1
|
Jiao Y, Kong N, Wang H, Sun D, Dong S, Chen X, Zheng H, Tong W, Yu H, Yu L, Huang Y, Wang H, Sui B, Zhao L, Liao Y, Zhang W, Tong G, Shan T. PABPC4 Broadly Inhibits Coronavirus Replication by Degrading Nucleocapsid Protein through Selective Autophagy. Microbiol Spectr 2021; 9:e0090821. [PMID: 34612687 PMCID: PMC8510267 DOI: 10.1128/spectrum.00908-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Emerging coronaviruses (CoVs) can cause severe diseases in humans and animals, and, as of yet, none of the currently available broad-spectrum drugs or vaccines can effectively control these diseases. Host antiviral proteins play an important role in inhibiting viral proliferation. One of the isoforms of cytoplasmic poly(A)-binding protein (PABP), PABPC4, is an RNA-processing protein, which plays an important role in promoting gene expression by enhancing translation and mRNA stability. However, its function in viruses remains poorly understood. Here, we report that the host protein, PABPC4, could be regulated by transcription factor SP1 and broadly inhibits the replication of CoVs, covering four genera (Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus) of the Coronaviridae family by targeting the nucleocapsid (N) protein through the autophagosomes for degradation. PABPC4 recruited the E3 ubiquitin ligase MARCH8/MARCHF8 to the N protein for ubiquitination. Ubiquitinated N protein was recognized by the cargo receptor NDP52/CALCOCO2, which delivered it to the autolysosomes for degradation, resulting in impaired viral proliferation. In addition to regulating gene expression, these data demonstrate a novel antiviral function of PABPC4, which broadly suppresses CoVs by degrading the N protein via the selective autophagy pathway. This study will shed light on the development of broad anticoronaviral therapies. IMPORTANCE Emerging coronaviruses (CoVs) can cause severe diseases in humans and animals, but none of the currently available drugs or vaccines can effectively control these diseases. During viral infection, the host will activate the interferon (IFN) signaling pathways and host restriction factors in maintaining the innate antiviral responses and suppressing viral replication. This study demonstrated that the host protein, PABPC4, interacts with the nucleocapsid (N) proteins from eight CoVs covering four genera (Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus) of the Coronaviridae family. PABPC4 could be regulated by SP1 and broadly inhibits the replication of CoVs by targeting the nucleocapsid (N) protein through the autophagosomes for degradation. This study significantly increases our understanding of the novel host restriction factor PABPC4 against CoV replication and will help develop novel antiviral strategies.
Collapse
Affiliation(s)
- Yajuan Jiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Ning Kong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Hua Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Dage Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Sujie Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Xiaoyong Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Hao Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Hai Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yaowei Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Huan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Baokun Sui
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ling Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
2
|
Downregulation of heat shock factor 4 transcription activity via MAPKinase phosphorylation at Serine 299. Int J Biochem Cell Biol 2018; 105:61-69. [PMID: 30316871 DOI: 10.1016/j.biocel.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 11/22/2022]
Abstract
Dysfunction of HSF4 is associated with congenital cataracts. HSF4 transcription activity is turned on and regulated by phosphorylation during early postnatal lens development. Our previous data suggested that mutation HSF4b/S299A can upregulate HSF4 transcription activity in vitro, but the biological significance of posttranslational modification on HSF4/S299 during lens development remains unclear. Here, we found that the mutation HSF4/S299A can upregulate the expression of HSP25 and alpha B-crystallin at both protein and mRNA levels in mouse the lens epithelial cell line, but HSF4/S299D does not. Using the rabbit polyclonal antibody against phospho-S299 of HSF4, we found that EGF and ectopic expression of MEK1 can increase the phosphorylation of HSF4/S299 and induce HSF4 sumoylation, and these effects are inhibited by U0126. ERK1/2 can phosphorylate the S299 in HSF4/wt but not in HSF4/S299A in the in vitro kinase assay. Functionally, ectopic MEK1 can inhibit HSF4-controled alpha B-crystallin expression but has less effect on HSF4/S299A. EGF can upregulate phospho-HSF4/S299 and downregulate alpha B-crystallin expression in P3 mouse lens, and this downregulation is suppressed by U0126. During mouse lens development, phosphorylation of HSF4/S299 is downregulated in P3 lens and upregulated in P7 and P14 lens. However, in 2 months old lens, both phosphorylation of HSF4/S299 and total HSF4 protein are decreased. Interestingly, ERK1/2 activity is lower in P3 lens than in P7 and P14 lens, which is in line with the phosphorylation of HSF4/S299. Taken together, our data demonstrate that HSF4/299 is a phosphorylation target of MEK1-ERK1/2, and phosphorylation of S299 is responsible for tuning down HSF4 transcription activity during postnatal lens development.
Collapse
|
3
|
Fung TS, Liu DX. Post-translational modifications of coronavirus proteins: roles and function. Future Virol 2018; 13:405-430. [PMID: 32201497 PMCID: PMC7080180 DOI: 10.2217/fvl-2018-0008] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
Post-translational modifications (PTMs) refer to the covalent modifications of polypeptides after they are synthesized, adding temporal and spatial regulation to modulate protein functions. Being obligate intracellular parasites, viruses rely on the protein synthesis machinery of host cells to support replication, and not surprisingly, many viral proteins are subjected to PTMs. Coronavirus (CoV) is a group of enveloped RNA viruses causing diseases in both human and animals. Many CoV proteins are modified by PTMs, including glycosylation and palmitoylation of the spike and envelope protein, N- or O-linked glycosylation of the membrane protein, phosphorylation and ADP-ribosylation of the nucleocapsid protein, and other PTMs on nonstructural and accessory proteins. In this review, we summarize the current knowledge on PTMs of CoV proteins, with an emphasis on their impact on viral replication and pathogenesis. The ability of some CoV proteins to interfere with PTMs of host proteins will also be discussed.
Collapse
Affiliation(s)
- To Sing Fung
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China.,South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China
| | - Ding Xiang Liu
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.,South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
4
|
Zhang X, Wu K, Wang D, Yue X, Song D, Zhu Y, Wu J. Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-kappaB. Virology 2007; 365:324-35. [PMID: 17490702 PMCID: PMC7103332 DOI: 10.1016/j.virol.2007.04.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Revised: 01/20/2007] [Accepted: 04/09/2007] [Indexed: 12/22/2022]
Abstract
High levels of interleukin-6 (IL-6) in the acute stage associated with lung lesions were found in SARS patients. To evaluate the mechanisms behind this event, we investigated the roles of SARS-CoV proteins in the regulation of IL-6. Results showed that the viral nucleocapsid (N) protein activated IL-6 expression in a concentration-dependent manner. Promoter analyses suggested that NF-κB binding element was required for IL-6 expression regulated by N protein. Further studies demonstrated that N protein bound directly to NF-κB element on the promoter. We also showed that N protein activated IL-6 expression through NF-κB by facilitating the translocation of NF-κB from cytosol to nucleus. Mutational analyses revealed that two regions of N protein were essential for its function in the activation of IL-6. These results provided new insights into understanding the mechanism involved in the function of SARS-CoV N protein and pathogenesis of the virus.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Di Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Xin Yue
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Degui Song
- College of Biological Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
- Corresponding authors. J. Wu is to be contacted at fax: +86 27 68754592.
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
- Corresponding authors. J. Wu is to be contacted at fax: +86 27 68754592.
| |
Collapse
|
5
|
White TC, Yi Z, Hogue BG. Identification of mouse hepatitis coronavirus A59 nucleocapsid protein phosphorylation sites. Virus Res 2007; 126:139-48. [PMID: 17367888 PMCID: PMC2001268 DOI: 10.1016/j.virusres.2007.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 02/04/2007] [Accepted: 02/08/2007] [Indexed: 01/28/2023]
Abstract
The coronavirus nucleocapsid (N) is a multifunctional phosphoprotein that encapsidates the genomic RNA into a helical nucleocapsid within the mature virion. The protein also plays roles in viral RNA transcription and/or replication and possibly viral mRNA translation. Phosphorylation is one of the most common post-translation modifications that plays important regulatory roles in modulating protein functions. It has been speculated for sometime that phosphorylation could play an important role in regulation of coronavirus N protein functions. As a first step toward positioning to address this we have identified the amino acids that are phosphorylated on the mouse hepatitis coronavirus (MHV) A59 N protein. High performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was used to identify phosphorylated sites on the N protein from both infected cells and purified extracellular virions. A total of six phosphorylated sites (S162, S170, T177, S389, S424 and T428) were identified on the protein from infected cells. The same six sites were also phosphorylated on the extracellular mature virion N protein. This is the first identification of phosphorylated sites for a group II coronavirus N protein.
Collapse
Affiliation(s)
- Tiana C White
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401, USA
| | | | | |
Collapse
|
6
|
Perlman S, Holmes KV. Mouse hepatitis coronavirus nucleocapsid phosphorylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:157-60. [PMID: 17037524 PMCID: PMC3764311 DOI: 10.1007/978-0-387-33012-9_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
7
|
Abstract
Coronaviruses are large, enveloped RNA viruses of both medical and veterinary importance. Interest in this viral family has intensified in the past few years as a result of the identification of a newly emerged coronavirus as the causative agent of severe acute respiratory syndrome (SARS). At the molecular level, coronaviruses employ a variety of unusual strategies to accomplish a complex program of gene expression. Coronavirus replication entails ribosome frameshifting during genome translation, the synthesis of both genomic and multiple subgenomic RNA species, and the assembly of progeny virions by a pathway that is unique among enveloped RNA viruses. Progress in the investigation of these processes has been enhanced by the development of reverse genetic systems, an advance that was heretofore obstructed by the enormous size of the coronavirus genome. This review summarizes both classical and contemporary discoveries in the study of the molecular biology of these infectious agents, with particular emphasis on the nature and recognition of viral receptors, viral RNA synthesis, and the molecular interactions governing virion assembly.
Collapse
Affiliation(s)
- Paul S Masters
- Wadsworth Center, New York State Department of Health, Albany, 12201, USA
| |
Collapse
|
8
|
Jayaram J, Youn S, Collisson EW. The virion N protein of infectious bronchitis virus is more phosphorylated than the N protein from infected cell lysates. Virology 2005; 339:127-35. [PMID: 15979680 PMCID: PMC7111880 DOI: 10.1016/j.virol.2005.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 01/15/2005] [Accepted: 04/19/2005] [Indexed: 01/24/2023]
Abstract
Because phosphorylation of the infectious bronchitis virus (IBV) nucleocapsid protein (N) may regulate its multiple roles in viral replication, the dynamics of N phosphorylation were examined. 32P-orthophosphate labeling and Western blot analyses confirmed that N was the only viral protein that was phosphorylated. Pulse labeling with 32P-orthophosphate indicated that the IBV N protein was phosphorylated in the virion, as well as at all times during infection in either chicken embryo kidney cells or Vero cells. Pulse-chase analyses followed by immunoprecipitation of IBV N proteins using rabbit anti-IBV N polyclonal antibody demonstrated that the phosphate on the N protein was stable for at least 1 h. Simultaneous labeling with 32P-orthophosphate and 3H-leucine identified a 3.5-fold increase in the 32P:3H counts per minute (cpm) ratio of N in the virion as compared to the 32P:3H cpm ratio of N in the cell lysates from chicken embryo kidney cells, whereas in Vero cells the 32P:3H cpm ratio of N from the virion was 10.5-fold greater than the 32P:3H cpm ratio of N from the cell lysates. These studies are consistent with the phosphorylation of the IBV N playing a role in assembly or maturation of the viral particle.
Collapse
Affiliation(s)
- Jyothi Jayaram
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Soonjeon Youn
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Ellen W. Collisson
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
- Corresponding author. Fax: +1 979 862 1088.
| |
Collapse
|
9
|
Luo C, Luo H, Zheng S, Gui C, Yue L, Yu C, Sun T, He P, Chen J, Shen J, Luo X, Li Y, Liu H, Bai D, Shen J, Yang Y, Li F, Zuo J, Hilgenfeld R, Pei G, Chen K, Shen X, Jiang H. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochem Biophys Res Commun 2004; 321:557-65. [PMID: 15358143 PMCID: PMC7092810 DOI: 10.1016/j.bbrc.2004.07.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is responsible for SARS infection. Nucleocapsid protein (NP) of SARS-CoV (SARS_NP) functions in enveloping the entire genomic RNA and interacts with viron structural proteins, thus playing important roles in the process of virus particle assembly and release. Protein–protein interaction analysis using bioinformatics tools indicated that SARS_NP may bind to human cyclophilin A (hCypA), and surface plasmon resonance (SPR) technology revealed this binding with the equilibrium dissociation constant ranging from 6 to 160 nM. The probable binding sites of these two proteins were detected by modeling the three-dimensional structure of the SARS_NP–hCypA complex, from which the important interaction residue pairs between the proteins were deduced. Mutagenesis experiments were carried out for validating the binding model, whose correctness was assessed by the observed effects on the binding affinities between the proteins. The reliability of the binding sites derived by the molecular modeling was confirmed by the fact that the computationally predicted values of the relative free energies of the binding for SARS_NP (or hCypA) mutants to the wild-type hCypA (or SARS_NP) are in good agreement with the data determined by SPR. Such presently observed SARS_NP–hCypA interaction model might provide a new hint for facilitating the understanding of another possible SARS-CoV infection pathway against human cell.
Collapse
Affiliation(s)
- Cheng Luo
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haibin Luo
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Suxin Zheng
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunshan Gui
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liduo Yue
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changying Yu
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tao Sun
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Peilan He
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Chen
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianhua Shen
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaomin Luo
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yixue Li
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Liu
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Donglu Bai
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingkang Shen
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiming Yang
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fangqiu Li
- Laboratory of Molecular Biology, Nanjing General Hospital, Nanjing 210002, China
| | - Jianping Zuo
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rolf Hilgenfeld
- Institute of Biochemistry, University of Lübeck, D-23538 Lübeck, Germany
| | - Gang Pei
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kaixian Chen
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xu Shen
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
- Corresponding authors. Fax: +86-21-50807088
| | - Hualiang Jiang
- Drug Discovery and Design Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 201203, China
- Corresponding authors. Fax: +86-21-50807088
| |
Collapse
|
10
|
Bost AG, Carnahan RH, Lu XT, Denison MR. Four proteins processed from the replicase gene polyprotein of mouse hepatitis virus colocalize in the cell periphery and adjacent to sites of virion assembly. J Virol 2000; 74:3379-87. [PMID: 10708455 PMCID: PMC111839 DOI: 10.1128/jvi.74.7.3379-3387.2000] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The replicase gene (gene 1) of the coronavirus mouse hepatitis virus (MHV) encodes two co-amino-terminal polyproteins presumed to incorporate all the virus-encoded proteins necessary for viral RNA synthesis. The polyproteins are cotranslationally processed by viral proteinases into at least 15 mature proteins, including four predicted cleavage products of less than 25 kDa that together would comprise the final 59 kDa of protein translated from open reading frame 1a. Monospecific antibodies directed against the four distinct domains detected proteins of 10, 12, and 15 kDa (p1a-10, p1a-12, and p1a-15) in MHV-A59-infected DBT cells, in addition to a previously identified 22-kDa protein (p1a-22). When infected cells were probed by immunofluorescence laser confocal microscopy, p1a-10, -22, -12, and -15 were detected in discrete foci that were prominent in the perinuclear region but were widely distributed throughout the cytoplasm as well. Dual-labeling experiments demonstrated colocalization of the majority of p1a-22 in replication complexes with the helicase, nucleocapsid, and 3C-like proteinase, as well as with p1a-10, -12, and -15. p1a-22 was also detected in separate foci adjacent to the replication complexes. The majority of complexes containing the gene 1 proteins were distinct from sites of accumulation of the M assembly protein. However, in perinuclear regions the gene 1 proteins and nucleocapsid were intercalated with sites of M protein localization. These results demonstrate that the complexes known to be involved in RNA synthesis contain multiple gene 1 proteins and are closely associated with structural proteins at presumed sites of virion assembly.
Collapse
Affiliation(s)
- A G Bost
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|