1
|
González-Velasco O, Simon M, Yilmaz R, Parlato R, Weishaupt J, Imbusch C, Brors B. Identifying similar populations across independent single cell studies without data integration. NAR Genom Bioinform 2025; 7:lqaf042. [PMID: 40276039 PMCID: PMC12019640 DOI: 10.1093/nargab/lqaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Supervised and unsupervised methods have emerged to address the complexity of single cell data analysis in the context of large pools of independent studies. Here, we present ClusterFoldSimilarity (CFS), a novel statistical method design to quantify the similarity between cell groups across any number of independent datasets, without the need for data correction or integration. By bypassing these processes, CFS avoids the introduction of artifacts and loss of information, offering a simple, efficient, and scalable solution. This method match groups of cells that exhibit conserved phenotypes across datasets, including different tissues and species, and in a multimodal scenario, including single-cell RNA-Seq, ATAC-Seq, single-cell proteomics, or, more broadly, data exhibiting differential abundance effects among groups of cells. Additionally, CFS performs feature selection, obtaining cross-dataset markers of the similar phenotypes observed, providing an inherent interpretability of relationships between cell populations. To showcase the effectiveness of our methodology, we generated single-nuclei RNA-Seq data from the motor cortex and spinal cord of adult mice. By using CFS, we identified three distinct sub-populations of astrocytes conserved on both tissues. CFS includes various visualization methods for the interpretation of the similarity scores and similar cell populations.
Collapse
Affiliation(s)
- Oscar González-Velasco
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Malte Simon
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Leibniz Institute for Immunotherapy, 93053 Regensburg, Germany
| | - Rüstem Yilmaz
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Rosanna Parlato
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Jochen Weishaupt
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167 Mannheim, Germany
| | - Charles D Imbusch
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Immunology, University Medical Center Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Benedikt Brors
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Medical Faculty Heidelberg and Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Zhang Z, Chen W, Shi Z, Pan F, Wang D. Cryo-EM structures of the full-length human contactin-2. FEBS J 2025; 292:602-618. [PMID: 39702996 PMCID: PMC11796320 DOI: 10.1111/febs.17364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024]
Abstract
Contactin-2 (CNTN2), an immunoglobulin cell adhesion molecule (IgCAM) expressed on the neural cell surface, regulates the formation of myelin sheaths, facilitates communication between neurons and axoglial cells, and coordinates the migration of neural cells. However, the assembly of full-length CNTN2 is still not fully elucidated. Here, we found that the full-length human CNTN2 forms a concentration-dependent homodimer. We further determined the cryo-EM structures of the full-length CNTN2, revealing a novel bowknot-shaped scaffold constituted of the Ig1-6 repeats from two protomers, with the flexible ribbon-like FNIII repeats extending outward in opposite directions. The Ig1-6 domains, rather than the previously proposed Ig1-4 domains, have an indispensable role in mediating CNTN2-dependent cell adhesion and clustering. Moreover, structure-guided mutagenesis analyses supported the idea that CNTN2 homodimerization observed in our structure is essential for cell adhesion. Our findings offer novel insights into the mechanism through which CNTN2 forms a homodimer to maintain cell-cell contacts in the nervous system.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Cancer Immunology Center, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenChina
| | - Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Zhubing Shi
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiangChina
- School of Life SciencesWestlake UniversityHangzhouZhejiangChina
| | - Fan Pan
- Cancer Immunology Center, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Daping Wang
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
3
|
Sha Z, Francks C. Large-scale genetic mapping for human brain asymmetry. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:241-254. [PMID: 40074400 DOI: 10.1016/b978-0-443-15646-5.00029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Left-right asymmetry is an important aspect of human brain organization for functions including language and hand motor control, which can be altered in some psychiatric traits. The last 5 years have seen rapid advances in the identification of specific genes linked to variation in asymmetry of the human brain and/or handedness. These advances have been driven by a new generation of large-scale genome-wide association studies, carried out in samples ranging from roughly 16,000 to over 1.5 million participants. The implicated genes tend to be most active in the embryonic and fetal brain, consistent with early developmental patterning of brain asymmetry. Several of the genes encode components of microtubules or other microtubule-associated proteins. Microtubules are key elements of the internal cellular skeleton (cytoskeleton). A major challenge remains to understand how these genes affect, or even induce, the brain's left-right axis. Several of the implicated genes have also been associated with psychiatric or neurologic disorders, and polygenic dispositions to autism and schizophrenia have been associated with structural brain asymmetry. Knowledge of developmental mechanisms that lead to hemispheric specialization may ultimately help to define etiologic subtypes of brain disorders.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Department of Cognitive Neuroscience & Donders Community for Medical Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Qin P, Pan Z, Zhang W, Wang R, Li X, Lu J, Xu S, Gong X, Ye J, Yan X, Liu Y, Li Y, Zhang Y, Fang F. Integrative proteomic and transcriptomic analysis in the female goat ovary to explore the onset of puberty. J Proteomics 2024; 301:105183. [PMID: 38688390 DOI: 10.1016/j.jprot.2024.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Puberty is considered a prerequisite for affecting reproductive performance and productivity. Little was known about molecular changes in pubertal goat ovaries. Therefore, we measured and performed a correlation analysis of the mRNA and proteins changes in the pre-pubertal and pubertal goat ovaries. The results showed that only six differentially expressed genes and differentially abundant proteins out of 18,139 genes and 7550 proteins quantified had significant correlations. CNTN2 and THBS1, discovered in the mRNA-mRNA interaction network, probably participated in pubertal and reproductive regulation by influencing GnRH receptor signals, follicular development, and ovulation. The predicted core transcription factors may either promote or inhibit the expression of reproductive genes and act synergistically to maintain normal reproductive function in animals. The interaction between PKM and TIMP3 with other proteins may impact animal puberty through energy metabolism and ovarian hormone secretion. Pathway enrichment analyses revealed that the co-associated key pathways between ovarian genes and proteins at puberty included calcium signalling pathway and olfactory transduction. These pathways were associated with gonadotropin-releasing hormone synthesis and secretion, signal transmission, and cell proliferation. In summary, these results enriched the potential molecules and signalling pathways that affect puberty and provided new insights for regulating and promoting the onset of puberty. SIGNIFICANCE: This study conducted the first transcriptomic and proteomic correlation analysis of pre-pubertal and pubertal goat ovaries and identified six significantly correlated molecules at both the gene and protein levels. Meanwhile, we were drawn to several molecules and signalling pathways that may play a regulatory role in the onset of puberty and reproduction by influencing reproductive-related gene expression, GnRH receptor signals, energy metabolism, ovarian hormone secretion, follicular development, and ovulation. This information contributed to identify potential biomarkers in pubertal goat ovaries, which was vital for predicting the onset of puberty and improving livestock performance.
Collapse
Affiliation(s)
- Ping Qin
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhihao Pan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Rui Wang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaoqian Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Juntai Lu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shuangshuang Xu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xinbao Gong
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jing Ye
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xu Yan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ya Liu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunsheng Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yunhai Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Fugui Fang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
5
|
Fiore APZP, Maity S, Jeffery L, An D, Rendleman J, Iannitelli D, Choi H, Mazzoni E, Vogel C. Identification of molecular signatures defines the differential proteostasis response in induced spinal and cranial motor neurons. Cell Rep 2024; 43:113885. [PMID: 38457337 PMCID: PMC11018139 DOI: 10.1016/j.celrep.2024.113885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/12/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Amyotrophic lateral sclerosis damages proteostasis, affecting spinal and upper motor neurons earlier than a subset of cranial motor neurons. To aid disease understanding, we exposed induced cranial and spinal motor neurons (iCrMNs and iSpMNs) to proteotoxic stress, under which iCrMNs showed superior survival, quantifying the transcriptome and proteome for >8,200 genes at 0, 12, and 36 h. Two-thirds of the proteome showed cell-type differences. iSpMN-enriched proteins related to DNA/RNA metabolism, and iCrMN-enriched proteins acted in the endoplasmic reticulum (ER)/ER chaperone complex, tRNA aminoacylation, mitochondria, and the plasma/synaptic membrane, suggesting that iCrMNs expressed higher levels of proteins supporting proteostasis and neuronal function. When investigating the increased proteasome levels in iCrMNs, we showed that the activity of the 26S proteasome, but not of the 20S proteasome, was higher in iCrMNs than in iSpMNs, even after a stress-induced decrease. We identified Ublcp1 as an iCrMN-specific regulator of the nuclear 26S activity.
Collapse
Affiliation(s)
| | - Shuvadeep Maity
- New York University, Department of Biology, New York, NY 10003, USA; Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Lauren Jeffery
- New York University, Department of Biology, New York, NY 10003, USA
| | - Disi An
- New York University, Department of Biology, New York, NY 10003, USA
| | - Justin Rendleman
- New York University, Department of Biology, New York, NY 10003, USA
| | - Dylan Iannitelli
- New York University, Department of Biology, New York, NY 10003, USA
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Esteban Mazzoni
- New York University, Department of Biology, New York, NY 10003, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Christine Vogel
- New York University, Department of Biology, New York, NY 10003, USA.
| |
Collapse
|
6
|
Chataigner LMP, Thärichen L, Beugelink JW, Granneman JCM, Mokiem NJ, Snijder J, Förster F, Janssen BJC. Contactin 2 homophilic adhesion structure and conformational plasticity. Structure 2024; 32:60-73.e5. [PMID: 37992710 DOI: 10.1016/j.str.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
The cell-surface attached glycoprotein contactin 2 is ubiquitously expressed in the nervous system and mediates homotypic cell-cell interactions to organize cell guidance, differentiation, and adhesion. Contactin 2 consists of six Ig and four fibronectin type III domains (FnIII) of which the first four Ig domains form a horseshoe structure important for homodimerization and oligomerization. Here we report the crystal structure of the six-domain contactin 2Ig1-6 and show that the Ig5-Ig6 combination is oriented away from the horseshoe with flexion in interdomain connections. Two distinct dimer states, through Ig1-Ig2 and Ig3-Ig6 interactions, together allow formation of larger oligomers. Combined size exclusion chromatography with multiangle light scattering (SEC-MALS), small-angle X-ray scattering (SAXS) and native MS analysis indicates contactin 2Ig1-6 oligomerizes in a glycan dependent manner. SAXS and negative-stain electron microscopy reveals inherent plasticity of the contactin 2 full-ectodomain. The combination of intermolecular binding sites and ectodomain plasticity explains how contactin 2 can function as a homotypic adhesion molecule in diverse intercellular environments.
Collapse
Affiliation(s)
- Lucas M P Chataigner
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - Lena Thärichen
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - J Wouter Beugelink
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - Joke C M Granneman
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - Nadia J Mokiem
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - Bert J C Janssen
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands.
| |
Collapse
|
7
|
Dauar MT, Picard C, Labonté A, Breitner J, Rosa-Neto P, Villeneuve S, Poirier J. Contactin 5 and Apolipoproteins Interplay in Alzheimer's Disease. J Alzheimers Dis 2024; 98:1361-1375. [PMID: 38578887 DOI: 10.3233/jad-231003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Apolipoproteins and contactin 5 are proteins associated with Alzheimer's disease (AD) pathophysiology. Apolipoproteins act on transport and clearance of cholesterol and phospholipids during synaptic turnover and terminal proliferation. Contactin 5 is a neuronal membrane protein involved in key processes of neurodevelopment. Objective To investigate the interactions between contactin 5 and apolipoproteins in AD, and the role of these proteins in response to neuronal damage. Methods Apolipoproteins (measured by Luminex), contactin 5 (measured by Olink's proximity extension assay), and cholesterol (measured by liquid chromatography mass spectrometry) were assessed in the cerebrospinal fluid (CSF) and plasma of cognitively unimpaired participants (n = 93). Gene expression was measured using polymerase chain reaction in the frontal cortex of autopsied-confirmed AD (n = 57) and control subjects (n = 31) and in the hippocampi of mice following entorhinal cortex lesions. Results Contactin 5 positively correlated with apolipoproteins B (p = 5.4×10-8), D (p = 1.86×10-4), E (p = 2.92×10-9), J (p = 2.65×10-9), and with cholesterol (p = 0.0096) in the CSF, and with cholesterol (p = 0.02), HDL (p = 0.0143), and LDL (p = 0.0121) in the plasma. Negative correlations were seen between CNTN5, APOB (p = 0.034) and APOE (p = 0.015) mRNA levels in the brains of control subjects. In the mouse model, apoe and apoj gene expression increased during the reinnervation phase (p < 0.05), while apob (p = 0.023) and apod (p = 0.006) increased in the deafferentation stage. Conclusions Extensive interactions were observed between contactin 5 and apolipoproteins and cholesterol, possibly due to neuronal damage. The alterations in gene expression of apolipoproteins suggest a role in axonal, terminal, and synaptic remodeling in response to entorhinal cortex damage.
Collapse
Affiliation(s)
- Marina Tedeschi Dauar
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
| | - John Breitner
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Pedro Rosa-Neto
- McGill University, Montreal, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Verdun, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, Canada
- Centre for the Studies in the Prevention of Alzheimer's Disease, Montréal, Canada
- McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
8
|
Liao W, Cao X, Yu T, Lu K, Xia H, Wang S, Sun G, Yu EY. Egg white protein hydrolysate decreased blood pressure via the competing endogenous RNA regulatory networks in female spontaneously hypertensive rats. Food Funct 2023; 14:9936-9946. [PMID: 37859609 DOI: 10.1039/d3fo02797j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Despite numerous studies having reported the effects and mechanisms of antihypertensive peptides including peptides derived from egg white proteins, the role of peptides in a female hypertensive animal model is unknown. On the other hand, the role of epigenetic modulation by peptide treatment has rarely been investigated. This study sought to investigate the effect of egg white protein hydrolysate (EWH) in female spontaneously hypertensive rats (SHRs) as well as to explore the underlying mechanisms from the perspectives of the transcriptome and the profiles of non-coding RNAs. Young (12-14-week-old) female SHRs were orally administered 250 mg per kg body weight (low-dose) or 1000 mg per kg body weight (high-dose) EWH daily for 10 weeks. The blood pressure of the rats was monitored weekly. The mRNA and non-coding RNAs (miRNA, lncRNA, and circRNA) in the aorta were profiled by the high-throughput RNA-seq technique. Differentially expressed (DE) RNAs in the aorta were identified for the construction of the competing endogenous RNA (ceRNA) networks and key molecules were validated by qRT-PCR. The treatment of the high-dose EWH showed a significant effect on reducing blood pressure in female SHRs. Bioinformatic analyses revealed 813, 90, 347 and 869 DE-mRNAs, DE-miRNAs, DE-lncRNAs and DE-circRNAs, respectively. The CNTN5-LncRNA-XR_001835895.1-miR-384-5p was identified as the central network which was validated in the aorta and circulation of female SHRs. The results from this study demonstrated that the treatment with EWH reduced blood pressure via regulating the ceRNA networks in female SHRs, which provided novel insights into the mechanisms of food protein-derived antihypertensive peptides.
Collapse
Affiliation(s)
- Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China 210009
| | - Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China 210009
| | - Tingqing Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China 210009
| | - Kun Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China 210009
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China 210009
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China 210009
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, China 210009
| | - Evan Yiwen Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, China 210009.
- Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing, China 210009
| |
Collapse
|
9
|
Dauar MT, Labonté A, Picard C, Miron J, Rosa-Neto P, Zetterberg H, Blennow K, Villeneuve S, Poirier J. Characterization of the contactin 5 protein and its risk-associated polymorphic variant throughout the Alzheimer's disease spectrum. Alzheimers Dement 2022. [PMID: 36583624 DOI: 10.1002/alz.12868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022]
Abstract
INTRODUCTION We investigate the CNTN5 rs1461684 G variant and the contactin 5 protein in sporadic Alzheimer's disease (sAD). METHODS Contactin 5, sAD biomarkers, and synaptic markers were measured in the cerebrospinal fluid (CSF). Amyloid and tau deposition were assessed using positron emission tomography. Contactin 5 protein and mRNA levels were measured in brain tissue. RESULTS CSF contactin 5 increases progressively in cognitively unimpaired individuals and is decreased in mild cognitive impairment and sAD. CSF contactin 5 correlates with sAD biomarkers and with synaptic markers. The rs1461684 G variant associates with faster disease progression in cognitively unimpaired subjects. Cortical full-length and isoform 3 CNTN5 mRNAs are decreased in the presence of the G allele and as a function of Consortium to Establish a Registry for Alzheimer's Disease stages. DISCUSSION The newly identified rs1461684 G variant associates with sAD risk, rate of disease progression, and gene expression. Contactin 5 protein and mRNA are affected particularly in the early stages of the disease.
Collapse
Affiliation(s)
- Marina Tedeschi Dauar
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada.,McGill University, Montréal, Canada.,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Anne Labonté
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada
| | - Cynthia Picard
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada
| | - Justin Miron
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada.,McGill University, Montréal, Canada
| | - Pedro Rosa-Neto
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada.,McGill University, Montréal, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada.,McGill University, Montréal, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| | - Judes Poirier
- Douglas Mental Health University Institute, Montréal, Canada.,Centre for the Studies in the Prevention of Alzheimer's, Douglas Mental Health University Institute, Montréal, Canada.,McGill University, Montréal, Canada.,Department of Psychiatry, McGill University, Montréal, Canada
| |
Collapse
|
10
|
Mukhtar T, Breda J, Adam MA, Boareto M, Grobecker P, Karimaddini Z, Grison A, Eschbach K, Chandrasekhar R, Vermeul S, Okoniewski M, Pachkov M, Harwell CC, Atanasoski S, Beisel C, Iber D, van Nimwegen E, Taylor V. Temporal and sequential transcriptional dynamics define lineage shifts in corticogenesis. EMBO J 2022; 41:e111132. [PMID: 36345783 PMCID: PMC9753470 DOI: 10.15252/embj.2022111132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
The cerebral cortex contains billions of neurons, and their disorganization or misspecification leads to neurodevelopmental disorders. Understanding how the plethora of projection neuron subtypes are generated by cortical neural stem cells (NSCs) is a major challenge. Here, we focused on elucidating the transcriptional landscape of murine embryonic NSCs, basal progenitors (BPs), and newborn neurons (NBNs) throughout cortical development. We uncover dynamic shifts in transcriptional space over time and heterogeneity within each progenitor population. We identified signature hallmarks of NSC, BP, and NBN clusters and predict active transcriptional nodes and networks that contribute to neural fate specification. We find that the expression of receptors, ligands, and downstream pathway components is highly dynamic over time and throughout the lineage implying differential responsiveness to signals. Thus, we provide an expansive compendium of gene expression during cortical development that will be an invaluable resource for studying neural developmental processes and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tanzila Mukhtar
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Jeremie Breda
- BiozentrumUniversity of BaselBaselSwitzerland
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
| | - Manal A Adam
- Eli and Edythe Broad Center of Regeneration Medicine and Stem cell ResearchUniversity of California, San FranciscoSan FranciscoCAUSA
- Weill Institute for NeuroscienceSan FranciscoCAUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Marcelo Boareto
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
- Computational Biology Group, D‐BSSEETH ZürichBaselSwitzerland
| | - Pascal Grobecker
- BiozentrumUniversity of BaselBaselSwitzerland
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
| | - Zahra Karimaddini
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
- Computational Biology Group, D‐BSSEETH ZürichBaselSwitzerland
| | - Alice Grison
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Katja Eschbach
- Department of Biosystems Science and EngineeringETH ZürichBaselSwitzerland
| | | | - Swen Vermeul
- Scientific IT ServicesETH ZürichZürichSwitzerland
| | | | - Mikhail Pachkov
- BiozentrumUniversity of BaselBaselSwitzerland
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
| | - Corey C Harwell
- Eli and Edythe Broad Center of Regeneration Medicine and Stem cell ResearchUniversity of California, San FranciscoSan FranciscoCAUSA
- Weill Institute for NeuroscienceSan FranciscoCAUSA
- Department of NeurologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Suzana Atanasoski
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Faculty of MedicineUniversity of ZürichZürichSwitzerland
| | - Christian Beisel
- Department of Biosystems Science and EngineeringETH ZürichBaselSwitzerland
| | - Dagmar Iber
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
- Weill Institute for NeuroscienceSan FranciscoCAUSA
| | - Erik van Nimwegen
- BiozentrumUniversity of BaselBaselSwitzerland
- Swiss Institute of Bioinformatics (SIB)BaselSwitzerland
| | - Verdon Taylor
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| |
Collapse
|
11
|
Chataigner LMP, Gogou C, den Boer MA, Frias CP, Thies-Weesie DME, Granneman JCM, Heck AJR, Meijer DH, Janssen BJC. Structural insights into the contactin 1 - neurofascin 155 adhesion complex. Nat Commun 2022; 13:6607. [PMID: 36329006 PMCID: PMC9633819 DOI: 10.1038/s41467-022-34302-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Cell-surface expressed contactin 1 and neurofascin 155 control wiring of the nervous system and interact across cells to form and maintain paranodal myelin-axon junctions. The molecular mechanism of contactin 1 - neurofascin 155 adhesion complex formation is unresolved. Crystallographic structures of complexed and individual contactin 1 and neurofascin 155 binding regions presented here, provide a rich picture of how competing and complementary interfaces, post-translational glycosylation, splice differences and structural plasticity enable formation of diverse adhesion sites. Structural, biophysical, and cell-clustering analysis reveal how conserved Ig1-2 interfaces form competing heterophilic contactin 1 - neurofascin 155 and homophilic neurofascin 155 complexes whereas contactin 1 forms low-affinity clusters through interfaces on Ig3-6. The structures explain how the heterophilic Ig1-Ig4 horseshoe's in the contactin 1 - neurofascin 155 complex define the 7.4 nm paranodal spacing and how the remaining six domains enable bridging of distinct intercellular distances.
Collapse
Affiliation(s)
- Lucas M. P. Chataigner
- grid.5477.10000000120346234Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Christos Gogou
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Maurits A. den Boer
- grid.5477.10000000120346234Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cátia P. Frias
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Dominique M. E. Thies-Weesie
- grid.5477.10000000120346234Van’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute of Nanomaterials Science, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Joke C. M. Granneman
- grid.5477.10000000120346234Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Albert J. R. Heck
- grid.5477.10000000120346234Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands ,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dimphna H. Meijer
- grid.5292.c0000 0001 2097 4740Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Bert J. C. Janssen
- grid.5477.10000000120346234Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
12
|
Korotkov A, Luinenburg MJ, Romagnolo A, Zimmer TS, van Scheppingen J, Bongaarts A, Broekaart DWM, Anink JJ, Mijnsbergen C, Jansen FE, van Hecke W, Spliet WG, van Rijen PC, Feucht M, Hainfellner JA, Krsek P, Zamecnik J, Crino PB, Kotulska K, Lagae L, Jansen AC, Kwiatkowski DJ, Jozwiak S, Curatolo P, Mühlebner A, van Vliet EA, Mills JD, Aronica E. Down-regulation of the brain-specific cell-adhesion molecule contactin-3 in tuberous sclerosis complex during the early postnatal period. J Neurodev Disord 2022; 14:8. [PMID: 35030990 PMCID: PMC8903535 DOI: 10.1186/s11689-022-09416-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Background The genetic disorder tuberous sclerosis complex (TSC) is frequently accompanied by the development of neuropsychiatric disorders, including autism spectrum disorder and intellectual disability, with varying degrees of impairment. These co-morbidities in TSC have been linked to the structural brain abnormalities, such as cortical tubers, and recurrent epileptic seizures (in 70–80% cases). Previous transcriptomic analysis of cortical tubers revealed dysregulation of genes involved in cell adhesion in the brain, which may be associated with the neurodevelopmental deficits in TSC. In this study we aimed to investigate the expression of one of these genes – cell-adhesion molecule contactin-3. Methods Reverse transcription quantitative polymerase chain reaction for the contactin-3 gene (CNTN3) was performed in resected cortical tubers from TSC patients with drug-resistant epilepsy (n = 35, age range: 1–48 years) and compared to autopsy-derived cortical control tissue (n = 27, age range: 0–44 years), as well as by western blot analysis of contactin-3 (n = 7 vs n = 7, age range: 0–3 years for both TSC and controls) and immunohistochemistry (n = 5 TSC vs n = 4 controls). The expression of contactin-3 was further analyzed in fetal and postnatal control tissue by western blotting and in-situ hybridization, as well as in the SH-SY5Y neuroblastoma cell line differentiation model in vitro. Results CNTN3 gene expression was lower in cortical tubers from patients across a wide range of ages (fold change = − 0.5, p < 0.001) as compared to controls. Contactin-3 protein expression was lower in the age range of 0–3 years old (fold change = − 3.8, p < 0.001) as compared to the age-matched controls. In control brain tissue, contactin-3 gene and protein expression could be detected during fetal development, peaked around birth and during infancy and declined in the adult brain. CNTN3 expression was induced in the differentiated SH-SY5Y neuroblastoma cells in vitro (fold change = 6.2, p < 0.01). Conclusions Our data show a lower expression of contactin-3 in cortical tubers of TSC patients during early postnatal period as compared to controls, which may affect normal brain development and might contribute to neuropsychiatric co-morbidities observed in patients with TSC. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-022-09416-2.
Collapse
Affiliation(s)
- Anatoly Korotkov
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Mark J Luinenburg
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Alessia Romagnolo
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Till S Zimmer
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Anika Bongaarts
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Diede W M Broekaart
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jasper J Anink
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Caroline Mijnsbergen
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Floor E Jansen
- Department of Paediatric Neurology, University Medical Center, Brain Center, Utrecht, the Netherlands
| | - Wim van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wim G Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter C van Rijen
- Rudolf Magnus Institute for Neuroscience, University Medical Center, Brain Center, Utrecht, the Netherlands
| | - Martha Feucht
- Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | | | - Pavel Krsek
- Department of Pediatric Neurology, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Peter B Crino
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Lieven Lagae
- Department of Development and Regeneration-Section Pediatric Neurology, University Hospitals KU Leuven, Leuven, Belgium
| | - Anna C Jansen
- Pediatric Neurology Unit, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Sergiusz Jozwiak
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Paolo Curatolo
- Department of Clinical and Experimental Epilepsy, University College London, London, UK
| | - Angelika Mühlebner
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Erwin A van Vliet
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - James D Mills
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands. .,Stichting Epilepsie Instellingen Nederland, Heemstede, the Netherlands.
| |
Collapse
|
13
|
Handedness and its genetic influences are associated with structural asymmetries of the cerebral cortex in 31,864 individuals. Proc Natl Acad Sci U S A 2021; 118:2113095118. [PMID: 34785596 PMCID: PMC8617418 DOI: 10.1073/pnas.2113095118] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 01/01/2023] Open
Abstract
Left-handedness occurs in roughly 10% of people, but whether it involves altered brain anatomy has remained unclear. We measured left to right asymmetry of the cerebral cortex in 28,802 right-handers and 3,062 left-handers. There were small average differences between the two handedness groups in brain regions important for hand control, language, vision, and working memory. Genetic influences on handedness were associated with some of these brain asymmetries, especially of language-related regions. This suggests links between handedness and language during human development and evolution. One implicated gene is NME7, which also affects placement of the visceral organs (heart, liver, etc.) on the left to right body axis—a possible connection between brain and body asymmetries in embryonic development. Roughly 10% of the human population is left-handed, and this rate is increased in some brain-related disorders. The neuroanatomical correlates of hand preference have remained equivocal. We resampled structural brain image data from 28,802 right-handers and 3,062 left-handers (UK Biobank population dataset) to a symmetrical surface template, and mapped asymmetries for each of 8,681 vertices across the cerebral cortex in each individual. Left-handers compared to right-handers showed average differences of surface area asymmetry within the fusiform cortex, the anterior insula, the anterior middle cingulate cortex, and the precentral cortex. Meta-analyzed functional imaging data implicated these regions in executive functions and language. Polygenic disposition to left-handedness was associated with two of these regional asymmetries, and 18 loci previously linked with left-handedness by genome-wide screening showed associations with one or more of these asymmetries. Implicated genes included six encoding microtubule-related proteins: TUBB, TUBA1B, TUBB3, TUBB4A, MAP2, and NME7—mutations in the latter can cause left to right reversal of the visceral organs. There were also two cortical regions where average thickness asymmetry was altered in left-handedness: on the postcentral gyrus and the inferior occipital cortex, functionally annotated with hand sensorimotor and visual roles. These cortical thickness asymmetries were not heritable. Heritable surface area asymmetries of language-related regions may link the etiologies of hand preference and language, whereas nonheritable asymmetries of sensorimotor cortex may manifest as consequences of hand preference.
Collapse
|
14
|
Spead O, Weaver CJ, Moreland T, Poulain FE. Live imaging of retinotectal mapping reveals topographic map dynamics and a previously undescribed role for Contactin 2 in map sharpening. Development 2021; 148:272618. [PMID: 34698769 DOI: 10.1242/dev.199584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
Organization of neuronal connections into topographic maps is essential for processing information. Yet, our understanding of topographic mapping has remained limited by our inability to observe maps forming and refining directly in vivo. Here, we used Cre-mediated recombination of a new colorswitch reporter in zebrafish to generate the first transgenic model allowing the dynamic analysis of retinotectal mapping in vivo. We found that the antero-posterior retinotopic map forms early but remains dynamic, with nasal and temporal retinal axons expanding their projection domains over time. Nasal projections initially arborize in the anterior tectum but progressively refine their projection domain to the posterior tectum, leading to the sharpening of the retinotopic map along the antero-posterior axis. Finally, using a CRISPR-mediated mutagenesis approach, we demonstrate that the refinement of nasal retinal projections requires the adhesion molecule Contactin 2. Altogether, our study provides the first analysis of a topographic map maturing in real time in a live animal and opens new strategies for dissecting the molecular mechanisms underlying precise topographic mapping in vertebrates.
Collapse
Affiliation(s)
- Olivia Spead
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Cory J Weaver
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Trevor Moreland
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
15
|
Krivoruchko A, Sermyagin A, Saprikina T, Golovanova N, Kvochko A, Yatsyk O. Genome wide associations study of single nucleotide polymorphisms with productivity parameters in Jalgin merino for identification of new candidate genes. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Han Y, You J, Han Y, Liu Y, Huang M, Lu X, Chen J, Zheng Y. LINC00184 Promotes Ovarian Cancer Cells Proliferation and Cisplatin Resistance by Elevating CNTN1 Expression via Sponging miR-1305. Onco Targets Ther 2021; 14:2711-2726. [PMID: 33907415 PMCID: PMC8064690 DOI: 10.2147/ott.s280490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Objective Cisplatin resistance is one of the main reasons for treatment failure in ovarian cancer (OC). Here, the effects of LINC00184 on cisplatin-resistant OC were studied. Patients and Methods LINC00184, miR-1305 and CNTN1 expression in tissues from 70 OC patients was determined by qRT-PCR, in situ hybridization and Western blot. OC cell lines and OC cisplatin-resistant cell lines were cultured. Cells were transfected using Lipofectamine 2000 and treated with 100 nM cisplatin. Cell proliferation and apoptosis were researched by the CCK-8 assay and flow cytometry. A dual-luciferase reporter gene assay and RNA pull-down were performed to explore the relationship between two genes. LINC00184, miR-1305 and CNTN1 expression in cells was detected by qRT-PCR and Western blot. An in vivo experiment was conducted using nude mice. Ki67 and CNTN1 expression and apoptosis of xenograft tumors were investigated using immunohistochemistry and a TUNEL assay. Results LINC00184 was up-regulated in OC clinical tissues and OC cells, especially in cisplatin-resistant OC patients and cells (p<0.01 or p<0.0001). LINC00184 overexpression significantly enhanced OC cell proliferation and cisplatin resistance, and inhibited OC cell apoptosis (p<0.05 or p<0.01). LINC00184 elevated CNTN1 expression via sponging miR-1305. LINC00184 overexpression markedly exacerbated the malignant phenotype of OC cells and cisplatin-resistant OC cells via the miR-1305/CNTN1 axis (p<0.01). Silencing of LINC00184 significantly suppressed OC cell growth and cisplatin resistance in vivo (p<0.01). LINC00184 silencing inhibited Ki67 and CNTN1 expression and promoted apoptosis of xenograft tumors. CNTN1 overexpression promoted proliferation and cisplatin resistance, and reduced apoptosis of OC cells (p<0.05 or p<0.01). Conclusion LINC00184 promoted OC cell proliferation and cisplatin resistance by elevating CNTN1 expression via sponging miR-1305.
Collapse
Affiliation(s)
- Yuwen Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jun You
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yun Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yinglei Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Menghui Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Xiaoyan Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jingjing Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yanli Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| |
Collapse
|
17
|
Hu CS, Huang JH, Yang DL, Xu C, Xu ZG, Tan HB, Chen ZZ. Lentivirus-mediated silencing of CNTN1 enhances gefitinib sensitivity by reversing epithelial-mesenchymal transition in lung adenocarcinoma A549 cells. Oncol Lett 2021; 21:433. [PMID: 33868471 PMCID: PMC8045161 DOI: 10.3892/ol.2021.12694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Contactin-1 (CNTN1), a neuronal cell adhesion molecular, functions in nervous system development and has been associated with carcinogenesis and tumor progression. To investigate the role of CNTN1 in gefitinib resistance in lung adenocarcinoma, lentivirus-mediated short hairpin (sh)RNA was used to silence CNTN1 and its physiological function was analyzed in the A549 cell line. A cell cytotoxicity assay revealed that CNTN1 knockdown enhanced gefitinib sensitivity in the A549 cells. In addition, CNTN1 knockdown, together with gefitinib treatment, resulted in a significant inhibition of colony formation and migration, and promotion of apoptosis. Furthermore, CNTN1 knockdown also reversed the epithelial-mesenchymal transition (EMT) phenotype by increasing E-cadherin protein expression level, and decreasing N-cadherin and vimentin protein expression levels. The PI3K/Akt signaling pathway was also association with the effects of CNTN1 on EMT progression and gefitinib resistance in the A549 cells. Collectively, knockdown of CNTN1 reversed the EMT phenotype and enhanced gefitinib sensitivity in the A549 cells by inhibiting the activation of the PI3K/Akt signaling pathway. These results suggested that CNTN1 may represent a potential therapeutic target for reserving EGFR-tyrosine kinase inhibitor resistance in non-small cell lung cancer.
Collapse
Affiliation(s)
- Chun-Sheng Hu
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Jiu-Hong Huang
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Dong-Lin Yang
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Chuan Xu
- Department of Oncology, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610047, P.R. China
| | - Zhi-Gang Xu
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Hong-Bo Tan
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Zhong-Zhu Chen
- College of Pharmacy, National and Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| |
Collapse
|
18
|
Tenney AP, Livet J, Belton T, Prochazkova M, Pearson EM, Whitman MC, Kulkarni AB, Engle EC, Henderson CE. Etv1 Controls the Establishment of Non-overlapping Motor Innervation of Neighboring Facial Muscles during Development. Cell Rep 2020; 29:437-452.e4. [PMID: 31597102 PMCID: PMC7032945 DOI: 10.1016/j.celrep.2019.08.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/16/2019] [Accepted: 08/22/2019] [Indexed: 01/06/2023] Open
Abstract
The somatotopic motor-neuron projections onto their cognate target muscles are essential for coordinated movement, but how that occurs for facial motor circuits, which have critical roles in respiratory and interactive behaviors, is poorly understood. We report extensive molecular heterogeneity in developing facial motor neurons in the mouse and identify markers of subnuclei and the motor pools innervating specific facial muscles. Facial subnuclei differentiate during migration to the ventral hindbrain, where neurons with progressively later birth dates—and evolutionarily more recent functions—settle in more-lateral positions. One subpopulation marker, ETV1, determines both positional and target muscle identity for neurons of the dorsolateral (DL) subnucleus. In Etv1 mutants, many markers of DL differentiation are lost, and individual motor pools project indifferently to their own and neighboring muscle targets. The resulting aberrant activation patterns are reminiscent of the facial synkinesis observed in humans after facial nerve injury. Tenney et al. demonstrate that embryonic facial motor neurons are transcriptionally diverse as they establish somatotopic innervation of the facial muscles, a process that requires the transcription factor ETV1. Facial-motor axon-targeting errors in Etv1 mutants cause coordination of whisking and eyeblink evocative of human blepharospasm.
Collapse
Affiliation(s)
- Alan P Tenney
- Center for Motor Neuron Biology and Disease (MNC), Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Timothy Belton
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Erica M Pearson
- Center for Motor Neuron Biology and Disease (MNC), Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Christopher E Henderson
- Center for Motor Neuron Biology and Disease (MNC), Columbia University, New York, NY 10032, USA; Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY 10032, USA; Columbia Translational Neuroscience Initiative (CTNI), Columbia University, New York, NY 10032, USA; Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA
| |
Collapse
|
19
|
The Interaction Between Contactin and Amyloid Precursor Protein and Its Role in Alzheimer’s Disease. Neuroscience 2020; 424:184-202. [DOI: 10.1016/j.neuroscience.2019.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 01/06/2023]
|
20
|
Cellular and molecular characterization of multiplex autism in human induced pluripotent stem cell-derived neurons. Mol Autism 2019; 10:51. [PMID: 31893020 PMCID: PMC6936127 DOI: 10.1186/s13229-019-0306-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder with pronounced heritability in the general population. This is largely attributable to the effects of polygenic susceptibility, with inherited liability exhibiting distinct sex differences in phenotypic expression. Attempts to model ASD in human cellular systems have principally involved rare de novo mutations associated with ASD phenocopies. However, by definition, these models are not representative of polygenic liability, which accounts for the vast share of population-attributable risk. Methods Here, we performed what is, to our knowledge, the first attempt to model multiplex autism using patient-derived induced pluripotent stem cells (iPSCs) in a family manifesting incremental degrees of phenotypic expression of inherited liability (absent, intermediate, severe). The family members share an inherited variant of uncertain significance (VUS) in GPD2, a gene that was previously associated with developmental disability but here is insufficient by itself to cause ASD. iPSCs from three first-degree relatives and an unrelated control were differentiated into both cortical excitatory (cExN) and cortical inhibitory (cIN) neurons, and cellular phenotyping and transcriptomic analysis were conducted. Results cExN neurospheres from the two affected individuals were reduced in size, compared to those derived from unaffected related and unrelated individuals. This reduction was, at least in part, due to increased apoptosis of cells from affected individuals upon initiation of cExN neural induction. Likewise, cIN neural progenitor cells from affected individuals exhibited increased apoptosis, compared to both unaffected individuals. Transcriptomic analysis of both cExN and cIN neural progenitor cells revealed distinct molecular signatures associated with affectation, including the misregulation of suites of genes associated with neural development, neuronal function, and behavior, as well as altered expression of ASD risk-associated genes. Conclusions We have provided evidence of morphological, physiological, and transcriptomic signatures of polygenic liability to ASD from an analysis of cellular models derived from a multiplex autism family. ASD is commonly inherited on the basis of additive genetic liability. Therefore, identifying convergent cellular and molecular phenotypes resulting from polygenic and monogenic susceptibility may provide a critical bridge for determining which of the disparate effects of rare highly deleterious mutations might also apply to common autistic syndromes.
Collapse
|
21
|
Peripheral Brain-Derived Neurotrophic Factor and Contactin-1 Levels in Patients with Attention-Deficit/Hyperactivity Disorder. J Clin Med 2019; 8:jcm8091366. [PMID: 31480710 PMCID: PMC6780884 DOI: 10.3390/jcm8091366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) facilitates neuronal growth and plasticity, and is crucial for learning and memory. Contactin-1 (CNTN1) is a member of the subfamily of neural immunoglobulin and is involved in the formation of axon connections in the developing nervous system. This cross-sectional study investigates whether BDNF and CNTN1 affect susceptibility to attention deficit/hyperactivity disorder (ADHD). A total of 136 drug-naïve patients with ADHD (108 boys and 28 girls) and 71 healthy controls (45 boys and 26 girls) were recruited. Blood samples were obtained to measure the plasma levels of BDNF and CNTN1 in each child. We found that BDNF levels in the ADHD boys exceeded those in the control boys, but BDNF levels in the ADHD girls were lower than those in the control girls. Boys who had higher BDNF levels performed worse on the Wechsler Intelligence Scale for Children—Fourth Edition, but girls who had higher BDNF levels made fewer omission errors in the Conners’ Continuous Performance Test. However, CNTN1 level did not differ significantly between patients and controls, and were not correlated to ADHD characteristics, regardless of gender. The findings suggest BDNF may influence sex-specific susceptibility to ADHD, but CNTN1 was not associated with ADHD pathophysiology.
Collapse
|
22
|
Picocci S, Bizzoca A, Corsi P, Magrone T, Jirillo E, Gennarini G. Modulation of Nerve Cell Differentiation: Role of Polyphenols and of Contactin Family Components. Front Cell Dev Biol 2019; 7:119. [PMID: 31380366 PMCID: PMC6656924 DOI: 10.3389/fcell.2019.00119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
In this study the mechanisms are explored, which modulate expression and function of cell surface adhesive glycoproteins of the Immunoglobulin Supergene Family (IgSF), and in particular of its Contactin subset, during neuronal precursor developmental events. In this context, a specific topic concerns the significance of the expression profile of such molecules and their ability to modulate signaling pathways activated through nutraceuticals, in particular polyphenols, administration. Both in vitro and in vivo approaches are chosen. As for the former, by using as a model the human SH-SY5Y neuroblastoma line, the effects of grape seed polyphenols are evaluated on proliferation and commitment/differentiation events along the neuronal lineage. In SH-SY5Y cell cultures, polyphenols were found to counteract precursor proliferation while promoting their differentiation, as deduced by studying their developmental parameters through the expression of cell cycle and neuronal commitment/differentiation markers as well as by measuring neurite growth. In such cultures, Cyclin E expression and BrdU incorporation were downregulated, indicating reduced precursor proliferation while increased neuronal differentiation was inferred from upregulation of cell cycle exit (p27–Kip) and neuronal commitment (NeuN) markers as well as by measuring neurite length through morphometric analysis. The polyphenol effects on developmental parameters were also explored in vivo, in cerebellar cortex, by using as a model the TAG/F3 transgenic line, which undergoes delayed neural development as a consequence of Contactin1 adhesive glycoprotein upregulation and premature expression under control of the Contactin2 gene (Cntn-2) promoter. In this transgenic line, a Notch pathway activation is known to occur and polyphenol treatment was found to counteract such an effect, demonstrated through downregulation of the Hes-1 transcription factor. Polyphenols also downregulated the expression of adhesive glycoproteins of the Contactin family themselves, demonstrated for both Contactin1 and Contactin2, indicating the involvement of changes in the expression of the underlying genes in the observed phenotype. These data support the hypothesis that the complex control exerted by polyphenols on neural development involves modulation of expression and function of the genes encoding cell adhesion molecules of the Contactin family and of the associated signaling pathways, indicating potential mechanisms whereby such compounds may control neurogenesis.
Collapse
Affiliation(s)
- Sabrina Picocci
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Antonella Bizzoca
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Patrizia Corsi
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Thea Magrone
- Laboratories of Immunology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Emilio Jirillo
- Laboratories of Immunology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - Gianfranco Gennarini
- Laboratories of Developmental Neurobiology, Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
23
|
Burbach JPH, Meijer DH. Latrophilin's Social Protein Network. Front Neurosci 2019; 13:643. [PMID: 31297045 PMCID: PMC6608557 DOI: 10.3389/fnins.2019.00643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/05/2019] [Indexed: 01/06/2023] Open
Abstract
Latrophilins (LPHNs) are adhesion GPCRs that are originally discovered as spider's toxin receptors, but are now known to be involved in brain development and linked to several neuronal and non-neuronal disorders. Latrophilins act in conjunction with other cell adhesion molecules and may play a leading role in its network organization. Here, we focus on the main protein partners of latrophilins, namely teneurins, FLRTs and contactins and summarize their respective temporal and spatial expression patterns, links to neurodevelopmental disorders as well as their structural characteristics. We discuss how more recent insights into the separate cell biological functions of these proteins shed light on the central role of latrophilins in this network. We postulate that latrophilins control the refinement of synaptic properties of specific subtypes of neurons, requiring discrete combinations of proteins.
Collapse
Affiliation(s)
- J Peter H Burbach
- Department of Translational Neuroscience, UMCU Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dimphna H Meijer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
24
|
Zhu YF, Guo YB, Zhang HY, Yang P, Wei DF, Zhang TT, Pan BR, Liu L. Prognostic significance of contactin 3 expression and associated genes in glioblastoma multiforme. Oncol Lett 2019; 18:1863-1871. [PMID: 31423255 PMCID: PMC6607048 DOI: 10.3892/ol.2019.10482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
Contactin 3 (CNTN3) is a member of the contactin family that is primarily expressed in the nervous system. However, to the best of our knowledge, expression of contactin and its role in the development and progression of brain tumours has not been studied. Although glioblastoma multiforme (GBM) is the most common malignant brain tumour, advances in therapeutic options for patients with GBM have been modest due to an incomplete understanding of the molecular mechanisms underlying development and progression. The aim of the present study was to examine the correlation between CNTN3 and its associated genes and the clinical outcome in patients with GBM. CNTN3 and the expression levels of associated genes were analysed in GBM datasets obtained from the SAGE Anatomical viewer website, Gene Expression Omnibus, Oncomine and The Cancer Genome Atlas. CNTN3 was significantly downregulated in patients with GBM. Subsequently, the expression of CNTN3 was further validated using immunohistochemistry in a cohort of GBM specimens. The immunohistochemistry results were consistent with the in silico analyses. Kaplan-Meier analysis indicated that patients with lower expression levels of CNTN3 had a significantly shorter overall survival (OS) time compared with patients with higher levels of CNTN3 expression. Univariate and multivariate Cox regression analyses demonstrated that CNTN3 expression was an independent prognostic indicator in patients with GBM. Furthermore, gene set enrichment analysis revealed that CNTN3 was associated with the receptor tyrosine-protein kinase (ErbB) signalling pathway. In the ErbB signalling pathway, epidermal growth factor receptor (EGFR) was negatively correlated with CNTN3. Taken together, these data suggest that lower expression levels of CNTN3 may be an independent biomarker that predicts poor OS time in patients with GBM, and that EGFR expression in the ErbB pathway may be associated with CNTN3 expression.
Collapse
Affiliation(s)
- Yi-Fang Zhu
- Clinical Laboratory, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China.,Medical Research Center, The Second Affiliated Clinical College of Chongqing Medical University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Yuan-Biao Guo
- Medical Research Center, The Second Affiliated Clinical College of Chongqing Medical University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Han-Yu Zhang
- Department of Neurology, The Second Affiliated Clinical College of Chongqing Medical University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Peng Yang
- Pathology Laboratory, The Second Affiliated Clinical College of Chongqing Medical University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Dan-Feng Wei
- Medical Research Center, The Second Affiliated Clinical College of Chongqing Medical University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Tong-Tong Zhang
- Medical Research Center, The Second Affiliated Clinical College of Chongqing Medical University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Bi-Ran Pan
- Medical Research Center, The Second Affiliated Clinical College of Chongqing Medical University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Lei Liu
- Medical Research Center, The Second Affiliated Clinical College of Chongqing Medical University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| |
Collapse
|
25
|
Chatterjee M, Schild D, Teunissen CE. Contactins in the central nervous system: role in health and disease. Neural Regen Res 2019; 14:206-216. [PMID: 30530999 PMCID: PMC6301169 DOI: 10.4103/1673-5374.244776] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023] Open
Abstract
Contactins are a group of cell adhesion molecules that are mainly expressed in the brain and play pivotal roles in the organization of axonal domains, axonal guidance, neuritogenesis, neuronal development, synapse formation and plasticity, axo-glia interactions and neural regeneration. Contactins comprise a family of six members. Their absence leads to malformed axons and impaired nerve conduction. Contactin mediated protein complex formation is critical for the organization of the axon in early central nervous system development. Mutations and differential expression of contactins have been identified in neuro-developmental or neurological disorders. Taken together, contactins are extensively studied in the context of nervous system development. This review summarizes the physiological roles of all six members of the Contactin family in neurodevelopment as well as their involvement in neurological/neurodevelopmental disorders.
Collapse
Affiliation(s)
- Madhurima Chatterjee
- Amsterdam UMC, VU University Medical Center, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
- DFG Excellence Cluster 171, University of Göttingen, Göttingen, Germany
| | - Charlotte E. Teunissen
- Amsterdam UMC, VU University Medical Center, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Lu IL, Chen C, Tung CY, Chen HH, Pan JP, Chang CH, Cheng JS, Chen YA, Wang CH, Huang CW, Kang YN, Chang HY, Li LL, Chang KP, Shih YH, Lin CH, Kwan SY, Tsai JW. Identification of genes associated with cortical malformation using a transposon-mediated somatic mutagenesis screen in mice. Nat Commun 2018; 9:2498. [PMID: 29950674 PMCID: PMC6021418 DOI: 10.1038/s41467-018-04880-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in genes involved in the production, migration, or differentiation of cortical neurons often lead to malformations of cortical development (MCDs). However, many genetic mutations involved in MCD pathogenesis remain unidentified. Here we developed a genetic screening paradigm based on transposon-mediated somatic mutagenesis by in utero electroporation and the inability of mutant neuronal precursors to migrate to the cortex and identified 33 candidate MCD genes. Consistent with the screen, several genes have already been implicated in neural development and disorders. Functional disruption of the candidate genes by RNAi or CRISPR/Cas9 causes altered neuronal distributions that resemble human cortical dysplasia. To verify potential clinical relevance of these candidate genes, we analyzed somatic mutations in brain tissue from patients with focal cortical dysplasia and found that mutations are enriched in these candidate genes. These results demonstrate that this approach is able to identify potential mouse genes involved in cortical development and MCD pathogenesis. Cortical malformations have a variety of causes. Here the authors use transposon mutagenesis to insert mutations into neural stem cells in the developing mouse cortex to screen for new candidate genes for cortical malformation, and validate some targets in human brain tissue.
Collapse
Affiliation(s)
- I-Ling Lu
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chien Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
| | - Chien-Yi Tung
- VYM Genome Research Center of National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsin-Hung Chen
- National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Jia-Ping Pan
- VYM Genome Research Center of National Yang-Ming University, Taipei, 112, Taiwan
| | - Chia-Hsiang Chang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan.,Taiwan International Graduate Program (TIGP) in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 112, Taiwan
| | - Jia-Shing Cheng
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yi-An Chen
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chun-Hung Wang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chia-Wei Huang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yi-Ning Kang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsin-Yun Chang
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Lei-Li Li
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan
| | - Kai-Ping Chang
- National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Yang-Hsin Shih
- National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.,Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Chi-Hung Lin
- VYM Genome Research Center of National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan.,Institute of Biophotonics, National Yang-Ming University, Taipei, 112, Taiwan
| | - Shang-Yeong Kwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, National Yang-Ming University, Taipei, 112, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, 112, Taiwan. .,Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
27
|
Bracalente C, Ibañez IL, Berenstein A, Notcovich C, Cerda MB, Klamt F, Chernomoretz A, Durán H. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated. Oncotarget 2018; 7:41154-41171. [PMID: 27206673 PMCID: PMC5173049 DOI: 10.18632/oncotarget.9273] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/02/2016] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are implicated in tumor transformation. The antioxidant system (AOS) protects cells from ROS damage. However, it is also hijacked by cancers cells to proliferate within the tumor. Thus, identifying proteins altered by redox imbalance in cancer cells is an attractive prognostic and therapeutic tool. Gene expression microarrays in A375 melanoma cells with different ROS levels after overexpressing catalase were performed. Dissimilar phenotypes by differential compensation to hydrogen peroxide scavenging were generated. The melanotic A375-A7 (A7) upregulated TYRP1, CNTN1 and UCHL1 promoting melanogenesis. The metastatic A375-G10 (G10) downregulated MTSS1 and TIAM1, proteins absent in metastasis. Moreover, differential coexpression of AOS genes (EPHX2, GSTM3, MGST1, MSRA, TXNRD3, MGST3 and GSR) was found in A7 and G10. Their increase in A7 improved its AOS ability and therefore, oxidative stress response, resembling less aggressive tumor cells. Meanwhile, their decrease in G10 revealed a disruption in the AOS and therefore, enhanced its metastatic capacity. These gene signatures, not only bring new insights into the physiopathology of melanoma, but also could be relevant in clinical prognostic to classify between non aggressive and metastatic melanomas.
Collapse
Affiliation(s)
- Candelaria Bracalente
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Irene L Ibañez
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Ariel Berenstein
- Fundación Instituto Leloir and Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia Notcovich
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - María B Cerda
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Fabio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Ariel Chernomoretz
- Fundación Instituto Leloir and Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
28
|
Lindblom RPF, Molnar M, Israelsson C, Röjsäter B, Wiklund L, Lennmyr F. Hyperglycemia Alters Expression of Cerebral Metabolic Genes after Cardiac Arrest. J Stroke Cerebrovasc Dis 2018; 27:1200-1211. [PMID: 29306595 DOI: 10.1016/j.jstrokecerebrovasdis.2017.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/26/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Survivors of cardiac arrest often experience neurologic deficits. To date, treatment options are limited. Associated hyperglycemia is believed to further worsen the neurologic outcome. The aim with this study was to characterize expression pathways induced by hyperglycemia in conjunction with global brain ischemia. METHODS Pigs were randomized to high or normal glucose levels, as regulated by glucose and insulin infusions with target levels of 8.5-10 mM and 4-5.5 mM, respectively. The animals were subjected to 5-minute cardiac arrest followed by 8 minutes of cardiopulmonary resuscitation and direct-current shock to restore spontaneous circulation. Global expression profiling of the cortex using microarrays was performed in both groups. RESULTS A total of 102 genes differed in expression at P < .001 between the hyperglycemic and the normoglycemic pigs. Several of the most strongly differentially regulated genes were involved in transport and metabolism of glucose. Functional clustering using bioinformatics tools revealed enrichment of multiple biological processes, including membrane processes, ion transport, and glycoproteins. CONCLUSIONS Hyperglycemia during cardiac arrest leads to differential early gene expression compared with normoglycemia. The functional relevance of these expressional changes cannot be deduced from the current study; however, the identified candidates have been linked to neuroprotective mechanisms and constitute interesting targets for further studies.
Collapse
Affiliation(s)
- Rickard Per Fredrik Lindblom
- Department of Cardiothoracic Surgery and Anaesthesia, Uppsala University Hospital, Uppsala, Sweden; Department of Surgical Sciences, Section of Thoracic Surgery, Uppsala University, Uppsala, Sweden
| | - Maria Molnar
- Department of Surgical Sciences, Section of Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden.
| | - Charlotte Israelsson
- Department of Neuroscience, Developmental Neuroscience, Uppsala University, Uppsala, Sweden
| | - Belinda Röjsäter
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Wiklund
- Department of Surgical Sciences, Section of Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Fredrik Lennmyr
- Department of Cardiothoracic Surgery and Anaesthesia, Uppsala University Hospital, Uppsala, Sweden; Department of Surgical Sciences, Section of Thoracic Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Smirnov AV, Kontsevaya GV, Feofanova NA, Anisimova MV, Serova IA, Gerlinskaya LA, Battulin NR, Moshkin MP, Serov OL. Unexpected phenotypic effects of a transgene integration causing a knockout of the endogenous Contactin-5 gene in mice. Transgenic Res 2017; 27:1-13. [PMID: 29264679 DOI: 10.1007/s11248-017-0053-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023]
Abstract
Contactins (Cntn1-6) are a family of neuronal membrane proteins expressed in the brain. They are required for establishing cell-to-cell contacts between neurons and for the growth and maturation of the axons. In humans, structural genomic variations in the Contactin genes are implicated in neurodevelopmental disorders. In addition, population genetic studies associate Contactins loci with obesity and hypertension. Cntn5 knockout mice were first described in 2003, but showed no gross physiological or behavioral abnormalities (just minor auditory defects). We report a novel Cntn5 knockout mouse line generated by a random transgene integration as an outcome of pronuclear microinjection. Investigation of the transgene integration site revealed that the 6Kbp transgene construct coding for the human granulocyte-macrophage colony-stimulating factor (hGMCSF) replaced 170 Kbp of the Cntn5 gene, including four exons. Reverse transcription PCR analysis of the Cntn5 transcripts in the wild-type and transgenic mouse lines showed that splicing of the transgene leads to a set of chimeric hGMCSF-Cntn5 transcript variants, none of which encode functional Cntn5 protein due to introduction of stop codons. Although Cntn5 knockout animals displayed no abnormalities in behavior, we noted that they were leaner, with less body mass and fat percentage than wild-type animals. Their cardiovascular parameters (heart rate, blood pressure and blood flow speed) were elevated compared to controls. These findings link Cntn5 deficiency to obesity and hypertension.
Collapse
Affiliation(s)
- Alexander V Smirnov
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - Galina V Kontsevaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia A Feofanova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Margarita V Anisimova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina A Serova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Lyudmila A Gerlinskaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nariman R Battulin
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Mikhail P Moshkin
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oleg L Serov
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia. .,Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
30
|
Manduca Contactin Regulates Amyloid Precursor Protein-Dependent Neuronal Migration. J Neurosci 2017; 36:8757-75. [PMID: 27535920 DOI: 10.1523/jneurosci.0729-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/12/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Amyloid precursor protein (APP) was originally identified as the source of β-amyloid peptides that accumulate in Alzheimer's disease (AD), but it also has been implicated in the control of multiple aspects of neuronal motility. APP belongs to an evolutionarily conserved family of transmembrane proteins that can interact with a variety of adapter and signaling molecules. Recently, we showed that both APP and its insect ortholog [APPL (APP-Like)] directly bind the heterotrimeric G-protein Goα, supporting the model that APP can function as an unconventional Goα-coupled receptor. We also adapted a well characterized assay of neuronal migration in the hawkmoth, Manduca sexta, to show that APPL-Goα signaling restricts ectopic growth within the developing nervous system, analogous to the role postulated for APP family proteins in controlling migration within the mammalian cortex. Using this assay, we have now identified Manduca Contactin (MsContactin) as an endogenous ligand for APPL, consistent with previous work showing that Contactins interact with APP family proteins in other systems. Using antisense-based knockdown protocols and fusion proteins targeting both proteins, we have shown that MsContactin is selectively expressed by glial cells that ensheath the migratory neurons (expressing APPL), and that MsContactin-APPL interactions normally prevent inappropriate migration and outgrowth. These results provide new evidence that Contactins can function as authentic ligands for APP family proteins that regulate APP-dependent responses in the developing nervous system. They also support the model that misregulated Contactin-APP interactions might provoke aberrant activation of Goα and its effectors, thereby contributing to the neurodegenerative sequelae that typify AD. SIGNIFICANCE STATEMENT Members of the amyloid precursor protein (APP) family participate in many aspects of neuronal development, but the ligands that normally activate APP signaling have remained controversial. This research provides new evidence that members of the Contactin family function as authentic ligands for APP and its orthologs, and that this evolutionarily conserved class of membrane-attached proteins regulates key aspects of APP-dependent migration and outgrowth in the embryonic nervous system. By defining the normal role of Contactin-APP signaling during development, these studies also provide the framework for investigating how the misregulation of Contactin-APP interactions might contribute to neuronal dysfunction in the context of both normal aging and neurodegenerative conditions, including Alzheimer's disease.
Collapse
|
31
|
Gong AX, Zhang JH, Li J, Wu J, Wang L, Miao DS. Comparison of gene expression profiles between dental pulp and periodontal ligament tissues in humans. Int J Mol Med 2017; 40:647-660. [PMID: 28713908 PMCID: PMC5547970 DOI: 10.3892/ijmm.2017.3065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/16/2017] [Indexed: 01/09/2023] Open
Abstract
There are anatomical and functional differences between human dental pulp (DP) and periodontal ligament (PDL). However, the molecular biological differences and function of these tissues are poorly understood. In the present study, we employed a cDNA microarray array to screen for differentially expressed genes (DEGs) between human DP and PDL tissues, and used the online software WebGestalt to perform the functional analysis of the DEGs. In addition, the STRING database and KEGG pathway analysis were applied for interaction network and pathway analysis of the DEGs. DP and PDL samples were obtained from permanent premolars (n=16) extracted for orthodontic purposes. The results of the microarray assay were confirmed by RT-qPCR. The DEGs were found to be significantly associated with the extracellular matrix and focal adhesion. A total of 10 genes were selected to confirm the results. The mRNA levels of integrin alpha 4 (ITGA4), integrin alpha 8 (ITGA8), neurexin 1 (NRXN1) and contactin 1 (CNTN1) were significantly higher in the DP than in the PDL tissues. However, the levels of collagen type XI alpha 1 (COL11A1), aggrecan (ACAN), collagen type VI alpha 1 (COL6A1), chondroadherin (CHAD), laminin gamma 2 (LAMC2) and laminin alpha 3 (LAMA3) were higher in the PDL than in the DP samples. The gene expression profiles provide novel insight into the characterization of DP and PDL tissues, and contribute to our understanding of the potential molecular mechanisms of dental tissue mineralization and regeneration.
Collapse
Affiliation(s)
- Ai-Xiu Gong
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jing-Han Zhang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jing Li
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jun Wu
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Orthodontics, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Deng-Shun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
32
|
Middelkamp S, van Heesch S, Braat AK, de Ligt J, van Iterson M, Simonis M, van Roosmalen MJ, Kelder MJE, Kruisselbrink E, Hochstenbach R, Verbeek NE, Ippel EF, Adolfs Y, Pasterkamp RJ, Kloosterman WP, Kuijk EW, Cuppen E. Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells. Genome Med 2017; 9:9. [PMID: 28126037 PMCID: PMC5270341 DOI: 10.1186/s13073-017-0399-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/06/2017] [Indexed: 12/18/2022] Open
Abstract
Background Germline chromothripsis causes complex genomic rearrangements that are likely to affect multiple genes and their regulatory contexts. The contribution of individual rearrangements and affected genes to the phenotypes of patients with complex germline genomic rearrangements is generally unknown. Methods To dissect the impact of germline chromothripsis in a relevant developmental context, we performed trio-based RNA expression analysis on blood cells, induced pluripotent stem cells (iPSCs), and iPSC-derived neuronal cells from a patient with de novo germline chromothripsis and both healthy parents. In addition, Hi-C and 4C-seq experiments were performed to determine the effects of the genomic rearrangements on transcription regulation of genes in the proximity of the breakpoint junctions. Results Sixty-seven genes are located within 1 Mb of the complex chromothripsis rearrangements involving 17 breakpoints on four chromosomes. We find that three of these genes (FOXP1, DPYD, and TWIST1) are both associated with developmental disorders and differentially expressed in the patient. Interestingly, the effect on TWIST1 expression was exclusively detectable in the patient’s iPSC-derived neuronal cells, stressing the need for studying developmental disorders in the biologically relevant context. Chromosome conformation capture analyses show that TWIST1 lost genomic interactions with several enhancers due to the chromothripsis event, which likely led to deregulation of TWIST1 expression and contributed to the patient’s craniosynostosis phenotype. Conclusions We demonstrate that a combination of patient-derived iPSC differentiation and trio-based molecular profiling is a powerful approach to improve the interpretation of pathogenic complex genomic rearrangements. Here we have applied this approach to identify misexpression of TWIST1, FOXP1, and DPYD as key contributors to the complex congenital phenotype resulting from germline chromothripsis rearrangements. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0399-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sjors Middelkamp
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Sebastiaan van Heesch
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.,Cardiovascular and Metabolic Sciences, Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Robert-Rössle-Strasse 10, Berlin, 13125, Germany
| | - A Koen Braat
- Department of Cell Biology, Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 6, Utrecht, 3584CT, The Netherlands
| | - Joep de Ligt
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Maarten van Iterson
- Department of Molecular Epidemiology, Leiden University Medical Center, Einthovenweg 20, Leiden, 2333ZC, The Netherlands
| | - Marieke Simonis
- Cergentis B.V., Yalelaan 62, Utrecht, 3584CM, The Netherlands
| | - Markus J van Roosmalen
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Martijn J E Kelder
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Evelien Kruisselbrink
- Department of Pediatric Pulmonology & Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Lundlaan 6, Utrecht, 3584EA, The Netherlands
| | - Ron Hochstenbach
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584EA, The Netherlands
| | - Elly F Ippel
- Department of Genetics, University Medical Center Utrecht, Lundlaan 6, Utrecht, 3584EA, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Wigard P Kloosterman
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands
| | - Ewart W Kuijk
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.
| | - Edwin Cuppen
- Center for Molecular Medicine and Cancer Genomics Netherlands, Division Biomedical Genetics, University Medical Center Utrecht, Universiteitsweg 100, Utrecht, 3584CG, The Netherlands.
| |
Collapse
|
33
|
A current view on contactin-4, -5, and -6: Implications in neurodevelopmental disorders. Mol Cell Neurosci 2017; 81:72-83. [PMID: 28064060 DOI: 10.1016/j.mcn.2016.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/23/2016] [Accepted: 12/25/2016] [Indexed: 12/30/2022] Open
Abstract
Contactins (Cntns) are a six-member subgroup of the immunoglobulin cell adhesion molecule superfamily (IgCAMs) with pronounced brain expression and function. Recent genetic studies of neuropsychiatric disorders have pinpointed contactin-4 (CNTN4), contactin-5 (CNTN5) and contactin-6 (CNTN6) as candidate genes in neurodevelopmental disorders, particularly in autism spectrum disorders (ASDs), but also in intellectual disability, schizophrenia (SCZ), attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BD), alcohol use disorder (AUD) and anorexia nervosa (AN). This suggests that they have important functions during neurodevelopment. This suggestion is supported by data showing that neurite outgrowth, cell survival and neural circuit formation can be affected by disruption of these genes. Here, we review the current genetic data about their involvement in neuropsychiatric disorders and explore studies on how null mutations affect mouse behavior. Finally, we highlight to role of protein-protein interactions in the potential mechanism of action of Cntn4, -5 and -6 and emphasize that complexes with other membrane proteins may play a role in neuronal developmental functions.
Collapse
|
34
|
Anatomy and Cell Biology of Autism Spectrum Disorder: Lessons from Human Genetics. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 224:1-25. [PMID: 28551748 DOI: 10.1007/978-3-319-52498-6_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Until recently autism spectrum disorder (ASD) was regarded as a neurodevelopmental condition with unknown causes and pathogenesis. In the footsteps of the revolution of genome technologies and genetics, and with its high degree of heritability, ASD became the first neuropsychiatric disorder for which clues towards molecular and cellular pathogenesis were uncovered by genetic identification of susceptibility genes. Currently several hundreds of risk genes have been assigned, with a recurrence below 1% in the ASD population. The multitude and diversity of known ASD genes has extended the clinical notion that ASD comprises very heterogeneous conditions ranging from severe intellectual disabilities to mild high-functioning forms. The results of genetics have allowed to pinpoint a limited number of cellular and molecular processes likely involved in ASD including protein synthesis, signal transduction, transcription/chromatin remodelling and synaptic function all playing an essential role in the regulation of synaptic homeostasis during brain development. In this context, we highlight the role of protein synthesis as a key process in ASD pathogenesis as it might be central in synaptic deregulation and a potential target for intervention. These current insights should lead to a rational design of interventions in molecular and cellular pathways of ASD pathogenesis that may be applied to affected individuals in the future.
Collapse
|
35
|
Liu JT, Zhang S, Gu B, Li HN, Wang SY, Zhang SY. Methotrexate combined with methylprednisolone for the recovery of motor function and differential gene expression in rats with spinal cord injury. Neural Regen Res 2017; 12:1507-1518. [PMID: 29089998 PMCID: PMC5649473 DOI: 10.4103/1673-5374.215263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methylprednisolone is a commonly used drug for the treatment of spinal cord injury, but high doses of methylprednisolone can increase the incidence of infectious diseases. Methotrexate has anti-inflammatory activity and immunosuppressive effects, and can reduce inflammation after spinal cord injury. To analyze gene expression changes and the molecular mechanism of methotrexate combined with methylprednisolone in the treatment of spinal cord injury, a rat model of spinal cord contusion was prepared using the PinPoint™ precision cortical impactor technique. Rats were injected with methylprednisolone 30 mg/kg 30 minutes after injury, and then subcutaneously injected with 0.3 mg/kg methotrexate 1 day after injury, once a day, for 2 weeks. TreadScan gait analysis found that at 4 and 8 weeks after injury, methotrexate combined with methylprednisolone significantly improved hind limb swing time, stride time, minimum longitudinal deviation, instant speed, footprint area and regularity index. Solexa high-throughput sequencing was used to analyze differential gene expression. Compared with methylprednisolone alone, differential expression of 316 genes was detected in injured spinal cord treated with methotrexate and methylprednisolone. The 275 up-regulated genes were mainly related to nerve recovery, anti-oxidative, anti-inflammatory and anti-apoptotic functions, while 41 down-regulated genes were mainly related to proinflammatory and pro-apoptotic functions. These results indicate that methotrexate combined with methylprednisolone exhibited better effects on inhibiting the activity of inflammatory cytokines and enhancing antioxidant and anti-apoptotic effects and thereby produced stronger neuroprotective effects than methotrexate alone. The 316 differentially expressed genes play an important role in the above processes.
Collapse
Affiliation(s)
- Jian-Tao Liu
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Si Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Bing Gu
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| | - Hua-Nan Li
- Department of Spine Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Shuo-Yu Wang
- Department of Spine Surgery, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Shui-Yin Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi Province, China
| |
Collapse
|
36
|
Gennarini G, Bizzoca A, Picocci S, Puzzo D, Corsi P, Furley AJW. The role of Gpi-anchored axonal glycoproteins in neural development and neurological disorders. Mol Cell Neurosci 2016; 81:49-63. [PMID: 27871938 DOI: 10.1016/j.mcn.2016.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/06/2023] Open
Abstract
This review article focuses on the Contactin (CNTN) subset of the Immunoglobulin supergene family (IgC2/FNIII molecules), whose components share structural properties (the association of Immunoglobulin type C2 with Fibronectin type III domains), as well as a general role in cell contact formation and axonal growth control. IgC2/FNIII molecules include 6 highly related components (CNTN 1-6), associated with the cell membrane via a Glycosyl Phosphatidyl Inositol (GPI)-containing lipid tail. Contactin 1 and Contactin 2 share ~50 (49.38)% identity at the aminoacid level. They are components of the cell surface, from which they may be released in soluble forms. They bind heterophilically to multiple partners in cis and in trans, including members of the related L1CAM family and of the Neurexin family Contactin-associated proteins (CNTNAPs or Casprs). Such interactions are important for organising the neuronal membrane, as well as for modulating the growth and pathfinding of axon tracts. In addition, they also mediate the functional maturation of axons by promoting their interactions with myelinating cells at the nodal, paranodal and juxtaparanodal regions. Such interactions also mediate differential ionic channels (both Na+ and K+) distribution, which is of critical relevance in the generation of the peak-shaped action potential. Indeed, thanks to their interactions with Ankyrin G, Na+ channels map within the nodal regions, where they drive axonal depolarization. However, no ionic channels are found in the flanking Contactin1-containing paranodal regions, where CNTN1 interactions with Caspr1 and with the Ig superfamily component Neurofascin 155 in cis and in trans, respectively, build a molecular barrier between the node and the juxtaparanode. In this region K+ channels are clustered, depending upon molecular interactions with Contactin 2 and with Caspr2. In addition to these functions, the Contactins appear to have also a role in degenerative and inflammatory disorders: indeed Contactin 2 is involved in neurodegenerative disorders with a special reference to the Alzheimer disease, given its ability to work as a ligand of the Alzheimer Precursor Protein (APP), which results in increased Alzheimer Intracellular Domain (AICD) release in a γ-secretase-dependent manner. On the other hand Contactin 1 drives Notch signalling activation via the Hes pathway, which could be consistent with its ability to modulate neuroinflammation events, and with the possibility that Contactin 1-dependent interactions may participate to the pathogenesis of the Multiple Sclerosis and of other inflammatory disorders.
Collapse
Affiliation(s)
- Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy.
| | - Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Sabrina Picocci
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Patrizia Corsi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Andrew J W Furley
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2NT, UK
| |
Collapse
|
37
|
Lin YC, Frei JA, Kilander MBC, Shen W, Blatt GJ. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons. Front Cell Neurosci 2016; 10:263. [PMID: 27909399 PMCID: PMC5112273 DOI: 10.3389/fncel.2016.00263] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families.
Collapse
Affiliation(s)
- Yu-Chih Lin
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Jeannine A Frei
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Michaela B C Kilander
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Wenjuan Shen
- Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| | - Gene J Blatt
- Laboratory of Autism Neurocircuitry, Program in Neuroscience, Hussman Institute for Autism, Baltimore MD, USA
| |
Collapse
|
38
|
Bizzoca A, Picocci S, Corsi P, Arbia S, Croci L, Consalez GG, Gennarini G. The gene encoding the mouse contactin-1 axonal glycoprotein is regulated by the collier/Olf1/EBF family early B-Cell factor 2 transcription factor. Dev Neurobiol 2015; 75:1420-40. [DOI: 10.1002/dneu.22293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/17/2015] [Accepted: 03/22/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; Medical School, University of Bari; Policlinico Bari I-70124 Italy
| | - Sabrina Picocci
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; Medical School, University of Bari; Policlinico Bari I-70124 Italy
| | - Patrizia Corsi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; Medical School, University of Bari; Policlinico Bari I-70124 Italy
| | - Stefania Arbia
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; Medical School, University of Bari; Policlinico Bari I-70124 Italy
| | - Laura Croci
- Division of Neuroscience; San Raffaele Scientific Institute; Milano I-20132 Italy
| | - G. Giacomo Consalez
- Division of Neuroscience; San Raffaele Scientific Institute; Milano I-20132 Italy
- Università Vita-Salute San Raffaele; Milano I-20132 Italy
| | - Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs; Medical School, University of Bari; Policlinico Bari I-70124 Italy
| |
Collapse
|