1
|
Yang D, Krois CR, Huang P, Wang J, Min J, Yoo HS, Deng Y, Napoli JL. Raldh1 promotes adiposity during adolescence independently of retinal signaling. PLoS One 2017; 12:e0187669. [PMID: 29095919 PMCID: PMC5667840 DOI: 10.1371/journal.pone.0187669] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022] Open
Abstract
All-trans-retinoic acid (RA) inhibits adipogenesis in established preadipocyte cell lines. Dosing pharmacological amounts of RA reduces weight gain in mice fed a high-fat diet, i.e. counteracts diet-induced obesity (DIO). The aldehyde dehydrogenase Raldh1 (Aldh1a1) functions as one of three enzymes that converts the retinol metabolite retinal into RA, and one of many proteins that contribute to RA homeostasis. Female Raldh1-ablated mice resist DIO. This phenotype contrasts with ablations of other enzymes and binding-proteins that maintain RA homeostasis, which gain adiposity. The phenotype observed prompted the conclusion that loss of Raldh1 causes an increase in adipose tissue retinal, and therefore, retinal functions independently of RA to prevent DIO. A second deduction proposed that low nM concentrations of RA stimulate adipogenesis, in contrast to higher concentrations. Using peer-reviewed LC/MS/MS assays developed and validated for quantifying tissue RA and retinal, we show that endogenous retinal and RA concentrations in adipose tissues from Raldh1-null mice do not correlate with the phenotype. Moreover, male Raldh1-null mice resist weight gain regardless of dietary fat content. Resistance to weight gain occurs during adolescence in both sexes. We show that RA concentrations as low as 1 nM, i.e. in the sub-physiological range, impair adipogenesis of embryonic fibroblasts from wild-type mice. Embryonic fibroblasts from Raldh1-null mice resist differentiating into adipocytes, but retain ability to generate RA. These fibroblasts remain sensitive to an RA receptor pan-agonist, and are not affected by an RA receptor pan-antagonist. Thus, the data do not support the hypothesis that retinal itself represses weight gain and adipogenesis independently of RA. Instead, the data indicate that Raldh1 functions as a retinal and atRA-independent promoter of adiposity during adolescence, and enhances adiposity through pre-adipocyte cell autonomous actions.
Collapse
Affiliation(s)
- Di Yang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Charles R. Krois
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Priscilla Huang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Jinshan Wang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Jin Min
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Hong Sik Yoo
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Yinghua Deng
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Joseph L. Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
2
|
Cancer stem cell markers in prostate cancer: an immunohistochemical study of ALDH1, SOX2 and EZH2. Pathology 2016; 47:622-8. [PMID: 26517640 DOI: 10.1097/pat.0000000000000325] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aims of this study were to investigate the immunohistochemical expression and potential prognostic significance of putative cancer stems cell markers ALDH1, EZH2 and SOX2 in prostate cancer.A total of 142 consecutive radical prostatectomies submitted to one laboratory with a diagnosis of prostatic adenocarcinoma between 2008 and 2012 were retrieved and retrospectively studied. Immunohistochemistry for the three markers was performed in each case and both univariate and multivariate analyses were undertaken to evaluate the correlation between the staining patterns and known histopathological prognostic features.ALDH1 showed a statistically significant association with tumour stage p < 0.001), extraprostatic extension (p < 0.001) and lymphovascular invasion (p = 0.001). EZH2 correlated with Gleason score (p = 0.044) and lymph node metastases (p = 0.023). SOX2 showed a statistically significant correlation with lymphovascular invasion only (p = 0.018) in both univariate and multivariate analyses.Cancer stem cell markers are variably expressed in prostate adenocarcinoma and immunohistochemical staining for ALDH1 and EZH2 may have a role in predicting tumour aggressiveness before treatment of prostate cancer.
Collapse
|
3
|
Hong SH, Kim KR, Oh DK. Biochemical properties of retinoid-converting enzymes and biotechnological production of retinoids. Appl Microbiol Biotechnol 2015; 99:7813-26. [DOI: 10.1007/s00253-015-6830-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
|
4
|
Miyata T, Yoshimatsu T, So T, Oyama T, Uramoto H, Osaki T, Nakanishi R, Tanaka F, Nagaya H, Gotoh A. Cancer stem cell markers in lung cancer. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.pmu.2015.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Kreuzer J, Bach NC, Forler D, Sieber SA. Target discovery of acivicin in cancer cells elucidates its mechanism of growth inhibition†Electronic supplementary information (ESI) available: Synthesis, cloning, protein expression, purification and biochemical assays. See DOI: 10.1039/c4sc02339k. Chem Sci 2014; 6:237-245. [PMID: 25580214 PMCID: PMC4285139 DOI: 10.1039/c4sc02339k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022] Open
Abstract
Using a chemical proteomic strategy we analyzed the targets of acivicin and provided a mechanistic explanation for its inhibition of cancer cell growth.
Acivicin is a natural product with diverse biological activities. Several decades ago its clinical application in cancer treatment was explored but failed due to unacceptable toxicity. The causes behind the desired and undesired biological effects have never been elucidated and only limited information about acivicin-specific targets is available. In order to elucidate the target spectrum of acivicin in more detail we prepared functionalized derivatives and applied them for activity based proteomic profiling (ABPP) in intact cancer cells. Target deconvolution by quantitative mass spectrometry (MS) revealed a preference for specific aldehyde dehydrogenases. Further in depth target validation confirmed that acivicin inhibits ALDH4A1 activity by binding to the catalytic site. In accordance with this, downregulation of ALDH4A1 by siRNA resulted in a severe inhibition of cell growth and might thus provide an explanation for the cytotoxic effects of acivicin.
Collapse
Affiliation(s)
- Johannes Kreuzer
- Center for Integrated Protein Science CIPSM , Institute of Advanced Studies IAS , Department Chemie , Lehrstuhl für Organische Chemie II , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany . ; ; Tel: +49 8928913302
| | - Nina C Bach
- Center for Integrated Protein Science CIPSM , Institute of Advanced Studies IAS , Department Chemie , Lehrstuhl für Organische Chemie II , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany . ; ; Tel: +49 8928913302
| | - Daniel Forler
- Bayer HealthCare Bayer Pharma AG , Müllerstr. 178 , 13353 Berlin , Germany
| | - Stephan A Sieber
- Center for Integrated Protein Science CIPSM , Institute of Advanced Studies IAS , Department Chemie , Lehrstuhl für Organische Chemie II , Technische Universität München , Lichtenbergstrasse 4 , 85747 Garching , Germany . ; ; Tel: +49 8928913302
| |
Collapse
|
6
|
Napoli JL. Physiological insights into all-trans-retinoic acid biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:152-67. [PMID: 21621639 DOI: 10.1016/j.bbalip.2011.05.004] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/05/2011] [Accepted: 05/12/2011] [Indexed: 01/25/2023]
Abstract
All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer, and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data support a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires the presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
|
7
|
Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of retinoid-dependent axial patterning in metazoans. Proc Natl Acad Sci U S A 2010; 108:226-31. [PMID: 21169504 DOI: 10.1073/pnas.1011223108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification.
Collapse
|
8
|
Marchitti SA, Brocker C, Stagos D, Vasiliou V. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol 2008; 4:697-720. [PMID: 18611112 DOI: 10.1517/17425255.4.6.697] [Citation(s) in RCA: 588] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Aldehydes are highly reactive molecules. While several non-P450 enzyme systems participate in their metabolism, one of the most important is the aldehyde dehydrogenase (ALDH) superfamily, composed of NAD(P)+-dependent enzymes that catalyze aldehyde oxidation. OBJECTIVE This article presents a review of what is currently known about each member of the human ALDH superfamily including the pathophysiological significance of these enzymes. METHODS Relevant literature involving all members of the human ALDH family was extensively reviewed, with the primary focus on recent and novel findings. CONCLUSION To date, 19 ALDH genes have been identified in the human genome and mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjögren-Larsson syndrome, type II hyperprolinemia, gamma-hydroxybutyric aciduria and pyridoxine-dependent seizures. ALDH enzymes also play important roles in embryogenesis and development, neurotransmission, oxidative stress and cancer. Finally, ALDH enzymes display multiple catalytic and non-catalytic functions including ester hydrolysis, antioxidant properties, xenobiotic bioactivation and UV light absorption.
Collapse
Affiliation(s)
- Satori A Marchitti
- University of Colorado Health Sciences Center, Molecular Toxicology & Environmental Health Sciences Program, Department of Pharmaceutical Sciences, 4200 East Ninth Avenue, C238, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
9
|
Sládek NE. Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol 2003; 17:7-23. [PMID: 12616643 DOI: 10.1002/jbt.10057] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aldehyde dehydrogenases catalyze the pyridine nucleotide-dependent oxidation of aldehydes to acids. Seventeen enzymes are currently viewed as belonging to the human aldehyde dehydrogenase superfamily. Summarized herein, insofar as the information is available, are the structural composition, physical properties, tissue distribution, subcellular location, substrate specificity, and cofactor preference of each member of this superfamily. Also summarized are the chromosomal locations and organization of the genes that encode these enzymes and the biological consequences when enzyme activity is lost or substantially diminished. Broadly, aldehyde dehydrogenases can be categorized as critical for normal development and/or physiological homeostasis (1). even when the organism is in a friendly environment or (2). only when the organism finds itself in a hostile environment. The primary, if not sole, evolved raison d'être of first category aldehyde dehydrogenases appears to be to catalyze the biotransformation of a single endobiotic for which they are relatively specific and of which the resultant metabolite is essential to the organism. Most of the human aldehyde dehydrogenases for which the relevant information is available fall into this category. Second category aldehyde dehydrogenases are relatively substrate nonspecific and their evolved raison d'être seems to be to protect the organism from potentially harmful xenobiotics, specifically aldehydes or xenobiotics that give rise to aldehydes, by catalyzing their detoxification. Thus, the lack of a fully functional first category aldehyde dehydrogenase results in a gross pathological phenotype in the absence of any insult, whereas the lack of a functional second category aldehyde dehydrogenase is ordinarily of no consequence with respect to gross phenotype, but is of consequence in that regard when the organism is subjected to a relevant insult.
Collapse
Affiliation(s)
- Norman E Sládek
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Lin M, Zhang M, Abraham M, Smith SM, Napoli JL. Mouse retinal dehydrogenase 4 (RALDH4), molecular cloning, cellular expression, and activity in 9-cis-retinoic acid biosynthesis in intact cells. J Biol Chem 2003; 278:9856-61. [PMID: 12519776 DOI: 10.1074/jbc.m211417200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study describes cDNA cloning and characterization of mouse RALDH4. The 2.3-kb cDNA encodes an aldehyde dehydrogenase of 487 amino acid residues, about two-orders of magnitude more active in vitro with 9-cis-retinal than with all-trans-retinal. RALDH4 recognizes as substrate 9-cis-retinal generated in transfected cells by the short-chain dehydrogenases CRAD1, CRAD3, or RDH1, to reconstitute a path of 9-cis-retinoic acid biosynthesis in situ. Northern blot analysis showed expression of RALDH4 mRNA in adult mouse liver and kidney. In situ hybridization revealed expression of RALDH4 in liver on embryo day 14.5, in adult hepatocytes, and kidney cortex. Immunohistochemistry confirmed RALDH4 expression in hepatocytes and showed that hepatocytes also express RALDH1, RALDH2, and RALDH3. Kidney expresses the RALDH4 protein primarily in the proximal and distal convoluted tubules of the cortex but not in the glomeruli or the medulla. Kidney expresses RALDH2 in the proximal convoluted tubules of the cortex but not in the distal convoluted tubules or glomeruli. Kidney expresses RALDH1 and RALDH2 in the medulla. The enzymatic characteristics of RALDH4, its expression in fetal liver, and its unique expression pattern in adult kidney compared with RALDH1, -2, and -3 suggest that it could meet specific needs for 9-cis-retinoic acid biosynthesis.
Collapse
Affiliation(s)
- Min Lin
- Department of Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
11
|
Lin M, Napoli JL. cDNA cloning and expression of a human aldehyde dehydrogenase (ALDH) active with 9-cis-retinal and identification of a rat ortholog, ALDH12. J Biol Chem 2000; 275:40106-12. [PMID: 11007799 DOI: 10.1074/jbc.m008027200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This report describes the isolation of a heretofore uncharacterized aldehyde dehydrogenase (ALDH) with retinal dehydrogenase activity from rat kidney and the cloning and expression of a cDNA that encodes its human ortholog, the previously unknown ALDH12. The human ALDH12 cDNA predicts a 487-residue protein with the 23 invariant amino acids, four conserved regions, cofactor binding motif (G(209)XGX(3)G), and active site cysteine residue (Cys(287)) that typify members of the ALDH superfamily. ALDH12 seems at least as efficient (V(m)/K(m)) in converting 9-cis-retinal into the retinoid X receptor ligand 9-cis-retinoic acid as two previously identified ALDHs with 9-cis-retinal dehydrogenase activity, rat retinal dehydrogenase (RALDH) 1 and RALDH2. ALDH12, however, has approximately 40-fold higher activity with 9-cis- retinal than with all-trans-retinal, whereas RALDH1 and RALDH2 have equivalent and approximately 4-fold less efficiencies for 9-cis-retinal versus all-trans-retinal, respectively. Therefore, ALDH12 is the first known ALDH to show a preference for 9-cis-retinal relative to all-trans-retinal. Evidence consistent with the possibility that ALDH12 could function in a pathway of 9-cis-retinoic acid biosynthesis in vivo includes biosynthesis of 9-cis-retinoic acid from 9-cis-retinol in cells co-transfected with cDNAs encoding ALDH12 and the 9-cis-retinol/androgen dehydrogenase, cis-retinoid/androgen dehydrogenase type 1. Intense ALDH12 mRNA expression in adult and fetal liver and kidney, two organs that reportedly have relatively high concentrations of 9-cis-retinol, reinforces this notion.
Collapse
Affiliation(s)
- M Lin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
12
|
Hsu LC, Chang WC, Yoshida A. Mouse type-2 retinaldehyde dehydrogenase (RALDH2): genomic organization, tissue-dependent expression, chromosome assignment and comparison to other types. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:289-93. [PMID: 10858567 DOI: 10.1016/s0167-4781(00)00108-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Retinaldehyde dehydrogenase (RALDH) isozymes catalyze the formation of an essential developmental modulator, retinoic acid. We determined the structural organization of mouse type-2 Raldh2 by isolation of overlapping genomic DNA clones from a phage library. The gene consists of 14 exons spanning more than 70 kb of genomic DNA. It was localized to mouse chromosome 6. Northern blot analysis revealed testis-specific expression. The RALDH genes belong to the aldehyde dehydrogenase (ALDH) multi-gene family. Three types of RALDH genes (e.g. human ALDH1/mouse Ahd2/rat RalDH(I), human ALDH11/mouse Raldh2/rat RalDH(II) and human ALDH6) are highly conserved during evolution, sharing about 70% identity at the amino acid level between any two gene types and 90% identity between any two mammalian genes of the same type. Different RALDH types show specific tissue and developmental expression patterns, suggesting (i) a regulatory mechanism of retinoic acid synthesis via different promoters of RALDH genes, and (ii) distinctive biological roles of different isozymes in embryogenesis and organogenesis.
Collapse
Affiliation(s)
- L C Hsu
- Division of Molecular Medicine, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, USA.
| | | | | |
Collapse
|
13
|
Napoli JL. Interactions of retinoid binding proteins and enzymes in retinoid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1440:139-62. [PMID: 10521699 DOI: 10.1016/s1388-1981(99)00117-1] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Naturally occurring retinoids (vitamin A or retinol and its active metabolites) are vital for vision, controlling the differentiation program of epithelial cells in the digestive tract and respiratory system, skin, bone, the nervous system, the immune system, and for hematopoiesis. Retinoids are essential for growth, reproduction (conception and embryonic development), and resistance to and recovery from infection. The functions of retinoids in the embryo begin soon after conception and continue throughout the lifespan of all vertebrates. Both naturally occurring and synthetic retinoids are used in the therapy of various skin diseases, especially acne, for augmenting the treatment of diabetes, and as cancer chemopreventive agents. Retinol metabolites serve as ligands that activate specific transcription factors in the superfamily of steroid/retinoid/thyroid/vitamin D/orphan receptors and thereby control gene expression. Additionally, retinoids may also function through non-genomic actions. Various retinoid binding proteins serve as partners in retinoid function. These binding proteins show high specificity and affinity for specific retinoids and seem to control retinoid metabolism in vivo qualitatively and quantitatively by reducing 'free' retinoid concentrations, protecting retinoids from non-specific interactions, and chaperoning access of metabolic enzymes to retinoids. Implementation of the physiological effects of retinoids depends on the spatial-temporal expressions of binding proteins, receptors and metabolic enzymes. This review will discuss current understanding of the enzymes that catalyze retinol and retinoic acid metabolism and their unique and integral relationship to retinoid binding proteins.
Collapse
Affiliation(s)
- J L Napoli
- Department of Nutritional Sciences, 119 Morgan Hall, University of California, Berkeley, USA.
| |
Collapse
|
14
|
Molecular analysis of two closely related mouse aldehyde dehydrogenase genes: identification of a role for Aldh1, but not Aldh-pb, in the biosynthesis of retinoic acid. Biochem J 1999. [PMID: 10191271 DOI: 10.1042/0264-6021:3390387] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mammalian class I aldehyde dehydrogenase (ALDH1) has been implicated as a retinal dehydrogenase in the biosynthesis of retinoic acid, a modulator of gene expression and cell differentiation. As the first step towards studying the regulation of ALDH1 and its physiological role in the biosynthesis of retinoic acid, mouse ALDH1 cDNA and genomic clones have been characterized. During the cloning process, an additional closely related gene was also isolated and named Aldh-pb, owing to its high amino acid sequence identity (92%) with the rat phenobarbitol-inducible ALDH protein (ALDH-PB). Aldh1 spans about 45 kb in length, whereas Aldh-pb spans about 35 kb. Both genes are composed of 13 exons, and the positions of all the exon/intron boundaries are conserved with those of human ALDH1. The promoter regions of Aldh1 and Aldh-pb demonstrate high sequence similarity with those of human ALDH1 and rat ALDH-PB. Expression of Aldh1 and Aldh-pb is tissue-specific, with mRNAs for both genes being found in the liver, lung and testis, but not in the heart, spleen or muscle. Expression of Aldh-pb, but not Aldh1, was also detected at high levels in the kidney. Aldh1 and Aldh-pb encode proteins of 501 amino acids with 90% positional identity. To examine the relative roles of these two enzymes in retinoic acid synthesis in vivo, Xenopus embryos were injected with mRNAs encoding these enzymes to assay the effect on conversion of endogenous retinal into retinoic acid. Injection of ALDH1, but not ALDH-PB, mRNA stimulated retinoic acid synthesis in Xenopus embryos at the blastula stage. Thus our results indicate that Aldh1 can function in retinoic acid synthesis under physiological conditions, but that the closely related Aldh-pb does not share this property.
Collapse
|
15
|
López-Fernández LA, del Mazo J. The cytosolic aldehyde dehydrogenase gene (Aldh1) is developmentally expressed in Leydig cells. FEBS Lett 1997; 407:225-9. [PMID: 9166904 DOI: 10.1016/s0014-5793(97)00352-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cytosolic aldehyde dehydrogenase, ALDH1, participates in the oxidation of different aldehydes including that of all-trans retinal to retinoic acid. The accumulation of mouse Aldh1 transcripts is characterized by having different patterns in different tissues. This paper reports the greatest expression of Aldh1 in testis and liver. It was demonstrated that in testis, Aldh1 is specifically expressed in Leydig cells and is under developmental regulation. In vitro studies of cultured Leydig TM3 cells confirmed these results though such gene expression was found not to be mediated by LH regulation. Previous investigations have associated androgen receptors, and hence the androgen insensitivity syndrome in man, with the presence of ALDH1 in genital skin fibroblasts. However, this relationship was not established in a functional cell type, as is reported here for Leydig cells. These results could suggest a model for a molecular pathway from androgen receptor to retinoic acid biogenesis in Leydig cells via the mediation of ALDH.
Collapse
Affiliation(s)
- L A López-Fernández
- Department of Cell and Developmental Biology, Centro de Investigaciones Biológicas (C.S.I.C.), Velázquez, Madrid, Spain
| | | |
Collapse
|
16
|
Hsu LC, Chang WC, Yoshida A. Human aldehyde dehydrogenase genes, ALDH7 and ALDH8: genomic organization and gene structure comparison. Gene 1997; 189:89-94. [PMID: 9161417 DOI: 10.1016/s0378-1119(96)00839-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The structure of two human aldehyde dehydrogenase genes, ALDH7 and ALDH8, have been determined. The ALDH7 gene spans about 20 kb of the human genomic DNA and is composed of 9 coding exons. The ALDH8 gene is over 10 kb in length and consists of at least 10 exons. The ALDH8 gene contains an in-frame stop codon at the 17th codon position from the first initiator Met. The coding region of the ALDH7 gene shows about 86% nucleotide identity with the corresponding region of the ALDH8 gene. The numbers and positions of the introns of the two genes are conserved, suggesting that gene duplication is involved in the expansion of the ALDH gene family. The human ALDH7 and -8 genes have a closer evolutionary relationship with the human ALDH3.
Collapse
Affiliation(s)
- L C Hsu
- Department of Biochemical Genetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | |
Collapse
|
17
|
Hsu LC, Chang WC. Sequencing and expression of the human ALDH8 encoding a new member of the aldehyde dehydrogenase family. Gene X 1996; 174:319-22. [PMID: 8890755 DOI: 10.1016/0378-1119(96)00087-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human aldehyde dehydrogenase gene (ALDH) family is characterized by two major conserved DNA sequences encoding residues which are possibly involved in the catalytic function and the maintenance of the functional conformation of the ALDH enzyme. This property is the basis for synthesizing the degenerate primers to clone several cDNAs of the ALDH isozymes. In this report, we describe the cDNA sequence and the expression of a new member of this family, ALDH8. The human ALDH8 gene was identified during the process of the screening for the human ALDH7 genomic clones. Overlapping ALDH8 cDNA clones were isolated by polymerase chain reaction (PCR) amplification of human salivary gland total RNA or lambda gt11 cDNA library. When the ALDH8 cDNA sequence was aligned with that of the ALDH7 which encodes a polypeptide chain of 468 amino acid (aa) residues, it was found that a termination codon (TGA) is placed in frame at the ALDH8 sequence corresponding to the codon GCG for the seventeenth aa position of the ALDH7. Therefore, the human ALDH8 gene is a potential nonprocessed pseudogene in the ALDH multigene family which has no other pseudogenes reported so far. Alternatively, the ALDH8 gene is a functional gene if the premature stop codon is suppressed, or if the first downstream in-frame ATG serves as the initiator codon. This longest putative open reading frame (ORF) encodes a polypeptide chain of 385 aa residues, includes the two ALDH conserved regions, and demonstrates 86% identity with the corresponding ORF region of the human ALDH7. The expression of the ALDH8 transcripts is restricted to the salivary gland among the human tissues examined.
Collapse
Affiliation(s)
- L C Hsu
- Department of Biochemical Genetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | |
Collapse
|
18
|
López-Fernández LA, del Mazo J. Characterization of genes expressed early in mouse spermatogenesis, isolated from a subtractive cDNA library. Mamm Genome 1996; 7:698-700. [PMID: 8703127 DOI: 10.1007/s003359900210] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- L A López-Fernández
- Department of Cell and Developmental Biology, Centro de Investigaciones Biológicas (C.S.I.C.), Velázquez 144, 28006-Madrid, Spain
| | | |
Collapse
|
19
|
Yanagawa Y, Chen JC, Hsu LC, Yoshida A. The transcriptional regulation of human aldehyde dehydrogenase I gene. The structural and functional analysis of the promoter. J Biol Chem 1995; 270:17521-7. [PMID: 7615557 DOI: 10.1074/jbc.270.29.17521] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Human cytosolic aldehyde dehydrogenase 1 (ALDH1) plays a role in the biosynthesis of retinoic acid that is a modulator for gene expression and cell differentiation. Northern blot analysis showed that liver tissue, pancreas tissue, hepatoma cells, and genital skin fibroblast cells expressed high levels of ALDH1. Sequence analysis showed that the 5'-flanking region contains a number of putative regulatory elements, such as NF-IL6, HNF-5, GATA binding sites, and putative response elements for interleukin-6, phenobarbital and androgen, in addition to a noncanonical TATA box (ATAAA) and a CCAAT box. Functional characterization of the 5'-regulatory region of the human ALDH1 gene was carried out by a fusion to the chloramphenicol acetyltransferase gene. A construct containing 2.6 kilobase pairs of the 5'-flanking region was efficiently expressed in hepatoma Hep3B cells, but not in erythroleukemic K562 cells or in fibroblast LTK- cells, which do not express ALDH1. Within this region, we define a minimal promoter (-91 to +53) that contains positive regulatory elements. The study using site-directed mutagenesis demonstrated that the CCAAT box region is the major cis-acting element involved in basal ALDH1 promoter activity in Hep3B cells. Gel mobility shift assays showed that NF-Y and other octamer factors bound CCAAT box and an octamer motif sequence, but not GATA site existing in the minimal promoter region. Two additional DNA binding activities associated with the minimal promoter were found in the nuclear extract from Hep3B cells, but not from K562 cells. These results offer the possible molecular mechanism of the cell type-specific expression of ALDH1 gene.
Collapse
Affiliation(s)
- Y Yanagawa
- Department of Biochemical Genetics, Bechman Research Institute, City of Hope, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
20
|
Hsu LC, Chang WC, Lin SW, Yoshida A. Cloning and characterization of genes encoding four additional human aldehyde dehydrogenase isozymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 372:159-68. [PMID: 7484374 DOI: 10.1007/978-1-4615-1965-2_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- L C Hsu
- Department of Biochemical Genetics, Beckman Research Institute, City of Hope, Duarte, California, USA
| | | | | | | |
Collapse
|
21
|
Kitson KE, Blythe TJ, Kitson TM. Studies of the esterase activity of cytosolic aldehyde dehydrogenase using sterically hindered and cyclic substrates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 372:45-52. [PMID: 7484408 DOI: 10.1007/978-1-4615-1965-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- K E Kitson
- Department of Chemistry and Biochemistry, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
22
|
Kitson TM, Kitson KE. Use of a chromophoric reporter group to probe the active site of cytosolic aldehyde dehydrogenase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 372:35-43. [PMID: 7484398 DOI: 10.1007/978-1-4615-1965-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- T M Kitson
- Department of Chemistry and Biochemistry, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
23
|
Hsu LC, Chang WC, Yoshida A. Cloning of a cDNA encoding human ALDH7, a new member of the aldehyde dehydrogenase family. Gene 1994; 151:285-9. [PMID: 7828891 DOI: 10.1016/0378-1119(94)90672-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aldehyde dehydrogenases (ALDH; EC 1.2.1.3) are a family of isozymes which have been suggested to play a major role in the detoxification of aldehydes generated by alcohol metabolism and lipid peroxidation. Five non-allelic ALDH genes, encoding the ALDH1, 2, 3, 5 and 6 isozymes, have previously been identified and cloned in our laboratory. In this paper, we report the cloning and sequencing of a cDNA encoding a new human ALDH (ALDH7). Degenerate oligodeoxyribonucleotides derived from conserved regions of known ALDH cDNAs amplified a 408-bp product from human kidney total RNA by the reverse transcription-polymerase chain reaction (RT-PCR) procedures [Hsu et al., J. Biol. Chem. 266 (1992) 3030-3037]. This PCR product was subcloned, selected and used as a probe to screen a human kidney cDNA library. The full-length human kidney cDNA (ALDH7) is 2791 bp in length and contains an open reading frame encoding 468 amino acids (aa). The deduced sequence of ALDH7 is longer than that of the human stomach ALDH3 by 15 aa at the C terminus. The degree of identity between the two isozymes is 52% with a positional alignment of 453 aa. Northern blot analysis demonstrated that lung is another major tissue expressing ALDH7.
Collapse
Affiliation(s)
- L C Hsu
- Department of Biochemical Genetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | | | | |
Collapse
|
24
|
Yamauchi K, Tata JR. Purification and characterization of a cytosolic thyroid-hormone-binding protein (CTBP) in Xenopus liver. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:1105-12. [PMID: 7957201 DOI: 10.1111/j.1432-1033.1994.1105b.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A variety of cytosolic thyroid-hormone-binding proteins with different characteristics have previously been reported. Here, we first describe the thyroid-hormone-binding characteristics of adult Xenopus liver cytosol, then a novel procedure for purifying cytosolic thyroid-hormone-binding protein (CTBP) from Xenopus liver (xCTBP). The procedure consists of combining preparative isoelectrofocusing, FPLC cation-exchange chromatography, HPLC hydrophobic-interaction chromatography and ultraviolet light cross-linking of 125I-labeled 3,3'5-triiodo-L-thyronine (T3). The isolated xCTBP thus prepared retained all the characteristics of the major thyroid- hormone-(TH)-binding component of the unfractionated cytosol. It is a monomeric protein of approximately 59 kDa with an isoelectric point of 7.0 +/- 0.1, binds T3 with a higher affinity than its analogs with a Kd of approximately 9 nM, and is sensitive to sulfhydryl agents but not to NADPH. In several respects, xCTBP differs from most CTBP-like preparations from other sources described hitherto. Microsequencing of a 23-amino-acid peptide generated from xCTBP by cyanogen bromide digestion revealed 92-100% identity of a 23-amino-acid sequence of several mammalian (amino acids 236-258) and avian (amino acids 245-267) cytosolic aldehyde dehydrogenases (ALDH); xCTBP also exhibited significant similarity of amino acid composition with rat ALDH. This novel finding of sequence identity between a CTBP and ALDH, and the diversity of CTBPs from different sources, suggest that a variety of cytosolic proteins, depending on the species and tissue, can function as thyroid-hormone-binding proteins.
Collapse
Affiliation(s)
- K Yamauchi
- Laboratory of Developmental Biochemistry, National Institute for Medical Research, London, England
| | | |
Collapse
|
25
|
Zheng CF, Wang TT, Weiner H. Cloning and expression of the full-length cDNAS encoding human liver class 1 and class 2 aldehyde dehydrogenase. Alcohol Clin Exp Res 1993; 17:828-31. [PMID: 8214422 DOI: 10.1111/j.1530-0277.1993.tb00849.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The amino acid sequences of both human class 1 and 2 aldehyde dehydrogenase (ALDH) and the sequences of the genes coding for them are known. Based on this sequence data, we designed primers and isolated the full-length cDNAs encoding both isozymes from a human liver mRNA pool. cDNAs were subcloned in the plasmid pT7-7 and expressed in Escherichia coli with a yield of approximately 3 mg ALDH protein/liter of cell culture, although only one-third of the enzyme was soluble. The soluble recombinantly expressed ALDHs were purified to homogeneity using a hydroxyacetophenone-Sepharose affinity column. The mitochondrial isozyme had a subunit molecular weight of 55 kDa, an isoelectric point of 4.9, and a specific activity of 1.10 units/mg, which were in good agreement with that from the native enzyme. The expressed cytosolic isozyme had the same subunit molecular weight (55 kDa) and pI (5.4) as that reported for the native enzyme and had a specific activity of 0.26 units/mg. The expressed mitochondrial isozyme could be recognized by antibodies raised against rat mitochondrial ALDH, whereas the cytosolic isozyme could be recognized by antibody raised against horse cytosolic ALDH.
Collapse
Affiliation(s)
- C F Zheng
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153
| | | | | |
Collapse
|