1
|
Suzuyama K, Eriguchi M, Minagawa H, Honda H, Kai K, Kitamoto T, Hara H. Accumulation Area of a Japanese PRNP P102L Variant Associated With Gerstmann-Sträussler-Scheinker Disease: The Ariake PRNP P102L Variant. J Clin Neurol 2024; 20:321-329. [PMID: 38171504 PMCID: PMC11076189 DOI: 10.3988/jcn.2023.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/25/2023] [Accepted: 07/31/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND PURPOSE The coast of Kyushu Island on Ariake Sea in Japan is known to be an accumulation area for patients with a proline-to-leucine substitution mutation at residue 102 (P102L) of the human prion protein gene (PRNP), which is associated with Gerstmann-Sträussler-Scheinker disease. We designated this geographical distribution as the "Ariake PRNP P102L variant." The purpose of this study was to characterize the clinical features of this variant. METHODS We enrolled patients with the PRNP P102L variant who were followed up at the Saga University Hospital from April 2002 to November 2019. The clinical information of patients were obtained from medical records, including clinical histories, brain magnetic resonance imaging (MRI), and electroencephalography (EEG). A brain autopsy was performed on one of the participants. RESULTS We enrolled 24 patients from 19 family lines, including 12 males. The mean age at symptom onset was 60.6 years (range, 41-77 years). The incidence rate of the Ariake PRNP P102L variant was 3.32/1,000,000 people per year in Saga city. The initial symptoms were ataxia (ataxic gait or dysarthria) in 19 patients (79.2%), cognitive impairment in 3 (12.5%), and leg paresthesia in 2 (8.3%). The median survival time from symptom onset among the 18 fatal cases was 63 months (range, 23-105 months). Brain MRI revealed no localized cerebellar atrophy, but sparse diffusion-weighted imaging abnormalities were detected in 16.7% of the patients. No periodic sharp-wave complexes were identified in EEG. Neuropathological investigations revealed uni- and multicentric prion protein (PrP) plaques in the cerebral cortex, putamen, thalamus, and cerebellum of one patient. Western blot analysis revealed 8-kDa proteinase-K-resistant PrP. CONCLUSIONS This is the first report of the accumulation area of a PRNP P102L variant on the coast of Ariake Sea. The Ariake PRNP P102L variant can be characterized by a relatively long disease duration with sparse abnormalities in brain MRI and EEG relative to previous reports. Detailed interviews to obtain information on the birthplace and the family history of related symptoms are important to diagnosing a PRNP P102L variant.
Collapse
Affiliation(s)
- Kohei Suzuyama
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan.
| | - Makoto Eriguchi
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan
| | - Hiromu Minagawa
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurology, Neuro Muscular Center, National Hospital Organization Omuta National Hospital, Omuta, Japan
| | - Keita Kai
- Department of Pathology, Saga University Hospital, Saga, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideo Hara
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan
| |
Collapse
|
2
|
Chen Z, Guo J, Ran N, Zhong Y, Yang F, Sun H. A family with mental disorder as the first symptom finally confirmed with Gerstmann-Sträussler-Scheinker disease with P102L mutation in PRNP gene - case report. Prion 2023; 17:37-43. [PMID: 36847171 PMCID: PMC9980613 DOI: 10.1080/19336896.2023.2180255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
Gerstmann-Sträussler-Scheinker (GSS) disease is an autosomal dominant neurodegenerative disease, and it is characterized by progressive cerebellar ataxia. Up to now, GSS cases with the p.P102L mutation have mainly been reported in Caucasian, but rarely in Asian populations. A 54-year-old female patient presented with an unstable gait in the hospital. Last year, she was unable to walk steadily and occasionally choked, could not even walk independently gradually. After taking her medical history, we found that she was misdiagnosed with schizophrenia before the gait problems. The patient's father showed similar symptoms and was diagnosed with brain atrophy at the age of 56, but her daughter showed no similar symptoms at present. On arrival at the Neurology Department, the patient's vital signs and laboratory examinations showed no abnormality. As the proband presented with cerebellar ataxia and had an obvious family history, we were sure that she had hereditary cerebellar ataxia. Then, patient's brain MRI showed an abnormal signal in the right parietal cortex and bilateral small ischaemic lesions in the frontal lobe. A gene panel (including 142 ataxia-related genes) was performed, and a heterozygous mutation PRNP Exon2 c.305C>T p. (Pro102Leu) was identified. Her daughter had the same heterozygous mutation. The patient was diagnosed with GSS with mental disorders as initial symptoms. After 2 months of TCM treatment, the patient's walking instability decreased, and her emotional fluctuations were less than before. In conclusion, we have reported a rare case of GSS in Sichuan, China, and the family with mental disorder as the first symptom was finally confirmed with GSS PRNP P102L mutation.
Collapse
Affiliation(s)
- Zeran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Junjun Guo
- Pediatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Ningjing Ran
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Yujia Zhong
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Sichuan, 611137, China
| | - Fang Yang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Honghui Sun
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| |
Collapse
|
3
|
Eraña H, San Millán B, Díaz-Domínguez CM, Charco JM, Rodríguez R, Viéitez I, Pereda A, Yañez R, Geijo M, Navarro C, Perez de Nanclares G, Teijeira S, Castilla J. Description of the first Spanish case of Gerstmann-Sträussler-Scheinker disease with A117V variant: clinical, histopathological and biochemical characterization. J Neurol 2022; 269:4253-4263. [PMID: 35294616 PMCID: PMC9293843 DOI: 10.1007/s00415-022-11051-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Gerstmann–Sträussler–Scheinker disease (GSS) is a rare neurodegenerative illness that belongs to the group of hereditary or familial Transmissible Spongiform Encephalopathies (TSE). Due to the presence of different pathogenic alterations in the prion protein (PrP) coding gene, it shows an enhanced proneness to misfolding into its pathogenic isoform, leading to prion formation and propagation. This aberrantly folded protein is able to induce its conformation to the native counterparts forming amyloid fibrils and plaques partially resistant to protease degradation and showing neurotoxic properties. PrP with A117V pathogenic variant is the second most common genetic alteration leading to GSS and despite common phenotypic and neuropathological traits can be defined for each specific variant, strikingly heterogeneous manifestations have been reported for inter-familial cases bearing the same pathogenic variant or even within the same family. Given the scarcity of cases and their clinical, neuropathological, and biochemical variability, it is important to characterize thoroughly each reported case to establish potential correlations between clinical, neuropathological and biochemical hallmarks that could help to define disease subtypes. With that purpose in mind, this manuscript aims to provide a detailed report of the first Spanish GSS case associated with A117V variant including clinical, genetic, neuropathological and biochemical data, which could help define in the future potential disease subtypes and thus, explain the high heterogeneity observed in patients suffering from these maladies.
Collapse
Affiliation(s)
- Hasier Eraña
- Prion Research Lab, Basque Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC BioGUNE), Derio, Spain
- Atlas Molecular Pharma S.L., Derio, Spain
| | - Beatriz San Millán
- Grupo de Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Spain
| | - Carlos M Díaz-Domínguez
- Prion Research Lab, Basque Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC BioGUNE), Derio, Spain
| | - Jorge M Charco
- Prion Research Lab, Basque Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC BioGUNE), Derio, Spain
- Atlas Molecular Pharma S.L., Derio, Spain
| | - Rosa Rodríguez
- Servicio de Neurología, Complejo Hospitalario de Ourense, Ourense, Spain
| | - Irene Viéitez
- Grupo de Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Spain
| | - Arrate Pereda
- Molecular (Epi)Genetics Laboratory, Araba University Hospital, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Rosa Yañez
- Servicio de Neurología, Complejo Hospitalario de Ourense, Ourense, Spain
| | - Mariví Geijo
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Carmen Navarro
- Grupo de Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Spain
| | - Guiomar Perez de Nanclares
- Molecular (Epi)Genetics Laboratory, Araba University Hospital, Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Susana Teijeira
- Grupo de Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Spain.
| | - Joaquín Castilla
- Prion Research Lab, Basque Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC BioGUNE), Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain.
| |
Collapse
|
4
|
Daude N, Lau A, Vanni I, Kang SG, Castle AR, Wohlgemuth S, Dorosh L, Wille H, Stepanova M, Westaway D. Prion protein with a mutant N-terminal octarepeat region undergoes cobalamin-dependent assembly into high-molecular weight complexes. J Biol Chem 2022; 298:101770. [PMID: 35271850 PMCID: PMC9010764 DOI: 10.1016/j.jbc.2022.101770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022] Open
Abstract
The cellular prion protein (PrPC) has a C-terminal globular domain and a disordered N-terminal region encompassing five octarepeats (ORs). Encounters between Cu(II) ions and four OR sites produce interchangeable binding geometries; however, the significance of Cu(II) binding to ORs in different combinations is unclear. To understand the impact of specific binding geometries, OR variants were designed that interact with multiple or single Cu(II) ions in specific locked coordinations. Unexpectedly, we found that one mutant produced detergent-insoluble, protease-resistant species in cells in the absence of exposure to the infectious prion protein isoform, scrapie-associated prion protein (PrPSc). Formation of these assemblies, visible as puncta, was reversible and dependent upon medium formulation. Cobalamin (Cbl), a dietary cofactor containing a corrin ring that coordinates a Co3+ ion, was identified as a key medium component, and its effect was validated by reconstitution experiments. Although we failed to find evidence that Cbl interacts with Cu-binding OR regions, we instead noted interactions of Cbl with the PrPC C-terminal domain. We found that some interactions occurred at a binding site of planar tetrapyrrole compounds on the isolated globular domain, but others did not, and N-terminal sequences additionally had a marked effect on their presence and position. Our studies define a conditional effect of Cbl wherein a mutant OR region can act in cis to destabilize a globular domain with a wild type sequence. The unexpected intersection between the properties of PrPSc's disordered region, Cbl, and conformational remodeling events may have implications for understanding sporadic prion disease that does not involve exposure to PrPSc.
Collapse
Affiliation(s)
- Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Canada
| | - Agnes Lau
- Centre for Prions and Protein Folding Diseases, University of Alberta, Canada
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Canada
| | - Andrew R Castle
- Centre for Prions and Protein Folding Diseases, University of Alberta, Canada
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Canada
| | - Lyudmyla Dorosh
- Faculty of Engineering - Electrical & Computer Engineering Dept, University of Alberta, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Canada; Department of Biochemistry, University of Alberta, Canada
| | - Maria Stepanova
- Faculty of Engineering - Electrical & Computer Engineering Dept, University of Alberta, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Canada.
| |
Collapse
|
5
|
Tsou A, Chen PJ, Tsai KW, Hu WC, Lu KC. THαβ Immunological Pathway as Protective Immune Response against Prion Diseases: An Insight for Prion Infection Therapy. Viruses 2022; 14:v14020408. [PMID: 35216001 PMCID: PMC8877887 DOI: 10.3390/v14020408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Prion diseases, including Creutzfeldt–Jakob disease, are mediated by transmissible proteinaceous pathogens. Pathological changes indicative of neuro-degeneration have been observed in the brains of affected patients. Simultaneously, microglial activation, along with the upregulation of pro-inflammatory cytokines, including IL-1 or TNF-α, have also been observed in brain tissue of these patients. Consequently, pro-inflammatory cytokines are thought to be involved in the pathogenesis of these diseases. Accelerated prion infections have been seen in interleukin-10 knockout mice, and type 1 interferons have been found to be protective against these diseases. Since interleukin-10 and type 1 interferons are key mediators of the antiviral THαβ immunological pathway, protective host immunity against prion diseases may be regulated via THαβ immunity. Currently no effective treatment strategies exist for prion disease; however, drugs that target the regulation of IL-10, IFN-alpha, or IFN-β, and consequently modulate the THαβ immunological pathway, may prove to be effective therapeutic options.
Collapse
Affiliation(s)
- Adam Tsou
- Department of Neurology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Po-Jui Chen
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan;
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (K.-W.T.); (K.-C.L.)
| | - Wan-Chung Hu
- Department of Clinical Pathology and Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Correspondence:
| | - Kuo-Cheng Lu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (K.-W.T.); (K.-C.L.)
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 243, Taiwan
| |
Collapse
|
6
|
Jankovska N, Rusina R, Bruzova M, Parobkova E, Olejar T, Matej R. Human Prion Disorders: Review of the Current Literature and a Twenty-Year Experience of the National Surveillance Center in the Czech Republic. Diagnostics (Basel) 2021; 11:1821. [PMID: 34679519 PMCID: PMC8534461 DOI: 10.3390/diagnostics11101821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Human prion disorders (transmissible spongiform encephalopathies, TSEs) are unique, progressive, and fatal neurodegenerative diseases caused by aggregation of misfolded prion protein in neuronal tissue. Due to the potential transmission, human TSEs are under active surveillance in a majority of countries; in the Czech Republic data are centralized at the National surveillance center (NRL) which has a clinical and a neuropathological subdivision. The aim of our article is to review current knowledge about human TSEs and summarize the experience of active surveillance of human prion diseases in the Czech Republic during the last 20 years. Possible or probable TSEs undergo a mandatory autopsy using a standardized protocol. From 2001 to 2020, 305 cases of sporadic and genetic TSEs including 8 rare cases of Gerstmann-Sträussler-Scheinker syndrome (GSS) were confirmed. Additionally, in the Czech Republic, brain samples from all corneal donors have been tested by the NRL immunology laboratory to increase the safety of corneal transplants since January 2007. All tested 6590 corneal donor brain tissue samples were negative for prion protein deposits. Moreover, the routine use of diagnostic criteria including biomarkers are robust enough, and not even the COVID-19 pandemic has negatively impacted TSEs surveillance in the Czech Republic.
Collapse
Affiliation(s)
- Nikol Jankovska
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Robert Rusina
- Department of Neurology, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic;
| | - Magdalena Bruzova
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Eva Parobkova
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Tomas Olejar
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (M.B.); (E.P.); (T.O.); (R.M.)
- Department of Pathology, First Faculty of Medicine, Charles University, and General University Hospital, 12800 Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, and University Hospital Kralovske Vinohrady, 10034 Prague, Czech Republic
| |
Collapse
|
7
|
Generation, optimization and characterization of novel anti-prion compounds. Bioorg Med Chem 2020; 28:115717. [PMID: 33065443 DOI: 10.1016/j.bmc.2020.115717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 02/03/2023]
Abstract
Prions are misfolded proteins involved in neurodegenerative diseases of high interest in veterinary and public health. In this work, we report the chemical space exploration around the anti-prion compound BB 0300674 in order to gain an understanding of its Structure Activity Relationships (SARs). A series of 43 novel analogues, based on four different chemical clusters, were synthetized and tested against PrPSc and mutant PrP toxicity assays. From this biological screening, two compounds (59 and 65) emerged with a 10-fold improvement in anti-prion activity compared with the initial lead compound, presenting at the same time interesting cell viability.
Collapse
|
8
|
Ufkes NA, Woodard C, Dale ML. A case of Gerstmann-Straussler-Scheinker (GSS) disease with supranuclear gaze palsy. JOURNAL OF CLINICAL MOVEMENT DISORDERS 2019; 6:7. [PMID: 31890235 PMCID: PMC6907140 DOI: 10.1186/s40734-019-0082-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022]
Abstract
Background Gerstmann-Straussler-Scheinker disease (GSS), an autosomal dominant prion disorder, usually presents as a slowly progressive cerebellar ataxia followed by later cognitive decline. We present a member of the GSS Indiana Kindred with supranuclear palsy, a less common feature in GSS. Case presentation A 42-year-old man presented with 12 months of progressive gait and balance difficulty. Exam was notable for ataxia and cerebellar eye movement abnormalities. Genetic testing revealed a F198S variant in the prion protein (PRNP) gene, the pathological variant of GSS associated with his family, the Indiana kindred. Eighteen months after initial presentation supranuclear palsy developed. Conclusions GSS is a neurodegenerative prion disease with diverse clinical presentations, and exhibits greater variability in disease phenotype compared to other inherited spongiform encephalopathies. GSS should be on the differential for patients with ataxia and supranuclear palsy, and it is important to assess both horizontal and vertical saccades and optokinetic nystagmus in patients with ataxia.
Collapse
Affiliation(s)
- Nicole A Ufkes
- 1College of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425 USA
| | - Craig Woodard
- 2Neurology Department, Ralph H. Johnson VA Medical Center, Charleston, SC USA.,3Department of Neurology, Medical University of South Carolina, Charleston, SC USA
| | - Marian L Dale
- 4Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L226, Portland, OR 97239 USA
| |
Collapse
|
9
|
Tesar A, Matej R, Kukal J, Johanidesova S, Rektorova I, Vyhnalek M, Keller J, Eliasova I, Parobkova E, Smetakova M, Musova Z, Rusina R. Clinical Variability in P102L Gerstmann-Sträussler-Scheinker Syndrome. Ann Neurol 2019; 86:643-652. [PMID: 31397917 DOI: 10.1002/ana.25579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/22/2022]
Abstract
Gerstmann-Sträussler-Scheinker syndrome (GSS) with the P102L mutation is a rare genetic prion disease caused by a pathogenic mutation at codon 102 in the prion protein gene. Cluster analysis encompassing data from 7 Czech patients and 87 published cases suggests the existence of 4 clinical phenotypes (typical GSS, GSS with areflexia and paresthesia, pure dementia GSS, and Creutzfeldt-Jakob disease-like GSS); GSS may be more common than previously estimated. In making a clinical diagnosis or progression estimates of GSS, magnetic resonance imaging and real-time quaking-induced conversion may be helpful, but the results should be evaluated with respect to the overall clinical context. ANN NEUROL 2019;86:643-652.
Collapse
Affiliation(s)
- Adam Tesar
- The Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, and General University Hospital, Prague
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, and Thomayer Hospital, Prague.,Department of Pathology, First Faculty of Medicine, Charles University, and General University Hospital, Prague.,Department of Pathology, Third Faculty of Medicine, Charles University, and Kralovske Vinohrady University Hospital, Prague
| | - Jaromir Kukal
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague
| | - Silvie Johanidesova
- Department of Neurology, Third Faculty of Medicine, Charles University, and Thomayer Hospital, Prague
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno.,Department of Neurology, Faculty of Medicine, Masaryk University, and Saint Anne's University Hospital, Brno
| | - Martin Vyhnalek
- Department of Neurology, Second Faculty of Medicine, Charles University, and Motol University Hospital, Prague.,International Clinical Research Center, St Anne's University Hospital Brno, Brno
| | - Jiri Keller
- The Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, and General University Hospital, Prague.,Department of Radiology, Na Homolce Hospital, Prague
| | - Ilona Eliasova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno.,Department of Neurology, Faculty of Medicine, Masaryk University, and Saint Anne's University Hospital, Brno
| | - Eva Parobkova
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, and Thomayer Hospital, Prague.,Department of Pathology, Third Faculty of Medicine, Charles University, and Kralovske Vinohrady University Hospital, Prague
| | - Magdalena Smetakova
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, and Thomayer Hospital, Prague.,Department of Pathology, Third Faculty of Medicine, Charles University, and Kralovske Vinohrady University Hospital, Prague
| | - Zuzana Musova
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University, and Motol University Hospital, Prague, Czech Republic
| | - Robert Rusina
- The Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, and General University Hospital, Prague.,Department of Neurology, Third Faculty of Medicine, Charles University, and Thomayer Hospital, Prague
| |
Collapse
|
10
|
Long L, Cai X, Shu Y, Lu Z. A family with hereditary cerebellar ataxia finally confirmed as Gerstmann-Straussler-Scheinker syndrome with P102L mutation in PRNP gene. ACTA ACUST UNITED AC 2019; 22:138-142. [PMID: 28416787 PMCID: PMC5726821 DOI: 10.17712/nsj.2017.2.20160522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gerstmann-Sträussler-Scheinker syndrome (GSS) is an exceedingly rare prion disease. There are only 3 case reports of GSS in China. Here we report the first GSS family in southern China. A 47-year-old female complained of unsteady gait and dysarthria. Seven other individuals presented similar symptoms in 3 generations of her family, and all died 4–6 years after onset. To detect causative mutations, we employed a gene analysis panel of hereditary diseases. This revealed a P102L mutation in the prion protein gene (PRNP) gene, which is commonly found in GSS featuring cerebellar ataxia. However, GSS is an uncommon cause of hereditary cerebellar ataxia that might be overlooked because many neurologists are unfamiliar with it. To avoid misdiagnosis in the patients with hereditary cerebellar ataxia, GSS should be taken into account if other causes are absent, especially in patients that have accompanying psychiatric symptoms and a short survival time.
Collapse
Affiliation(s)
- Ling Long
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People`s Republic of China
| | | | | | | |
Collapse
|
11
|
Di Fede G, Giaccone G, Salmona M, Tagliavini F. Translational Research in Alzheimer's and Prion Diseases. J Alzheimers Dis 2019; 62:1247-1259. [PMID: 29172000 PMCID: PMC5869996 DOI: 10.3233/jad-170770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Translational neuroscience integrates the knowledge derived by basic neuroscience with the development of new diagnostic and therapeutic tools that may be applied to clinical practice in neurological diseases. This information can be used to improve clinical trial designs and outcomes that will accelerate drug development, and to discover novel biomarkers which can be efficiently employed to early recognize neurological disorders and provide information regarding the effects of drugs on the underlying disease biology. Alzheimer’s disease (AD) and prion disease are two classes of neurodegenerative disorders characterized by incomplete knowledge of the molecular mechanisms underlying their occurrence and the lack of valid biomarkers and effective treatments. For these reasons, the design of therapies that prevent or delay the onset, slow the progression, or improve the symptoms associated to these disorders is urgently needed. During the last few decades, translational research provided a framework for advancing development of new diagnostic devices and promising disease-modifying therapies for patients with prion encephalopathies and AD. In this review, we provide present evidence of how supportive can be the translational approach to the study of dementias and show some results of our preclinical studies which have been translated to the clinical application following the ‘bed-to-bench-and-back’ research model.
Collapse
Affiliation(s)
- Giuseppe Di Fede
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Giorgio Giaccone
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Mario Salmona
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | | |
Collapse
|
12
|
Silva CJ. Food Forensics: Using Mass Spectrometry To Detect Foodborne Protein Contaminants, as Exemplified by Shiga Toxin Variants and Prion Strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8435-8450. [PMID: 29860833 DOI: 10.1021/acs.jafc.8b01517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Food forensicists need a variety of tools to detect the many possible food contaminants. As a result of its analytical flexibility, mass spectrometry is one of those tools. Use of the multiple reaction monitoring (MRM) method expands its use to quantitation as well as detection of infectious proteins (prions) and protein toxins, such as Shiga toxins. The sample processing steps inactivate prions and Shiga toxins; the proteins are digested with proteases to yield peptides suitable for MRM-based analysis. Prions are detected by their distinct physicochemical properties and differential covalent modification. Shiga toxin analysis is based on detecting peptides derived from the five identical binding B subunits comprising the toxin. 15N-labeled internal standards are prepared from cloned proteins. These examples illustrate the power of MRM, in that the same instrument can be used to safely detect and quantitate protein toxins, prions, and small molecules that might contaminate our food.
Collapse
Affiliation(s)
- Christopher J Silva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service , United States Department of Agriculture , Albany , California 94710 , United States
| |
Collapse
|
13
|
Takada LT, Kim MO, Metcalf S, Gala II, Geschwind MD. Prion disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:441-464. [DOI: 10.1016/b978-0-444-64076-5.00029-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
MacLea KS. What Makes a Prion: Infectious Proteins From Animals to Yeast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:227-276. [PMID: 28109329 DOI: 10.1016/bs.ircmb.2016.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
While philosophers in ancient times had many ideas for the cause of contagion, the modern study of infective agents began with Fracastoro's 1546 proposal that invisible "spores" spread infectious disease. However, firm categorization of the pathogens of the natural world would need to await a mature germ theory that would not arise for 300 years. In the 19th century, the earliest pathogens described were bacteria and other cellular microbes. By the close of that century, the work of Ivanovsky and Beijerinck introduced the concept of a virus, an infective particle smaller than any known cell. Extending into the early-mid-20th century there was an explosive growth in pathogenic microbiology, with a cellular or viral cause identified for nearly every transmissible disease. A few occult pathogens remained to be discovered, including the infectious proteins (prions) proposed by Prusiner in 1982. This review discusses the prions identified in mammals, yeasts, and other organisms, focusing on the amyloid-based prions. I discuss the essential biochemical properties of these agents and the application of this knowledge to diseases of protein misfolding and aggregation, as well as the utility of yeast as a model organism to study prion and amyloid proteins that affect human and animal health. Further, I summarize the ideas emerging out of these studies that the prion concept may go beyond proteinaceous infectious particles and that prions may be a subset of proteins having general nucleating or seeding functions involved in noninfectious as well as infectious pathogenic protein aggregation.
Collapse
Affiliation(s)
- K S MacLea
- University of New Hampshire, Manchester, NH, United States.
| |
Collapse
|
15
|
Li HF, Liu ZJ, Dong HL, Xie JJ, Zhao SY, Ni W, Dong Y, Wu ZY. Clinical features of Chinese patients with Gerstmann-Sträussler-Scheinker identified by targeted next-generation sequencing. Neurobiol Aging 2016; 49:216.e1-216.e5. [PMID: 28340953 DOI: 10.1016/j.neurobiolaging.2016.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/04/2016] [Accepted: 09/25/2016] [Indexed: 12/11/2022]
Abstract
Gerstmann-Sträussler-Scheinker (GSS) is an autosomal dominant neurodegenerative disease due to mutations within prion protein (PRNP) gene. Clinically, it is not easy to distinguish GSS from spinocerebellar ataxia (SCA), especially in the early stage of disease. We aimed to identify genetic mutations in 8 Chinese pedigrees with dominant ataxia but excluded dynamic mutations of SCA genes. Targeted next-generation sequencing was performed in the 8 probands. A customized panel was designed to capture 24 known causative genes, including 15 autosomal dominant SCA genes and 9 dementia-related genes. A 2-year follow-up was performed in these patients who harbored mutation. Of the 8 probands, 5 were identified to harbor the p.P102L mutation within PRNP. All these 5 cases had progressive ataxia with age at onset ranging from 48 to 52 years (49.5 ± 4.51). Remarkable phenotypic heterogeneity was observed in them. Cognitive decline was found in 4/5 probands. The average duration from initial symptoms to cognitive decline is 32.5 months, ranging from 22 to 48 months. In this study, we presented the detailed clinical features of 5 GSS pedigrees with PRNP p.P102L mutation. The variable phenotypes among these GSS patients indicated other genetic or environmental factors might be involved in the phenotypic heterogeneity of GSS. Our findings also support the proposal that screening of PRNP mutations should be performed for the patients with dominant ataxia if dynamic mutations of SCA genes were excluded.
Collapse
Affiliation(s)
- Hong-Fu Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Jun Liu
- Department of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan-Juan Xie
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Shao-Yun Zhao
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang Ni
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
16
|
Abstract
Prion diseases are a heterogeneous class of fatal neurodegenerative disorders associated with misfolding of host cellular prion protein (PrP(C)) into a pathological isoform, termed PrP(Sc). Prion diseases affect various mammals, including humans, and effective treatments are not available. Prion diseases are distinguished from other protein misfolding disorders - such as Alzheimer's or Parkinson's disease - in that they are infectious. Prion diseases occur sporadically without any known exposure to infected material, and hereditary cases resulting from rare mutations in the prion protein have also been documented. The mechanistic underpinnings of prion and other neurodegenerative disorders remain poorly understood. Various proteomics techniques have been instrumental in early PrP(Sc) detection, biomarker discovery, elucidation of PrP(Sc) structure and mapping of biochemical pathways affected by pathogenesis. Moving forward, proteomics approaches will likely become more integrated into the clinical and research settings for the rapid diagnosis and characterization of prion pathogenesis.
Collapse
Affiliation(s)
- Roger A Moore
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIH,NIAID, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
17
|
Uflacker A, Doraiswamy PM, Rechitsky S, See T, Geschwind M, Tur-Kaspa I. Preimplantation genetic diagnosis (PGD) for genetic prion disorder due to F198S mutation in the PRNP gene. JAMA Neurol 2014; 71:484-6. [PMID: 24493558 DOI: 10.1001/jamaneurol.2013.5884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE To describe the first case of preimplantation genetic diagnosis (PGD) and in vitro fertilization (IVF) performed for the prevention of genetic prion disease in the children of a 27-year-old asymptomatic woman with a family history of Gerstmann-Sträussler-Sheinker syndrome (GSS). OBSERVATIONS PGD and fertilization cycles resulted in detection of 6 F198S mutation-free embryos. Of these, 2 were selected for embryo transfer to the patient's uterus, yielding a clinical twin pregnancy and birth of healthy but slightly premature offspring with normal development at age 27 months. CONCLUSION AND RELEVANCE IVF with PGD is a viable option for couples who wish to avoid passing the disease to their offspring. Neurologists should be aware of PGD to be able to better consult at-risk families on their reproductive choices.
Collapse
Affiliation(s)
- Alice Uflacker
- Department of Psychiatry and the Duke Institute for Brain Sciences, Duke University, Durham, North Carolina
| | - P Murali Doraiswamy
- Department of Psychiatry and the Duke Institute for Brain Sciences, Duke University, Durham, North Carolina
| | | | - Tricia See
- Department of Neurology, Memory and Aging Center, University of California, San Francisco4InformedDNA, Informed Medical Decisions Inc, St Petersburg, Florida
| | - Michael Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco
| | - Ilan Tur-Kaspa
- Reproductive Genetics Institute, Chicago, Illinois5Department of Obstetrics and Gynecology, The University of Chicago6Institute for Human Reproduction, Chicago, Illinois
| |
Collapse
|
18
|
Abstract
Human prion diseases are fatal neurodegenerative disorders that are characterized by spongiform changes, astrogliosis, and the accumulation of an abnormal prion protein (PrP(Sc)). Approximately 10%-15% of human prion diseases are familial variants that are caused by pathogenic mutations in the prion protein gene (PRNP). Point mutations or the insertions of one or more copies of a 24 bp repeat are associated with familial human prion diseases including familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome, and fatal familial insomnia. These mutations vary significantly in frequency between countries. Here, we compare the frequency of PRNP mutations between European countries and East Asians. Associations between single nucleotide polymorphisms (SNPs) of several candidate genes including PRNP and CJD have been reported. The SNP of PRNP at codon 129 has been shown to be associated with sporadic, iatrogenic, and variant CJD. The SNPs of several genes other than PRNP have been showed contradictory results. Case-control studies and genome-wide association studies have also been performed to identify candidate genes correlated with variant and/or sporadic CJD. This review provides a general overview of the genetic mutations and polymorphisms that have been analyzed in association with human prion diseases to date.
Collapse
Affiliation(s)
- Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Chonbuk National University, Jeonju, Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| |
Collapse
|
19
|
Abstract
Prion diseases are neurodegenerative illnesses due to the accumulation of small infectious pathogens containing protein but apparently lacking nucleic acid, which have long incubation periods and progress inexorably once clinical symptoms appear. Prions are uniquely resistant to a number of normal decontaminating procedures. The prionopathies [Kuru, Creutzfeldt-Jakob disease (CJD) and its variants, Gerstmann-Sträussler-Scheinker (GSS) syndrome and fatal familial insomnia (FFI)] result from accumulation of abnormal isoforms of the prion protein in the brains of normal animals on both neuronal and non-neuronal cells. The accumulation of this protein or fragments of it in neurons leads to apoptosis and cell death. There is a strong link between mutations in the gene encoding the normal prion protein in humans (PRNP) - located on the short arm of chromosome 20 - and forms of prion disease with a familial predisposition (familial CJD, GSS, FFI). Clinically a prionopathy should be suspected in any case of a fast progressing dementia with ataxia, myoclonus, or in individuals with pathological insomnia associated with dysautonomia. Magnetic resonance imaging, identification of the 14-3-3 protein in the cerebrospinal fluid, tonsil biopsy and genetic studies have been used for in vivo diagnosis circumventing the need of brain biopsy. Histopathology, however, remains the only conclusive method to reach a confident diagnosis. Unfortunately, despite numerous treatment efforts, prionopathies remain short-lasting and fatal diseases.
Collapse
|
20
|
Riudavets MA, Sraka MA, Schultz M, Rojas E, Martinetto H, Begué C, Noher de Halac I, Poleggi A, Equestre M, Pocchiari M, Sevlever G, Taratuto AL. Gerstmann-Sträussler-Scheinker syndrome with variable phenotype in a new kindred with PRNP-P102L mutation. Brain Pathol 2013; 24:142-7. [PMID: 23944754 DOI: 10.1111/bpa.12083] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/08/2013] [Indexed: 12/15/2022] Open
Abstract
Gerstmann-Sträussler-Scheinker syndrome (GSS) is a dominantly inherited disorder belonging to the group of transmissible human spongiform encephalopathies or prion diseases. Several families affected by GSS with patients carrying mutations in the prion protein gene have been described worldwide. We report clinical, genealogical, neuropathology and molecular study results from two members of the first Argentine kindred affected by GSS. Both family members presented a frontotemporal-like syndrome, one with and the other without ataxia, with different lesions on neuropathology. A Pro to Leu point mutation at codon 102 (P102L) of the prion protein gene was detected in one of the subjects studied. The pathogenic basis of phenotypic variability observed in this family remains unclear, but resembles that observed in other P102L GSS patients from the same family.
Collapse
Affiliation(s)
- Miguel A Riudavets
- Department of Neuropathology, Institute for Neurological Research, FLENI, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bett C, Kurt TD, Lucero M, Trejo M, Rozemuller AJ, Kong Q, Nilsson KPR, Masliah E, Oldstone MB, Sigurdson CJ. Defining the conformational features of anchorless, poorly neuroinvasive prions. PLoS Pathog 2013; 9:e1003280. [PMID: 23637596 PMCID: PMC3630170 DOI: 10.1371/journal.ppat.1003280] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
Infectious prions cause diverse clinical signs and form an extraordinary range of structures, from amorphous aggregates to fibrils. How the conformation of a prion dictates the disease phenotype remains unclear. Mice expressing GPI-anchorless or GPI-anchored prion protein exposed to the same infectious prion develop fibrillar or nonfibrillar aggregates, respectively, and show a striking divergence in the disease pathogenesis. To better understand how a prion's physical properties govern the pathogenesis, infectious anchorless prions were passaged in mice expressing anchorless prion protein and the resulting prions were biochemically characterized. Serial passage of anchorless prions led to a significant decrease in the incubation period to terminal disease and altered the biochemical properties, consistent with a transmission barrier effect. After an intraperitoneal exposure, anchorless prions were only weakly neuroinvasive, as prion plaques rarely occurred in the brain yet were abundant in extracerebral sites such as heart and adipose tissue. Anchorless prions consistently showed very high stability in chaotropes or when heated in SDS, and were highly resistant to enzyme digestion. Consistent with the results in mice, anchorless prions from a human patient were also highly stable in chaotropes. These findings reveal that anchorless prions consist of fibrillar and highly stable conformers. The additional finding from our group and others that both anchorless and anchored prion fibrils are poorly neuroinvasive strengthens the hypothesis that a fibrillar prion structure impedes efficient CNS invasion. Prions cause fatal neurodegenerative disease in humans and animals and there is currently no treatment available. The cellular prion protein is normally tethered to the outer leaflet of the plasma membrane by a glycophosphatidyl inositol (GPI) anchor. A rare stop codon mutation in the PRNP gene leads to the production of GPI-anchorless prion protein and the development of familial prion disease, which has been reproduced in mouse models. GPI-anchorless prions in humans or mice form large, dense plaques containing fibrils in the brain that vary from the more common non-fibrillar prion aggregates. Here we investigated the biochemical differences between GPI-anchored and GPI-anchorless prions. We also assessed the capacity of GPI-anchorless prions to spread from entry sites into the central nervous system. We found that infectious GPI-anchorless prions were extraordinarily stable when exposed to protein denaturing conditions. Additionally, we show that GPI-anchorless prions rarely invade the central nervous system and then only after long incubation periods, despite their presence in extraneural tissues including adipose tissue and heart. Our study shows that GPI-anchored prions converted into GPI-anchorless prions become extraordinarily stable, more resistant to enzyme digestion, and are poorly able to invade the nervous system.
Collapse
Affiliation(s)
- Cyrus Bett
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Tim D. Kurt
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Melanie Lucero
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Margarita Trejo
- Department of Neuroscience, University of California, San Diego, La Jolla, California, United States of America
| | - Annemieke J. Rozemuller
- Dutch Surveillance Centre for Prion Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - K. Peter R. Nilsson
- Department of Chemistry, Biology, and Physics, Linkoping University, Linkoping, Sweden
| | - Eliezer Masliah
- Department of Neuroscience, University of California, San Diego, La Jolla, California, United States of America
| | - Michael B. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Christina J. Sigurdson
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
- Department of Pathology, Immunology, and Microbiology, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|