1
|
Lisek M, Tomczak J, Boczek T, Zylinska L. Calcium-Associated Proteins in Neuroregeneration. Biomolecules 2024; 14:183. [PMID: 38397420 PMCID: PMC10887043 DOI: 10.3390/biom14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The dysregulation of intracellular calcium levels is a critical factor in neurodegeneration, leading to the aberrant activation of calcium-dependent processes and, ultimately, cell death. Ca2+ signals vary in magnitude, duration, and the type of neuron affected. A moderate Ca2+ concentration can initiate certain cellular repair pathways and promote neuroregeneration. While the peripheral nervous system exhibits an intrinsic regenerative capability, the central nervous system has limited self-repair potential. There is evidence that significant variations exist in evoked calcium responses and axonal regeneration among neurons, and individual differences in regenerative capacity are apparent even within the same type of neurons. Furthermore, some studies have shown that neuronal activity could serve as a potent regulator of this process. The spatio-temporal patterns of calcium dynamics are intricately controlled by a variety of proteins, including channels, ion pumps, enzymes, and various calcium-binding proteins, each of which can exert either positive or negative effects on neural repair, depending on the cellular context. In this concise review, we focus on several calcium-associated proteins such as CaM kinase II, GAP-43, oncomodulin, caldendrin, calneuron, and NCS-1 in order to elaborate on their roles in the intrinsic mechanisms governing neuronal regeneration following traumatic damage processes.
Collapse
Affiliation(s)
| | | | | | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (M.L.); (J.T.); (T.B.)
| |
Collapse
|
2
|
Ames JB. L-Type Ca 2+ Channel Regulation by Calmodulin and CaBP1. Biomolecules 2021; 11:1811. [PMID: 34944455 PMCID: PMC8699282 DOI: 10.3390/biom11121811] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/12/2023] Open
Abstract
L-type voltage-gated Ca2+ channels (CaV1.2 and CaV1.3, called CaV) interact with the Ca2+ sensor proteins, calmodulin (CaM) and Ca2+ binding Protein 1 (CaBP1), that oppositely control Ca2+-dependent channel activity. CaM and CaBP1 can each bind to the IQ-motif within the C-terminal cytosolic domain of CaV, which promotes increased channel open probability under basal conditions. At elevated cytosolic Ca2+ levels (caused by CaV channel opening), Ca2+-bound CaM binding to CaV is essential for promoting rapid Ca2+-dependent channel inactivation (CDI). By contrast, CaV binding to CaBP1 prevents CDI and promotes Ca2+-induced channel opening (called CDF). In this review, I provide an overview of the known structures of CaM and CaBP1 and their structural interactions with the IQ-motif to help understand how CaM promotes CDI, whereas CaBP1 prevents CDI and instead promotes CDF. Previous electrophysiology studies suggest that Ca2+-free forms of CaM and CaBP1 may pre-associate with CaV under basal conditions. However, previous Ca2+ binding data suggest that CaM and CaBP1 are both calculated to bind to Ca2+ with an apparent dissociation constant of ~100 nM when CaM or CaBP1 is bound to the IQ-motif. Since the neuronal basal cytosolic Ca2+ concentration is ~100 nM, nearly half of the neuronal CaV channels are suggested to be bound to Ca2+-bound forms of either CaM or CaBP1 under basal conditions. The pre-association of CaV with calcified forms of CaM or CaBP1 are predicted here to have functional implications. The Ca2+-bound form of CaBP1 is proposed to bind to CaV under basal conditions to block CaV binding to CaM, which could explain how CaBP1 might prevent CDI.
Collapse
Affiliation(s)
- James B Ames
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Korbolina EE, Ershov NI, Bryzgalov LO, Kolosova NG. Application of quantitative trait locus mapping and transcriptomics to studies of the senescence-accelerated phenotype in rats. BMC Genomics 2014; 15 Suppl 12:S3. [PMID: 25563673 PMCID: PMC4303943 DOI: 10.1186/1471-2164-15-s12-s3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Etiology of complex disorders, such as cataract and neurodegenerative diseases including age-related macular degeneration (AMD), remains poorly understood due to the paucity of animal models, fully replicating the human disease. Previously, two quantitative trait loci (QTLs) associated with early cataract, AMD-like retinopathy, and some behavioral aberrations in senescence-accelerated OXYS rats were uncovered on chromosome 1 in a cross between OXYS and WAG rats. To confirm the findings, we generated interval-specific congenic strains, WAG/OXYS-1.1 and WAG/OXYS-1.2, carrying OXYS-derived loci of chromosome 1 in the WAG strain. Both congenic strains displayed early cataract and retinopathy but differed clinically from OXYS rats. Here we applied a high-throughput RNA sequencing (RNA-Seq) strategy to facilitate nomination of the candidate genes and functional pathways that may be responsible for these differences and can contribute to the development of the senescence-accelerated phenotype of OXYS rats. Results First, the size and map position of QTL-derived congenic segments were determined by comparative analysis of coding single-nucleotide polymorphisms (SNPs), which were identified for OXYS, WAG, and congenic retinal RNAs after sequencing. The transferred locus was not what we expected in WAG/OXYS-1.1 rats. In rat retina, 15442 genes were expressed. Coherent sets of differentially expressed genes were identified when we compared RNA-Seq retinal profiles of 20-day-old WAG/OXYS-1.1, WAG/OXYS-1.2, and OXYS rats. The genes most different in the average expression level between the congenic strains included those generally associated with the Wnt, integrin, and TGF-β signaling pathways, widely involved in neurodegenerative processes. Several candidate genes (including Arhgap33, Cebpg, Gtf3c1, Snurf, Tnfaip3, Yme1l1, Cbs, Car9 and Fn1) were found to be either polymorphic in the congenic loci or differentially expressed between the strains. These genes may contribute to the development of cataract and retinopathy. Conclusions This study is the first RNA-Seq analysis of the rat retinal transcriptome generated with 40 mln sequencing read depth. The integration of QTL and transcriptomic analyses in our study forms the basis of future research into the relationship between the candidate genes within the congenic regions and specific changes in the retinal transcriptome as possible causal mechanisms that underlie age-associated disorders.
Collapse
|
4
|
CaBP1, a neuronal Ca2+ sensor protein, inhibits inositol trisphosphate receptors by clamping intersubunit interactions. Proc Natl Acad Sci U S A 2013; 110:8507-12. [PMID: 23650371 DOI: 10.1073/pnas.1220847110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calcium-binding protein 1 (CaBP1) is a neuron-specific member of the calmodulin superfamily that regulates several Ca(2+) channels, including inositol 1,4,5-trisphosphate receptors (InsP3Rs). CaBP1 alone does not affect InsP3R activity, but it inhibits InsP3-evoked Ca(2+) release by slowing the rate of InsP3R opening. The inhibition is enhanced by Ca(2+) binding to both the InsP3R and CaBP1. CaBP1 binds via its C lobe to the cytosolic N-terminal region (NT; residues 1-604) of InsP3R1. NMR paramagnetic relaxation enhancement analysis demonstrates that a cluster of hydrophobic residues (V101, L104, and V162) within the C lobe of CaBP1 that are exposed after Ca(2+) binding interact with a complementary cluster of hydrophobic residues (L302, I364, and L393) in the β-domain of the InsP3-binding core. These residues are essential for CaBP1 binding to the NT and for inhibition of InsP3R activity by CaBP1. Docking analyses and paramagnetic relaxation enhancement structural restraints suggest that CaBP1 forms an extended tetrameric turret attached by the tetrameric NT to the cytosolic vestibule of the InsP3R pore. InsP3 activates InsP3Rs by initiating conformational changes that lead to disruption of an intersubunit interaction between a "hot-spot" loop in the suppressor domain (residues 1-223) and the InsP3-binding core β-domain. Targeted cross-linking of residues that contribute to this interface show that InsP3 attenuates cross-linking, whereas CaBP1 promotes it. We conclude that CaBP1 inhibits InsP3R activity by restricting the intersubunit movements that initiate gating.
Collapse
|
5
|
Gorny X, Mikhaylova M, Seeger C, Reddy PP, Reissner C, Schott BH, Helena Danielson U, Kreutz MR, Seidenbecher C. AKAP79/150 interacts with the neuronal calcium-binding protein caldendrin. J Neurochem 2012; 122:714-26. [PMID: 22693956 DOI: 10.1111/j.1471-4159.2012.07828.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The A kinase-anchoring protein AKAP79/150 is a postsynaptic scaffold molecule and a key regulator of signaling events. At the postsynapse it coordinates phosphorylation and dephosphorylation of receptors via anchoring kinases and phosphatases near their substrates. Interactions between AKAP79 and two Ca(2+) -binding proteins caldendrin and calmodulin have been investigated here. Calmodulin is a known interaction partner of AKAP79/150 that has been shown to regulate activity of the kinase PKC in a Ca(2+) -dependent manner. Pull-down experiments and surface plasmon resonance biosensor analyses have been used here to demonstrate that AKAP79 can also interact with caldendrin, a neuronal calcium-binding protein implicated in regulation of Ca(2+) -influx and release. We demonstrate that calmodulin and caldendrin compete for a partially overlapping binding site on AKAP79 and that their binding is differentially dependent on calcium. Therefore, this competition is regulated by calcium levels. Moreover, both proteins have different binding characteristics suggesting that the two proteins might play complementary roles. The postsynaptic enrichment, the complex binding mechanism, and the competition with calmodulin, makes caldendrin an interesting novel player in the signaling toolkit of the AKAP interactome.
Collapse
Affiliation(s)
- Xenia Gorny
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Park S, Li C, Ames JB. Nuclear magnetic resonance structure of calcium-binding protein 1 in a Ca(2+) -bound closed state: implications for target recognition. Protein Sci 2011; 20:1356-66. [PMID: 21608059 DOI: 10.1002/pro.662] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 05/10/2011] [Indexed: 11/10/2022]
Abstract
Calcium-binding protein 1 (CaBP1), a neuron-specific member of the calmodulin (CaM) superfamily, regulates the Ca(2+) -dependent activity of inositol 1,4,5-triphosphate receptors (InsP3Rs) and various voltage-gated Ca(2+) channels. Here, we present the NMR structure of full-length CaBP1 with Ca(2+) bound at the first, third, and fourth EF-hands. A total of 1250 nuclear Overhauser effect distance measurements and 70 residual dipolar coupling restraints define the overall main chain structure with a root-mean-squared deviation of 0.54 Å (N-domain) and 0.48 Å (C-domain). The first 18 residues from the N-terminus in CaBP1 (located upstream of the first EF-hand) are structurally disordered and solvent exposed. The Ca(2+) -saturated CaBP1 structure contains two independent domains separated by a flexible central linker similar to that in calmodulin and troponin C. The N-domain structure of CaBP1 contains two EF-hands (EF1 and EF2), both in a closed conformation [interhelical angles = 129° (EF1) and 142° (EF2)]. The C-domain contains EF3 and EF4 in the familiar Ca(2+) -bound open conformation [interhelical angles = 105° (EF3) and 91° (EF4)]. Surprisingly, the N-domain adopts the same closed conformation in the presence or absence of Ca(2+) bound at EF1. The Ca(2+) -bound closed conformation of EF1 is reminiscent of Ca(2+) -bound EF-hands in a closed conformation found in cardiac troponin C and calpain. We propose that the Ca(2+) -bound closed conformation of EF1 in CaBP1 might undergo an induced-fit opening only in the presence of a specific target protein, and thus may help explain the highly specialized target binding by CaBP1.
Collapse
Affiliation(s)
- Saebomi Park
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
7
|
Role of neuronal Ca2+-sensor proteins in Golgi-cell-surface membrane traffic. Biochem Soc Trans 2010; 38:177-80. [PMID: 20074055 DOI: 10.1042/bst0380177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The regulated local synthesis of PtdIns4P and PtdIns(4,5)P(2) is crucial for TGN (trans-Golgi network)-plasma membrane trafficking. The activity of PI4Kbeta (phosphoinositide 4-kinase IIIbeta) at the Golgi membrane is a first mandatory step in this process. In addition to PI4Kbeta activity, elevated Ca(2+) levels are also needed for the exit of vesicles from the TGN. The reason for this Ca(2+) requirement is at present unclear. In the present review, we discuss the role of neuronal Ca(2+)-sensor proteins in the regulation of PI4Kbeta and suggest that this regulation might impose a need for elevated Ca(2+) levels for a late step of vesicle assembly.
Collapse
|
8
|
Li C, Chan J, Haeseleer F, Mikoshiba K, Palczewski K, Ikura M, Ames JB. Structural insights into Ca2+-dependent regulation of inositol 1,4,5-trisphosphate receptors by CaBP1. J Biol Chem 2009; 284:2472-81. [PMID: 19008222 PMCID: PMC2629100 DOI: 10.1074/jbc.m806513200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/04/2008] [Indexed: 01/25/2023] Open
Abstract
Calcium-binding protein 1 (CaBP1), a neuron-specific member of the calmodulin (CaM) superfamily, modulates Ca2+-dependent activity of inositol 1,4,5-trisphosphate receptors (InsP3Rs). Here we present NMR structures of CaBP1 in both Mg2+-bound and Ca2+-bound states and their structural interaction with InsP3Rs. CaBP1 contains four EF-hands in two separate domains. The N-domain consists of EF1 and EF2 in a closed conformation with Mg2+ bound at EF1. The C-domain binds Ca2+ at EF3 and EF4, and exhibits a Ca2+-induced closed to open transition like that of CaM. The Ca2+-bound C-domain contains exposed hydrophobic residues (Leu132, His134, Ile141, Ile144, and Val148) that may account for selective binding to InsP3Rs. Isothermal titration calorimetry analysis reveals a Ca2+-induced binding of the CaBP1 C-domain to the N-terminal region of InsP3R (residues 1-587), whereas CaM and the CaBP1 N-domain did not show appreciable binding. CaBP1 binding to InsP3Rs requires both the suppressor and ligand-binding core domains, but has no effect on InsP3 binding to the receptor. We propose that CaBP1 may regulate Ca2+-dependent activity of InsP3Rs by promoting structural contacts between the suppressor and core domains.
Collapse
Affiliation(s)
- Congmin Li
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Dieterich DC, Karpova A, Mikhaylova M, Zdobnova I, König I, Landwehr M, Kreutz M, Smalla KH, Richter K, Landgraf P, Reissner C, Boeckers TM, Zuschratter W, Spilker C, Seidenbecher CI, Garner CC, Gundelfinger ED, Kreutz MR. Caldendrin-Jacob: a protein liaison that couples NMDA receptor signalling to the nucleus. PLoS Biol 2008; 6:e34. [PMID: 18303947 PMCID: PMC2253627 DOI: 10.1371/journal.pbio.0060034] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 01/03/2008] [Indexed: 11/18/2022] Open
Abstract
NMDA (N-methyl-D-aspartate) receptors and calcium can exert multiple and very divergent effects within neuronal cells, thereby impacting opposing occurrences such as synaptic plasticity and neuronal degeneration. The neuronal Ca2+ sensor Caldendrin is a postsynaptic density component with high similarity to calmodulin. Jacob, a recently identified Caldendrin binding partner, is a novel protein abundantly expressed in limbic brain and cerebral cortex. Strictly depending upon activation of NMDA-type glutamate receptors, Jacob is recruited to neuronal nuclei, resulting in a rapid stripping of synaptic contacts and in a drastically altered morphology of the dendritic tree. Jacob's nuclear trafficking from distal dendrites crucially requires the classical Importin pathway. Caldendrin binds to Jacob's nuclear localization signal in a Ca2+-dependent manner, thereby controlling Jacob's extranuclear localization by competing with the binding of Importin-alpha to Jacob's nuclear localization signal. This competition requires sustained synapto-dendritic Ca2+ levels, which presumably cannot be achieved by activation of extrasynaptic NMDA receptors, but are confined to Ca2+ microdomains such as postsynaptic spines. Extrasynaptic NMDA receptors, as opposed to their synaptic counterparts, trigger the cAMP response element-binding protein (CREB) shut-off pathway, and cell death. We found that nuclear knockdown of Jacob prevents CREB shut-off after extrasynaptic NMDA receptor activation, whereas its nuclear overexpression induces CREB shut-off without NMDA receptor stimulation. Importantly, nuclear knockdown of Jacob attenuates NMDA-induced loss of synaptic contacts, and neuronal degeneration. This defines a novel mechanism of synapse-to-nucleus communication via a synaptic Ca2+-sensor protein, which links the activity of NMDA receptors to nuclear signalling events involved in modelling synapto-dendritic input and NMDA receptor-induced cellular degeneration.
Collapse
Affiliation(s)
- Daniela C Dieterich
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Anna Karpova
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Marina Mikhaylova
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Irina Zdobnova
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Imbritt König
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Marco Landwehr
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Martin Kreutz
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Karl-Heinz Smalla
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Karin Richter
- Institute for Medical Neurobiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Landgraf
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Carsten Reissner
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Werner Zuschratter
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Christina Spilker
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Constanze I Seidenbecher
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Craig C Garner
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California, United States of America
| | - Eckart D Gundelfinger
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Michael R Kreutz
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
10
|
Mikhaylova M, Sharma Y, Reissner C, Nagel F, Aravind P, Rajini B, Smalla KH, Gundelfinger ED, Kreutz MR. Neuronal Ca2+ signaling via caldendrin and calneurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1229-37. [PMID: 17055077 DOI: 10.1016/j.bbamcr.2006.08.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Revised: 08/22/2006] [Accepted: 08/30/2006] [Indexed: 11/22/2022]
Abstract
The calcium sensor protein caldendrin is abundantly expressed in neurons and is thought to play an important role in different aspects of synapto-dendritic Ca2+ signaling. Caldendrin is highly abundant in the postsynaptic density of a subset of excitatory synapses in brain and its distinct localization raises several decisive questions about its function. Previous work suggests that caldendrin is tightly associated with Ca2+ - and Ca2+ release channels and might be involved in different aspects of the organization of the postsynaptic scaffold as well as with synapse-to-nucleus communication. In this report we introduce two new EF-hand calcium sensor proteins termed calneurons that apart from calmodulin represent the closest homologues of caldendrin in brain. Calneurons have a different EF-hand organization than other calcium sensor proteins, are prominently expressed in neurons and will presumably bind Ca2+ with higher affinity than caldendrin. Despite some significant structural differences it is conceivable that they are involved in similar Ca2+ regulated processes like caldendrin and neuronal calcium sensor proteins.
Collapse
Affiliation(s)
- Marina Mikhaylova
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wingard JN, Chan J, Bosanac I, Haeseleer F, Palczewski K, Ikura M, Ames JB. Structural analysis of Mg2+ and Ca2+ binding to CaBP1, a neuron-specific regulator of calcium channels. J Biol Chem 2005; 280:37461-70. [PMID: 16147998 PMCID: PMC1470661 DOI: 10.1074/jbc.m508541200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CaBP1 (calcium-binding protein 1) is a 19.4-kDa protein of the EF-hand superfamily that modulates the activity of Ca(2+) channels in the brain and retina. Here we present data from NMR, microcalorimetry, and other biophysical studies that characterize Ca(2+) binding, Mg(2+) binding, and structural properties of recombinant CaBP1 purified from Escherichia coli. Mg(2+) binds constitutively to CaBP1 at EF-1 with an apparent dissociation constant (K(d)) of 300 microm. Mg(2+) binding to CaBP1 is enthalpic (DeltaH = -3.725 kcal/mol) and promotes NMR spectral changes, indicative of a concerted Mg(2+)-induced conformational change. Ca(2+) binding to CaBP1 induces NMR spectral changes assigned to residues in EF-3 and EF-4, indicating localized Ca(2+)-induced conformational changes at these sites. Ca(2+) binds cooperatively to CaBP1 at EF-3 and EF-4 with an apparent K(d) of 2.5 microM and a Hill coefficient of 1.3. Ca(2+) binds to EF-1 with low affinity (K(d) >100 microM), and no Ca(2+) binding was detected at EF-2. In the absence of Mg(2+) and Ca(2+), CaBP1 forms a flexible molten globule-like structure. Mg(2+) and Ca(2+) induce distinct conformational changes resulting in protein dimerization and markedly increased folding stability. The unfolding temperatures are 53, 74, and 76 degrees C for apo-, Mg(2+)-bound, and Ca(2+)-bound CaBP1, respectively. Together, our results suggest that CaBP1 switches between structurally distinct Mg(2+)-bound and Ca(2+)-bound states in response to Ca(2+) signaling. Both conformational states may serve to modulate the activity of Ca(2+) channel targets.
Collapse
Affiliation(s)
- Jennifer N Wingard
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, 20850, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Schultz K, Janssen-Bienhold U, Gundelfinger ED, Kreutz MR, Weiler R. Calcium-binding protein Caldendrin and CaMKII are localized in spinules of the carp retina. J Comp Neurol 2004; 479:84-93. [PMID: 15389610 DOI: 10.1002/cne.20314] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Calcium-binding proteins translate the influx of Ca(2+) at excitatory synapses into spatiotemporal signals that regulate a variety of processes underlying synaptic plasticity. In the fish retina, the synaptic connectivity between photoreceptors and horizontal cells undergoes a remarkable plasticity, triggered by the ambient light conditions. With increasing light, the synaptic dendrites of horizontal cells form numerous spinules that are dissolved during dark adaptation. The dynamic regulation of this process is calcium-dependent and involves the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), but astonishingly its principal regulator Calmodulin (CaM) could not be localized to spinules. Here, we show that antibodies directed against Caldendrin (CaBP1), a member of the EF-hand calcium-binding protein family, strongly label the terminal dendrites of horizontal cells invaginating cone pedicles. Double-labeling experiments revealed that this label is closely associated with label for CaMKII. This association was confirmed at the ultrastructural level. Caldendrin immunoreactivity and CaMKII immunoreactivity are both present in horizontal cell dendrites flanking the synaptic ribbon within the cone pedicle and in particular in spinules formed by these terminals. Comparison of light- and dark-adapted retinas revealed a shift of the membrane-associated label for Caldendrin from the terminal dendrites into the spinules during light adaptation. These results suggest that Caldendrin is involved in the dynamic regulation of spinules and confirms the assumed potential of Caldendrin as a neural calcium sensor for synaptic plasticity.
Collapse
Affiliation(s)
- Konrad Schultz
- Department Biology, University of Oldenburg, 26111 Oldenburg, Germany
| | | | | | | | | |
Collapse
|
13
|
Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nat Neurosci 2004; 7:1079-87. [PMID: 15452577 DOI: 10.1038/nn1320] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 08/03/2004] [Indexed: 11/09/2022]
Abstract
CaBP1-8 are neuronal Ca(2+)-binding proteins with similarity to calmodulin (CaM). Here we show that CaBP4 is specifically expressed in photoreceptors, where it is localized to synaptic terminals. The outer plexiform layer, which contains the photoreceptor synapses with secondary neurons, was thinner in the Cabp4(-/-) mice than in control mice. Cabp4(-/-) retinas also had ectopic synapses originating from rod bipolar and horizontal cells tha HJt extended into the outer nuclear layer. Responses of Cabp4(-/-) rod bipolars were reduced in sensitivity about 100-fold. Electroretinograms (ERGs) indicated a reduction in cone and rod synaptic function. The phenotype of Cabp4(-/-) mice shares similarities with that of incomplete congenital stationary night blindness (CSNB2) patients. CaBP4 directly associated with the C-terminal domain of the Ca(v)1.4 alpha(1)-subunit and shifted the activation of Ca(v)1.4 to hyperpolarized voltages in transfected cells. These observations indicate that CaBP4 is important for normal synaptic function, probably through regulation of Ca(2+) influx and neurotransmitter release in photoreceptor synaptic terminals.
Collapse
|
14
|
Seidenbecher CI, Landwehr M, Smalla KH, Kreutz M, Dieterich DC, Zuschratter W, Reissner C, Hammarback JA, Böckers TM, Gundelfinger ED, Kreutz MR. Caldendrin but not calmodulin binds to light chain 3 of MAP1A/B: an association with the microtubule cytoskeleton highlighting exclusive binding partners for neuronal Ca(2+)-sensor proteins. J Mol Biol 2004; 336:957-70. [PMID: 15095872 DOI: 10.1016/j.jmb.2003.12.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 12/15/2003] [Accepted: 12/18/2003] [Indexed: 11/19/2022]
Abstract
Caldendrin is a neuronal Ca(2+)-sensor protein (NCS), which represents the closest homologue of calmodulin (CaM) in nerve cells. It is tightly associated with the somato-dendritic cytoskeleton of neurons and highly enriched in the postsynaptic cytomatrix. Here, we report that caldendrin specifically associates with the microtubule cytoskeleton via an interaction with light chain 3 (LC3), a microtubule component with sequence homology to the GABAA receptor-associated protein (GABARAP), which is, like LC3, probably involved in cellular transport processes. Interestingly, two binding sites exist in LC3 for caldendrin from which only one exhibits a strict Ca(2+)-dependency for the interaction to take place but both require the presence of the first two EF-hands of caldendrin. CaM, however, is not capable of binding to LC3 at both sites despite its high degree of primary structure similarity with caldendrin. Computer modelling suggests that this might be explained by an altered distribution of surface charges at the first two EF-hands rendering each molecule, in principle, specific for a discrete set of binding partners. These findings provide molecular evidence that NCS can transduce signals to a specific target interaction irrespective of Ca(2+)-concentrations and CaM-levels.
Collapse
Affiliation(s)
- Constanze I Seidenbecher
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestr. 6 39118 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Haynes LP, Tepikin AV, Burgoyne RD. Calcium-binding Protein 1 Is an Inhibitor of Agonist-evoked, Inositol 1,4,5-Trisphosphate-mediated Calcium Signaling. J Biol Chem 2004; 279:547-55. [PMID: 14570872 DOI: 10.1074/jbc.m309617200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular calcium signals are responsible for initiating a spectrum of physiological responses. The caldendrins/calcium-binding proteins (CaBPs) represent mammal-specific members of the CaM superfamily. CaBPs display a restricted pattern of expression in neuronal/retinal tissues, suggesting a specialized role in Ca2+ signaling in these cell types. Recently, it was reported that a splice variant of CaBP1 functionally interacts with inositol 1,4,5-trisphosphate (InsP3) receptors to elicit channel activation in the absence of InsP3 (Yang, J., McBride, S., Mak, D.-O. D., Vardi, N., Palczewski, K., Haeseleer, F., and Foskett, J. K. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 7711-7716). These data indicate a new mode of InsP3 receptor modulation and hence control of intracellular Ca2+ concentration ([Ca2+]i) in neuronal tissues. We have analyzed the biochemistry of the long form splice variant of CaBP1 (L-CaBP1) and show that, in vitro, a recombinant form of the protein is able to bind Ca2+ with high affinity and undergo a conformational change. We also describe the localization of endogenous and overexpressed L-CaBP1 in the model neuroendocrine PC12 cell system, where it was associated with the plasma membrane and Golgi complex in a myristoylation-dependent manner. Furthermore, we show that overexpressed L-CaBP1 is able to substantially suppress rises in [Ca2+]i in response to physiological agonists acting on purinergic receptors and that this inhibition is due in large part to blockade of release from intracellular Ca2+ stores. The related protein neuronal calcium sensor-1 was without effect on the [Ca2+]i responses to agonist stimulation. Measurement of [Ca2+] within the ER of permeabilized PC12 cells demonstrated that LCaBP1 directly inhibited InsP3-mediated Ca2+ release. Expression of L-CaBP1 also inhibited histamine-induced [Ca2+]i oscillations in HeLa cells. Together, these data suggest that L-CaBP1 is able to specifically regulate InsP3 receptor-mediated alterations in [Ca2+]i during agonist stimulation.
Collapse
Affiliation(s)
- Lee P Haynes
- The Physiological Laboratory, Crown Street, University of Liverpool, Liverpool L69 3BX, UK
| | | | | |
Collapse
|
16
|
Smalla KH, Seidenbecher CI, Tischmeyer W, Schicknick H, Wyneken U, Böckers TM, Gundelfinger ED, Kreutz MR. Kainate-induced epileptic seizures induce a recruitment of caldendrin to the postsynaptic density in rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 116:159-62. [PMID: 12941472 DOI: 10.1016/s0169-328x(03)00235-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Caldendrin defines a novel family of neuronal calcium-sensor proteins, the C-terminal moiety of which displays high similarity to calmodulin. We now report that the protein is recruited to the postsynaptic density (PSD) of cortical and hippocampal neurons in response to kainate-induced epileptic seizures, an animal model of human temporal lobe epilepsy. The translocation of caldendrin to the PSD did not occur in kainate-treated rats that did not develop seizures. The enhanced PSD levels of caldendrin are not due to increased protein synthesis and most likely reflect a recruitment from the soluble caldendrin protein pool. These findings suggest that the transduction of dendritic Ca2+-signals via caldendrin is altered by epileptic seizures and that caldendrin might be involved in the pathophysiology of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Karl-Heinz Smalla
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry/Molecular Biology, Leibniz-Institute for Neurobiology, Brenneckestrasse 6, Magdeburg 39118, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bernstein HG, Seidenbecher CI, Smalla KH, Gundelfinger ED, Bogerts B, Kreutz MR. Distribution and cellular localization of caldendrin immunoreactivity in adult human forebrain. J Histochem Cytochem 2003; 51:1109-12. [PMID: 12871994 DOI: 10.1177/002215540305100816] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We investigated by immunohistochemistry (IHC) the distribution of caldendrin, the founding member of a novel family of neuronal calcium-binding proteins closely related to calmodulin, in human forebrain. Caldendrin immunoreactivity was unevenly distributed, with prominent staining in the paleo- and neocortex, hippocampus, and hypothalamus. With the exception of the hypothalamus, labeling was restricted to the somato-dendritic compartment of neurons. This distribution completely matches that reported in rat, indicating that the cellular function is most likely conserved among species. Therefore, one prerequisite for functional studies in rodent models aimed at elucidation of mechanisms with relevance for humans can be based on the present findings.
Collapse
|
18
|
Landwehr M, Redecker P, Dieterich DC, Richter K, Böckers TM, Gundelfinger ED, Kreutz MR. Association of Caldendrin splice isoforms with secretory vesicles in neurohypophyseal axons and the pituitary. FEBS Lett 2003; 547:189-92. [PMID: 12860411 DOI: 10.1016/s0014-5793(03)00713-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Caldendrin is a neuronal calcium-binding protein, which is highly enriched in the postsynaptic density fraction and exhibits a prominent somato-dendritic distribution in brain. Two additional splice variants derive from the caldendrin gene, which have unrelated N-termini and were previously only detected in the retina. We now show that these isoforms are present in neurohypophyseal axons and on secretory granules of endocrine cells. In light of the described interaction of the Caldendrin C-terminus with Q-type Ca(v)2.1 calcium channels these data suggest that this interaction takes place in neurohypophyseal axons and pituitary cells indicating functions of the short splice variants in triggering Ca2+ transients to a vesicular target interaction.
Collapse
Affiliation(s)
- Marco Landwehr
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|