazil SARS-CoV-2 variants.
Collapse
Affiliation(s)
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
6
|
Structural insight into RNA synthesis by influenza D polymerase. Nat Microbiol 2019; 4:1750-1759. [PMID: 31209309 DOI: 10.1038/s41564-019-0487-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/13/2019] [Indexed: 01/03/2023]
Abstract
The influenza virus polymerase uses capped RNA primers to initiate transcription, and a combination of terminal and internal de novo initiations for the two-step replication process by binding the conserved viral genomic RNA (vRNA) or complementary RNA (cRNA) promoter. Here, we determined the apo and promoter-bound influenza D polymerase structures using cryo-electron microscopy and found the polymerase has an evolutionarily conserved stable core structure with inherently flexible peripheral domains. Strikingly, two conformations (mode A and B) of the vRNA promoter were observed where the 3'-vRNA end can bind at two different sites, whereas the cRNA promoter only binds in the mode B conformation. Functional studies confirmed the critical role of the mode B conformation for vRNA synthesis via the intermediate cRNA but not for cRNA production, which is mainly regulated by the mode A conformation. Both conformations participate in the regulation of the transcription process. This work advances our understanding of the regulatory mechanisms for the synthesis of different RNA species by influenza virus polymerase and opens new opportunities for antiviral drug design.
Collapse
|
7
|
Carnero AM, Kitayama K, Diaz DA, Garvich M, Angulo N, Cama VA, Gilman RH, Bayer AM. Risk for interspecies transmission of zoonotic pathogens during poultry processing and pork production in Peru: A qualitative study. Zoonoses Public Health 2018; 65:528-539. [PMID: 29602269 DOI: 10.1111/zph.12463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 12/14/2022]
Abstract
Interspecies transmission of pathogens is an unfrequent but naturally occurring event and human activities may favour opportunities not previously reported. Reassortment of zoonotic pathogens like influenza A virus can result from these activities. Recently, swine and birds have played a central role as "mixing vessels" for epidemic and pandemic events related to strains like H1N1 and H5N1. Unsafe practices in poultry markets and swine farms can lead to interspecies transmission, favouring the emergence of novel strains. Thus, understanding practices that lead to interspecies interactions is crucial. This qualitative study aimed to evaluate poultry processing practices in formal and informal markets and the use of leftovers by swine farmers in three Peruvian cities: Lima (capital), Tumbes (coastal) and Tarapoto (jungle). We conducted 80 direct observations at formal and informal markets and interviewed 15 swine farmers. Processors slaughter and pluck chickens and vendors and/or processors eviscerate chickens. Food safety and hygiene practices were suboptimal or absent, although some heterogeneity was observed between cities and chicken vendors versus processors. Both vendors (76%) and processors (100%) sold the chicken viscera leftovers to swine farmers, representing the main source of chicken viscera for swine farms (53%). Swine farmers fed the chicken viscera to their swine. Chicken viscera cooking times varied widely and were insufficient in some cases. Non-abattoired poultry leads to the sale of poultry leftovers to small-scale swine farms, resulting in indirect but frequent interspecies contacts that can lead to interspecies transmission of bacterial pathogens or the reassortment of influenza A viruses. These interactions are exacerbated by suboptimal safety and hygiene conditions. People involved in these activities constitute an at-risk population who could play a central role in preventing the transmission of pathogens between species. Educational interventions on hygiene and food safety practices will be important for reducing the risk of interspecies influenza transmission.
Collapse
Affiliation(s)
- A M Carnero
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - K Kitayama
- Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - D A Diaz
- Asociación Benéfica Proyectos en Informática, Salud, Medicina y Agricultura (AB PRISMA), Lima, Peru
| | - M Garvich
- Asociación Benéfica Proyectos en Informática, Salud, Medicina y Agricultura (AB PRISMA), Lima, Peru
| | - N Angulo
- Asociación Benéfica Proyectos en Informática, Salud, Medicina y Agricultura (AB PRISMA), Lima, Peru
| | - V A Cama
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - R H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - A M Bayer
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Abstract
Coinfections involving viruses are being recognized to influence the disease pattern that occurs relative to that with single infection. Classically, we usually think of a clinical syndrome as the consequence of infection by a single virus that is isolated from clinical specimens. However, this biased laboratory approach omits detection of additional agents that could be contributing to the clinical outcome, including novel agents not usually considered pathogens. The presence of an additional agent may also interfere with the targeted isolation of a known virus. Viral interference, a phenomenon where one virus competitively suppresses replication of other coinfecting viruses, is the most common outcome of viral coinfections. In addition, coinfections can modulate virus virulence and cell death, thereby altering disease severity and epidemiology. Immunity to primary virus infection can also modulate immune responses to subsequent secondary infections. In this review, various virological mechanisms that determine viral persistence/exclusion during coinfections are discussed, and insights into the isolation/detection of multiple viruses are provided. We also discuss features of heterologous infections that impact the pattern of immune responsiveness that develops.
Collapse
|
9
|
Molecular requirements for a pandemic influenza virus: An acid-stable hemagglutinin protein. Proc Natl Acad Sci U S A 2016; 113:1636-41. [PMID: 26811446 DOI: 10.1073/pnas.1524384113] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Influenza pandemics require that a virus containing a hemagglutinin (HA) surface antigen previously unseen by a majority of the population becomes airborne-transmissible between humans. Although the HA protein is central to the emergence of a pandemic influenza virus, its required molecular properties for sustained transmission between humans are poorly defined. During virus entry, the HA protein binds receptors and is triggered by low pH in the endosome to cause membrane fusion; during egress, HA contributes to virus assembly and morphology. In 2009, a swine influenza virus (pH1N1) jumped to humans and spread globally. Here we link the pandemic potential of pH1N1 to its HA acid stability, or the pH at which this one-time-use nanomachine is either triggered to cause fusion or becomes inactivated in the absence of a target membrane. In surveillance isolates, our data show HA activation pH values decreased during the evolution of H1N1 from precursors in swine (pH 5.5-6.0), to early 2009 human cases (pH 5.5), and then to later human isolates (pH 5.2-5.4). A loss-of-function pH1N1 virus with a destabilizing HA1-Y17H mutation (pH 6.0) was less pathogenic in mice and ferrets, less transmissible by contact, and no longer airborne-transmissible. A ferret-adapted revertant (HA1-H17Y/HA2-R106K) regained airborne transmissibility by stabilizing HA to an activation pH of 5.3, similar to that of human-adapted isolates from late 2009-2014. Overall, these studies reveal that a stable HA (activation pH ≤ 5.5) is necessary for pH1N1 influenza virus pathogenicity and airborne transmissibility in ferrets and is associated with pandemic potential in humans.
Collapse
|
10
|
Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression. J Virol 2015; 89:5651-67. [PMID: 25762737 DOI: 10.1128/jvi.00087-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/04/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. IMPORTANCE Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment independent of differential sialic acid distribution. The findings also establish that circulating neuraminidase (NA) and PA genes could alter the pathogenic phenotype of the pandemic H1N1 virus, resulting in enhanced disease. The identification of such factors provides a framework for pandemic modeling and surveillance.
Collapse
|
11
|
Structural basis for the development of avian virus capsids that display influenza virus proteins and induce protective immunity. J Virol 2014; 89:2563-74. [PMID: 25520499 DOI: 10.1128/jvi.03025-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Bioengineering of viruses and virus-like particles (VLPs) is a well-established approach in the development of new and improved vaccines against viral and bacterial pathogens. We report here that the capsid of a major avian pathogen, infectious bursal disease virus (IBDV), can accommodate heterologous proteins to induce protective immunity. The structural units of the ~70-nm-diameter T=13 IBDV capsid are trimers of VP2, which is made as a precursor (pVP2). The pVP2 C-terminal domain has an amphipathic α helix that controls VP2 polymorphism. In the absence of the VP3 scaffolding protein, 466-residue pVP2 intermediates bearing this α helix assemble into genuine VLPs only when expressed with an N-terminal His6 tag (the HT-VP2-466 protein). HT-VP2-466 capsids are optimal for protein insertion, as they are large enough (cargo space, ~78,000 nm(3)) and are assembled from a single protein. We explored HT-VP2-466-based chimeric capsids initially using enhanced green fluorescent protein (EGFP). The VLP assembly yield was efficient when we coexpressed EGFP-HT-VP2-466 and HT-VP2-466 from two recombinant baculoviruses. The native EGFP structure (~240 copies/virion) was successfully inserted in a functional form, as VLPs were fluorescent, and three-dimensional cryo-electron microscopy showed that the EGFP molecules incorporated at the inner capsid surface. Immunization of mice with purified EGFP-VLPs elicited anti-EGFP antibodies. We also inserted hemagglutinin (HA) and matrix (M2) protein epitopes derived from the mouse-adapted A/PR/8/34 influenza virus and engineered several HA- and M2-derived chimeric capsids. Mice immunized with VLPs containing the HA stalk, an M2 fragment, or both antigens developed full protection against viral challenge. IMPORTANCE Virus-like particles (VLPs) are multimeric protein cages that mimic the infectious virus capsid and are potential candidates as nonliving vaccines that induce long-lasting protection. Chimeric VLPs can display or include foreign antigens, which could be a conserved epitope to elicit broadly neutralizing antibodies or several variable epitopes effective against a large number of viral strains. We report the biochemical, structural, and immunological characterization of chimeric VLPs derived from infectious bursal disease virus (IBDV), an important poultry pathogen. To test the potential of IBDV VLPs as a vaccine vehicle, we used the enhanced green fluorescent protein and two fragments derived from the hemagglutinin and the M2 matrix protein of the human murine-adapted influenza virus. The IBDV capsid protein fused to influenza virus peptides formed assemblies able to protect mice against viral challenge. Our studies establish the basis for a new generation of multivalent IBDV-based vaccines.
Collapse
|
12
|
Wang X, Tan J, Zhao J, Ye Z, Hewlett I. Highly pathogenic avian influenza A virus (H5N1) can be transmitted in ferrets by transfusion. BMC Infect Dis 2014; 14:192. [PMID: 24712669 PMCID: PMC4101865 DOI: 10.1186/1471-2334-14-192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/31/2014] [Indexed: 02/06/2023] Open
Abstract
Abstracts
Collapse
Affiliation(s)
- Xue Wang
- Lab of Molecular Virology, Building 29B, Rm 4NN22, Division of Emerging and Transfusion Transmitted Diseases, CBER/FDA, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
13
|
Aptamer-based therapeutics: new approaches to combat human viral diseases. Pharmaceuticals (Basel) 2013; 6:1507-42. [PMID: 24287493 PMCID: PMC3873675 DOI: 10.3390/ph6121507] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 12/18/2022] Open
Abstract
Viruses replicate inside the cells of an organism and continuously evolve to contend with an ever-changing environment. Many life-threatening diseases, such as AIDS, SARS, hepatitis and some cancers, are caused by viruses. Because viruses have small genome sizes and high mutability, there is currently a lack of and an urgent need for effective treatment for many viral pathogens. One approach that has recently received much attention is aptamer-based therapeutics. Aptamer technology has high target specificity and versatility, i.e., any viral proteins could potentially be targeted. Consequently, new aptamer-based therapeutics have the potential to lead a revolution in the development of anti-infective drugs. Additionally, aptamers can potentially bind any targets and any pathogen that is theoretically amenable to rapid targeting, making aptamers invaluable tools for treating a wide range of diseases. This review will provide a broad, comprehensive overview of viral therapies that use aptamers. The aptamer selection process will be described, followed by an explanation of the potential for treating virus infection by aptamers. Recent progress and prospective use of aptamers against a large variety of human viruses, such as HIV-1, HCV, HBV, SCoV, Rabies virus, HPV, HSV and influenza virus, with particular focus on clinical development of aptamers will also be described. Finally, we will discuss the challenges of advancing antiviral aptamer therapeutics and prospects for future success.
Collapse
|
14
|
A novel subnucleocapsid nanoplatform for mucosal vaccination against influenza virus that targets the ectodomain of matrix protein 2. J Virol 2013; 88:325-38. [PMID: 24155388 DOI: 10.1128/jvi.01141-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, subnucleocapsid nanorings formed by the recombinant nucleoprotein (N) of the respiratory syncytial virus were evaluated as a platform to anchor heterologous antigens. The ectodomain of the influenza virus A matrix protein 2 (M2e) is highly conserved and elicits protective antibodies when it is linked to an immunogenic carrier, making it a promising target to develop universal influenza vaccines. In this context, one or three M2e copies were genetically linked to the C terminus of N to produce N-M2e and N-3M2e chimeric recombinant nanorings. Mice were immunized intranasally with N-M2e or N-3M2e or with M2e or 3M2e control peptides. N-3M2e-vaccinated mice showed the strongest mucosal and systemic antibody responses. These mice presented a reduced viral load and minor weight loss, and all survived upon challenge with influenza virus A/PR8/34 (H1N1) (PR8). We compared the intranasal route to the subcutaneous route of N-3M2e immunization. Only the intranasal route induced a strong local IgA response and led to the protection of mice upon challenge. Finally, we demonstrated that the induction of anti-M2e antibodies by N-3M2e is not impaired by preexisting anti-N immunity. Overall, these results show that the N nanoring is a potent carrier for mucosal delivery of vaccinal antigens.
Collapse
|
15
|
Lambe T. Novel viral vectored vaccines for the prevention of influenza. Mol Med 2012; 18:1153-60. [PMID: 22735755 PMCID: PMC3510293 DOI: 10.2119/molmed.2012.00147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/19/2012] [Indexed: 01/29/2023] Open
Abstract
Influenza represents a substantial global healthcare burden, with annual epidemics resulting in 3-5 million cases of severe illness with a significant associated mortality. In addition, the risk of a virulent and lethal influenza pandemic has generated widespread and warranted concern. Currently licensed influenza vaccines are limited in their ability to induce efficacious and long-lasting herd immunity. In addition, and as evidenced by the H1N1 pandemic in 2009, there can be a significant delay between the emergence of a pandemic influenza and an effective, antibody-inducing vaccine. There is, therefore, a continued need for new, efficacious vaccines conferring cross-clade protection-obviating the need for biannual reformulation of seasonal influenza vaccines. Development of such a vaccine would yield enormous health benefits to society and also greatly reduce the associated global healthcare burden. There are a number of alternative influenza vaccine technologies being assessed both preclinically and clinically. In this review we discuss viral vectored vaccines, either recombinant live-attenuated or replication-deficient viruses, which are current lead candidates for inducing efficacious and long-lasting immunity toward influenza viruses. These alternate influenza vaccines offer real promise to deliver viable alternatives to currently deployed vaccines and more importantly may confer long-lasting and universal protection against influenza viral infection.
Collapse
Affiliation(s)
- Teresa Lambe
- Jenner Institute, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
16
|
Commentary on “Experience with Pandemic 2009 H1N1 Influenza in a Large Pediatric Hospital”. South Med J 2012; 105:181-3. [DOI: 10.1097/smj.0b013e31825015dc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|