1
|
Let M, Grabicová K, Balzani P, Musil M, Roje S, Bláha M. Bioaccumulation of Pharmaceutically Active Compounds from Treated Urban Wastewaters in Aquatic Insect Larvae and Aerial Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5293-5305. [PMID: 40043305 DOI: 10.1021/acs.est.4c13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The bioaccumulation of 80 pharmaceutically active compounds (PhACs) was examined in larvae, pupae, and (sub)adults of three groups of aquatic insects (caddisflies Oligotricha striata and Limnephilus spp. and mayfly Siphlonurus aestivalis) reared in laboratory conditions, with their larvae exposed to a treated urban wastewater for up to 3 months and fed with uncontaminated food. The probability of PhAC detection (above limits of quantification) in larvae was relatively constant throughout the exposure time, while in adults, it was lower at the beginning with a subsequent increase. The total concentration of detected PhACs was highest in larvae of Limnephilus spp. and lowest in larvae of S. aestivalis, decreasing similarly in the adults of all three species. Significant differences in the composition of PhACs with different levels of changes after emergence were detected between species. Only telmisartan was detected in all species and life stages. Sertraline and its active metabolite norsertraline exhibited significantly higher relative concentrations in caddisfly adults compared to larvae. Apart from the bioconcentration factor, increasing biodegradation half-life was the second-best predictor of increased PhAC concentration in adults compared to larvae. At the same time, log Kow, commonly associated with bioaccumulation, was not found to be a good predictor of this relationship. The present study provides valuable insights into the bioaccumulation patterns and potential transfer of PhACs from aquatic to terrestrial ecosystems.
Collapse
Affiliation(s)
- Marek Let
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany 389 25, Czech Republic
| | - Kateřina Grabicová
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany 389 25, Czech Republic
| | - Paride Balzani
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany 389 25, Czech Republic
| | - Martin Musil
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany 389 25, Czech Republic
| | - Sara Roje
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany 389 25, Czech Republic
| | - Martin Bláha
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany 389 25, Czech Republic
| |
Collapse
|
2
|
Race AS, Spoelstra J, Parker BL. Wastewater contaminants in a fractured bedrock aquifer and their potential use as enteric virus indicators. Appl Environ Microbiol 2024; 90:e0121323. [PMID: 38231263 PMCID: PMC10880619 DOI: 10.1128/aem.01213-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024] Open
Abstract
Domestic wastewater is a source of persistent organic pollutants and pathogens to the aquatic environment, including groundwater aquifers. Wastewater contaminants include a variety of personal care products, pharmaceuticals, endocrine disrupters, bacteria, and viruses. Groundwater from 22 wells completed in a semi-confined to confined, fractured Silurian dolostone aquifer in southern Wellington County, Ontario, Canada, was analyzed for 14 organic wastewater contaminants (4 artificial sweeteners, 10 pharmaceuticals) as well as E. coli, total coliforms, and 6 human enteric viruses. Enteric viruses were detected in 8.6% of 116 samples, and at least one organic wastewater contaminant was detected in 82% of the wells (in order of decreasing detection frequency: acesulfame, ibuprofen, sulfamethoxazole, triclosan, carbamazepine, and saccharin). Virus indicator metrics [positive and negative predictive values (PPV, NPV), sensitivity, specificity] were calculated at the sample and well level for the organic wastewater compounds, E. coli, and total coliforms. Fecal bacteria were not good predictors of virus presence (PPV = 0%-8%). Of the potential chemical indicators, triclosan performed the best at the sample level (PPV = 50%, NPV = 100%), and ibuprofen performed the best at the well level (PPV = 60%, NPV = 67%); however, no samples had triclosan or ibuprofen concentrations above their practical quantification limits. Therefore, none of the compounds performed sufficiently well to be considered reliable for assessing the potential threat of enteric viruses in wastewater-impacted groundwater in this bedrock aquifer. Future studies need to evaluate the indicator potential of persistent organic wastewater contaminants in different types of aquifers, especially in fractured rock where heterogeneity is strong.IMPORTANCEAssessing the potential risk that human enteric viruses pose in groundwater aquifers used for potable water supply is complicated by several factors, including: (i) labor-intensive methods for the isolation and quantification of viruses in groundwater, (ii) the temporal variability of these viruses in domestic wastewater, and (iii) their potentially rapid transport in the subsurface, especially in fractured rock aquifers. Therefore, aquifer risk assessment would benefit from the identification of suitable proxy indicators of enteric viruses that are easier to analyze and less variable in wastewater sources. Traditional fecal indicators (e.g., E. coli and coliforms) are generally poor indicators of enteric viruses in groundwater. While many studies have examined the use of pharmaceutical and personal care products as tracers of domestic wastewater and fecal pollution in the environment, there is a paucity of data on the potential use of these chemical tracers as enteric virus indicators, especially in groundwater.
Collapse
Affiliation(s)
- Amy S. Race
- Morwick G360 Groundwater Research Institute, University of Guelph, Guelph, Ontario, Canada
- Now with: Tesla, Spring Creek, Nevada, USA
| | - John Spoelstra
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Beth L. Parker
- Morwick G360 Groundwater Research Institute, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Mheidli N, Malli A, Mansour F, Al-Hindi M. Occurrence and risk assessment of pharmaceuticals in surface waters of the Middle East and North Africa: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158302. [PMID: 36030863 DOI: 10.1016/j.scitotenv.2022.158302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical compounds in surface water are perceived as contaminants of emerging concern due to their impacts on the aquatic environment and human health. The risk associated with these compounds has not been quantified in the Middle East and North Africa (MENA). This review identified that 210 pharmaceutical compounds have been analyzed in MENA water compartments between 2008 and 2022. In fact, 151 of these substances were detected in at least one of 13 MENA countries where occurrence studies had been conducted. Antibiotics claimed the highest number of pharmaceuticals detected with concentrations ranging between 0.03 and 66,400 ng/L (for Thiamphenicol and Spiramycin respectively). To investigate whether any of these compounds exert an ecological, human health, or antibiotic resistance risk, a screening-level risk assessment was performed in surface water matrices using maximum, median, and minimum concentrations. 39 and 8 detected pharmaceuticals in MENA surface waters posed a possible risk on aquatic ecosystems and human health respectively. Extremely high risk quotients (>1000) for six pharmaceuticals (17β estradiol, spiramycin, diclofenac, metoprolol, ethinylestradiol, and carbamazepine) were enumerated based on maximal concentrations implying an alarming risk on aquatic toxicity. Moreover, hormones posed the highest possible risk on human health whether ingested through drinking water or fish (e.g., 17β-estradiol had a health risk quotient of 2880 for children). Spiramycin showed a high risk of antibiotic resistance with a risk quotient of 133. This review serves as a basis for future prioritization studies and regulatory guidelines in the MENA region to minimize the risks of the identified compounds.
Collapse
Affiliation(s)
- Nourhan Mheidli
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, American University of Beirut, Beirut, Lebanon
| | - Ali Malli
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, American University of Beirut, Beirut, Lebanon.
| | - Fatima Mansour
- Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon
| | - Mahmoud Al-Hindi
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
4
|
Comparing Environmental Policies to Reduce Pharmaceutical Pollution and Address Disparities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148292. [PMID: 35886145 PMCID: PMC9325029 DOI: 10.3390/ijerph19148292] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 12/10/2022]
Abstract
Pharmaceutical products, including active pharmaceutical ingredients and inactive ingredients such as packaging materials, have raised significant concerns due to their persistent input and potential threats to human and environmental health. Discourse on reducing pharmaceutical waste and subsequent pollution is often limited, as information about the toxicity of pharmaceuticals in humans is yet to be fully established. Nevertheless, there is growing awareness about ecotoxicity, and efforts to curb pharmaceutical pollution in the European Union (EU), United States (US), and Canada have emerged along with waste disposal and treatment procedures, as well as growing concerns about impacts on human and animal health, such as through antimicrobial resistance. Yet, the outcomes of such endeavors are often disparate and involve multiple agencies, organizations, and departments with little evidence of cooperation, collaboration, or oversight. Environmental health disparities occur when communities exposed to a combination of poor environmental quality and social inequities experience more sickness and disease than wealthier, less polluted communities. In this paper, we discuss pharmaceutical environmental pollution in the context of health disparities and examine policies across the US, EU, and Canada in minimizing environmental pollution.
Collapse
|
5
|
Ortúzar M, Esterhuizen M, Olicón-Hernández DR, González-López J, Aranda E. Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems. Front Microbiol 2022; 13:869332. [PMID: 35558129 PMCID: PMC9087044 DOI: 10.3389/fmicb.2022.869332] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of emerging contaminants in the environment, such as pharmaceuticals, is a growing global concern. The excessive use of medication globally, together with the recalcitrance of pharmaceuticals in traditional wastewater treatment systems, has caused these compounds to present a severe environmental problem. In recent years, the increase in their availability, access and use of drugs has caused concentrations in water bodies to rise substantially. Considered as emerging contaminants, pharmaceuticals represent a challenge in the field of environmental remediation; therefore, alternative add-on systems for traditional wastewater treatment plants are continuously being developed to mitigate their impact and reduce their effects on the environment and human health. In this review, we describe the current status and impact of pharmaceutical compounds as emerging contaminants, focusing on their presence in water bodies, and analyzing the development of bioremediation systems, especially mycoremediation, for the removal of these pharmaceutical compounds with a special focus on fungal technologies.
Collapse
Affiliation(s)
- Maite Ortúzar
- Department of Microbiology and Genetics, Edificio Departamental, University of Salamanca, Salamanca, Spain
| | - Maranda Esterhuizen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Finland and Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland.,Joint Laboratory of Applied Ecotoxicology, Korea Institute of Science and Technology Europe, Saarbrücken, Germany.,University of Manitoba, Clayton H. Riddell Faculty of Environment, Earth, and Resources, Winnipeg, MB, Canada
| | - Darío Rafael Olicón-Hernández
- Instituto Politécnico Nacional, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico
| | - Jesús González-López
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Elisabet Aranda
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
6
|
Białk-Bielińska A, Grabarczyk Ł, Mulkiewicz E, Puckowski A, Stolte S, Stepnowski P. Mixture toxicity of six pharmaceuticals towards Aliivibrio fischeri, Daphnia magna, and Lemna minor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26977-26991. [PMID: 34907475 PMCID: PMC8989911 DOI: 10.1007/s11356-021-17928-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
As the knowledge on the joint effects of pharmaceuticals towards different non-target organisms is still limited, the aim of our study was to evaluate the toxicity of mixtures of pharmaceuticals, as well as their baseline toxicity towards three selected organisms, namely the bioluminescent bacteria Aliivibrio fischeri, the crustacean Daphnia magna, and the duckweed Lemna minor. Different mixtures composed of three up to five pharmaceuticals having the same or different mechanisms of action in terms of their therapeutic activity (non-steroidal anti-inflammatory drugs, opioid analgesic, antibacterial and anti-epileptic drugs) were investigated. The observed EC50s were compared with those predicted using the concentration addition (CA) and independent action (IA) models. In general, the EC50 values for mixtures predicted with the CA model were lower than those obtained with the IA model, although, in some cases, test predictions of these two models were almost identical. Most of the experimentally determined EC50 values for the specific mixtures were slightly higher than those predicted with the CA model; hence, a less than additive effect was noted. Based on the obtained results, it might be concluded that the CA model assumes the worst-case scenario and gives overall closer predictions; therefore, it should be recommended also for modeling the mixture toxicity of pharmaceuticals with different modes of action.
Collapse
Affiliation(s)
- Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Łukasz Grabarczyk
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Alan Puckowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
7
|
Wang B, Zhang R, Li Y, Lian X. CFD simulation of a swirling vortex cavitator and its degradation performance and pathway of tetracycline in aqueous solution. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2021-0243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The vortex cavitation technology shows a great development potential for antibiotic wastewater treatment. We have designed a novel swirling vortex cavitator for tetracycline degradation in aqueous solution. By Computational Fluid Dynamics (CFD) simulation using ANSYS CFX flow field calculation software, it was found that the vortex cavitator could form a low-pressure area far lower than the saturated vapor pressure at experimental temperature, resulting in generation of obvious vortex cavitation effect, which also proved by the concentration of hydroxyl radical of 4.58 μmol/L measured by methylene blue method. Moreover, the tetracycline degradation process may be mainly caused by the oxidation of hydroxyl radicals. The batch experiments results showed when the degradation time was 30 min, the vortex cavitator had a good degradation ability of tetracycline in pH range of 5.0–9.0. The degradation efficiency of 2.0 mg/L tetracycline solution was 76.45% within 50 min at pH 7.0. The possible intermediate products of tetracycline were determined by HPLC-MS Spectrometry. A series of reactions including hydroxylation, decarbonylation and C–N bond cleavage, ring-opening, and removing two methyl groups in the carbon atom ring, occur during the degradation.
Collapse
Affiliation(s)
- Baoe Wang
- College of Resource and Environment, Zhongkai University of Agriculture and Engineering , Guangzhou 510225 , China
| | - Rihong Zhang
- College of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering , Guangzhou 510225 , China
| | - Yiyong Li
- College of Resource and Environment, Zhongkai University of Agriculture and Engineering , Guangzhou 510225 , China
| | - Xiaoming Lian
- College of Resource and Environment, Zhongkai University of Agriculture and Engineering , Guangzhou 510225 , China
| |
Collapse
|
8
|
The road to hell is irreversible. Nat Chem 2021; 13:390-391. [PMID: 33931751 DOI: 10.1038/s41557-021-00699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Mehdi H, Lau SC, Synyshyn C, Salena MG, McCallum ES, Muzzatti MN, Bowman JE, Mataya K, Bragg LM, Servos MR, Kidd KA, Scott GR, Balshine S. Municipal wastewater as an ecological trap: Effects on fish communities across seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143430. [PMID: 33187712 DOI: 10.1016/j.scitotenv.2020.143430] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Municipal wastewater treatment plant (WWTP) effluents are a ubiquitous source of contamination whose impacts on fish and other aquatic organisms span across multiple levels of biological organization. Despite this, few studies have addressed the impacts of WWTP effluents on fish communities, especially during the winter-a season seldom studied. Here, we assessed the impacts of wastewater on fish community compositions and various water quality parameters during the summer and winter along two effluent gradients in Hamilton Harbour, an International Joint Commission Area of Concern in Hamilton, Canada. We found that fish abundance, species richness, and species diversity were generally highest in sites closest to the WWTP outfalls, but only significantly so in the winter. Fish community compositions differed greatly along the effluent gradients, with sites closest and farthest from the outfalls being the most dissimilar. Furthermore, the concentrations of numerous contaminants of emerging concern (CECs) in the final treated effluent were highest during the winter. Water quality of sites closer to the outfalls was poorer than at sites farther away, especially during the winter. We also demonstrated that WWTPs can significantly alter the thermal profile of effluent-receiving environments, increasing temperature by as much as ~9 °C during the winter. Our results suggest that wastewater plumes may act as ecological traps in winter, whereby fish are attracted to the favourable temperatures near WWTPs and are thus exposed to higher concentrations of CECs. This study highlights the importance of winter research as a key predictor in further understanding the impacts of wastewater contamination in aquatic ecosystems.
Collapse
Affiliation(s)
- Hossein Mehdi
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Samantha C Lau
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Caitlyn Synyshyn
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Erin S McCallum
- Department of Wildlife Fish and Environmental Studies, Swedish University of Agriculture Sciences, SE-90183 Umeå, Sweden
| | - Melissa N Muzzatti
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Jennifer E Bowman
- Royal Botanical Gardens, 680 Plains Road W, Burlington, Ontario L7T 4H4, Canada.
| | - Kyle Mataya
- Royal Botanical Gardens, 680 Plains Road W, Burlington, Ontario L7T 4H4, Canada.
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Karen A Kidd
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada; School of Earth, Environment and Society, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada; Institute for Water, Environment and Health, United Nations University, 204 - 175 Longwood Road S., Hamilton, ON L8P 0A1, Canada.
| | - Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
10
|
Duarte B, Feijão E, Cruz de Carvalho R, Duarte IA, Silva M, Matos AR, Cabrita MT, Novais SC, Lemos MFL, Marques JC, Caçador I, Reis-Santos P, Fonseca VF. Effects of Propranolol on Growth, Lipids and Energy Metabolism and Oxidative Stress Response of Phaeodactylum tricornutum. BIOLOGY 2020; 9:biology9120478. [PMID: 33353054 PMCID: PMC7766914 DOI: 10.3390/biology9120478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary In the past two decades, increasing attention has been directed to investigate the incidence and consequences of pharmaceuticals in the aquatic environment. Propranolol is a non-selective β-adrenoceptor blocker used in large quantities worldwide to treat cardiovascular conditions. Diatoms (model organism) exposed to this compound showed evident signs of oxidative stress, a significant reduction of the autotrophic O2 production and an increase in the heterotrophic mitochondrial respiration. Additionally, diatoms exposed to propranolol showed a consumption of its storage lipids. In ecological terms this will have cascading impacts in the marine trophic webs, where these organisms are key elements, through a reduction of the water column oxygenation and essential fatty acid availability to the heterotrophic organisms that depend on these primary producers. In ecotoxicological terms, diatoms photochemical and fatty acid traits showed to be potential good biomarkers for toxicity assessment of diatoms exposed to this widespread pharmaceutical compound. Abstract Present demographic trends suggest a rise in the contributions of human pharmaceuticals into coastal ecosystems, underpinning an increasing demand to evaluate the ecotoxicological effects and implications of drug residues in marine risk assessments. Propranolol, a non-selective β-adrenoceptor blocker, is used worldwide to treat high blood pressure conditions and other related cardiovascular conditions. Although diatoms lack β-adrenoceptors, this microalgal group presents receptor-like kinases and proteins with a functional analogy to the animal receptors and that can be targeted by propranolol. In the present work, the authors evaluated the effect of this non-selective β-adrenoceptor blocker in diatom cells using P. tricornutum as a model organism, to evaluate the potential effect of this compound in cell physiology (growth, lipids and energy metabolism and oxidative stress) and its potential relevance for marine ecosystems. Propranolol exposure leads to a significant reduction in diatom cell growth, more evident in the highest concentrations tested. This is likely due to the observed impairment of the main primary photochemistry processes and the enhancement of the mitochondrial respiratory activity. More specifically, propranolol decreased the energy transduction from photosystem II (PSII) to the electron transport chain, leading to an increase in oxidative stress levels. Cells exposed to propranolol also exhibited high-dissipated energy flux, indicating that this excessive energy is efficiently diverted, to some extent, from the photosystems, acting to prevent irreversible photoinhibition. As energy production is impaired at the PSII donor side, preventing energy production through the electron transport chain, diatoms appear to be consuming storage lipids as an energy backup system, to maintain essential cellular functions. This consumption will be attained by an increase in respiratory activity. Considering the primary oxygen production and consumption pathways, propranolol showed a significant reduction of the autotrophic O2 production and an increase in the heterotrophic mitochondrial respiration. Both mechanisms can have negative effects on marine trophic webs, due to a decrease in the energetic input from marine primary producers and a simultaneous oxygen production decrease for heterotrophic species. In ecotoxicological terms, bio-optical and fatty acid data appear as highly efficient tools for ecotoxicity assessment, with an overall high degree of classification when these traits are used to build a toxicological profile, instead of individually assessed.
Collapse
Affiliation(s)
- Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Correspondence:
| | - Eduardo Feijão
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
| | - Ricardo Cruz de Carvalho
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2, Piso 5, 1749-016 Lisbon, Portugal
| | - Irina A. Duarte
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
| | - Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
| | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- BioISI—Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Maria Teresa Cabrita
- Centro de Estudos Geográficos (CEG), Instituto de Geografia e Ordenamento do Território (IGOT), Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276 Lisbon, Portugal;
| | - Sara C. Novais
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (S.C.N.); (M.F.L.L.)
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; (S.C.N.); (M.F.L.L.)
| | - João Carlos Marques
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal;
| | - Isabel Caçador
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| | - Patrick Reis-Santos
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Aldeide, SA 5005, Australia
| | - Vanessa F. Fonseca
- MARE—Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (E.F.); (R.C.d.C.); (I.A.D.); (M.S.); (I.C.); (P.R.-S.); (V.F.F.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| |
Collapse
|
11
|
Oluwole AO, Omotola EO, Olatunji OS. Pharmaceuticals and personal care products in water and wastewater: a review of treatment processes and use of photocatalyst immobilized on functionalized carbon in AOP degradation. BMC Chem 2020; 14:62. [PMID: 33106789 PMCID: PMC7579856 DOI: 10.1186/s13065-020-00714-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/08/2020] [Indexed: 01/30/2023] Open
Abstract
The presence of emerging contaminants such as pharmaceutical and personal care products in many aqueous matrices have been reported. One of such matrix is streams of wastewater, including wastewater treatment plants inflows and outflows and wastewater flow by-passing wastewater treatment plants. Their persistence arises from their resistant to breakdown, hence they may remain in the environment over long time, with a potential to cause adverse effects including endocrine disruption, gene toxicity, the imposition of sex organs, antibiotic resistance and many others in some aquatic organisms exposed to arrays of residues of pharmaceutical and personal care products. Among the treatment techniques, advanced oxidation processes have been reported to be a better technique through which these PPCPs can be degraded in the WWTPs. Heterogeneous photocatalysis using various photocatalyst immobilized on solid support such as activated carbon, graphene and carbon nanotubes in AOPs have been shown to be a viable and efficient method of PPCPs degradation. This is because, the performance of most WWTPs is limited since they were not designed to degrade toxic and recalcitrant PPCPs. This review highlight the occurrence, concentration of PPCPs in wastewater and the removal efficiency of heterogeneous photocatalysis of TiO2 immobilized on solid supports.
Collapse
Affiliation(s)
- Adewumi Olufemi Oluwole
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban, 4000 South Africa
| | | | | |
Collapse
|
12
|
Ford AT, Feuerhelm E. Effects of the antidepressant fluoxetine on pigment dispersion in chromatophores of the common sand shrimp, Crangon crangon: repeated experiments paint an inconclusive picture. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1368-1376. [PMID: 32857222 PMCID: PMC7581581 DOI: 10.1007/s10646-020-02272-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/12/2020] [Indexed: 05/31/2023]
Abstract
The effects of antidepressants in the environment are starting to generate considerable interest due to the fact that neurotransmitters influence a range of biological processes. Crypsis is an important behavioural and physiological response in many crustaceans modulated by monoamine and pigment dispersing/concentrating hormones. This study aimed to develop a test methodology and investigate the effects of the selective serotonin reuptake inhibitor (SSRI), fluoxetine, on a chromatophore index and overall carapace 'darkness' in the common sand shrimp Crangon crangon. Adult shrimp were exposed for either 1 h, 1 day or 1 week across a range of nominal fluoxetine concentrations (10 ng/L, 100 ng/L and 1000 ng/L) and the chromatophore index or carapace percentage 'darkness' was recorded following 30 min on white and black substrates. These experiments were repeated three times using different specimens. Animals became significantly darker (~20%) on darker background and lighter on light backgrounds as one might expect. However, time periods over which the animals were recorded had a significant impact on the colouration suggesting habituation to laboratory conditions. Fluoxetine exposure came up as a significant factor in two of the three trials for the chromatophore index but the results was inconsistent between trials. There was a high degree of correlation between the chromatophore index and the percentage darkness analyses however, there was no significant effects for fluoxetine exposure with the percentage darkness data. We conclude that the effects on antidepressants on colour change remain inconclusive from these experiments and we discuss potential areas to improve the repeatability of the experiments.
Collapse
Affiliation(s)
- Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, UK.
| | - Eleanor Feuerhelm
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, PO4 9LY, UK
| |
Collapse
|
13
|
Han Z, Chen X, Li G, Sun S. A novel 3D-QSAR model assisted by coefficient of variation method and its application in FQs’ modification. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02052-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Fawzy A, Abdallah M, Alqarni N. Degradation of Ampicillin and Flucloxacillin Antibiotics via Oxidation by Alkaline Hexacyanoferrate(III): Kinetics and Mechanistic Aspects. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmed Fawzy
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Metwally Abdallah
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Chemistry Department, Faculty of Science, Benha University, Benha 13511, Egypt
| | - Nada Alqarni
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Chemistry Department, Faculty of Science, Bisha University, Bisha 61922, Saudi Arabia
| |
Collapse
|
15
|
Comparative adsorption of diclofenac sodium and losartan potassium in organophilic clay-packed fixed-bed: X-ray photoelectron spectroscopy characterization, experimental tests and theoretical study on DFT-based chemical descriptors. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113427] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Monitoring and Ecotoxicity Assessment of Emerging Contaminants in Wastewater Discharge in the City of Prague (Czech Republic). WATER 2020. [DOI: 10.3390/w12041079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emerging contaminants (ECs) are not monitored nor regulated consistently, but may have negative effects on human health and ecosystem balance. Although pharmaceuticals and personal care products are among the main ECs found in surface and wastewater, their toxicity and fate are currently not sufficiently studied. In this study, we analyzed for the first time a group of 46 ECs in the secondary effluent of the wastewater treatment plants (WWTP) of Prague. Thirty-seven compounds were identified in the discharge to surface water. Three compounds had no toxicology information on Artemia salina: furosemide, hydrochlorothiazide, and tramadol. We performed acute toxicity (LC50) tests and enzyme assays after 24 and 48 h at room temperature and 28 °C for these three compounds. LC50 ranged from 225.01 mg/L for furosemide, the most toxic, up to above 14,000 mg/L for tramadol. Changes in enzymatic activity for GST, GPx, AChE, and LDH when A. salina were exposed to LC25 for each contaminant were conspicuous and significant in a contaminant-, exposure time-, and temperature-dependent manner. These biochemical markers complement the toxicity profile of these contaminants in aquatic ecosystems and highlight the need for further research on other ECs and their implications, and the regulations required to protect human and ecological health.
Collapse
|
17
|
Yu H, Sun H, Yin C, Lin Z. Combination of sulfonamides, silver antimicrobial agents and quorum sensing inhibitors as a preferred approach for improving antimicrobial efficacy against Bacillus subtilis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:43-48. [PMID: 31158722 DOI: 10.1016/j.ecoenv.2019.05.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
More and more antibacterial agents are used together to treat bacterial infections in diverse fields, but the overuse of antibacterial agents may cause the environmental pollution of antibiotic resistance genes (ARGs). In order to reduce the use of antimicrobial agents, the potential joint effects of quorum-sensing inhibitors (QSIs) and traditional antimicrobial agents have been proposed to be effective. In this study, the joint effects of traditional antimicrobial agents, represented by sulfonamides (SAs) and silver antibacterial agents (silver nitrate (AgNO3) and nanosilver (AgNP, 5 nm)), and five potential QSIs, were investigated using B. subtilis. It was found that AgNP showed higher toxicity than AgNO3, whereas the joint effects on B. subtilis showed no difference between AgNO3 and AgNP when they combined with SAs or QSIs, respectively. In general, AgNO3 and AgNP presented synergetic and additive effects with QSIs, but additive and antagonistic effects with SAs; SAs exhibited synergetic, additive and antagonistic effects with different QSIs whether in binary or ternary mixed system. Moreover, it was found that the use of antimicrobials was reduced and the synergistic combined toxicity of antimicrobial agents on B. subtilis was increased through the addition of the QSIs. This study can offer a valuable reference for the combined medication of the different antimicrobial agents, which will benefit the environmental and human health.
Collapse
Affiliation(s)
- Haiyan Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Haoyu Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, 200092, China; Post-doctoral Research Station, College of Civil Engineering, Tongji University, Shanghai, 200092, China
| | - Chunsheng Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| | - Zhifen Lin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; Shanghai Key Lab of Chemical Assessment and Sustainability, Shanghai, 200092, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
18
|
Proctor K, Petrie B, Barden R, Arnot T, Kasprzyk-Hordern B. Multi-residue ultra-performance liquid chromatography coupled with tandem mass spectrometry method for comprehensive multi-class anthropogenic compounds of emerging concern analysis in a catchment-based exposure-driven study. Anal Bioanal Chem 2019; 411:7061-7086. [PMID: 31494686 PMCID: PMC6838033 DOI: 10.1007/s00216-019-02091-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023]
Abstract
This paper presents a new multi-residue method for the quantification of more than 142 anthropogenic compounds of emerging concern (CECs) in various environmental matrices. These CECs are from a wide range of major classes including pharmaceuticals, household, industrial and agricultural. This method utilises ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) for analysis of five matrices (three liquid and two solid) from wastewater treatment processes and the surrounding environment. Relative recoveries were predominantly between 80 and 120%; however, due to the complexity of the matrices used in this work, not all compounds were recovered in all matrices, from 138/142 analytes in surface water to 96/142 analytes in digested solids. Method quantification limits (MQLs) ranged from 0.004 ng L-1 (bisoprolol in surface water) to 3118 ng L-1 (creatinine in wastewater treatment work (WwTW) influent). The overall method accuracy was 107.0%, and precision was 13.4%. To test its performance, the method was applied to the range of environmental matrices at WwTWs in South West England. Overall, this method was found to be suitable for application in catchment-based exposure-driven studies, as, of the total number of analytes quantifiable in each matrix, 61% on average was found to be above their corresponding MQL. The results confirm the need for analysing both the liquid and solid compartments within a WwTW to prevent under-reporting of concentrations.
Collapse
Affiliation(s)
- Kathryn Proctor
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,Water Innovation & Research Centre, Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Bruce Petrie
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.,School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, AB10 7JG, UK
| | - Ruth Barden
- Wessex Water Services Ltd., Claverton Down, Bath, BA2 7WW, UK
| | - Tom Arnot
- Water Innovation & Research Centre, Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barbara Kasprzyk-Hordern
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. .,Water Innovation & Research Centre, Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
19
|
Abstract
SummaryThe influence of pharmaceuticals on the environment is an increasing concern among environmental toxicologists. It is known that their growing use is leading to detectable levels in wastewater, conceivably causing harm to aquatic ecosystems. Psychotropic medication is one such group of substances, particularly affecting high-income countries. While these drugs have a clear place in therapy, there is debate around the risk/benefit ratio in patients with mild mental health problems. Therefore, it is necessary to evaluate the wider implications as risks could extend beyond the individual to non-target organisms, particularly those in rivers and estuaries.Declaration of interestNone.
Collapse
|
20
|
Chiarelli R, Martino C, Roccheri MC. Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators. Cell Stress Chaperones 2019; 24:675-687. [PMID: 31165437 PMCID: PMC6629738 DOI: 10.1007/s12192-019-01010-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022] Open
Abstract
In recent years, researches about the defense strategies induced by cadmium stress have greatly increased, invading several fields of scientific research. Mechanisms of cadmium-induced toxicity continue to be of interest for researchers given its ubiquitous nature and environmental distribution, where it often plays the role of pollutant for numerous organisms. The presence in the environment of this heavy metal has been constantly increasing because of its large employment in several industrial and agricultural activities. Cadmium does not have any biological role and, since it cannot be degraded by living organisms, it is irreversibly accumulated into cells, interacting with cellular components and molecular targets. Cadmium is one of the most studied heavy metal inductors of stress and a potent modulator of several processes such as apoptosis, autophagy, reactive oxygen species, protein kinase and phosphatase, mitochondrial function, metallothioneins, and heat-shock proteins. Sea urchins (adults, gametes, embryos, and larvae) offer an optimal opportunity to investigate the possible adaptive response of cells exposed to cadmium, since these cells are known to accumulate contaminants. In this review, we will examine several responses to stress induced by cadmium in different sea urchin species, with a focus on Paracentrotus lividus embryos. The sea urchin embryo represents a suitable system, as it is not subjected to legislation on animal welfare and can be easily used for toxicological studies and as a bioindicator of environmental pollution. Recently, it has been included into the guidelines for the use and interpretation of assays to monitor autophagy.
Collapse
Affiliation(s)
- Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
21
|
Effect of metformin exposure on growth and photosynthetic performance in the unicellular freshwater chlorophyte, Chlorella vulgaris. PLoS One 2018; 13:e0207041. [PMID: 30419044 PMCID: PMC6231646 DOI: 10.1371/journal.pone.0207041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/23/2018] [Indexed: 02/02/2023] Open
Abstract
Many pharmaceuticals have negative effects on biota when released into the environment. For example, recent work has shown that the commonly prescribed antidiabetic drug, metformin (N,N-dimethylbiguanide), has endocrine disrupting effects on fish. However, effects of metformin on aquatic primary producers are poorly known. We exposed cultured isolates of a freshwater chlorophyte, Chlorella vulgaris, to a range of metformin concentrations (0–767.9 mg L-1) to test the hypothesis that exposure negatively affects photosynthesis and growth. A cessation of growth, increase in non-photochemical quenching (NPQ, NPQmax), and reduced electron transport rate (ETR) were observed 24 h after exposure to a metformin concentration of 767.8 mg L-1 (4.6 mM). By 48 h, photosynthetic efficiency of photosystem II (Fv/Fm), α, the initial slope of the ETR-irradiance curve, and Ek (minimum irradiance required to saturate photosynthesis) were reduced. At a lower concentration (76.8 mg L-1), negative effects on photosynthesis (increase in NPQ, decrease in ETR) were delayed, occurring between 72 and 96 h. No negative effects on photosynthesis were observed at an exposure concentration of 1.5 mg L-1. It is likely that metformin impairs photosynthesis either through downstream effects from inhibition of complex I of the electron transport chain or via activation of the enzyme, SnRK1 (sucrose non-fermenting-related kinase 1), which acts as a cellular energy regulator in plants and algae and is an ortholog of the mammalian target of metformin, AMPK (5' adenosine monophosphate-activated protein kinase).
Collapse
|
22
|
Simu GM, Atchana J, Soica CM, Coricovac DE, Simu SC, Dehelean CA. Pharmaceutical Mixtures: Still A Concern for Human and Environmental Health. Curr Med Chem 2018; 27:121-153. [PMID: 30406736 DOI: 10.2174/0929867325666181108094222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/09/2018] [Accepted: 01/29/2018] [Indexed: 11/22/2022]
Abstract
In the present work, recent data on the sources, occurrence and fate of human-use pharmaceutical active compounds (PhACs) in the aquatic environment have been reviewed. Since PhACs and their metabolites are usually present as mixtures in the environment at very low concentrations, a particular emphasis was placed onto the PhACs mixtures, as well as on their short-term and long-term effects against human and environmental health. Moreover, a general overview of the main conventional as well as of the latest trends in wastewaters decontaminant technologies was outlined. Advantages and disadvantages of current processes were also pointed out. It appears that numerous gaps still exist in the current knowledge related to this field of interest, and further studies should be conducted at the global level in order to ensure a more efficient monitorisation of the presence of PhACs and their metabolites into the aquatic environment and to develop new mitigation measures.
Collapse
Affiliation(s)
- Georgeta M Simu
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Jeanne Atchana
- University of Maroua, Faculty of Sciences, Department of Chemistry, P.O. Box 46, University of Maroua, Maroua, Cameroon
| | - Codruta M Soica
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Dorina E Coricovac
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Sebastian C Simu
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| | - Cristina A Dehelean
- University of Medicine and Pharmacy "Victor Babes" Timisoara, Faculty of Pharmacy, 2Eftimie Murgu, Timisoara 300041, Romania
| |
Collapse
|
23
|
Psutka JM, Dion-Fortier A, Dieckmann T, Campbell JL, Segura PA, Hopkins WS. Identifying Fenton-Reacted Trimethoprim Transformation Products Using Differential Mobility Spectrometry. Anal Chem 2018; 90:5352-5357. [DOI: 10.1021/acs.analchem.8b00484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jarrod M. Psutka
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Annick Dion-Fortier
- Department of Chemistry, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - J. Larry Campbell
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- SCIEX, 71 Four Valley Drive, Concord, Ontario L4K 4 V8, Canada
| | - Pedro A. Segura
- Department of Chemistry, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - W. Scott Hopkins
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
24
|
Forootanfar H, Arjmand S, Behzadi M, Faramarzi MA. Laccase-Mediated Treatment of Pharmaceutical Wastes. RESEARCH ADVANCEMENTS IN PHARMACEUTICAL, NUTRITIONAL, AND INDUSTRIAL ENZYMOLOGY 2018. [DOI: 10.4018/978-1-5225-5237-6.ch010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Laccases are versatile multi-copper enzymes belonging to the superfamily of oxidase enzymes, which have been known since the nineteenth century. Recent discoveries have refined investigators' views of the potential of laccase as a magic tool for remarkable biotechnological purposes. A literature review of the capabilities of laccases, their assorted substrates, and their molecular mechanism of action now indicates the emergence of a new direction for laccase application as part of an arsenal in the fight against the contamination of water supplies by a number of frequently prescribed medications. This chapter provides a critical review of the literature and reveals the pivotal role of laccases in the elimination and detoxification of pharmaceutical contaminants in aquatic environments and wastewaters.
Collapse
|
25
|
Peters JR, Granek EF, de Rivera CE, Rollins M. Prozac in the water: Chronic fluoxetine exposure and predation risk interact to shape behaviors in an estuarine crab. Ecol Evol 2017; 7:9151-9161. [PMID: 29152204 PMCID: PMC5677497 DOI: 10.1002/ece3.3453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 02/02/2023] Open
Abstract
Predators exert considerable top-down pressure on ecosystems by directly consuming prey or indirectly influencing their foraging behaviors and habitat use. Prey is, therefore, forced to balance predation risk with resource reward. A growing list of anthropogenic stressors such as rising temperatures and ocean acidification has been shown to influence prey risk behaviors and subsequently alter important ecosystem processes. Yet, limited attention has been paid to the effects of chronic pharmaceutical exposure on risk behavior or as an ecological stressor, despite widespread detection and persistence of these contaminants in aquatic environments. In the laboratory, we simulated estuarine conditions of the shore crab, Hemigrapsus oregonensis, and investigated whether chronic exposure (60 days) to field-detected concentrations (0, 3, and 30 ng/L) of the antidepressant fluoxetine affected diurnal and nocturnal risk behaviors in the presence of a predator, Cancer productus. We found that exposure to fluoxetine influenced both diurnal and nocturnal prey risk behaviors by increasing foraging and locomotor activity in the presence of predators, particularly during the day when these crabs normally stay hidden. Crabs exposed to fluoxetine were also more aggressive, with a higher frequency of agonistic interactions and increased mortality due to conflicts with conspecifics. These results suggest that exposure to field-detected concentrations of fluoxetine may alter the trade-off between resource acquisition and predation risk among crabs in estuaries. This fills an important data gap, highlighting how intra- and interspecific behaviors are altered by exposure to field concentrations of pharmaceuticals; such data more explicitly identify potential ecological impacts of emerging contaminants on aquatic ecosystems and can aid water quality management.
Collapse
Affiliation(s)
- Joseph R. Peters
- Ecology, Evolution, & Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
- Environmental Science & ManagementPortland State UniversityPortlandORUSA
| | - Elise F. Granek
- Ecology, Evolution, & Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Catherine E. de Rivera
- Ecology, Evolution, & Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Matthew Rollins
- Ecology, Evolution, & Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
| |
Collapse
|
26
|
Quadra GR, Oliveira de Souza H, Costa RDS, Fernandez MADS. Do pharmaceuticals reach and affect the aquatic ecosystems in Brazil? A critical review of current studies in a developing country. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1200-1218. [PMID: 27734317 DOI: 10.1007/s11356-016-7789-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/27/2016] [Indexed: 05/25/2023]
Abstract
Pharmaceutical residues are not completely removed in wastewater treatment plants (WWTPs) becoming contaminants in aquatic ecosystems. Thereby, it is important to investigate their concentrations in the environment and the possible consequences of their occurrence, including for human health. Here, we briefly reviewed the paths of pharmaceuticals to reach the environment, their behavior and fate in the environment, and the possible consequences of their occurrence. Moreover, we synthetized all the studies about the detection of pharmaceuticals in Brazilian water bodies and the available ecotoxicological knowledge on their effects. In this study, when we compare the data found on these compounds worldwide, we observed that Brazilian surface waters present considerable concentrations of 17α-ethinylestradiol, 17β-estradiol, and caffeine. In general, concentrations found in aquatic systems worldwide seems to be low; however, ecotoxicological tests showed that even these low concentrations can cause sublethal effects in biota. The knowledge about the effects of continuous exposure and mixtures is sparse. In summary, new research is urgently required about the effects of these compounds in biota-including long-term exposition and mixture tests-and on specific technologies to remove these compounds in water bodies and WWTPs, besides the introduction of new policies for pharmaceutical use.
Collapse
Affiliation(s)
- Gabrielle Rabelo Quadra
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n-Martelos, Juiz de Fora, MG, 36036-330, Brazil.
| | - Helena Oliveira de Souza
- Universidade Federal do Rio de Janeiro, Campus Macaé, Av. Aluizio da Silva Gomes, 50-Novo Cavaleiros, Macaé, RJ, 27930-560, Brazil
| | - Rafaela Dos Santos Costa
- Universidade Federal Fluminense, Av. Gen. Tavares de Souza s/n°, Campus da Praia Vermelha, Niteroi, RJ, 24210-346, Brazil
| | - Marcos Antonio Dos Santos Fernandez
- Laboratório de Ecotoxicologia Marinha, Faculdade de Oceanografia, Universidade Estadual do Rio de Janeiro, Rua São Francisco Xavier, 524-Maracanã, Rio de Janeiro, RJ, 20550-900, Brazil
| |
Collapse
|
27
|
Blanco G, Junza A, Barrón D. Food safety in scavenger conservation: Diet-associated exposure to livestock pharmaceuticals and opportunist mycoses in threatened Cinereous and Egyptian vultures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:292-301. [PMID: 27750097 DOI: 10.1016/j.ecoenv.2016.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Pharmaceuticals from veterinary treatments may enter terrestrial food webs when medicated livestock are available to wildlife in supplementary feeding stations aimed at the conservation of endangered scavengers. Here, we hypothesized that the exposure risk to livestock fluoroquinolones, as indicators of pharmaceutical burden in food, is related to the variable reliance of scavengers on domestic versus wild animal carcasses. Since the misuse of broad-spectrum antibiotics is a major predisposing factor for opportunistic mycoses, we evaluated disease signs potentially associated with diet-dependent drug exposure in nestlings of two threatened vultures. A greater occurrence (100%, n=14) and concentration of fluoroquinolones (mean±SD=73.0±27.5µgL-1, range=33.2-132.7), mostly enrofloxacin, were found in Cinereous vultures, Aegypius monachus, due to their greater dependence on livestock carcasses than Egyptian vultures, Neophron percnopterus (fluoroquinolones occurrence: 44%, n=16, concentration: 37.9±16.6µgL-1, range=11.5-55.9), which rely much more on carcasses of wild animals (42% of remains vs. 23% in the cinereous vulture). The chaotic, chronic and pulsed ingestion of these drugs throughout nestling development is proposed as one of the most plausible explanations for the high occurrence and intensity of oral Candida-like lesions in nestling vultures. The high occurrence of fluoroquinolone residues and disease hindered the probing of a cause-effect relationship between both factors in individual vultures. This relationship could be evaluated through a population-based approach by sampling vultures not exposed to these drugs. The high dependence of vultures on domestic animals today compared to past decades and the growing intensification of livestock farming, imply an expected increase in the impact of pharmaceuticals on scavenger populations. This requires further evaluation due to potential consequences in biodiversity conservation and environmental health. We encourage the prioritization of efforts to promote the use of less medicated free-ranging livestock carcasses left in the countryside, rather than stabled stocks made available in vulture restaurants. Additionally, attention should be paid to the population recovery of wild species that dominated scavenger diets in the past.
Collapse
Affiliation(s)
- Guillermo Blanco
- Department of Evolutionary Ecology, National Museum of Natural Sciences, Spanish Research Council (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain.
| | - Alexandra Junza
- Department of Analytical Chemistry. University of Barcelona, Avda. Diagonal 647, 08028 Barcelona, Spain; Department of Nutrition, Food Science and Gastronomy, Food and Nutrition Torribera Campus, University of Barcelona, Avda. Prat de la Riba, 171, 08921 Sta. Coloma de Gramenet, Barcelona, Spain
| | - Dolores Barrón
- Department of Nutrition, Food Science and Gastronomy, Food and Nutrition Torribera Campus, University of Barcelona, Avda. Prat de la Riba, 171, 08921 Sta. Coloma de Gramenet, Barcelona, Spain
| |
Collapse
|
28
|
Sangion A, Gramatica P. Ecotoxicity interspecies QAAR models from Daphnia toxicity of pharmaceuticals and personal care products. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:781-798. [PMID: 27775436 DOI: 10.1080/1062936x.2016.1233139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/24/2016] [Indexed: 05/18/2023]
Abstract
Pharmaceutical and Personal Care Products (PPCPs) became a class of contaminants of emerging concern because are ubiquitously detected in surface water and soil, where they can affect wildlife. Ecotoxicological data are only available for a few PPCPs, thus modelling approaches are essential tools to maximize the information contained in the existing data. In silico methods may be helpful in filling data gaps for the toxicity of PPCPs towards various ecological indicator organisms. The good correlation between toxicity toward Daphnia magna and those on two fish species (Pimephales promelas and Oncorhynchus mykiss), improved by the addition of one theoretical molecular descriptor, allowed us to develop predictive models to investigate the relationship between toxicities in different species. The aim of this work is to propose quantitative activity-activity relationship (QAAR) models, developed in QSARINS and validated for their external predictivity. Such models can be used to predict the toxicity of PPCPs to a particular species using available experimental toxicity data from a different species, thus reducing the tests on organisms of higher trophic level. Similarly, good QAAR models, implemented by molecular descriptors to improve the quality, are proposed here for fish interspecies. We also comment on the relevance of autocorrelation descriptors in improving all studied interspecies correlations.
Collapse
Affiliation(s)
- A Sangion
- a QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences , University of Insubria , Varese , Italy
| | - P Gramatica
- a QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences , University of Insubria , Varese , Italy
| |
Collapse
|
29
|
Küster A, Adler N. Pharmaceuticals in the environment: scientific evidence of risks and its regulation. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0587. [PMID: 25405974 DOI: 10.1098/rstb.2013.0587] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the past two decades scientists, regulatory agencies and the European Commission have acknowledged pharmaceuticals to be an emerging environmental problem. In parallel, a regulatory framework for environmental risk assessment (ERA) of pharmaceutical products has been developed. Since the regulatory guidelines came into force the German Federal Agency (UBA) has been evaluating ERAs for human and veterinary pharmaceutical products before they are marketed. The results show that approximately 10% of pharmaceutical products are of note regarding their potential environmental risk. For human medicinal products, hormones, antibiotics, analgesics, antidepressants and antineoplastics indicated an environmental risk. For veterinary products, hormones, antibiotics and parasiticides were most often discussed as being environmentally relevant. These results are in good correlation with the results within the open scientific literature of prioritization approaches for pharmaceuticals in the environment. UBA results revealed that prospective approaches, such as ERA of pharmaceuticals, play an important role in minimizing problems caused by pharmaceuticals in the environment. However, the regulatory ERA framework could be improved by (i) inclusion of the environment in the risk-benefit analysis for human pharmaceuticals, (ii) improvement of risk management options, (iii) generation of data on existing pharmaceuticals, and (iv) improving the availability of ERA data. In addition, more general and integrative steps of regulation, legislation and research have been developed and are presented in this article. In order to minimize the quantity of pharmaceuticals in the environment these should aim to (i) improve the existing legislation for pharmaceuticals, (ii) prioritize pharmaceuticals in the environment and (iii) improve the availability and collection of pharmaceutical data.
Collapse
Affiliation(s)
- Anette Küster
- Umweltbundesamt (Federal Environment Agency), Wörlitzer Platz 1, Dessau-Roßlau 06844, Germany
| | - Nicole Adler
- Umweltbundesamt (Federal Environment Agency), Wörlitzer Platz 1, Dessau-Roßlau 06844, Germany
| |
Collapse
|
30
|
Tanoue R, Nomiyama K, Nakamura H, Kim JW, Isobe T, Shinohara R, Kunisue T, Tanabe S. Uptake and Tissue Distribution of Pharmaceuticals and Personal Care Products in Wild Fish from Treated-Wastewater-Impacted Streams. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11649-58. [PMID: 26348835 DOI: 10.1021/acs.est.5b02478] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A fish plasma model (FPM) has been proposed as a screening technique to prioritize potential hazardous pharmaceuticals to wild fish. However, this approach does not account for inter- or intraspecies variability of pharmacokinetic and pharmacodynamic parameters. The present study elucidated the uptake potency (from ambient water), tissue distribution, and biological risk of 20 pharmaceutical and personal care product (PPCP) residues in wild cyprinoid fish inhabiting treated-wastewater-impacted streams. In order to clarify the uncertainty of the FPM for PPCPs, we compared the plasma bioaccumulation factor in the field (BAFplasma = measured fish plasma/ambient water concentration ratio) with the predicted plasma bioconcentration factor (BCFplasma = fish plasma predicted by use of theoretical partition coefficients/ambient water concentration ratio) in the actual environment. As a result, the measured maximum BAFplasma of inflammatory agents was up to 17 times higher than theoretical BCFplasma values, leading to possible underestimation of toxicological risk on wild fish. When the tissue-blood partition coefficients (tissue/blood concentration ratios) of PPCPs were estimated, higher transportability into tissues, especially the brain, was found for psychotropic agents, but brain/plasma ratios widely varied among individual fish (up to 28-fold). In the present study, we provide a valuable data set on the intraspecies variability of PPCP pharmacokinetics, and our results emphasize the importance of determining PPCP concentrations in possible target organs as well as in the blood to assess the risk of PPCPs on wild fish.
Collapse
Affiliation(s)
- Rumi Tanoue
- Center for Marine Environmental Studies, Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Haruna Nakamura
- Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto , 3-1-100 Tsukide, Kumamoto 862-8502, Japan
| | - Joon-Woo Kim
- Monitoring and Analysis Division, Seamangeum Regional Environmental Office , 100 Seogok-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 560-870, Republic of Korea
| | - Tomohiko Isobe
- National Institute for Environmental Studies , 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Ryota Shinohara
- Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto , 3-1-100 Tsukide, Kumamoto 862-8502, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies, Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies, Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
31
|
Kristofco LA, Du B, Chambliss CK, Berninger JP, Brooks BW. Comparative pharmacology and toxicology of pharmaceuticals in the environment: diphenhydramine protection of diazinon toxicity in Danio rerio but not Daphnia magna. AAPS J 2015; 17:175-83. [PMID: 25331104 PMCID: PMC4287288 DOI: 10.1208/s12248-014-9677-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022] Open
Abstract
Pharmaceuticals and other contaminants of emerging concern present unique challenges to environmental risk assessment and management. Fortunately, mammalian pharmacology and toxicology safety data are more readily available for pharmaceuticals than other environmental contaminants. Identifying approaches to read-across such pharmaceutical safety information to non-target species represents a major research need to assess environmental hazards. Here, we tested a biological read-across hypothesis from emergency medicine with common aquatic invertebrate and vertebrate models. In mammals, the antihistamine diphenhydramine (DPH) confers protection from poisoning by acetylcholinesterase inhibition because DPH blocks the acetylcholine receptor. We employed standardized toxicity methods to examine individual and mixture toxicity of DPH and the acetylcholinesterase inhibitor diazinon (DZN) in Daphnia magna (an invertebrate) and Danio rerio (zebrafish, a vertebrate). Though the standardized Fish Embryo Toxicity method evaluates early life stage toxicity of zebrafish (0-3 days post fertilization, dpf), we further evaluated DPH, DZN, and their equipotent mixture during three development stages (0-3, 3-6, 7-10 dpf) in zebrafish embryos. Independent action and concentration addition mixture models and fish plasma modeling were used to assist interpretation of mixture toxicity experiments. Though our primary hypothesis was not confirmed in acute studies with Daphnia magna, DPH conferred a protective effect for acute DZN toxicity to zebrafish when DPH plasma levels were expected to be greater than mammalian therapeutic, but lower than acutely lethal, internal doses. We further observed that timing of developmental exposure influenced the magnitude of DZN and DPH toxicity to zebrafish, which suggests that future zebrafish toxicity studies with pharmaceuticals and pesticides should examine exposure during developmental stages.
Collapse
Affiliation(s)
- Lauren A. Kristofco
- />Department of Environmental Science, Waco, Texas USA
- />Center for Reservoir and Aquatic Systems Research, The Institute of Ecological, Earth, and Environmental Science, Baylor University, Waco, Texas USA
| | - Bowen Du
- />Department of Environmental Science, Waco, Texas USA
- />Center for Reservoir and Aquatic Systems Research, The Institute of Ecological, Earth, and Environmental Science, Baylor University, Waco, Texas USA
| | - C. Kevin Chambliss
- />Center for Reservoir and Aquatic Systems Research, The Institute of Ecological, Earth, and Environmental Science, Baylor University, Waco, Texas USA
- />Department of Chemistry and Biochemistry, Baylor University, Waco, Texas USA
| | - Jason P. Berninger
- />Department of Environmental Science, Waco, Texas USA
- />U.S. Environmental Protection Agency, Duluth, Minnesota USA
| | - Bryan W. Brooks
- />Department of Environmental Science, Waco, Texas USA
- />Center for Reservoir and Aquatic Systems Research, The Institute of Ecological, Earth, and Environmental Science, Baylor University, Waco, Texas USA
| |
Collapse
|
32
|
Nödler K, Voutsa D, Licha T. Polar organic micropollutants in the coastal environment of different marine systems. MARINE POLLUTION BULLETIN 2014; 85:50-9. [PMID: 25015017 DOI: 10.1016/j.marpolbul.2014.06.024] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 05/04/2023]
Abstract
Polar anthropogenic organic micropollutants are frequently detected in freshwater and discharged on large scale into marine systems. In this work the results of 153 samples collected from the shorelines of the Baltic Sea (Germany), Northern Adriatic Sea (Italy), Aegean Sea and Dardanelles (Greece & Turkey), San Francisco Bay (USA), Pacific Ocean (USA), Mediterranean Sea (Israel), and Balearic Sea (Spain) are presented. The samples were analyzed for various classes of micropollutants such as pharmaceuticals, corrosion inhibitors, biocides, and stimulants. Caffeine, paraxanthine, theobromine, tolyltriazole, 1H-benzotriazole, and atrazine were detected in>50% of all samples. The detection frequencies of carbamazepine, iopamidol, diuron, sulfamethoxazole, paracetamol, theophylline, and atenolol were between 20% and 32%. As caffeine is linked to untreated wastewater, the widespread occurrence of raw sewage in marine environments and thus potentially elevated nutrient concentrations and risk for the presence of wastewater-related pathogens is remarkable.
Collapse
Affiliation(s)
- Karsten Nödler
- Department Applied Geology, Geoscience Centre of the University of Göttingen, Goldschmidtstr. 3, 37077 Göttingen, Germany.
| | - Dimitra Voutsa
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Tobias Licha
- Department Applied Geology, Geoscience Centre of the University of Göttingen, Goldschmidtstr. 3, 37077 Göttingen, Germany
| |
Collapse
|
33
|
Laurenson JP, Bloom RA, Page S, Sadrieh N. Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment: a review of recent risk assessment data. AAPS J 2014; 16:299-310. [PMID: 24470211 PMCID: PMC3933577 DOI: 10.1208/s12248-014-9561-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/02/2014] [Indexed: 11/30/2022] Open
Abstract
Interest in pharmaceuticals in the environment has increased substantially in recent years. Several studies in particular have assessed human and ecological risks from human pharmaceutical estrogens, such as 17α-ethinyl estradiol (EE2). Regulatory action also has increased, with the USA and other countries developing rules to address estrogens and other pharmaceuticals in the environment. Accordingly, the Center for Drug Evaluation and Research at the US Food and Drug Administration has conducted a review and analysis of current data on the long-term ecological exposure and effects of EE2 and other estrogens. The results indicate that mean-flow long-term predicted environmental concentrations (PECs) of EE2 in approximately 99% or more of US surface water segments downstream of wastewater treatment plants are lower than a predicted no-effect concentration (PNEC) for aquatic chronic toxicity of 0.1 ng/L. Exceedances are expected to be primarily in localized, effluent-dominated water segments. The median mean-flow PEC is more than two orders of magnitude lower than this PNEC. Similar results exist for other pharmaceutical estrogens. Data also suggest that the contribution of EE2 more broadly to total estrogenic load in the environment from all sources (including other human pharmaceutical estrogens, endogenous estrogens, natural environmental estrogens, and industrial chemicals), while highly uncertain and variable, appears to be relatively low overall. Additional data and a more comprehensive approach for data collection and analysis for estrogenic substances in the environment, especially in effluent-dominated water segments in sensitive environments, would more fully characterize the risks.
Collapse
Affiliation(s)
- James P Laurenson
- Office of Pharmaceutical Science, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland, 20903, USA,
| | | | | | | |
Collapse
|
34
|
Vazquez-Roig P, Blasco C, Picó Y. Advances in the analysis of legal and illegal drugs in the aquatic environment. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.04.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Cortés JM, Larsson E, Jönsson JÅ. Study of the uptake of non-steroid anti-inflammatory drugs in wheat and soybean after application of sewage sludge as a fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 449:385-9. [PMID: 23454699 DOI: 10.1016/j.scitotenv.2013.01.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/18/2013] [Accepted: 01/19/2013] [Indexed: 05/18/2023]
Abstract
Non-steroid anti-inflammatory drugs (NSAIDs) are frequently occurring in sludge and waters from sewage treatment plants (STPs). Sludge obtained from sewage treatment is often applied as a fertilizer in agriculture and not many studies about the uptake of pharmaceuticals into crops can be found. In this paper, we present a greenhouse experiment to study the presence of four NSAIDs (naproxen, ketoprofen, diclofenac and ibuprofen) in two different crops (soybean and wheat) after application of sludge as a fertilizer. Two different amounts of sludge were added to the soil; the recommended amount (with respect to phosphorus content) and the double recommended amount. One treatment without sludge was also included as a blank. The crops were harvested after 60 as well as 110 days. Only diclofenac and ibuprofen were detected in the sludge in concentrations of 22 and 217 ng g(-1) dry weight, respectively. None of the NSAIDs were detected in the crops from any of the treatments. Compared to the amounts applied to the soil, detection limits correspond to an uptake of less than 2% for diclofenac and 0.8% for ibuprofen.
Collapse
Affiliation(s)
- José Manuel Cortés
- E.T.S.I. Agrónomos, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | | | | |
Collapse
|
36
|
Klosterhaus SL, Grace R, Hamilton MC, Yee D. Method validation and reconnaissance of pharmaceuticals, personal care products, and alkylphenols in surface waters, sediments, and mussels in an urban estuary. ENVIRONMENT INTERNATIONAL 2013; 54:92-9. [PMID: 23527629 DOI: 10.1016/j.envint.2013.01.009] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 01/06/2013] [Accepted: 01/18/2013] [Indexed: 05/02/2023]
Abstract
Novel methods utilizing liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry were validated for low-level detection of 104 pharmaceuticals and personal care products ingredients (PPCPs) and four alkylphenols (APs) in environmental samples. The methods were applied to surface water, sediment, and mussel tissue samples collected from San Francisco Bay, CA, USA, an urban estuary that receives direct discharge from over forty municipal and industrial wastewater outfalls. Among the target PPCPs, 35% were detected in at least one sample, with 31, 10, and 17 compounds detected in water, sediment, and mussels, respectively. Maximum concentrations were 92 ng/L in water (valsartan), 33 ng/g dry weight (dw) in sediments (triclocarban), and 14 ng/g wet weight (ww) in mussels (N,N-diethyl-m-toluamide). Nonylphenol was detected in water (<2-73 ng/L), sediments (22-86 ng/g dw), and mussels (<0.04-95 ng/g ww), and nonylphenol mono- and diethoxylates were detected in sediments (<1-40 ng/g dw) and mussels (<5-192 ng/g ww). The concentrations of PPCPs and APs detected in the San Francisco Bay samples were generally at least an order of magnitude below concentrations expected to elicit toxic effects in aquatic organisms. This study represents the first reconnaissance of PPCPs in mussels living in an urban estuary and provides the first field-derived bioaccumulation factors (BAFs) for select compounds in aquatic organisms.
Collapse
Affiliation(s)
- Susan L Klosterhaus
- San Francisco Estuary Institute, 4911 Central Avenue, Richmond, CA 94804, USA.
| | | | | | | |
Collapse
|
37
|
Fong PP, Molnar N. Antidepressants cause foot detachment from substrate in five species of marine snail. MARINE ENVIRONMENTAL RESEARCH 2013; 84:24-30. [PMID: 23218553 DOI: 10.1016/j.marenvres.2012.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/17/2012] [Accepted: 11/08/2012] [Indexed: 05/27/2023]
Abstract
Active Pharmaceutical Ingredients (APIs) are released into aquatic ecosystems through discharged sewage wastewater. Antidepressants are among those APIs often detected in wastewater effluent and have been recently reported to cause foot detachment from the substrate in freshwater snails. We tested the effects of four commonly prescribed antidepressants {fluoxetine ("Prozac"), fluvoxamine ("Luvox"), venlafaxine ("Effexor"), and citalopram ("Celexa") on adhesion to the substrate in five species of marine snails, three from the Pacific coast (Chlorostoma funebralis, Nucella ostrina, Urosalpinx cinerea) and two species from the Atlantic coast (Tegula fasciatus and Lithopoma americanum) of North America representing three different gastropod families. All antidepressants tested induced foot detachment from the substrate in all snail species in a mainly dose-dependent manner (p < 0.04-0.00000001). The lowest LOECs (lowest observed effect concentration) for antidepressants and snails were recorded for Lithopoma in 43.4 μg/L (100 nM) fluvoxamine and Chlorostoma in 157 μg/L (500 nM) venlafaxine and 217 μg/L (500 nM) fluvoxamine. The trochids and turbinids were 2-10× more sensitive to the antidepressants than the muricids. Latency to detachment was also dose dependent, with the fastest average times to detach seen in Chlorostoma and Lithopoma (7.33 and 13.16 min respectively in 3.13 mg/L venlafaxine). The possible physiological mechanisms regulating antidepressant-induced foot detachment in marine snails and the possible ecological consequences are discussed.
Collapse
Affiliation(s)
- Peter P Fong
- Department of Biology, Gettysburg College, 300 N. Washington St., Gettysburg, PA 17325, USA.
| | | |
Collapse
|
38
|
Yu Y, Wu L, Chang AC. Seasonal variation of endocrine disrupting compounds, pharmaceuticals and personal care products in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 442:310-316. [PMID: 23178835 DOI: 10.1016/j.scitotenv.2012.10.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/28/2012] [Accepted: 10/02/2012] [Indexed: 05/20/2023]
Abstract
The occurrence of 14 endocrine disrupting compounds (EDCs), pharmaceuticals and personal care products (PPCPs) in influents, effluents and sludge from five wastewater treatment plants (WWTPs) in southern California was studied in winter and summer. All 14 compounds were detected in influent samples from the five WWTPs except for estrone. Paracetamol, naproxen and ibuprofen were the dominant compounds, with mean concentrations of 41.7, 35.7 and 22.3 μg/L, respectively. The treatment removal efficiency for most compounds was more than 90% and concentrations in the effluents were relatively low. Seasonal variation of the compounds' concentration in the wastewater was significant: the total concentration of each compound in the wastewater was higher in winter than in summer, which is attributed to more human consumption of pharmaceuticals during winter and faster degradation of the compounds in summer. The highest concentrations of triclosan and octylphenol were detected in sewage sludge, with mean concentrations of 1505 and 1179 ng/g, respectively. Risk quotients (RQs), expressed as the ratios of environmental concentrations and the predicted no-effect concentrations (PNEC), were less than unity for all the compounds except for estrone in the effluents, indicating no immediate ecological risk is expected. However, RQs were higher than unity for 2 EDCs (estrone and octylphenol) and carbamazepine in sludge samples, indicating a significant ecotoxicological risk to human health. Therefore, appropriate treatment of sewage sludge is required before its application.
Collapse
Affiliation(s)
- Yong Yu
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
39
|
Pharmaceuticals in the Environment: Lessons Learned for Reducing Uncertainties in Environmental Risk Assessment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 112:231-58. [DOI: 10.1016/b978-0-12-415813-9.00008-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|